1
|
Talaverón R, Morado-Díaz CJ, Herrera A, Gálvez V, Pastor AM, Matarredona ER. The Gap Junction Inhibitor Octanol Decreases Proliferation and Increases Glial Differentiation of Postnatal Neural Progenitor Cells. Int J Mol Sci 2024; 25:6288. [PMID: 38927995 PMCID: PMC11203596 DOI: 10.3390/ijms25126288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Neural precursor cells (NPCs) that persist in the postnatal/adult subventricular zone (SVZ) express connexins that form hemichannels and gap junctions. Gap junctional communication plays a role in NPC proliferation and differentiation during development, but its relevance on postnatal age remains to be elucidated. In this work we aimed to evaluate the effect of the blockade of gap junctional communication on proliferation and cell fate of NPCs obtained from the SVZ of postnatal rats. NPCs were isolated and expanded in culture as neurospheres. Electron microscopy revealed the existence of gap junctions among neurosphere cells. Treatment of cultures with octanol, a broad-spectrum gap junction blocker, or with Gap27, a specific blocker for gap junctions formed by connexin43, produced a significant decrease in bromodeoxyuridine incorporation. Octanol treatment also exerted a dose-dependent antiproliferative effect on glioblastoma cells. To analyze possible actions on NPC fate, cells were seeded in the absence of mitogens. Treatment with octanol led to an increase in the percentage of astrocytes and oligodendrocyte precursors, whereas the percentage of neurons remained unchanged. Gap27 treatment, in contrast, did not modify the differentiation pattern of SVZ NPCs. Our results indicate that general blockade of gap junctions with octanol induces significant effects on the behavior of postnatal SVZ NPCs, by reducing proliferation and promoting glial differentiation.
Collapse
Affiliation(s)
- Rocío Talaverón
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain;
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; (C.J.M.-D.); (A.M.P.)
| | - Camilo J. Morado-Díaz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; (C.J.M.-D.); (A.M.P.)
| | - Alejandro Herrera
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; (C.J.M.-D.); (A.M.P.)
| | - Victoria Gálvez
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; (C.J.M.-D.); (A.M.P.)
| | - Angel M. Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; (C.J.M.-D.); (A.M.P.)
| | - Esperanza R. Matarredona
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; (C.J.M.-D.); (A.M.P.)
| |
Collapse
|
2
|
Eşiyok N, Heide M. The SVZ stem cell niche-components, functions, and in vitro modelling. Front Cell Dev Biol 2023; 11:1332901. [PMID: 38188021 PMCID: PMC10766702 DOI: 10.3389/fcell.2023.1332901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Neocortical development depends on the intrinsic ability of neural stem and progenitor cells to proliferate and differentiate to generate the different kinds of neurons in the adult brain. These progenitor cells can be distinguished into apical progenitors, which occupy a stem cell niche in the ventricular zone and basal progenitors, which occupy a stem cell niche in the subventricular zone (SVZ). During development, the stem cell niche provided in the subventricular zone enables the increased proliferation and self-renewal of basal progenitors, which likely underlie the expansion of the human neocortex. However, the components forming the SVZ stem cell niche in the developing neocortex have not yet been fully understood. In this review, we will discuss potential components of the SVZ stem cell niche, i.e., extracellular matrix composition and brain vasculature, and their possible key role in establishing and maintaining this niche during fetal neocortical development. We will also emphasize the potential role of basal progenitor morphology in maintaining their proliferative capacity within the stem cell niche of the SVZ. Finally, we will focus on the use of brain organoids to i) understand the unique features of basal progenitors, notably basal radial glia; ii) study components of the SVZ stem cell niche; and iii) provide future directions on how to improve brain organoids, notably the organoid SVZ, and make them more reliable models of human neocortical development and evolution studies.
Collapse
Affiliation(s)
| | - Michael Heide
- Research Group Brain Development and Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
3
|
Leone MA, Gelati M, Profico DC, Gobbi C, Pravatà E, Copetti M, Conti C, Abate L, Amoruso L, Apollo F, Balzano RF, Bicchi I, Carella M, Ciampini A, Colosimo C, Crociani P, D'Aloisio G, Di Viesti P, Ferrari D, Fogli D, Fontana A, Frondizi D, Grespi V, Kuhle J, Laborante A, Lombardi I, Muzi G, Paci F, Placentino G, Popolizio T, Ricciolini C, Sabatini S, Silveri G, Spera C, Stephenson D, Stipa G, Tinella E, Zarrelli M, Zecca C, Ventura Y, D'Alessandro A, Peruzzotti-Jametti L, Pluchino S, Vescovi AL. Phase I clinical trial of intracerebroventricular transplantation of allogeneic neural stem cells in people with progressive multiple sclerosis. Cell Stem Cell 2023; 30:1597-1609.e8. [PMID: 38016468 DOI: 10.1016/j.stem.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
We report the analysis of 1 year of data from the first cohort of 15 patients enrolled in an open-label, first-in-human, dose-escalation phase I study (ClinicalTrials.gov: NCT03282760, EudraCT2015-004855-37) to determine the feasibility, safety, and tolerability of the transplantation of allogeneic human neural stem/progenitor cells (hNSCs) for the treatment of secondary progressive multiple sclerosis. Participants were treated with hNSCs delivered via intracerebroventricular injection in combination with an immunosuppressive regimen. No treatment-related deaths nor serious adverse events (AEs) were observed. All participants displayed stability of clinical and laboratory outcomes, as well as lesion load and brain activity (MRI), compared with the study entry. Longitudinal metabolomics and lipidomics of biological fluids identified time- and dose-dependent responses with increased levels of acyl-carnitines and fatty acids in the cerebrospinal fluid (CSF). The absence of AEs and the stability of functional and structural outcomes are reassuring and represent a milestone for the safe translation of stem cells into regenerative medicines.
Collapse
Affiliation(s)
- Maurizio A Leone
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Maurizio Gelati
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Daniela C Profico
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Claudio Gobbi
- Multiple Sclerosis Centre (MSC), Department of Neurology, Neurocentre of Southern Switzerland, EOC, 6900 Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | - Emanuele Pravatà
- Multiple Sclerosis Centre (MSC), Department of Neurology, Neurocentre of Southern Switzerland, EOC, 6900 Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland; Department of Neuroradiology, Neurocentre of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Massimiliano Copetti
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Carlo Conti
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th A - L18-9118, Aurora, CO, USA
| | - Lucrezia Abate
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Luigi Amoruso
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Francesco Apollo
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Rosario F Balzano
- Department of Neuroradiology, Neurocentre of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Ilaria Bicchi
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; AOSP Santa Maria, via Tristano di Joannuccio 1, 05100 Terni, Italy
| | - Massimo Carella
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | | | - Carlo Colosimo
- AOSP Santa Maria, via Tristano di Joannuccio 1, 05100 Terni, Italy
| | - Paola Crociani
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Giada D'Aloisio
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Pietro Di Viesti
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Danilo Fogli
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Andrea Fontana
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | | | - Valentina Grespi
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; AOSP Santa Maria, via Tristano di Joannuccio 1, 05100 Terni, Italy
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, and University of Basel, Basel, Switzerland
| | - Antonio Laborante
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Ivan Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Gianmarco Muzi
- AOSP Santa Maria, via Tristano di Joannuccio 1, 05100 Terni, Italy
| | - Francesca Paci
- AOSP Santa Maria, via Tristano di Joannuccio 1, 05100 Terni, Italy
| | - Giuliana Placentino
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Teresa Popolizio
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Claudia Ricciolini
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; AOSP Santa Maria, via Tristano di Joannuccio 1, 05100 Terni, Italy
| | | | - Giada Silveri
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Cristina Spera
- AOSP Santa Maria, via Tristano di Joannuccio 1, 05100 Terni, Italy
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th A - L18-9118, Aurora, CO, USA
| | - Giuseppe Stipa
- AOSP Santa Maria, via Tristano di Joannuccio 1, 05100 Terni, Italy
| | - Elettra Tinella
- AOSP Santa Maria, via Tristano di Joannuccio 1, 05100 Terni, Italy
| | - Michele Zarrelli
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Chiara Zecca
- Multiple Sclerosis Centre (MSC), Department of Neurology, Neurocentre of Southern Switzerland, EOC, 6900 Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | - Yendri Ventura
- Abu Dhabi Stem Cell Centre, Abu Dhabi, United Arab Emirates
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th A - L18-9118, Aurora, CO, USA
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, CB2 0QQ Cambridge, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, CB2 0QQ Cambridge, UK.
| | - Angelo L Vescovi
- IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
4
|
Visioli A, Trivieri N, Mencarelli G, Giani F, Copetti M, Palumbo O, Pracella R, Cariglia MG, Barile C, Mischitelli L, Soriano AA, Palumbo P, Legnani F, DiMeco F, Gorgoglione L, Pesole G, Vescovi AL, Binda E. Different states of stemness of glioblastoma stem cells sustain glioblastoma subtypes indicating novel clinical biomarkers and high-efficacy customized therapies. J Exp Clin Cancer Res 2023; 42:244. [PMID: 37735434 PMCID: PMC10512479 DOI: 10.1186/s13046-023-02811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.
Collapse
Affiliation(s)
| | - Nadia Trivieri
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | | | - Massimiliano Copetti
- Biostatistical Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Maria Grazia Cariglia
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Chiara Barile
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Luigi Mischitelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Amata Amy Soriano
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Federico Legnani
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
- Department of Neurosurgery, John Hopkins University, Baltimore, Mariland, USA
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Angelo L Vescovi
- Scientific Directorate, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
- Hyperstem SA, Lugano, Switzerland.
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
5
|
Jiménez-Madrona E, Morado-Díaz CJ, Talaverón R, Tabernero A, Pastor AM, Sáez JC, Matarredona ER. Antiproliferative effect of boldine on neural progenitor cells and on glioblastoma cells. Front Neurosci 2023; 17:1211467. [PMID: 37655012 PMCID: PMC10467274 DOI: 10.3389/fnins.2023.1211467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction The subventricular zone (SVZ) is a brain region that contains neural stem cells and progenitor cells (NSCs/NPCs) from which new neurons and glial cells are formed during adulthood in mammals. Recent data indicate that SVZ NSCs are the cell type that acquires the initial tumorigenic mutation in glioblastoma (GBM), the most aggressive form of malignant glioma. NSCs/NPCs of the SVZ present hemichannel activity whose function has not yet been fully elucidated. In this work, we aimed to analyze whether hemichannel-mediated communication affects proliferation of SVZ NPCs and GBM cells. Methods and Results For that purpose, we used boldine, an alkaloid derived from the boldo tree (Peumus boldus), that inhibits connexin and pannexin hemichannels, but without affecting gap junctional communication. Boldine treatment (50 μM) of rat SVZ NPCs grown as neurospheres effectively inhibited dye uptake through hemichannels and induced a significant reduction in neurosphere diameter and in bromodeoxyuridine (BrdU) incorporation. However, the differentiation pattern was not modified by the treatment. Experiments with specific blockers for hemichannels formed by connexin subunits (D4) or pannexin 1 (probenecid) revealed that probenecid, but not D4, produced a decrease in BrdU incorporation similar to that obtained with boldine. These results suggest that inhibition of pannexin 1 hemichannels could be partially responsible for the antiproliferative effect of boldine on SVZ NPCs. Analysis of the effect of boldine (25-600 μM) on different types of primary human GBM cells (GBM59, GBM96, and U87-MG) showed a concentration-dependent decrease in GBM cell growth. Boldine treatment also induced a significant inhibition of hemichannel activity in GBM cells. Discussion Altogether, we provide evidence of an antimitotic action of boldine in SVZ NPCs and in GBM cells which may be due, at least in part, to its hemichannel blocking function. These results could be of relevance for future possible strategies in GBM aimed to suppress the proliferation of mutated NSCs or glioma stem cells that might remain in the brain after tumor resection.
Collapse
Affiliation(s)
- Enrique Jiménez-Madrona
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - Camilo J. Morado-Díaz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Rocío Talaverón
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - Angel M. Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Juan C. Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
6
|
Duzan A, Reinken D, McGomery TL, Ferencz NM, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:120-129. [PMID: 36805391 DOI: 10.1016/j.joim.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Globally, it is evident that glioblastoma multiforme (GBM) is an aggressive malignant cancer with a high mortality rate and no effective treatment options. Glioblastoma is classified as the stage-four progression of a glioma tumor, and its diagnosis results in a shortened life expectancy. Treatment options for GBM include chemotherapy, immunotherapy, surgical intervention, and conventional pharmacotherapy; however, at best, they extend the patient's life by a maximum of 5 years. GBMs are considered incurable due to their high recurrence rate, despite various aggressive therapeutic approaches which can have many serious adverse effects. Ceramides, classified as endocannabinoids, offer a promising novel therapeutic approach for GBM. Endocannabinoids may enhance the apoptosis of GBM cells but have no effect on normal healthy neural cells. Cannabinoids promote atypical protein kinase C, deactivate fatty acid amide hydrolase enzymes, and activate transient receptor potential vanilloid 1 (TRPV1) and TRPV2 to induce pro-apoptotic signaling pathways without increasing endogenous cannabinoids. In previous in vivo studies, endocannabinoids, chemically classified as amide formations of oleic and palmitic acids, have been shown to increase the pro-apoptotic activity of human cancer cells and inhibit cell migration and angiogenesis. This review focuses on the biological synthesis and pharmacology of endogenous cannabinoids for the enhancement of cancer cell apoptosis, which have potential as a novel therapy for GBM. Please cite this article as: Duzan A, Reinken D, McGomery TL, Ferencz N, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Ashraf Duzan
- School of Pharmacy, Wingate University, Wingate, NC 28174, USA; Applied Science and Technology Department, North Carolina State University of Agriculture and Technology, Greensboro, NC 27411, USA.
| | - Desiree Reinken
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | - Jacob M Plummer
- Collage of Arts and Science, Department of Chemistry and Physics, Wingate University, Wingate, NC 28174, USA
| | - Mufeed M Basti
- Applied Science and Technology Department, North Carolina State University of Agriculture and Technology, Greensboro, NC 27411, USA.
| |
Collapse
|
7
|
Radoszkiewicz K, Jezierska-Woźniak K, Waśniewski T, Sarnowska A. Understanding Intra- and Inter-Species Variability in Neural Stem Cells' Biology Is Key to Their Successful Cryopreservation, Culture, and Propagation. Cells 2023; 12:cells12030488. [PMID: 36766833 PMCID: PMC9914787 DOI: 10.3390/cells12030488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Although clinical trials on human neural stem cells (hNSCs) have already been implemented in the treatment of neurological diseases and they have demonstrated their therapeutic effects, many questions remain in the field of preclinical research regarding the biology of these cells, their therapeutic properties, and their neurorestorative potential. Unfortunately, scientific reports are inconsistent and much of the NSCs research has been conducted on rodents rather than human cells for ethical reasons or due to insufficient cell material. Therefore, a question arises as to whether or which conclusions drawn on the isolation, cell survival, proliferation, or cell fate observed in vitro in rodent NSCs can be introduced into clinical applications. This paper presents the effects of different spatial, nutritional, and dissociation conditions on NSCs' functional properties, which are highly species-dependent. Our study confirmed that the discrepancies in the available literature on NSCs survival, proliferation, and fate did not only depend on intra-species factors and applied environmental conditions, but they were also affected by significant inter-species variability. Human and rodent NSCs share one feature, i.e., the necessity to be cultured immediately after isolation, which significantly maintains their survival. Additionally, in the absence of experiments on human cells, rat NSCs biology (neurosphere formation potential and neural differentiation stage) seems closer to that of humans rather than mice in response to environmental factors.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Katarzyna Jezierska-Woźniak
- Department of Neurosurgery, Laboratory for Regenerative Medicine, Stem Cells Bank, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Obstetrics and Gynaecology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-561 Olsztyn, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-608-6598
| |
Collapse
|
8
|
Trivieri N, Visioli A, Mencarelli G, Cariglia MG, Marongiu L, Pracella R, Giani F, Soriano AA, Barile C, Cajola L, Copetti M, Palumbo O, Legnani F, DiMeco F, Gorgoglione L, Vescovi AL, Binda E. Growth factor independence underpins a paroxysmal, aggressive Wnt5aHigh/EphA2Low phenotype in glioblastoma stem cells, conducive to experimental combinatorial therapy. J Exp Clin Cancer Res 2022; 41:139. [PMID: 35414102 PMCID: PMC9004109 DOI: 10.1186/s13046-022-02333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Glioblastoma multiforme (GBM) is an incurable tumor, with a median survival rate of only 14–15 months. Along with heterogeneity and unregulated growth, a central matter in dealing with GBMs is cell invasiveness. Thus, improving prognosis requires finding new agents to inhibit key multiple pathways, even simultaneously. A subset of GBM stem-like cells (GSCs) may account for tumorigenicity, representing, through their pathways, the proper cellular target in the therapeutics of glioblastomas. GSCs cells are routinely enriched and expanded due to continuous exposure to specific growth factors, which might alter some of their intrinsic characteristic and hide therapeutically relevant traits.
Methods
By removing exogenous growth factors stimulation, here we isolated and characterized a subset of GSCs with a “mitogen-independent” phenotype (I-GSCs) from patient’s tumor specimens. Differential side-by-side comparative functional and molecular analyses were performed either in vitro or in vivo on these cells versus their classical growth factor (GF)-dependent counterpart (D-GSCs) as well as their tissue of origin. This was performed to pinpoint the inherent GSCs’ critical regulators, with particular emphasis on those involved in spreading and tumorigenic potential. Transcriptomic fingerprints were pointed out by ANOVA with Benjamini-Hochberg False Discovery Rate (FDR) and association of copy number alterations or somatic mutations was determined by comparing each subgroup with a two-tailed Fisher’s exact test. The combined effects of interacting in vitro and in vivo with two emerging GSCs’ key regulators, such as Wnt5a and EphA2, were then predicted under in vivo experimental settings that are conducive to clinical applications. In vivo comparisons were carried out in mouse-human xenografts GBM model by a hierarchical linear model for repeated measurements and Dunnett’s multiple comparison test with the distribution of survival compared by Kaplan–Meier method.
Results
Here, we assessed that a subset of GSCs from high-grade gliomas is self-sufficient in the activation of regulatory growth signaling. Furthermore, while constitutively present within the same GBM tissue, these GF-independent GSCs cells were endowed with a distinctive functional and molecular repertoire, defined by highly aggressive Wnt5aHigh/EphA2Low profile, as opposed to Wnt5aLow/EphA2High expression in sibling D-GSCs. Regardless of their GBM subtype of origin, I-GSCs, are endowed with a raised in vivo tumorigenic potential than matched D-GSCs, which were fast-growing ex-vivo but less lethal and invasive in vivo. Also, the malignant I-GSCs’ transcriptomic fingerprint faithfully mirrored the original tumor, bringing into evidence key regulators of invasiveness, angiogenesis and immuno-modulators, which became candidates for glioma diagnostic/prognostic markers and therapeutic targets. Particularly, simultaneously counteracting the activity of the tissue invasive mediator Wnt5a and EphA2 tyrosine kinase receptor addictively hindered GSCs’ tumorigenic and invasive ability, thus increasing survival.
Conclusion
We show how the preservation of a mitogen-independent phenotype in GSCs plays a central role in determining the exacerbated tumorigenic and high mobility features distinctive of GBM. The exploitation of the I-GSCs' peculiar features shown here offers new ways to identify novel, GSCs-specific effectors, whose modulation can be used in order to identify novel, potential molecular therapeutic targets. Furthermore, we show how the combined use of PepA, the anti-Wnt5a drug, and of ephrinA1-Fc to can hinder GSCs’ lethality in a clinically relevant xenogeneic in vivo model thus being conducive to perspective, novel combinatorial clinical application.
Collapse
|
9
|
Stavely R, Hotta R, Picard N, Rahman AA, Pan W, Bhave S, Omer M, Ho WLN, Guyer RA, Goldstein AM. Schwann cells in the subcutaneous adipose tissue have neurogenic potential and can be used for regenerative therapies. Sci Transl Med 2022; 14:eabl8753. [PMID: 35613280 PMCID: PMC9745588 DOI: 10.1126/scitranslmed.abl8753] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem cell therapies for nervous system disorders are hindered by a lack of accessible autologous sources of neural stem cells (NSCs). In this study, neural crest-derived Schwann cells are found to populate nerve fiber bundles (NFBs) residing in mouse and human subcutaneous adipose tissue (SAT). NFBs containing Schwann cells were harvested from mouse and human SAT and cultured in vitro. During in vitro culture, SAT-derived Schwann cells remodeled NFBs to form neurospheres and exhibited neurogenic differentiation potential. Transcriptional profiling determined that the acquisition of these NSC properties can be attributed to dedifferentiation processes in cultured Schwann cells. The emerging population of cells were termed SAT-NSCs because of their considerably distinct gene expression profile, cell markers, and differentiation potential compared to endogenous Schwann cells existing in vivo. SAT-NSCs successfully engrafted to the gastrointestinal tract of mice, migrated longitudinally and circumferentially within the muscularis, differentiated into neurons and glia, and exhibited neurochemical coding and calcium signaling properties consistent with an enteric neuronal phenotype. These cells rescued functional deficits associated with colonic aganglionosis and gastroparesis, indicating their therapeutic potential as a cell therapy for gastrointestinal dysmotility. SAT can be harvested easily and offers unprecedented accessibility for the derivation of autologous NSCs from adult tissues. Evidence from this study indicates that SAT-NSCs are not derived from mesenchymal stem cells and instead originate from Schwann cells within NFBs. Our data describe efficient isolation procedures for mouse and human SAT-NSCs and suggest that these cells have potential for therapeutic applications in gastrointestinal motility disorders.
Collapse
|
10
|
Guvenek A, Shin J, De Filippis L, Zheng D, Wang W, Pang ZP, Tian B. Neuronal Cells Display Distinct Stability Controls of Alternative Polyadenylation mRNA Isoforms, Long Non-Coding RNAs, and Mitochondrial RNAs. Front Genet 2022; 13:840369. [PMID: 35664307 PMCID: PMC9159357 DOI: 10.3389/fgene.2022.840369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
RNA stability plays an important role in gene expression. Here, using 3' end sequencing of newly made and pre-existing poly(A)+ RNAs, we compare transcript stability in multiple human cell lines, including HEK293T, HepG2, and SH-SY5Y. We show that while mRNA stability is generally conserved across the cell lines, specific transcripts having a high GC content and possibly more stable secondary RNA structures are relatively more stable in SH-SY5Y cells compared to the other 2 cell lines. These features also differentiate stability levels of alternative polyadenylation (APA) 3'UTR isoforms in a cell type-specific manner. Using differentiation of a neural stem cell line as a model, we show that mRNA stability difference could contribute to gene expression changes in neurogenesis and confirm the neuronal identity of SH-SY5Y cells at both gene expression and APA levels. In addition, compared to transcripts using 3'-most exon cleavage/polyadenylation sites (PASs), those using intronic PASs are generally less stable, especially when the PAS-containing intron is large and has a strong 5' splice site, suggesting that intronic polyadenylation mostly plays a negative role in gene expression. Interestingly, the differential mRNA stability among APA isoforms appears to buffer PAS choice in these cell lines. Moreover, we found that several other poly(A)+ RNA species, including promoter-associated long noncoding RNAs and transcripts encoded by the mitochondrial genome, are more stable in SH-SY5Y cells than the other 2 cell lines, further highlighting distinct RNA metabolism in neuronal cells. Together, our results indicate that distinct RNA stability control in neuronal cells may contribute to the gene expression and APA programs that define their cell identity.
Collapse
Affiliation(s)
- Aysegul Guvenek
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
- Rutgers School of Graduate Studies, Newark, NJ, United States
| | - Jihae Shin
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lidia De Filippis
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wei Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
- Program in Gene Expression and Regulation, Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
11
|
Gelati M, Profico DC, Ferrari D, Vescovi AL. Culturing and Expansion of "Clinical Grade" Neural Stem Cells from the Fetal Human Central Nervous System. Methods Mol Biol 2022; 2389:57-66. [PMID: 34558001 DOI: 10.1007/978-1-0716-1783-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
NSCs have been demonstrated to be very useful in grafts into the mammalian central nervous system to investigate the exploitation of NSC for the therapy of neurodegenerative disorders in animal models of neurodegenerative diseases. To push cell therapy in CNS on stage of clinical application, it is necessary to establish a continuous and standardized, clinical grade (i.e., produced following the good manufacturing practice guidelines) human neural stem cell lines.In this chapter we will illustrate some of the protocols for the production and characterization routinely used into our GMP "cell factory" for the production of "clinical grade" human neural stem cell lines already in use in clinical trials on neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS- Clinicaltrials.gov number NCT01640067) and secondary progressive multiple sclerosis (SPMS- Clinicaltrials.gov number NCT03282760).
Collapse
Affiliation(s)
- Maurizio Gelati
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy.
| | | | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
12
|
Ricca A, Cascino F, Gritti A. Isolation and Culture of Neural Stem/Progenitor Cells from the Postnatal Periventricular Region. Methods Mol Biol 2022; 2389:11-31. [PMID: 34557998 DOI: 10.1007/978-1-0716-1783-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the complexity of the neural stem cell (NSC) niche organization, the lack of specific NSC markers, and the difficulty of long-term tracking these cells and their progeny in vivo, the functional properties of the endogenous NSCs remain largely unexplored. These limitations have led to the development of methodologies to efficiently isolate, expand, and differentiate NSCs ex vivo. We describe here the peculiarities of the neurosphere assay (NSA) as a methodology that allows to efficiently isolate, expand, and differentiate somatic NSCs derived from the postnatal and adult forebrain periventricular region while preserving proliferation, self-renewal, and multipotency, the main attributes that provide their functional identification.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cascino
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
13
|
Nickel AC, Picard D, Qin N, Wolter M, Kaulich K, Hewera M, Pauck D, Marquardt V, Torga G, Muhammad S, Zhang W, Schnell O, Steiger HJ, Hänggi D, Fritsche E, Her NG, Nam DH, Carro MS, Remke M, Reifenberger G, Kahlert UD. Longitudinal stability of molecular alterations and drug response profiles in tumor spheroid cell lines enables reproducible analyses. Biomed Pharmacother 2021; 144:112278. [PMID: 34628166 DOI: 10.1016/j.biopha.2021.112278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
The utility of patient-derived tumor cell lines as experimental models for glioblastoma has been challenged by limited representation of the in vivo tumor biology and low clinical translatability. Here, we report on longitudinal epigenetic and transcriptional profiling of seven glioblastoma spheroid cell line models cultured over an extended period. Molecular profiles were associated with drug response data obtained for 231 clinically used drugs. We show that the glioblastoma spheroid models remained molecularly stable and displayed reproducible drug responses over prolonged culture times of 30 in vitro passages. Integration of gene expression and drug response data identified predictive gene signatures linked to sensitivity to specific drugs, indicating the potential of gene expression-based prediction of glioblastoma therapy response. Our data thus empowers glioblastoma spheroid disease modeling as a useful preclinical assay that may uncover novel therapeutic vulnerabilities and associated molecular alterations.
Collapse
Affiliation(s)
- A C Nickel
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - D Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - N Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - M Wolter
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - K Kaulich
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - M Hewera
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - D Pauck
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - V Marquardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - G Torga
- Drug Development Unit, Sarah Cannon Research Institute, London, UK
| | - S Muhammad
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - W Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - O Schnell
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H-J Steiger
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - D Hänggi
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - E Fritsche
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - N-G Her
- R&D Center, AIMEDBIO Inc., Seoul, South Korea
| | - D-H Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, South Korea
| | - M S Carro
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - G Reifenberger
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - U D Kahlert
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Molecular and Experimental Surgery, Department of General, Visceral, Vascular, and Transplant Surgery, University Hospital Magdeburg, Magdeburg, Germany.
| |
Collapse
|
14
|
Sucha R, Kubickova M, Cervenka J, Hruska-Plochan M, Bohaciakova D, Vodickova Kepkova K, Novakova T, Budkova K, Susor A, Marsala M, Motlik J, Kovarova H, Vodicka P. Targeted mass spectrometry for monitoring of neural differentiation. Biol Open 2021; 10:271174. [PMID: 34357391 PMCID: PMC8353267 DOI: 10.1242/bio.058727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Human multipotent neural stem cells could effectively be used for the treatment of a variety of neurological disorders. However, a defining signature of neural stem cell lines that would be expandable, non-tumorigenic, and differentiate into desirable neuronal/glial phenotype after in vivo grafting is not yet defined. Employing a mass spectrometry approach, based on selected reaction monitoring, we tested a panel of well-described culture conditions, and measured levels of protein markers routinely used to probe neural differentiation, i.e. POU5F1 (OCT4), SOX2, NES, DCX, TUBB3, MAP2, S100B, GFAP, GALC, and OLIG1. Our multiplexed assay enabled us to simultaneously identify the presence of pluripotent, multipotent, and lineage-committed neural cells, thus representing a powerful tool to optimize novel and highly specific propagation and differentiation protocols. The multiplexing capacity of this method permits the addition of other newly identified cell type-specific markers to further increase the specificity and quantitative accuracy in detecting targeted cell populations. Such an expandable assay may gain the advantage over traditional antibody-based assays, and represents a method of choice for quality control of neural stem cell lines intended for clinical use.
Collapse
Affiliation(s)
- Rita Sucha
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Martina Kubickova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Marian Hruska-Plochan
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Katerina Vodickova Kepkova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Tereza Novakova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Katerina Budkova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Martin Marsala
- Neuroregeneration Laboratory, Sanford Consortium for Regenerative Medicine, Department of Anesthesiology, University of California, San Diego, 2880 Torrey Pines Scenic Dr., La Jolla, CA 92037, USA
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Hana Kovarova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| |
Collapse
|
15
|
Icariin Promotes Survival, Proliferation, and Differentiation of Neural Stem Cells In Vitro and in a Rat Model of Alzheimer's Disease. Stem Cells Int 2021; 2021:9974625. [PMID: 34257671 PMCID: PMC8249160 DOI: 10.1155/2021/9974625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) involves the degeneration of cholinergic neurons in the basal forebrain. Neural stem cell (NSC) transplantation has emerged as a promising therapeutic approach for treating AD. Icariin (ICA) is the main active component in Epimedium, a traditional Chinese herb. The purpose of the present study was to investigate the effects and mechanisms of ICA on the proliferation and differentiation of NSCs in the basal forebrain of a fimbria-fornix transection (FFT) rat model. In the present study, ICA promoted the survival, proliferation, and migration of NSCs in vitro. In FFT rats, ICA promoted the proliferation and differentiation of NSCs into neurons and increased the number of cholinergic neurons in the MS and VDB of the basal forebrain. These results suggest that combination therapy of ICA oral administration and NSC transplantation may provide a new potential and effective approach for AD therapy.
Collapse
|
16
|
Effect of Long-Term 3D Spheroid Culture on WJ-MSC. Cells 2021; 10:cells10040719. [PMID: 33804895 PMCID: PMC8063822 DOI: 10.3390/cells10040719] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023] Open
Abstract
The aim of our work was to develop a protocol enabling a derivation of mesenchymal stem/stromal cell (MSC) subpopulation with increased expression of pluripotent and neural genes. For this purpose we used a 3D spheroid culture system optimal for neural stem cells propagation. Although 2D culture conditions are typical and characteristic for MSC, under special treatment these cells can be cultured for a short time in 3D conditions. We examined the effects of prolonged 3D spheroid culture on MSC in hope to select cells with primitive features. Wharton Jelly derived MSC (WJ-MSC) were cultured in 3D neurosphere induction medium for about 20 days in vitro. Then, cells were transported to 2D conditions and confront to the initial population and population constantly cultured in 2D. 3D spheroids culture of WJ-MSC resulted in increased senescence, decreased stemness and proliferation. However long-termed 3D spheroid culture allowed for selection of cells exhibiting increased expression of early neural and SSEA4 markers what might indicate the survival of cell subpopulation with unique features.
Collapse
|
17
|
Jaberi R, Mirsadeghi S, Kiani S. In vitro characterization of subventricular zone isolated neural stem cells, from adult monkey and rat brain. Mol Biol Rep 2021; 48:1311-1321. [PMID: 33566222 DOI: 10.1007/s11033-021-06201-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/28/2021] [Indexed: 11/27/2022]
Abstract
Neural stem cells (NSCs) are multipotent, self-renewable cells who are capable of differentiating into neurons, astrocytes, and oligodendrocytes. NSCs reside at the subventricular zone (SVZ) of the adult brain permanently to guarantee a lifelong neurogenesis during neural network plasticity or undesirable injuries. Although the specious inaccessibility of adult NSCs niche hampers their in vivo identification, researchers have been seeking ways to optimize adult NSCs isolation, expansion, and differentiation, in vitro. NSCs were isolated from rhesus monkey SVZ, expanded in vitro and then characterized for NSCs-specific markers expression by immunostaining, real-time PCR, flow cytometry, and cell differentiation assessments. Moreover, cell survival as well as self-renewal capacity were evaluated by TUNEL, Live/Dead and colony assays, respectively. In the next step, to validate SVZ-NSCs identity in other species, a similar protocol was applied to isolate NSCs from adult rat's SVZ as well. Our findings revealed that isolated SVZ-NSCs from both monkey and rat preserve proliferation capacity in at least nine passages as confirmed by Ki67 expression. Additionally, both SVZ-NSCs sources are capable of self-renewal in addition to NESTIN, SOX2, and GFAP expression. The mortality was measured meager with over 95% viability according to TUNEL and Live/Dead assay results. Eventually, the multipotency of SVZ-NSCs appraised authentic after their differentiation into neurons, astrocytes, and oligodendrocytes. In this study, we proposed a reliable method for SVZ-NSCs in vitro maintenance and identification, which, we believe is a promising cell source for therapeutic approach to recover neurological disorders and injuries condition.
Collapse
Affiliation(s)
- Razieh Jaberi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sara Mirsadeghi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
18
|
Reccia MG, Volpicelli F, Benedikz E, Svenningsen ÅF, Colucci-D’Amato L. Generation of High-Yield, Functional Oligodendrocytes from a c- myc Immortalized Neural Cell Line, Endowed with Staminal Properties. Int J Mol Sci 2021; 22:1124. [PMID: 33498778 PMCID: PMC7865411 DOI: 10.3390/ijms22031124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Neural stem cells represent a powerful tool to study molecules involved in pathophysiology of Nervous System and to discover new drugs. Although they can be cultured and expanded in vitro as a primary culture, their use is hampered by their heterogeneity and by the cost and time needed for their preparation. Here we report that mes-c-myc A1 cells (A1), a neural cell line, is endowed with staminal properties. Undifferentiated/proliferating and differentiated/non-proliferating A1 cells are able to generate neurospheres (Ns) in which gene expression parallels the original differentiation status. In fact, Ns derived from undifferentiated A1 cells express higher levels of Nestin, Kruppel-like factor 4 (Klf4) and glial fibrillary protein (GFAP), markers of stemness, while those obtained from differentiated A1 cells show higher levels of the neuronal marker beta III tubulin. Interestingly, Ns differentiation, by Epidermal Growth Factors (EGF) and Fibroblast Growth Factor 2 (bFGF) withdrawal, generates oligodendrocytes at high-yield as shown by the expression of markers, Galactosylceramidase (Gal-C) Neuron-Glial antigen 2 (NG2), Receptor-Interacting Protein (RIP) and Myelin Basic Protein (MBP). Finally, upon co-culture, Ns-A1-derived oligodendrocytes cause a redistribution of contactin-associated protein (Caspr/paranodin) protein on neuronal cells, as primary oligodendrocytes cultures, suggesting that they are able to form compact myelin. Thus, Ns-A1-derived oligodendrocytes may represent a time-saving and low-cost tool to study the pathophysiology of oligodendrocytes and to test new drugs.
Collapse
Affiliation(s)
- Mafalda Giovanna Reccia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Eirkiur Benedikz
- Faculty of Health Sciences, J.B. Winsløwsvej 21, 5000 Odense, Denmark;
| | - Åsa Fex Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 21.1, 5000 Odense, Denmark
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- Interuniversity Center for Research in Neuroscience (CIRN), University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| |
Collapse
|
19
|
|
20
|
Fernández‐Muñoz B, Rosell‐Valle C, Ferrari D, Alba‐Amador J, Montiel MÁ, Campos‐Cuerva R, Lopez‐Navas L, Muñoz‐Escalona M, Martín‐López M, Profico DC, Blanco MF, Giorgetti A, González‐Muñoz E, Márquez‐Rivas J, Sanchez‐Pernaute R. Retrieval of germinal zone neural stem cells from the cerebrospinal fluid of premature infants with intraventricular hemorrhage. Stem Cells Transl Med 2020; 9:1085-1101. [PMID: 32475061 PMCID: PMC7445027 DOI: 10.1002/sctm.19-0323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/10/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Intraventricular hemorrhage is a common cause of morbidity and mortality in premature infants. The rupture of the germinal zone into the ventricles entails loss of neural stem cells and disturbs the normal cytoarchitecture of the region, compromising late neurogliogenesis. Here we demonstrate that neural stem cells can be easily and robustly isolated from the hemorrhagic cerebrospinal fluid obtained during therapeutic neuroendoscopic lavage in preterm infants with severe intraventricular hemorrhage. Our analyses demonstrate that these neural stem cells, although similar to human fetal cell lines, display distinctive hallmarks related to their regional and developmental origin in the germinal zone of the ventral forebrain, the ganglionic eminences that give rise to interneurons and oligodendrocytes. These cells can be expanded, cryopreserved, and differentiated in vitro and in vivo in the brain of nude mice and show no sign of tumoral transformation 6 months after transplantation. This novel class of neural stem cells poses no ethical concerns, as the fluid is usually discarded, and could be useful for the development of an autologous therapy for preterm infants, aiming to restore late neurogliogenesis and attenuate neurocognitive deficits. Furthermore, these cells represent a valuable tool for the study of the final stages of human brain development and germinal zone biology.
Collapse
Affiliation(s)
- Beatriz Fernández‐Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
- Grupo de Neurociencia aplicadaInstituto de Biomedicina de SevillaSevillaSpain
| | - Cristina Rosell‐Valle
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
| | - Daniela Ferrari
- Department of Biotechnology and BiosciencesUniversity Milan‐BicoccaMilanItaly
| | - Julia Alba‐Amador
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
| | - Miguel Ángel Montiel
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
| | - Rafael Campos‐Cuerva
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
- Centro de TransfusionesTejidos y Células de Sevilla (CTTS)SevillaSpain
| | - Luis Lopez‐Navas
- Departamento de PreclínicaRed Andaluza de Diseño y Traslación de Terapias AvanzadasSevillaSpain
| | - María Muñoz‐Escalona
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
- Present address:
Centre for Genomics and Oncological Research (GENYO)GranadaSpain
| | - María Martín‐López
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
- Grupo de Neurociencia aplicadaInstituto de Biomedicina de SevillaSevillaSpain
| | - Daniela Celeste Profico
- Fondazione IRCCS Casa Sollievo della SofferenzaProduction Unit of Advanced Therapies (UPTA)San Giovanni RotondoItaly
| | - Manuel Francisco Blanco
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
| | - Alessandra Giorgetti
- Regenerative Medicine ProgramBellvitge Biomedical Research Institute (IDIBELL); Program for Translation of Regenerative Medicine in Catalonia (P‐CMRC)BarcelonaSpain
| | - Elena González‐Muñoz
- Department of Cell BiologyGenetics and Physiology, University of MálagaMálagaSpain
- Department of Regenerative NanomedicineAndalusian Center for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Networking Research Center on BioengineeringBiomaterials and Nanomedicine (CIBER‐BBN). Carlos III Health Institute (ISCIII)Spain
| | - Javier Márquez‐Rivas
- Grupo de Neurociencia aplicadaInstituto de Biomedicina de SevillaSevillaSpain
- Neurosurgery DepartmentHospital Virgen del RocíoSevillaSpain
| | | |
Collapse
|
21
|
Adami R, Bottai D. Spinal Muscular Atrophy Modeling and Treatment Advances by Induced Pluripotent Stem Cells Studies. Stem Cell Rev Rep 2020; 15:795-813. [PMID: 31863335 DOI: 10.1007/s12015-019-09910-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal Muscular Atrophy (SMA) is a neurodegenerative disease characterized by specific and predominantly lower motor neuron (MN) loss. SMA is the main reason for infant death, while about one in 40 children born is a healthy carrier. SMA is caused by decreased levels of production of a ubiquitously expressed gene: the survival motor neuron (SMN). All SMA patients present mutations of the telomeric SMN1 gene, but many copies of a centromeric, partially functional paralog gene, SMN2, can somewhat compensate for the SMN1 deficiency, scaling inversely with phenotypic harshness. Because the study of neural tissue in and from patients presents too many challenges and is very often not feasible; the use of animal models, such as the mouse, had a pivotal impact in our understanding of SMA pathology but could not portray totally satisfactorily the elaborate regulatory mechanisms that are present in higher animals, particularly in humans. And while recent therapeutic achievements have been substantial, especially for very young infants, some issues should be considered for the treatment of older patients. An alternative way to study SMA, and other neurological pathologies, is the use of induced pluripotent stem cells (iPSCs) derived from patients. In this work, we will present a wide analysis of the uses of iPSCs in SMA pathology, starting from basic science to their possible roles as therapeutic tools.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142, Milan, Italy
| | - Daniele Bottai
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142, Milan, Italy.
| |
Collapse
|
22
|
Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology 2020; 167:107986. [DOI: 10.1016/j.neuropharm.2020.107986] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
|
23
|
Nanofibrous polyester-polypeptide block copolymer scaffolds with high porosity and controlled degradation promote cell adhesion, proliferation and differentiation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Grasselli C, Carbone A, Panelli P, Giambra V, Bossi M, Mazzoccoli G, De Filippis L. Neural Stem Cells from Shank3-ko Mouse Model Autism Spectrum Disorders. Mol Neurobiol 2019; 57:1502-1515. [PMID: 31773410 DOI: 10.1007/s12035-019-01811-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASD) comprise a complex of neurodevelopmental disorders caused by a variety of genetic defects and characterized by alterations in social communication and repetitive behavior. Since the mechanisms leading to early neuronal degeneration remain elusive, we chose to examine the properties of NSCs isolated from an animal model of ASD in order to evaluate whether their neurogenic potential may recapitulate the early phases of neurogenesis in the brain of ASD patients. Mutations of the gene coding for the Shank3 protein play a key role in the impairment of brain development and synaptogenesis in ASD patients. Experiments here reported show that NSCs derived from the subventricular zone (SVZ) of adult Shank3Δ11-/- (Shank3-ko) mice retain self-renewal capacity in vitro, but differentiate earlier than wild-type (wt) cells, displaying an evident endosomal/lysosomal and ubiquitin aggregation in astroglial cells together with mitochondrial impairment and inflammasome activation, suggesting that glial degeneration likely contributes to neuronal damage in ASD. These in vitro observations obtained in our disease model are consistent with data in vivo obtained in ASD patients and suggest that Shank3 deficit could affect the late phases of neurogenesis and/or the survival of mature cells rather than NSC self-renewal. This evidence supports Shank3-ko NSCs as a reliable in vitro disease model and suggests the rescue of glial cells as a therapeutic strategy to prevent neuronal degeneration in ASD.
Collapse
Affiliation(s)
- C Grasselli
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - A Carbone
- Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - P Panelli
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy
| | - V Giambra
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy
| | - M Bossi
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - G Mazzoccoli
- Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - L De Filippis
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
25
|
Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med 2019. [PMCID: PMC6708068 DOI: 10.1002/sctm.19-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
26
|
Derivation of Neural Stem Cells from the Developing and Adult Human Brain. Results Probl Cell Differ 2019. [PMID: 30209653 DOI: 10.1007/978-3-319-93485-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Neural stem cells isolated from the developing and adult brain are an ideal source of cells for use in clinical applications such as cell replacement therapy. The clear advantage of these cells over the more commonly utilised embryonic and pluripotent stem cells is that they are already neurally committed. Of particular importance is the fact that these cells don't require the same level of in vitro culture that can be cost and labour intensive. Foetal neural stem cells can be readily derived from the foetal brain and expand in culture over time. Similarly, adult stem cells have been explored for their potential in vitro and in vivo animal models. In this chapter we identify the progress made in developing these cells as well as the advantages of taking them forward for clinical use.
Collapse
|
27
|
Mazzini L, Gelati M, Profico DC, Sorarù G, Ferrari D, Copetti M, Muzi G, Ricciolini C, Carletti S, Giorgi C, Spera C, Frondizi D, Masiero S, Stecco A, Cisari C, Bersano E, De Marchi F, Sarnelli MF, Querin G, Cantello R, Petruzzelli F, Maglione A, Zalfa C, Binda E, Visioli A, Trombetta D, Torres B, Bernardini L, Gaiani A, Massara M, Paolucci S, Boulis NM, Vescovi AL. Results from Phase I Clinical Trial with Intraspinal Injection of Neural Stem Cells in Amyotrophic Lateral Sclerosis: A Long-Term Outcome. Stem Cells Transl Med 2019; 8:887-897. [PMID: 31104357 PMCID: PMC6708070 DOI: 10.1002/sctm.18-0154] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
The main objective of this phase I trial was to assess the feasibility and safety of microtransplanting human neural stem cell (hNSC) lines into the spinal cord of patients with amyotrophic lateral sclerosis (ALS). Eighteen patients with a definite diagnosis of ALS received microinjections of hNSCs into the gray matter tracts of the lumbar or cervical spinal cord. Patients were monitored before and after transplantation by clinical, psychological, neuroradiological, and neurophysiological assessment. For up to 60 months after surgery, none of the patients manifested severe adverse effects or increased disease progression because of the treatment. Eleven patients died, and two underwent tracheotomy as a result of the natural history of the disease. We detected a transitory decrease in progression of ALS Functional Rating Scale Revised, starting within the first month after surgery and up to 4 months after transplantation. Our results show that transplantation of hNSC is a safe procedure that causes no major deleterious effects over the short or long term. This study is the first example of medical transplantation of a highly standardized cell drug product, which can be reproducibly and stably expanded ex vivo, comprising hNSC that are not immortalized, and are derived from the forebrain of the same two donors throughout this entire study as well as across future trials. Our experimental design provides benefits in terms of enhancing both intra‐ and interstudy reproducibility and homogeneity. Given the potential therapeutic effects of the hNSCs, our observations support undertaking future phase II clinical studies in which increased cell dosages are studied in larger cohorts of patients. stem cells translational medicine2019;8:887&897
Collapse
Affiliation(s)
- Letizia Mazzini
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Maurizio Gelati
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, Terni Hospital, Italy.,Fondazione IRCCS Casa Sollievo della Sofferenza, Advanced Therapies Production Unit, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Celeste Profico
- Fondazione IRCCS Casa Sollievo della Sofferenza, Advanced Therapies Production Unit, San Giovanni Rotondo, Foggia, Italy
| | - Gianni Sorarù
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Daniela Ferrari
- Biotechnology and Bioscience Department Bicocca University, Milan, Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, Biostatistic Unit, San Giovanni Rotondo, Foggia, Italy
| | - Gianmarco Muzi
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, Terni Hospital, Italy
| | - Claudia Ricciolini
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, Terni Hospital, Italy
| | - Sandro Carletti
- Department of Neurosurgery and Neuroscience, "Santa Maria" Hospital, Terni, Italy
| | - Cesare Giorgi
- Department of Neurosurgery and Neuroscience, "Santa Maria" Hospital, Terni, Italy
| | - Cristina Spera
- Department of Neurosurgery and Neuroscience, "Santa Maria" Hospital, Terni, Italy
| | - Domenico Frondizi
- Department of Neurosurgery and Neuroscience, "Santa Maria" Hospital, Terni, Italy
| | - Stefano Masiero
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Alessandro Stecco
- Department of Diagnostic and Interventional Radiology, "Eastern Piedmont" University, "Maggiore della Carità" Hospital, Novara
| | - Carlo Cisari
- Department of Physical Therapy, "Eastern Piedmont" University, "Maggiore della Carità" Hospital, Novara
| | - Enrica Bersano
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Fabiola De Marchi
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Maria Francesca Sarnelli
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Giorgia Querin
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Roberto Cantello
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Francesco Petruzzelli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Obstetrics and Gynaecology Department, San Giovanni Rotondo, Foggia, Italy
| | - Annamaria Maglione
- Fondazione IRCCS Casa Sollievo della Sofferenza, Obstetrics and Gynaecology Department, San Giovanni Rotondo, Foggia, Italy
| | - Cristina Zalfa
- Biotechnology and Bioscience Department Bicocca University, Milan, Italy
| | - Elena Binda
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Foggia, Italy
| | | | - Domenico Trombetta
- Fondazione IRCCS Casa Sollievo della Sofferenza, Department of Oncology, San Giovanni Rotondo, Foggia, Italy
| | - Barbara Torres
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cytogenetics Unit, San Giovanni Rotondo, Foggia, Italy
| | - Laura Bernardini
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cytogenetics Unit, San Giovanni Rotondo, Foggia, Italy
| | | | - Maurilio Massara
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Silvia Paolucci
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | | | - Angelo L Vescovi
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, Terni Hospital, Italy.,Fondazione IRCCS Casa Sollievo della Sofferenza, Advanced Therapies Production Unit, San Giovanni Rotondo, Foggia, Italy.,Biotechnology and Bioscience Department Bicocca University, Milan, Italy
| | | |
Collapse
|
28
|
Zalfa C, Rota Nodari L, Vacchi E, Gelati M, Profico D, Boido M, Binda E, De Filippis L, Copetti M, Garlatti V, Daniele P, Rosati J, De Luca A, Pinos F, Cajola L, Visioli A, Mazzini L, Vercelli A, Svelto M, Vescovi AL, Ferrari D. Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death Dis 2019; 10:345. [PMID: 31024007 PMCID: PMC6484011 DOI: 10.1038/s41419-019-1582-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Stem cells are emerging as a therapeutic option for incurable diseases, such as Amyotrophic Lateral Sclerosis (ALS). However, critical issues are related to their origin as well as to the need to deepen our knowledge of the therapeutic actions exerted by these cells. Here, we investigate the therapeutic potential of clinical-grade human neural stem cells (hNSCs) that have been successfully used in a recently concluded phase I clinical trial for ALS patients (NCT01640067). The hNSCs were transplanted bilaterally into the anterior horns of the lumbar spinal cord (four grafts each, segments L3–L4) of superoxide dismutase 1 G93A transgenic rats (SOD1 rats) at the symptomatic stage. Controls included untreated SOD1 rats (CTRL) and those treated with HBSS (HBSS). Motor symptoms and histological hallmarks of the disease were evaluated at three progressive time points: 15 and 40 days after transplant (DAT), and end stage. Animals were treated by transient immunosuppression (for 15 days, starting at time of transplantation). Under these conditions, hNSCs integrated extensively within the cord, differentiated into neural phenotypes and migrated rostro-caudally, up to 3.77 ± 0.63 cm from the injection site. The transplanted cells delayed decreases in body weight and deterioration of motor performance in the SOD1 rats. At 40DAT, the anterior horns at L3–L4 revealed a higher density of motoneurons and fewer activated astroglial and microglial cells. Accordingly, the overall survival of transplanted rats was significantly enhanced with no rejection of hNSCs observed. We demonstrated that the beneficial effects observed after stem cell transplantation arises from multiple events that counteract several aspects of the disease, a crucial feature for multifactorial diseases, such as ALS. The combination of therapeutic approaches that target different pathogenic mechanisms of the disorder, including pharmacology, molecular therapy and cell transplantation, will increase the chances of a clinically successful therapy for ALS.
Collapse
Affiliation(s)
- Cristina Zalfa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Laura Rota Nodari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Elena Vacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Profico
- Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Elena Binda
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, (FG), Italy
| | - Lidia De Filippis
- Fondazione IRCCS Casa Sollievo della Sofferenza, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, (FG), Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Valentina Garlatti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Paola Daniele
- Fondazione IRCCS Casa Sollievo della Sofferenza, Molecular Genetics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Jessica Rosati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cellular Reprogramming Unit, San Giovanni Rotondo, (FG), Italy
| | - Alessandro De Luca
- Fondazione IRCCS Casa Sollievo della Sofferenza, Molecular Genetics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Francesca Pinos
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Laura Cajola
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | | | - Letizia Mazzini
- Centro Regionale Esperto SLA Azienda Ospedaliero-Universitaria "Maggiore della Carità", Novara, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Maria Svelto
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy. .,Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy. .,Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy.
| |
Collapse
|
29
|
Iannolo G, Sciuto MR, Cuscino N, Pallini R, Douradinha B, Ricci Vitiani L, De Maria R, Conaldi PG. Zika virus infection induces MiR34c expression in glioblastoma stem cells: new perspectives for brain tumor treatments. Cell Death Dis 2019; 10:263. [PMID: 30890698 PMCID: PMC6425033 DOI: 10.1038/s41419-019-1499-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV) is a flavivirus with a marked effect on fetal nervous system development. ZIKV treatment has recently been found to also have a benefit against glioblastoma, a highly aggressive brain tumor with a poor prognosis. The reported data do not completely explain the mechanism beyond this effect. Nevertheless, in the majority of the cases no adverse effect has been found in healthy adult humans. In this study, we characterized the ZIKV infection mechanism on glioblastoma stem cells, which are considered responsible for the tumor progression and resistance to conventional therapies. Moreover, we explain why the action of this virus is directed to the stem cells in the nervous system counterpart. Our results confirm the effectiveness of ZIKV treatment against glioblastoma, indicating novel molecular targets that can be introduced for more powerful therapies.
Collapse
Affiliation(s)
- Gioacchin Iannolo
- Department of Research, IRCCS ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Palermo, Italy.
| | - Maria Rita Sciuto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Nicola Cuscino
- Department of Research, IRCCS ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Palermo, Italy
| | - Roberto Pallini
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Bruno Douradinha
- Regenerative Medicine and Immunology Unit, Ri.MED Foundation at IRCCS ISMETT, Palermo, Italy
| | - Lucia Ricci Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ruggero De Maria
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Palermo, Italy
| |
Collapse
|
30
|
Shin JE, Han J, Lim JH, Eun HS, Park KI. Human Neural Stem Cells: Translational Research for Neonatal Hypoxic-Ischemic Brain Injury. NEONATAL MEDICINE 2019. [DOI: 10.5385/nm.2019.26.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
31
|
Mazzini L, Ferrari D, Andjus PR, Buzanska L, Cantello R, De Marchi F, Gelati M, Giniatullin R, Glover JC, Grilli M, Kozlova EN, Maioli M, Mitrečić D, Pivoriunas A, Sanchez-Pernaute R, Sarnowska A, Vescovi AL. Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2019; 18:865-881. [PMID: 30025485 DOI: 10.1080/14712598.2018.1503248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a progressive, incurable neurodegenerative disease that targets motoneurons. Cell-based therapies have generated widespread interest as a potential therapeutic approach but no conclusive results have yet been reported either from pre-clinical or clinical studies. AREAS COVERED This is an integrated review of pre-clinical and clinical studies focused on the development of cell-based therapies for ALS. We analyze the biology of stem cell treatments and results obtained from pre-clinical models of ALS and examine the methods and the results obtained to date from clinical trials. We discuss scientific, clinical, and ethical issues and propose some directions for future studies. EXPERT OPINION While data from individual studies are encouraging, stem-cell-based therapies do not yet represent a satisfactory, reliable clinical option. The field will critically benefit from the introduction of well-designed, randomized and reproducible, powered clinical trials. Comparative studies addressing key issues such as the nature, properties, and number of donor cells, the delivery mode and the selection of proper patient populations that may benefit the most from cell-based therapies are now of the essence. Multidisciplinary networks of experts should be established to empower effective translation of research into the clinic.
Collapse
Affiliation(s)
- Letizia Mazzini
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Daniela Ferrari
- b Department of Biotechnology and Biosciences , University Milano Bicocca , Milano , Italy
| | - Pavle R Andjus
- c Center for laser microscopy, Faculty of Biology , University of Belgrade , Belgrade , Serbia
| | - Leonora Buzanska
- d Stem Cell Bioengineering Unit , Mossakowski Medical Research Center, Polish Academy of Sciences , Warsaw , Poland
| | - Roberto Cantello
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Fabiola De Marchi
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Maurizio Gelati
- e Scientific Direction , IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo , Foggia , Italy.,f Cell Factory e biobanca, Fondazione Cellule Staminali , Terni , Italy
| | - Rashid Giniatullin
- g A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Neulaniementie 2, Kuopio , FINLAND
| | - Joel C Glover
- h Department of Molecular Medicine , Institute of Basic Medical Sciences, University of Oslo and Norwegian Center for Stem Cell Research, Oslo University Hospital , Oslo , Norway
| | - Mariagrazia Grilli
- i Department Pharmaceutical Sciences , Laboratory of Neuroplasticity, University of Piemonte Orientale , Novara , Italy
| | - Elena N Kozlova
- j Department of Neuroscience , Uppsala University Biomedical Centre , Uppsala , Sweden
| | - Margherita Maioli
- k Department of Biomedical Sciences and Center for Developmental Biology and Reprogramming (CEDEBIOR) , University of Sassari, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR) , Sassari , Italy
| | - Dinko Mitrečić
- l Laboratory for Stem Cells, Croatian Institute for Brain Research , University of Zagreb School of Medicine , Zagreb , Croatia
| | - Augustas Pivoriunas
- m Department of Stem Cell Biology , State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| | - Rosario Sanchez-Pernaute
- n Preclinical Research , Andalusian Initiative for Advanced Therapies, Andalusian Health Ministry , Sevilla , Spain
| | - Anna Sarnowska
- d Stem Cell Bioengineering Unit , Mossakowski Medical Research Center, Polish Academy of Sciences , Warsaw , Poland
| | - Angelo L Vescovi
- b Department of Biotechnology and Biosciences , University Milano Bicocca , Milano , Italy.,f Cell Factory e biobanca, Fondazione Cellule Staminali , Terni , Italy
| | | |
Collapse
|
32
|
Pacitti D, Privolizzi R, Bax BE. Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Front Cell Neurosci 2019; 13:129. [PMID: 31024259 PMCID: PMC6465581 DOI: 10.3389/fncel.2019.00129] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as "the most complex thing in the universe." The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Riccardo Privolizzi
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, United Kingdom
| | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- *Correspondence: Bridget E. Bax,
| |
Collapse
|
33
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
34
|
Yeon JY, Hwang JY, Lee HW, Pyeon HJ, Won JS, Noh YJ, Nam H, Joo KM. Optimized Clump Culture Methods for Adult Human Multipotent Neural Cells. Int J Mol Sci 2018; 19:ijms19113380. [PMID: 30380605 PMCID: PMC6274905 DOI: 10.3390/ijms19113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
Adult human multipotent neural cell (ahMNC) is a candidate for regeneration therapy for neurodegenerative diseases. Here, we developed a primary clump culture method for ahMNCs to increase the efficiency of isolation and in vitro expansion. The same amount of human temporal lobe (1 g) was partially digested and then filtered through strainers with various pore sizes, resulting in four types of clumps: Clump I > 100 µm, 70 µm < Clump II < 100 µm, 40 µm < Clump III < 70 µm, and Clump IV < 40 µm. At 3 and 6 days after culture, Clump II showed significantly higher number of colonies than the other Clumps. Moreover, ahMNCs derived from Clump II (ahMNCs-Clump II) showed stable proliferation, and shortened the time to first passage from 19 to 15 days, and the time to 1 × 109 cells from 42 to 34 days compared with the previous single-cell method. ahMNCs-Clump II had neural differentiation and pro-angiogenic potentials, which are the characteristics of ahMNCs. In conclusion, the novel clump culture method for ahMNCs has significantly higher efficiency than previous techniques. Considering the small amount of available human brain tissue, the clump culture method would promote further clinical applications of ahMNCs.
Collapse
Affiliation(s)
- Je Young Yeon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea.
| | - Ji-Yoon Hwang
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea.
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
| | - Hye Won Lee
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
| | - Hee-Jang Pyeon
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea.
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
| | - Jeong-Seob Won
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.
| | - Yoo-Jung Noh
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea.
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
| | - Hyun Nam
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea.
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
| | - Kyeung Min Joo
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea.
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.
| |
Collapse
|
35
|
Wang L, Schlagal CR, Gao J, Hao Y, Dunn TJ, McGrath EL, Labastida JA, Yu Y, Feng SQ, Liu SY, Wu P. Oligodendrocyte differentiation from human neural stem cells: A novel role for c-Src. Neurochem Int 2018; 120:21-32. [PMID: 30041015 DOI: 10.1016/j.neuint.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
Human neural stem cells (hNSCs) can differentiate into an oligodendrocyte lineage to facilitate remyelination in patients. Molecular mechanisms underlying oligodendrocyte fate specification remains unknown, hindering the development of efficient methods to generate oligodendrocytes from hNSCs. We have found that Neurobasal-A medium (NB) is capable of inducing hNSCs to oligodendrocyte progenitor cells (OPCs). We identified several signaling molecules are altered after cultivation in NB medium, including Akt, ERK1/2 and c-Src. While sustained activation of Akt and ERK1/2 during both NB induction and subsequent differentiation was required for OPC differentiation, c-Src phosphorylation was increased temporally during the period of NB induction. Both pharmacological inhibition and RNA interference confirmed that a transient elevation of phospho-c-Src is critical for OPC induction. Furthermore, inactivation of c-Src inhibited phosphorylation of Akt and ERK1/2. In summary, we identified a novel and critical role of c-Src in guiding hNSC differentiation to an oligodendrocyte lineage.
Collapse
Affiliation(s)
- Le Wang
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Rd, Yuexiu Qu, Guangzhou Shi, Guangdong Sheng, China
| | - Caitlin R Schlagal
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Yan Hao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA; Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Rd, Heping Qu, 300051, China
| | - Tiffany J Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Erica L McGrath
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Javier Allende Labastida
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Rd, Heping Qu, 300051, China
| | - Shao-Yu Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Rd, Yuexiu Qu, Guangzhou Shi, Guangdong Sheng, China
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
36
|
Winstead W, Marshall CT, Lu CL, Klueber KM, Roisen FJ. Endoscopic Biopsy of Human Olfactory Epithelium as a Source of Progenitor Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240501900115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background The adult central nervous system contains progenitor cells; however, invasive surgery is required for their harvest. Olfactory neuroepithelium (ONe) has attracted attention because it is extracranial and contains progenitor cells that account for its regenerative capacity. Olfactory progenitor cells have been cultured from postmortem ONe. Our aim was to determine if olfactory progenitors could be obtained via biopsy from patients in a feasible, effective, and safe manner. Methods Endoscopic biopsy was performed on individuals undergoing sinus surgery (n = 42). Olfactory function was assessed pre- and postoperatively. Specimens were cultured under conditions for olfactory progenitor cell development. Results Progenitor cells emerged in cultures from 50% of our patients. The superior turbinate, biopsied with cutting punch forceps, gave the highest yield. No adverse impact on olfaction or complications with the biopsy were observed. Conclusion Endoscopic biopsy of ONe for obtaining olfactory progenitor cells from living donors is feasible, effective, and safe.
Collapse
Affiliation(s)
- Welby Winstead
- Division of Otolaryngology–Head and Neck Surgery, Louisville, Kentucky
| | - Charles T. Marshall
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
| | - Cheng L. Lu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
| | - Kathleen M. Klueber
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
| | - Fred J. Roisen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
| |
Collapse
|
37
|
Grasselli C, Ferrari D, Zalfa C, Soncini M, Mazzoccoli G, Facchini FA, Marongiu L, Granucci F, Copetti M, Vescovi AL, Peri F, De Filippis L. Toll-like receptor 4 modulation influences human neural stem cell proliferation and differentiation. Cell Death Dis 2018; 9:280. [PMID: 29449625 PMCID: PMC5833460 DOI: 10.1038/s41419-017-0139-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
Toll-like receptor 4 (TLR4) activation is pivotal to innate immunity and has been shown to regulate proliferation and differentiation of human neural stem cells (hNSCs) in vivo. Here we study the role of TLR4 in regulating hNSC derived from the human telencephalic-diencephalic area of the fetal brain and cultured in vitro as neurospheres in compliance with Good Manifacture Procedures (GMP) guidelines. Similar batches have been used in recent clinical trials in ALS patients. We found that TLR2 and 4 are expressed in hNSCs as well as CD14 and MD-2 co-receptors, and TLR4 expression is downregulated upon differentiation. Activation of TLR4 signaling by lipopolysaccharide (LPS) has a positive effect on proliferation and/or survival while the inverse is observed with TLR4 inhibition by a synthetic antagonist. TLR4 activation promotes neuronal and oligodendrocyte differentiation and/or survival while TLR4 inhibition leads to increased apoptosis. Consistently, endogenous expression of TLR4 is retained by hNSC surviving after transplantation in ALS rats or immunocompromised mice, thus irrespectively of the neuroinflammatory environment. The characterization of downstream signaling of TLR4 in hNSCs has suggested some activation of the inflammasome pathway. This study suggests TLR4 signaling as essential for hNSC self-renewal and as a novel target for the study of neurogenetic mechanisms.
Collapse
Affiliation(s)
- Chiara Grasselli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, MI, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, MI, Italy
| | - Cristina Zalfa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, MI, Italy
| | - Matias Soncini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, MI, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Fabio A Facchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, MI, Italy
| | - Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, MI, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, MI, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, MI, Italy
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, MI, Italy.
| | - Lidia De Filippis
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
38
|
Laterza C, Uoshima N, Tornero D, Wilhelmsson U, Stokowska A, Ge R, Pekny M, Lindvall O, Kokaia Z. Attenuation of reactive gliosis in stroke-injured mouse brain does not affect neurogenesis from grafted human iPSC-derived neural progenitors. PLoS One 2018; 13:e0192118. [PMID: 29401502 PMCID: PMC5798785 DOI: 10.1371/journal.pone.0192118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) or their progeny, derived from human somatic cells, can give rise to functional improvements after intracerebral transplantation in animal models of stroke. Previous studies have indicated that reactive gliosis, which is associated with stroke, inhibits neurogenesis from both endogenous and grafted neural stem/progenitor cells (NSPCs) of rodent origin. Here we have assessed whether reactive astrocytes affect the fate of human iPSC-derived NSPCs transplanted into stroke-injured brain. Mice with genetically attenuated reactive gliosis (deficient for GFAP and vimentin) were subjected to cortical stroke and cells were implanted adjacent to the ischemic lesion one week later. At 8 weeks after transplantation, immunohistochemical analysis showed that attenuated reactive gliosis did not affect neurogenesis or commitment towards glial lineage of the grafted NSPCs. Our findings, obtained in a human-to-mouse xenograft experiment, provide evidence that the reactive gliosis in stroke-injured brain does not affect the formation of new neurons from intracortically grafted human iPSC-derived NSPCs. However, for a potential clinical translation of these cells in stroke, it will be important to clarify whether the lack of effect of reactive gliosis on neurogenesis is observed also in a human-to-human experimental setting.
Collapse
Affiliation(s)
- Cecilia Laterza
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Naomi Uoshima
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
- Department of Anesthesiology, Tokyo Medical University, Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Daniel Tornero
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Ulrika Wilhelmsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Stokowska
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ruimin Ge
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Milos Pekny
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Olle Lindvall
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Zaal Kokaia
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
- * E-mail:
| |
Collapse
|
39
|
Ferrari D, Gelati M, Profico DC, Vescovi AL. Human Fetal Neural Stem Cells for Neurodegenerative Disease Treatment. Results Probl Cell Differ 2018; 66:307-329. [DOI: 10.1007/978-3-319-93485-3_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
40
|
Teng YD, Wang L, Zeng X, Wu L, Toktas Z, Kabatas S, Zafonte RD. Updates on Human Neural Stem Cells: From Generation, Maintenance, and Differentiation to Applications in Spinal Cord Injury Research. Results Probl Cell Differ 2018; 66:233-248. [PMID: 30209662 DOI: 10.1007/978-3-319-93485-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human neural stem cells (hNSCs) and human induced pluripotent stem cells (hiPSCs) have been the primary focuses in basic science and translational research as well as in investigative clinical applications. Therefore, the capability to perform reliable derivation, effective expansion, and long-term maintenance of uncommitted hNSCs and hiPSCs and their targeted phenotypic differentiations through applying chemically and biologically defined medium in vitro is essential for expanding and enriching the fundamental and technological capacities of stem cell biology and regenerative medicine. In this chapter, we systematically summarized a set of protocols and unique procedures that have been developed in the laboratories of Prof. Teng and his collaborators. These regimens have been, over the years, reproducibly and productively used to derive, propagate, maintain, and differentiate hNSCs, including those derived from hiPSCs. We emphasize the multimodal methodologies that were pioneered and established in our laboratories for characterizing functional multipotency of stem cells and its value in basic science as well as translational biomedical studies.
Collapse
Affiliation(s)
- Yang D Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA.
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA.
- Division of SCI Research, VA Boston Healthcare System, Boston, MA, USA.
| | - Lei Wang
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Xiang Zeng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Liquan Wu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Zafer Toktas
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Serdar Kabatas
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
| |
Collapse
|
41
|
Li B, Gao Y, Zhang W, Xu JR. Regulation and effects of neurotrophic factors after neural stem cell transplantation in a transgenic mouse model of Alzheimer disease. J Neurosci Res 2017; 96:828-840. [PMID: 29114922 DOI: 10.1002/jnr.24187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022]
Abstract
According to much research, neurodegeneration and cognitive decline in Alzheimer disease (AD) are correlated with alternations of neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor. The experimental illumination of neural stem cell (NSC) transplantation to eliminate AD symptoms is being explored frequently, and we have acknowledged that neurotrophic factors may play a pivotal role in cognitive improvement. However, the relation between the reversal of cognitive deficits after NSC transplantation and directed alternations of neurotrophic factors is not clearly expounded. Meanwhile, reduced inflammatory response, promoted vessel density, and vascular endothelial growth factor (VEGF) can be reflections of improvement in cerebrovascular function. Three weeks after NSC transplantation, spatial learning and memory function in NSC-injected (Tg-NSC) mice were significantly improved compared with vehicle-injected (Tg-Veh) mice. Meanwhile, results obtained by immunofluorescence and Western blot analyses demonstrated that the levels of neurotrophic factors, VEGF, and vessel density in the cortex of Tg-NSC mice were significantly enhanced compared with Tg-Veh mice, while the levels of proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 were significantly decreased. Our results suggest that elevated concentrations of neurotrophic factors probably play a critical role in rescuing cognitive dysfunction in APP/PS1 transgenic mice after NSC transplantation, and neurotrophic factors may improve cerebrovascular function by means such as reducing inflammatory response and promoting angiogenesis.
Collapse
Affiliation(s)
- Bo Li
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yun Gao
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jian-Rong Xu
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Torrente Y, Belicchi M, Pisati F, Pagano SF, Fortunato F, Sironi M, D'angelo MG, Parati EA, Scarlato G, Bresolin N. Alternative Sources of Neurons and Glia from Somatic Stem Cells. Cell Transplant 2017. [DOI: 10.3727/096020198389753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stem cell populations have been shown to be extremely versatile: they can generate differentiated cells specific to the tissue in which they reside and descendents that are of different germ layer origin. This raises the possibility of obtaining neuronal cells from new biological source of the same adult human subjects. In this study, we found that epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) cooperated to induce the proliferation, self-renewal, and expansion of neural stem cell-like population isolated from several newborn and adult mouse tissues: muscle and hematopoietic tissues. This population, in both primary culture and secondary expanded clones, formed spheres of undifferentiated cells that were induced to differentiate into neurons, astrocytes, and oligodendrocytes. Brain engraftment of the somatic-derived neural stem cells generated neuronal phenotypes, demonstrating the great plasticity of these cells with potential clinical application.
Collapse
Affiliation(s)
- Yvan Torrente
- IRCCS Ospedale Maggiore Policlinico, Italy
- Centro Dino Ferrari, Institute of Clinical Neurology, Milan, Italy
| | | | | | - Stefano F. Pagano
- Laboratory of Neuropharmacology, National Neurological Institute “C. Besta,” Milan, Italy
| | | | | | | | - Eugenio A. Parati
- Laboratory of Neuropharmacology, National Neurological Institute “C. Besta,” Milan, Italy
| | | | - Nereo Bresolin
- IRCCS Ospedale Maggiore Policlinico, Italy
- IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
43
|
Shen Z, Li X, Bao X, Wang R. Microglia-targeted stem cell therapies for Alzheimer disease: A preclinical data review. J Neurosci Res 2017. [PMID: 28643422 DOI: 10.1002/jnr.24066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a severe, life-threatening illness characterized by gradual memory loss. The classic histological features of AD include extracellular formation of β-amyloid plaques (Aβ), intracellular neurofibrillary tangles (NFT), and synaptic loss. Recently, accumulated evidence has confirmed the critical role of microglia in the development and exacerbation of AD. When Aβ forms deposits, microglia quickly respond to restore brain physiology by activating a series of repair mechanisms. However, prolonged microglial activation is considered detrimental and may aggravate AD progression. To date, there are no curative therapies for AD. The advent of stem cell transplantation offers novel strategies to treat AD in animal models. Furthermore, studies have reported that transplanted stem cells might ameliorate AD symptoms by regulating microglial functions, from detrimental to protective. This review focuses on the crucial functions of microglia in AD and examines the reactions of microglia to transplanted stem cells.
Collapse
Affiliation(s)
- Zhiwei Shen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueyuan Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Kanemura Y, Mori H, Nakagawa A, Islam MO, Kodama E, Yamamoto A, Shofuda T, Kobayashi S, Miyake J, Yamazaki T, Hirano SI, Yamasaki M, Okano H. In Vitro Screening of Exogenous Factors for Human Neural Stem/Progenitor Cell Proliferation Using Measurement of Total ATP Content in Viable Cells. Cell Transplant 2017; 14:673-682. [DOI: 10.3727/000000005783982701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
One of the newest and most promising methods for treating intractable neuronal diseases and injures is the transplantation of ex vivo-expanded human neural stem/progenitor cells (NSPCs). Human NSPCs are selectively expanded as free-floating neurospheres in serum-free culture medium containing fibroblast growth factor 2 (FGF2) and/or epidermal growth factor (EGF); however, the culture conditions still need to be optimized for performance and cost before the method is used clinically. Here, to improve the NSPC culture method for clinical use, we used an ATP assay to screen the effects of various reagents on human NSPC proliferation. Human NSPCs responded to EGF, FGF2, and leukemia inhibitory factor (LIF) in a dose-dependent manner, and the minimum concentrations eliciting maximum effects were 10 ng/ml EGF, 10 ng/ml FGF2, and 5 ng/ml LIF. EGF and LIF were stable in culture medium without NSPCs, although FGF2 was degraded. In the presence of human NSPCs, however, FGF2 and LIF were both degraded very rapidly, to below the estimated minimum concentration on day 3, but EGF remained above the minimum concentration for 5 days. Adding supplemental doses of each growth factor during the incubation promoted human NSPC proliferation. Among other supplements, insulin and transferrin promoted human NSPC growth, but progesterone, putrescine, selenite, D-glucose, and lactate were not effective and were cytotoxic at higher concentrations. Supplementing with conditioned medium from human NSPCs significantly increased human NSPC proliferation, but using a high percentage of the medium had a negative effect. These findings suggest that human NSPC culture is regulated by a balance in the culture medium between decreasing growth factor levels and increasing positive or negative factors derived from the NSPCs. Thus, in designing culture conditions for human NSPCs, it is useful to take the individual properties of each factor into consideration.
Collapse
Affiliation(s)
- Yonehiro Kanemura
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
- Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka 540–0006, Japan
| | - Hideki Mori
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
| | - Atsuyo Nakagawa
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
| | - Mohammed Omedul Islam
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
- Institute of Biomedical Research and Innovation, Kobe, Hyogo 650–0047, Japan
| | - Eri Kodama
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
| | - Atsuyo Yamamoto
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
| | - Tomoko Shofuda
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
| | - Satoshi Kobayashi
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
| | - Jun Miyake
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
| | - Tomohiko Yamazaki
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
- New Energy and Industrial Technology Development Organization, Tokyo 170–6028, Japan
| | - Shun-Ichiro Hirano
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3–11–46 Nakoji, Amagasaki, Hyogo 661–0974, Japan
- Institute of Biomedical Research and Innovation, Kobe, Hyogo 650–0047, Japan
| | - Mami Yamasaki
- Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka 540–0006, Japan
- Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka 540–0006, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160–8582, Japan
| |
Collapse
|
45
|
Atouf F, Choi Y, Fowler MJ, Poffenberger G, Vobecky J, Ta M, Chapman GB, Powers AC, Lumelsky NL. Generation of Islet-Like Hormone-Producing Cells In Vitro from Adult Human Pancreas. Cell Transplant 2017; 14:735-48. [PMID: 16454348 DOI: 10.3727/000000005783982602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of pancreatic islets can provide long-lasting insulin independence for diabetic patients, but the current islet supply is limited. Here we describe a new in vitro system that utilizes adult human pancreatic islet-enriched fractions to generate hormone-producing cells over 3–4 weeks of culture. By labeling proliferating cells with a retrovirus-expressing green fluorescent protein, we show that in this system hormone-producing cells are generated de novo. These hormone-producing cells aggregate to form islet-like cell clusters. The cell clusters, when tested in vitro, release insulin in response to glucose and other secretagogues. After transplantation into immunodeficient, nondiabetic mice, the islet-like cell clusters survive and release human insulin. We propose that this system will be useful as an experimental tool for investigating mechanisms for generating new islet cells from the postnatal pancreas, and for designing strategies to generate physiologically competent pancreatic islet cells ex vivo.
Collapse
Affiliation(s)
- Fouad Atouf
- Islet and Autoimmunity Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1453, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Modulated DISP3/PTCHD2 expression influences neural stem cell fate decisions. Sci Rep 2017; 7:41597. [PMID: 28134287 PMCID: PMC5278513 DOI: 10.1038/srep41597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Neural stem cells (NSCs) are defined by their dual ability to self-renew through mitotic cell division or differentiate into the varied neural cell types of the CNS. DISP3/PTCHD2 is a sterol-sensing domain-containing protein, highly expressed in neural tissues, whose expression is regulated by thyroid hormone. In the present study, we used a mouse NSC line to investigate what effect DISP3 may have on the self-renewal and/or differentiation potential of the cells. We demonstrated that NSC differentiation triggered significant reduction in DISP3 expression in the resulting astrocytes, neurons and oligodendrocytes. Moreover, when DISP3 expression was disrupted, the NSC "stemness" was suppressed, leading to a larger population of cells undergoing spontaneous neuronal differentiation. Conversely, overexpression of DISP3 resulted in increased NSC proliferation. When NSCs were cultured under differentiation conditions, we observed that the lack of DISP3 augmented the number of NSCs differentiating into each of the neural cell lineages and that neuronal morphology was altered. In contrast, DISP3 overexpression resulted in impaired cell differentiation. Taken together, our findings imply that DISP3 may help dictate the NSC cell fate to either undergo self-renewal or switch to the terminal differentiation cell program.
Collapse
|
47
|
Martín-Ibáñez R, Guardia I, Pardo M, Herranz C, Zietlow R, Vinh NN, Rosser A, Canals JM. Insights in spatio-temporal characterization of human fetal neural stem cells. Exp Neurol 2017; 291:20-35. [PMID: 28131724 DOI: 10.1016/j.expneurol.2017.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 11/25/2022]
Abstract
Primary human fetal cells have been used in clinical trials of cell replacement therapy for the treatment of neurodegenerative disorders such as Huntington's disease (HD). However, human fetal primary cells are scarce and difficult to work with and so a renewable source of cells is sought. Human fetal neural stem cells (hfNSCs) can be generated from human fetal tissue, but little is known about the differences between hfNSCs obtained from different developmental stages and brain areas. In the present work we characterized hfNSCs, grown as neurospheres, obtained from three developmental stages: 4-5, 6-7 and 8-9weeks post conception (wpc) and four brain areas: forebrain, cortex, whole ganglionic eminence (WGE) and cerebellum. We observed that, as fetal brain development proceeds, the number of neural precursors is diminished and post-mitotic cells are increased. In turn, primary cells obtained from older embryos are more sensitive to the dissociation process, their viability is diminished and they present lower proliferation ratios compared to younger embryos. However, independently of the developmental stage of derivation proliferation ratios were very low in all cases. Improvements in the expansion rates were achieved by mechanical, instead of enzymatic, dissociation of neurospheres but not by changes in the seeding densities. Regardless of the developmental stage, neurosphere cultures presented large variability in the viability and proliferation rates during the initial 3-4 passages, but stabilized achieving significant expansion rates at passage 5 to 6. This was true also for all brain regions except cerebellar derived cultures that did not expand. Interestingly, the brain region of hfNSC derivation influences the expansion potential, being forebrain, cortex and WGE derived cells the most expandable compared to cerebellar. Short term expansion partially compromised the regional identity of cortical but not WGE cultures. Nevertheless, both expanded cultures were multipotent and kept the ability to differentiate to region specific mature neuronal phenotypes.
Collapse
Affiliation(s)
- Raquel Martín-Ibáñez
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; Networked Biomedical Research Centre for NeuroDegenerative Disorders (CIBERNED), Spain; Research and Development Unit, Cell Therapy Program, Faculty of Medicine and Health Sciences, University of Barcelona, Casanova 143, 08036 Barcelona, Spain.
| | - Inés Guardia
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; Networked Biomedical Research Centre for NeuroDegenerative Disorders (CIBERNED), Spain.
| | - Mónica Pardo
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; Networked Biomedical Research Centre for NeuroDegenerative Disorders (CIBERNED), Spain.
| | - Cristina Herranz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; Networked Biomedical Research Centre for NeuroDegenerative Disorders (CIBERNED), Spain; Research and Development Unit, Cell Therapy Program, Faculty of Medicine and Health Sciences, University of Barcelona, Casanova 143, 08036 Barcelona, Spain.
| | - Rike Zietlow
- Cardiff University Brain Repair Group, Schools of Biosciences and Medicine, University of Cardiff, UK.
| | - Ngoc-Nga Vinh
- Cardiff University Brain Repair Group, Schools of Biosciences and Medicine, University of Cardiff, UK.
| | - Anne Rosser
- Cardiff University Brain Repair Group, Schools of Biosciences and Medicine, University of Cardiff, UK.
| | - Josep M Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; Networked Biomedical Research Centre for NeuroDegenerative Disorders (CIBERNED), Spain; Research and Development Unit, Cell Therapy Program, Faculty of Medicine and Health Sciences, University of Barcelona, Casanova 143, 08036 Barcelona, Spain.
| |
Collapse
|
48
|
Gowing G, Svendsen S, Svendsen CN. Ex vivo gene therapy for the treatment of neurological disorders. PROGRESS IN BRAIN RESEARCH 2017; 230:99-132. [PMID: 28552237 DOI: 10.1016/bs.pbr.2016.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ex vivo gene therapy involves the genetic modification of cells outside of the body to produce therapeutic factors and their subsequent transplantation back into patients. Various cell types can be genetically engineered. However, with the explosion in stem cell technologies, neural stem/progenitor cells and mesenchymal stem cells are most often used. The synergy between the effect of the new cell and the additional engineered properties can often provide significant benefits to neurodegenerative changes in the brain. In this review, we cover both preclinical animal studies and clinical human trials that have used ex vivo gene therapy to treat neurological disorders with a focus on Parkinson's disease, Huntington's disease, Alzheimer's disease, ALS, and stroke. We highlight some of the major advances in this field including new autologous sources of pluripotent stem cells, safer ways to introduce therapeutic transgenes, and various methods of gene regulation. We also address some of the remaining hurdles including tunable gene regulation, in vivo cell tracking, and rigorous experimental design. Overall, given the current outcomes from researchers and clinical trials, along with exciting new developments in ex vivo gene and cell therapy, we anticipate that successful treatments for neurological diseases will arise in the near future.
Collapse
Affiliation(s)
- Genevieve Gowing
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Soshana Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
49
|
Binda E, Visioli A, Giani F, Trivieri N, Palumbo O, Restelli S, Dezi F, Mazza T, Fusilli C, Legnani F, Carella M, Di Meco F, Duggal R, Vescovi AL. Wnt5a Drives an Invasive Phenotype in Human Glioblastoma Stem-like Cells. Cancer Res 2016; 77:996-1007. [PMID: 28011620 DOI: 10.1158/0008-5472.can-16-1693] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022]
Abstract
Brain invasion by glioblastoma determines prognosis, recurrence, and lethality in patients, but no master factor coordinating the invasive properties of glioblastoma has been identified. Here we report evidence favoring such a role for the noncanonical WNT family member Wnt5a. We found the most invasive gliomas to be characterized by Wnt5a overexpression, which correlated with poor prognosis and also discriminated infiltrating mesenchymal glioblastoma from poorly motile proneural and classical glioblastoma. Indeed, Wnt5a overexpression associated with tumor-promoting stem-like characteristics (TPC) in defining the character of highly infiltrating mesenchymal glioblastoma cells (Wnt5aHigh). Inhibiting Wnt5a in mesenchymal glioblastoma TPC suppressed their infiltrating capability. Conversely, enforcing high levels of Wnt5a activated an infiltrative, mesenchymal-like program in classical glioblastoma TPC and Wnt5aLow mesenchymal TPC. In intracranial mouse xenograft models of glioblastoma, inhibiting Wnt5a activity blocked brain invasion and increased host survival. Overall, our results highlight Wnt5a as a master regulator of brain invasion, specifically TPC, and they provide a therapeutic rationale to target it in patients with glioblastoma. Cancer Res; 77(4); 996-1007. ©2016 AACR.
Collapse
Affiliation(s)
- Elena Binda
- IRCSS Casa Sollievo della Sofferenza, ISBReMIT- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Italy.
| | | | - Fabrizio Giani
- Dept. of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy
| | - Nadia Trivieri
- IRCSS Casa Sollievo della Sofferenza, c/o Instituto Mendel, Rome, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, Italy
| | | | - Fabio Dezi
- IRCSS Casa Sollievo della Sofferenza, ISBReMIT- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Italy
| | - Tommaso Mazza
- IRCSS Casa Sollievo della Sofferenza, c/o Instituto Mendel, Rome, Italy
| | - Caterina Fusilli
- IRCSS Casa Sollievo della Sofferenza, c/o Instituto Mendel, Rome, Italy
| | | | - Massimo Carella
- Medical Genetics Unit, IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, Italy
| | - Francesco Di Meco
- National Neurological Institute "C. Besta," Milan, Italy
- Department of Neurosurgery, John Hopkins University, Baltimore, Maryland
| | - Rohit Duggal
- Stem Cell Research Unit, Sorrento Therapeutics Inc., San Diego, California
| | - Angelo L Vescovi
- IRCSS Casa Sollievo della Sofferenza, ISBReMIT- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Italy.
- StemGen SpA, Milan, Italy
- Dept. of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy
- IRCSS Casa Sollievo della Sofferenza, c/o Instituto Mendel, Rome, Italy
| |
Collapse
|
50
|
Kelava I, Lancaster MA. Dishing out mini-brains: Current progress and future prospects in brain organoid research. Dev Biol 2016; 420:199-209. [PMID: 27402594 PMCID: PMC5161139 DOI: 10.1016/j.ydbio.2016.06.037] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 06/25/2016] [Indexed: 01/15/2023]
Abstract
The ability to model human brain development in vitro represents an important step in our study of developmental processes and neurological disorders. Protocols that utilize human embryonic and induced pluripotent stem cells can now generate organoids which faithfully recapitulate, on a cell-biological and gene expression level, the early period of human embryonic and fetal brain development. In combination with novel gene editing tools, such as CRISPR, these methods represent an unprecedented model system in the field of mammalian neural development. In this review, we focus on the similarities of current organoid methods to in vivo brain development, discuss their limitations and potential improvements, and explore the future venues of brain organoid research.
Collapse
Affiliation(s)
- Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH Cambridge, United Kingdom
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH Cambridge, United Kingdom.
| |
Collapse
|