1
|
Han HJ, Sivaraman A, Kim M, Min KH, Song ME, Choi Y, Choi WJ, Han HK, Han J, Jang JP, Ryoo IJ, Lee K, Soung NK. HIF-1α inhibition by MO-2097, a novel chiral-free benzofuran targeting hnRNPA2B1. J Adv Res 2024; 64:67-81. [PMID: 37977260 PMCID: PMC11464424 DOI: 10.1016/j.jare.2023.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator mediating adaptive responses to hypoxia. It is up-regulated in the tumor microenvironment and recognized as an effective anticancer drug target. Previously, we discovered that the natural compound moracin-O and its synthetic derivative MO-460 inhibited HIF-1α via hnRNPA2B1. OBJECTIVES This study aimed to develop novel HIF-1 inhibitors for cancer chemotherapy by harnessing the potential of the natural products moracins-O and P. METHODS In an ongoing search for novel HIF-1 inhibitors, a series of nature-inspired benzofurans with modifications on the chiral rings of moracins-O and P were synthesized. They showed improved chemical tractability and were evaluated for their inhibitory activity on HIF-1α accumulation under hypoxic conditions in HeLa CCL2 cells. The most potent derivative's chemical-based toxicities, binding affinities, and in vivo anti-tumorigenic effects were evaluated. Further, we examined whether our compound, MO-2097, exhibited anticancer effects in three-dimensional cultured organoids. RESULTS Herein, we identified a novel synthetic chiral-free compound, MO-2097, with reduced structural complexity and increased efficiency. MO-2097 exhibited inhibitory effects on hypoxia-induced HIF-1α accumulation in HeLa CCL2 cells via inhibition of hnRNPA2B1 protein, whose binding affinities were confirmed by isothermal titration calorimetry analysis. In addition, MO-2097 demonstrated in vivo efficacy and biocompatibility in a BALB/c mice xenograft model. The immunohistochemistry staining of MO-2097-treated tissues showed decreased expression of HIF-1α and increased levels of apoptosis marker cleaved caspase 3, confirming in vivo efficacy. Furthermore, we confirmed that MO-2097 works effectively in cancer patient-based organoid models. CONCLUSION MO-2097 represents a promising new generation of chemotherapeutic agents targeting HIF-1α inhibition via hnRNPA2B1, requiring further investigation.
Collapse
Affiliation(s)
- Ho Jin Han
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Aneesh Sivaraman
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyoung Ho Min
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Mo Eun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Won-Jun Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Junyeol Han
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Biomolecular Science, University of Science, and Technology, Daejeon, 34113, Republic of Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - In-Ja Ryoo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Nak-Kyun Soung
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Biomolecular Science, University of Science, and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Barata P, Camacho O, Lima CG, Pereira AC. The Role of Hyperbaric Oxygen Therapy in Neuroregeneration and Neuroprotection: A Review. Cureus 2024; 16:e62067. [PMID: 38989389 PMCID: PMC11235151 DOI: 10.7759/cureus.62067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Neurogenesis is a high energy-demanding process, which is why blood vessels are an active part of the neurogenic niche since they allow the much-needed oxygenation of progenitor cells. In this regard, although neglected for a long time, the "oxygen niche" should be considered an important intervenient in adult neurogenesis. One possible hypothesis for the failure of numerous neuroprotective trials is that they relied on compounds that target a highly specific neuroprotective pathway. This approach may be too limited, given the complexity of the processes that lead to cell death. Therefore, research should adopt a more multifactorial approach. Among the limited range of agents with multimodal neuromodulatory capabilities, hyperbaric oxygen therapy has demonstrated effectiveness in reducing secondary brain damage in various brain injury models. This therapy functions not only as a neuroprotective mechanism but also as a powerful neuroregenerative mechanism.
Collapse
Affiliation(s)
- Pedro Barata
- Pathology and Laboratory Medicine, Centro Hospitalar Universitário do Porto, Porto, PRT
- CECLIN (Center for Clinical Studies), Hospital-Escola da Universidade Fernando Pessoa (HE-UFP), Porto, PRT
| | - Oscar Camacho
- Hyperbaric Medicine Unit, Unidade Local de Saúde de Matosinhos, Matosinhos, PRT
| | - Clara G Lima
- Anesthesiology, Hospital Pedro Hispano, Matosinhos, PRT
| | - Ana Claudia Pereira
- Faculty of Health Sciences, Universidade Fernando Pessoa (UFP), Porto, PRT
- CECLIN (Center for Clinical Studies), Hospital-Escola da Universidade Fernando Pessoa (HE-UFP), Porto, PRT
| |
Collapse
|
3
|
Han Y, Ji B, Leng Y, Xie C. Inhibited hypoxia-inducible factor by intraoperative hyperglycemia increased postoperative delirium of aged patients: A review. Medicine (Baltimore) 2024; 103:e38349. [PMID: 39259057 PMCID: PMC11142828 DOI: 10.1097/md.0000000000038349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 09/12/2024] Open
Abstract
The underlying mechanism of postoperative delirium (POD) in elderly people remains unclear. Perioperative hyperglycemia (POHG) is an independent risk indicator for POD, particularly in the elderly. Under cerebral desaturation (hypoxia) during general anesthesia, hypoxia-inducible factor (HIF) is neuroprotective during cerebral hypoxia via diverse pathways, like glucose metabolism and angiogenesis. Hyperglycemia can repress HIF expression and activity. On the other hand, POHG occurred among patients undergoing surgery. For surgical stress, hypothalamic-pituitary-adrenal activation and sympathoadrenal activation may increase endogenous glucose production via gluconeogenesis and glycogenolysis. Thus, under the setting of cerebral hypoxia during general anesthesia, we speculate that POHG prevents HIF-1α levels and function in the brain of aged patients, thus exacerbating the hypoxic response of HIF-1 and potentially contributing to POD. This paper sketches the underlying mechanisms of HIF in POD in elderly patients and offers novel insights into targets for preventing or treating POD in the same way as POHG.
Collapse
Affiliation(s)
- Yutong Han
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Bing Ji
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Pain Management, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
4
|
Aboouf MA, Thiersch M, Soliz J, Gassmann M, Schneider Gasser EM. The Brain at High Altitude: From Molecular Signaling to Cognitive Performance. Int J Mol Sci 2023; 24:10179. [PMID: 37373327 DOI: 10.3390/ijms241210179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Thiamine insufficiency induces Hypoxia Inducible Factor-1α as an upstream mediator for neurotoxicity and AD-like pathology. Mol Cell Neurosci 2022; 123:103785. [PMID: 36241022 DOI: 10.1016/j.mcn.2022.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Insufficiencies of the micronutrient thiamine (Vitamin B1) have been associated with inducing Alzheimer's disease (AD)-like neuropathology. The hypometabolic state associated with chronic thiamine insufficiency (TI) has been demonstrated to be a contributor towards the development of amyloid plaque deposition and neurotoxicity. However, the molecular mechanism underlying TI induced AD pathology is still unresolved. Previously, we have established that TI stabilizes the metabolic stress transcriptional factor, Hypoxia Inducible Factor-1α (HIF1α). Utilizing neuronal hippocampal cells (HT22), TI-induced HIF1α activation triggered the amyloidogenic cascade through transcriptional expression and increased activity of β-secretase (BACE1). Knockdown and pharmacological inhibition of HIF1α during TI significantly reduced BACE1 and C-terminal Fragment of 99 amino acids (C99) formation. TI also increased the expression of the HIF1α regulated pro-apoptotic protein, BCL2/adenovirus E1B 19 kDa protein-interacting protein (BNIP3). Correspondingly, cell toxicity during TI conditions was significantly reduced with HIF1α and BNIP3 knockdown. The role of BNIP3 in TI-mediated toxicity was further highlighted by localization of dimeric BNIP3 into the mitochondria and nuclear accumulation of Endonuclease G. Subsequently, TI decreased mitochondrial membrane potential and enhanced chromatin fragmentation. However, cell toxicity via the HIF1α/BNIP3 cascade required TI induced oxidative stress. HIF1α, BACE1 and BNIP3 expression was induced in 3xTg-AD mice after TI and administration with the HIF1α inhibitor YC1 significantly attenuated HIF1α and target genes levels in vivo. Overall, these findings demonstrate a critical stress response during TI involving the induction of HIF1α transcriptional activity that directly promotes neurotoxicity and AD-like pathology.
Collapse
|
6
|
Pan Z, Ma G, Kong L, Du G. Hypoxia-inducible factor-1: Regulatory mechanisms and drug development in stroke. Pharmacol Res 2021; 170:105742. [PMID: 34182129 DOI: 10.1016/j.phrs.2021.105742] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Stroke is an acute cerebrovascular disease caused by sudden rupture of blood vessels in the brain or blockage of blood vessels, which has now become one of the main causes of adult death. During stroke, hypoxia-inducible factor-1 (HIF-1), as an important regulator under hypoxia conditions, is involved in the pathological process of stroke by regulating multi-pathways, such as glucose metabolism, angiogenesis, erythropoiesis, cell survival. However, the roles of HIF-1 in stroke are still controversial, which are related with ischemic time and degree of ischemia. The regulatory mechanisms of HIF-1 in stroke include inflammation, autophagy, oxidative stress, apoptosis and energy metabolism. The potential drugs targeting HIF-1 have attracted more attention, such as HIF-1 inhibitors, HIF-1 stabilizers and natural products. Based on the role of HIF-1 in stroke, HIF-1 is expected to be a potential target for stroke treatment. Resolving when and what interventions for HIF-1 to take during stroke will provide novel strategies for stroke treatment.
Collapse
Affiliation(s)
- Zirong Pan
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
7
|
Hypoxia-Inducible Factor 1α (HIF-1α) Counteracts the Acute Death of Cells Transplanted into the Injured Spinal Cord. eNeuro 2020; 7:ENEURO.0092-19.2019. [PMID: 31488552 PMCID: PMC7215587 DOI: 10.1523/eneuro.0092-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023] Open
Abstract
Cellular transplantation is in clinical testing for a number of central nervous system disorders, including spinal cord injury (SCI). One challenge is acute transplanted cell death. To prevent this death, there is a need to both establish when the death occurs and develop approaches to mitigate its effects. Here, using luciferase (luc) and green fluorescent protein (GFP) expressing Schwann cell (SC) transplants in the contused thoracic rat spinal cord 7 d postinjury, we establish via in vivo bioluminescent (IVIS) imaging and stereology that cell death occurs prior to 2–3 d postimplantation. We then test an alternative approach to the current paradigm of enhancing transplant survival by including multiple factors along with the cells. To stimulate multiple cellular adaptive pathways concurrently, we activate the hypoxia-inducible factor 1α (HIF-1α) transcriptional pathway. Retroviral expression of VP16-HIF-1α in SCs increased HIF-α by 5.9-fold and its target genes implicated in oxygen transport and delivery (VEGF, 2.2-fold) and cellular metabolism (enolase, 1.7-fold). In cell death assays in vitro, HIF-1α protected cells from H2O2-induced oxidative damage. It also provided some protection against camptothecin-induced DNA damage, but not thapsigargin-induced endoplasmic reticulum stress or tunicamycin-induced unfolded protein response. Following transplantation, VP16-HIF-1α increased SC survival by 34.3%. The increase in cell survival was detectable by stereology, but not by in vivo luciferase or ex vivo GFP IVIS imaging. The results support the hypothesis that activating adaptive cellular pathways enhances transplant survival and identifies an alternative pro-survival approach that, with optimization, could be amenable to clinical translation.
Collapse
|
8
|
Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF‑1 signaling pathway in hypoxia‑ischemia (Review). Mol Med Rep 2018; 18:3547-3554. [PMID: 30106145 PMCID: PMC6131612 DOI: 10.3892/mmr.2018.9375] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-ischemia (H-I) is frequently observed in perinatal asphyxia and other diseases. It can lead to serious cardiac injury, cerebral damage, neurological disability and mortality. Previous studies have demonstrated that the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, which regulates a wide range of cellular functions, is involved in the resistance response to H-I through the activation of proteins associated with survival and inactivation of apoptosis-associated proteins. It can also regulate the expression of hypoxia-induced factor-1α (HIF-1α). HIF-1α can further regulate the expression of downstream proteins involved in glucose metabolism and angiogenesis, such as vascular endothelial growth factor and erythropoietin, to facilitate ischemic adaptation. Notably, HIF-1α may also induce detrimental effects. The effects of HIF-1 on ischemic outcomes may be dependent on the H-I duration, animal age and species. Thus, further investigation of the PI3K/Akt signaling pathway may provide further insights of the potential targets for treating diseases accompanied by H-I.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong 510100, P.R. China
| | - Li Yao
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, Guangdong 510670, P.R. China
| | - Jinhua Yang
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, Guangdong 510670, P.R. China
| | - Zhenkang Wang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Gang Du
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, Guangdong 510670, P.R. China
| |
Collapse
|
9
|
Zera K, Zastre J. Stabilization of the hypoxia-inducible transcription Factor-1 alpha (HIF-1α) in thiamine deficiency is mediated by pyruvate accumulation. Toxicol Appl Pharmacol 2018; 355:180-188. [PMID: 30008376 DOI: 10.1016/j.taap.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/28/2022]
Abstract
Vitamin B1, or thiamine is a critical enzyme cofactor required for metabolic function and energy production. Thiamine deficiency (TD) is common in various diseases, and results in severe neurological complications due to diminished mitochondrial function, oxidative stress, excitotoxicity and inflammation. These pathological sequelae result in apoptotic cell death in both neurons and astrocytes in distinct regions, in particular the thalamus and mammillary bodies. Comparable histological injuries in patients with hypoxia/ischemia (H/I) have also been described, suggesting a congruency between the cellular responses to these stresses. Analogous to H/I, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α) even without changes in physiological oxygen levels. However, the mechanism of HIF-1α stabilization in TD is currently unknown. Using a pyruvate assay, we have demonstrated that TD induces pyruvate accumulation in mouse primary astrocytes which correlates to an increase in HIF-1α expression. Additionally, we utilized an enzymatic assay for pyruvate dehydrogenase to demonstrate a reduction in catalytic activity during TD due to lack of available thiamine pyrophosphate cofactor, resulting in the observed pyruvate accumulation. Finally, a pyruvate kinase inhibitor which limited pyruvate accumulation was utilized to demonstrate the role of pyruvate accumulation in HIF-1α stabilization during TD. These results reveal that stabilization of HIF-1α protein in TD centralizes on pyruvate accumulation in mouse primary astrocytes due to metabolic disruption of PDH.
Collapse
Affiliation(s)
- Kristy Zera
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens 30602, Georgia
| | - Jason Zastre
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens 30602, Georgia.
| |
Collapse
|
10
|
Notch signaling and neuronal death in stroke. Prog Neurobiol 2018; 165-167:103-116. [PMID: 29574014 DOI: 10.1016/j.pneurobio.2018.03.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and death, with the outcome largely determined by the amount of hypoxia-related neuronal death in the affected brain regions. Cerebral ischemia and hypoxia activate the Notch1 signaling pathway and four prominent interacting pathways (NF-κB, p53, HIF-1α and Pin1) that converge on a conserved DNA-associated nuclear multi-protein complex, which controls the expression of genes that can determine the fate of neurons. When neurons experience a moderate level of ischemic insult, the nuclear multi-protein complex up-regulates adaptive stress response genes encoding proteins that promote neuronal survival, but when ischemia is more severe the nuclear multi-protein complex induces genes encoding proteins that trigger and execute a neuronal death program. We propose that the nuclear multi-protein transcriptional complex is a molecular mediator of neuronal hormesis and a target for therapeutic intervention in stroke.
Collapse
|
11
|
Shibu MA, Kuo CH, Chen BC, Ju DT, Chen RJ, Lai CH, Huang PJ, Viswanadha VP, Kuo WW, Huang CY. Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing P-IGF1R, p-akt, and p-Bad ser136 activity and by fortifying NRF2 antioxidation system. ENVIRONMENTAL TOXICOLOGY 2018; 33:220-233. [PMID: 29139225 DOI: 10.1002/tox.22510] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Tea, the most widely consumed natural beverage has been associated with reduced mortality risk from cardiovascular disease. Oolong tea is a partially fermented tea containing high levels of catechins, their degree of oxidation varies between 20%-80% causing differences in their active metabolites. In this study we examined the effect of oolong tea extract (OTE) obtained by oxidation at low-temperature for short-time against hypoxic injury and found that oolong tea provides cyto-protective effects by suppressing the JNK mediated hypertrophic effects and by enhancing the innate antioxidant mechanisms in neonatal cardiomyocytes and in H9c2 cells. OTE effectively attenuates 24 h hypoxia-triggered cardiomyocyte loss by suppressing caspase-3-cleavage and apoptosis in a dose-dependent manner. OTE also enhances the IGFIR/p-Akt associated survival-mechanism involving the elevation of p-Badser136 in a dose-dependent manner to aid cellular adaptations against hypoxic challenge. The results show the effects and mechanism of Oolong tea to provide cardio-protective benefits during hypoxic conditions.
Collapse
Affiliation(s)
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Bih-Cheng Chen
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Pei-Jane Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Xia M, Ding Q, Zhang Z, Feng Q. Remote Limb Ischemic Preconditioning Protects Rats Against Cerebral Ischemia via HIF-1α/AMPK/HSP70 Pathway. Cell Mol Neurobiol 2017; 37:1105-1114. [PMID: 27896629 DOI: 10.1007/s10571-016-0444-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023]
Abstract
Remote limb ischemic preconditioning (RIPC) is a clinically feasible strategy to protect against ischemia/reperfusion injury, but the knowledge concerning the mechanism underlying RIPC is scarce. This study was performed to examine the effect of RIPC on brain tissue suffering from ischemia challenge and explore its underlying mechanism in a rat model. The animals were divided into four groups: Sham, middle cerebral artery occlusion (MCAO), RIPC, and MCAO+RIPC. We found that previous exposure to RIPC significantly attenuated neurological dysfunction and lessened brain edema in MCAO+RIPC group. Moreover, other important events were observed in MCAO+RIPC group, including substantial decrements in the concentrations of oxidative response indicators [malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), and protein carbonyl], significant reductions in levels of inflammation mediators [myeloperoxidase (MPO), tumor necrosis factor-a (TNF-a), interleukin-1β (IL-1β), and IL-6], and significant decline in neuronal apoptosis revealed by a smaller number of TUNEL-positive cells. Interestingly, both MCAO and RIPC groups exhibited meaningful elevations in the levels of HIF-1a, HSP70, and AMP-activated protein kinase (AMPK) compared to Sham group, and previous exposure to RIPC further elevated the levels of HIF-1a, HSP70, and AMPK in MCAO+RIPC group. Furthermore, the administration of YC-1 (HIF-1 inhibitor), 8-bAMP (AMPK inhibitor), and Quercetin (HSP70 inhibitor) to MCAO+RIPC rats demonstrated that HIF-1α/AMPK/HSP70 was involved in RIPC-mediated protection against cerebral ischemia.
Collapse
Affiliation(s)
- Ming Xia
- Chinese Internal Medicine, Putuo District Central Hospital, No. 164 Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Qian Ding
- Chinese Internal Medicine, Putuo District Central Hospital, No. 164 Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Zhidan Zhang
- Chinese Internal Medicine, Putuo District Central Hospital, No. 164 Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Qinggen Feng
- Chinese Internal Medicine, Putuo District Central Hospital, No. 164 Lanxi Road, Putuo District, Shanghai, 200062, China.
| |
Collapse
|
13
|
Geng J, Wang L, Qu M, Song Y, Lin X, Chen Y, Mamtilahun M, Chen S, Zhang Z, Wang Y, Yang GY. Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1α. Stem Cell Res Ther 2017; 8:163. [PMID: 28697748 PMCID: PMC5505148 DOI: 10.1186/s13287-017-0605-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
Background Blood-brain barrier impairment is a major indicator of endothelial dysfunction in diabetes. Studies showed that endothelial progenitor cell (EPC) transplantation promoted angiogenesis and improved function recovery after hind limb ischemia in diabetic mice. The effect of EPC transplantation on blood-brain barrier integrity after cerebral ischemia in diabetic animals is unknown. The aim of this study is to explore the effect of EPC transplantation on the integrity of the blood-brain barrier after cerebral ischemia in diabetic mice. Methods EPCs were isolated by density gradient centrifugation and characterized by flow cytometry and immunostaining. Diabetes was induced in adult male C57BL/6 mice by a single injection of streptozotocin at 4 weeks before surgery. Diabetic mice underwent 90-minute transient middle cerebral artery occlusion surgery and received 1 × 106 EPCs transplantation immediately after reperfusion. Brain infarct volume, blood-brain barrier permeability, tight junction protein expression, and hypoxia inducible factor-1α (HIF-1α) mRNA level were examined after treatment. Results We demonstrated that neurological deficits were attenuated and brain infarct volume was reduced in EPC-transplanted diabetic mice after transient cerebral ischemia compared to the controls (p < 0.05). Blood-brain barrier leakage and tight junction protein degradation were reduced in EPC-transplanted mice (p <0.05). EPCs upregulated HIF-1α expression while HIF-1α inhibitor PX-478 abolished the beneficial effect of EPCs. Conclusions We conclude that EPCs protected blood-brain barrier integrity after focal ischemia in diabetic mice through upregulation of HIF-1α signaling.
Collapse
Affiliation(s)
- Jieli Geng
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Department of Neurology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Wang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Meijie Qu
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yaying Song
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Xiaojie Lin
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Shengdi Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Guo-Yuan Yang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
14
|
Wen SY, Tamilselvi S, Shen CY, Day CH, Chun LC, Cheng LY, Ou HC, Chen RJ, Viswanadha VP, Kuo WW, Huang CY. Protective effect of HDL on NADPH oxidase-derived super oxide anion mediates hypoxia-induced cardiomyocyte apoptosis. PLoS One 2017; 12:e0179492. [PMID: 28617849 PMCID: PMC5472312 DOI: 10.1371/journal.pone.0179492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/31/2017] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death of death in Taiwan. Atherosclerosis can lead to serious problems, including heart attack, stroke, or even death. Coronary heart disease (CHD) occurs when plaque builds up in the coronary arteries to cause the ischemic heart disease which will enhance myocardial remodeling and also induce myocardial hypoxia. High density lipoprotein (HDL) has been proposed to have cardio-protective effects. Under hypoxic conditions (1%O2 for 24hr), in H9c2 cells, reactive oxygen species (ROS) is induced which leads to cardiomyocyte apoptosis and cardiac dysfunction. Therefore, the present study described the protective effect of HDL on hypoxia-induced cardiomyocyte damage. We investigated the NADPH oxidase-produced ROS-related signaling pathways and apoptosis in cardiomyocytes under hypoxia conditions. Results showed that the ROS mediated cardiac damage might occur via AT1 and PKC activation. Furthermore, hypoxia downregulated the survival protein (p-AKTser473) and anti-apoptotic protein (BCL2), whereas pro-apoptotic protein, Bax and caspase 3 were upregulated. These detrimental effects by ROS and apoptosis were prevented by HDL pretreatment. Our findings revealed the underlying molecular mechanism by which HDL suppresses the hypoxia-induced cardiomyocyte dysfunction. Further, we elucidated the role of HDL on preventing hypoxia induced cardiomyocyte apoptosis is mediated through the inhibition of NADPH oxidase-derived ROS.
Collapse
Affiliation(s)
- Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
- Center for General Education, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Shanmugam Tamilselvi
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | | | - Li-Chin Chun
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan County, Taiwan
| | - Li-Yi Cheng
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
| | - Hsiu-Chung Ou
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Sandvig I, Gadjanski I, Vlaski-Lafarge M, Buzanska L, Loncaric D, Sarnowska A, Rodriguez L, Sandvig A, Ivanovic Z. Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue. Stem Cells Dev 2017; 26:554-565. [PMID: 28103744 DOI: 10.1089/scd.2016.0268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
High post-transplantation cell mortality is the main limitation of various approaches that are aimed at improving regeneration of injured neural tissue by an injection of neural stem cells (NSCs) and mesenchymal stromal cells (MStroCs) in and/or around the lesion. Therefore, it is of paramount importance to identify efficient ways to increase cell transplant viability. We have previously proposed the "evolutionary stem cell paradigm," which explains the association between stem cell anaerobic/microaerophilic metabolic set-up and stem cell self-renewal and inhibition of differentiation. Applying these principles, we have identified the main critical point in the collection and preparation of these cells for experimental therapy: exposure of the cells to atmospheric O2, that is, to oxygen concentrations that are several times higher than the physiologically relevant ones. In this way, the primitive anaerobic cells become either inactivated or adapted, through commitment and differentiation, to highly aerobic conditions (20%-21% O2 in atmospheric air). This inadvertently compromises the cells' survival once they are transplanted into normal tissue, especially in the hypoxic/anoxic/ischemic environment, which is typical of central nervous system (CNS) lesions. In addition to the findings suggesting that stem cells can shift to glycolysis and can proliferate in anoxia, recent studies also propose that stem cells may be able to proliferate in completely anaerobic or ischemic conditions by relying on anaerobic mitochondrial respiration. In this systematic review, we propose strategies to enhance the survival of NSCs and MStroCs that are implanted in hypoxic/ischemic neural tissue by harnessing their anaerobic nature and maintaining as well as enhancing their anaerobic properties via appropriate ex vivo conditioning.
Collapse
Affiliation(s)
- Ioanna Sandvig
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ivana Gadjanski
- 2 Innovation Center, Faculty of Mechanical Engineering, University of Belgrade , Belgrade, Serbia .,3 Belgrade Metropolitan University , Belgrade, Serbia
| | - Marija Vlaski-Lafarge
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Leonora Buzanska
- 6 Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy Sciences, Warsaw, Poland
| | - Darija Loncaric
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Ana Sarnowska
- 6 Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy Sciences, Warsaw, Poland
| | - Laura Rodriguez
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Axel Sandvig
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway .,7 Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery and Clinical Neurophysiology, Umeå University Hospital , Umeå, Sweden
| | - Zoran Ivanovic
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| |
Collapse
|
16
|
Iyalomhe O, Swierczek S, Enwerem N, Chen Y, Adedeji MO, Allard J, Ntekim O, Johnson S, Hughes K, Kurian P, Obisesan TO. The Role of Hypoxia-Inducible Factor 1 in Mild Cognitive Impairment. Cell Mol Neurobiol 2016; 37:969-977. [PMID: 27858285 DOI: 10.1007/s10571-016-0440-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/26/2016] [Indexed: 01/16/2023]
Abstract
Neuroinflammation and reactive oxygen species are thought to mediate the pathogenesis of Alzheimer's disease (AD), suggesting that mild cognitive impairment (MCI), a prodromal stage of AD, may be driven by similar insults. Several studies document that hypoxia-inducible factor 1 (HIF-1) is neuroprotective in the setting of neuronal insults, since this transcription factor drives the expression of critical genes that diminish neuronal cell death. HIF-1 facilitates glycolysis and glucose metabolism, thus helping to generate reductive equivalents of NADH/NADPH that counter oxidative stress. HIF-1 also improves cerebral blood flow which opposes the toxicity of hypoxia. Increased HIF-1 activity and/or expression of HIF-1 target genes, such as those involved in glycolysis or vascular flow, may be an early adaptation to the oxidative stressors that characterize MCI pathology. The molecular events that constitute this early adaptation are likely neuroprotective, and might mitigate cognitive decline or the onset of full-blown AD. On the other hand, prolonged or overwhelming stressors can convert HIF-1 into an activator of cell death through agents such as Bnip3, an event that is more likely to occur in late MCI or advanced Alzheimer's dementia.
Collapse
Affiliation(s)
- Osigbemhe Iyalomhe
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Sabina Swierczek
- Department of Hematology/BMT, University of Utah School of Medicine, 30 N Medical Dr, Salt Lake City, UT, 84132, USA
| | - Ngozi Enwerem
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Yuanxiu Chen
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Monica O Adedeji
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Joanne Allard
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Oyonumo Ntekim
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Sheree Johnson
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Kakra Hughes
- Division of Endovascular Surgery, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Philip Kurian
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA.,Human Genome Center, Howard University, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Thomas O Obisesan
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA. .,Howard University Clinical Research Unit (GHUCCTS CTSA), 2041 Georgia Ave, NW, Washington, DC, 20060, USA.
| |
Collapse
|
17
|
Feng CC, Lin CC, Lai YP, Chen TS, Marthandam Asokan S, Lin JY, Lin KH, Viswanadha VP, Kuo WW, Huang CY. Hypoxia suppresses myocardial survival pathway through HIF-1α-IGFBP-3-dependent signaling and enhances cardiomyocyte autophagic and apoptotic effects mainly via FoxO3a-induced BNIP3 expression. Growth Factors 2016; 34:73-86. [PMID: 27366871 DOI: 10.1080/08977194.2016.1191480] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The HIF-1α transcriptional factor and the BH-3 only protein BNIP3 are known to play fundamental roles in response to hypoxia. The objective of this research is to investigate the molecular mechanisms and the correlation of HIF-1α, BNIP3 and IGFBP-3 in hypoxia-induced cardiomyocytes injuries. Heart-derived H9c2 cells and neonatal rat ventricular myocytes (NRVMs) were incubated in normoxic or hypoxic conditions. Hypoxia increased HIF-1α expression and activated the downstream BNIP3 and IGFBP-3 thereby triggered mitochondria-dependent apoptosis. Moreover, IGF1R/PI3K/Akt signaling was attenuated by HIF-1α-dependent IGFBP-3 expression to enhance hypoxia-induced apoptosis. Autophagy suppression with 3-methyladenine or siATG5 or siBeclin-1 significantly decreased myocardial apoptosis under hypoxia. Knockdown of FoxO3a or BNIP3 significantly abrogated hypoxia-induced autophagy and mitochondria-dependent apoptosis. Moreover, prolonged-hypoxia induced HIF-1α stimulated BNIP3 and enhanced IGFBP-3 activation to inhibit IGF1R/PI3K/Akt survival pathway and mediate mitochondria-dependent cardiomyocyte apoptosis. HIF-1α and FoxO3a blockage are sufficient to annul the change of excessive hypoxia of hearts.
Collapse
Affiliation(s)
- Chih-Chung Feng
- a Graduate Institute of Clinical Medical Science, Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - Chien-Chung Lin
- b Orthopaedic Department, Armed Forces General Hospital , Taichung , Taiwan
| | - Yi-Ping Lai
- c Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - Tung-Sheng Chen
- c Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
- d Biomaterials Translational Research Center, China Medical University Hospital , Taichung , Taiwan
| | | | - Jing-Ying Lin
- e Department of Nursing , Central Taiwan University of Science and Technology , Taichung , Taiwan
| | - Kuan-Ho Lin
- f Emergency Department, China Medical University Hospital , Taichung , Taiwan
| | | | - Wei-Wen Kuo
- h Department of Biological Science and Technology , China Medical University , Taichung , Taiwan
| | - Chih-Yang Huang
- c Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
- i Graduate Institute of Chinese Medical Science, China Medical University , Taichung , Taiwan , and
- j Department of Health and Nutrition Biotechnology , Asia University , Taichung , Taiwan
| |
Collapse
|
18
|
Libonati JP, Fitch CA, Rutkoski NJ, Levenson CW. Zinc Regulation of Cobalt-Induced Apoptosis in Cultured Human Neurons. Nutr Neurosci 2016. [DOI: 10.1080/1028415x.2000.11747342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Gao Y, Jing M, Ge R, Lang L. Induction of hypoxia-inducible factor-1α by BDNF protects retinoblastoma cells against chemotherapy-induced apoptosis. Mol Cell Biochem 2016; 414:77-84. [PMID: 26868822 DOI: 10.1007/s11010-016-2660-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
Abstract
Alternations of environment signals such as neurotrophins may be the basis for malignant transformation of retinoblastoma (Rb), the most common primary intraocular malignancy in children. The aim of this study is to investigate the ability of brain-derived neurotrophic factor (BDNF) to decrease the chemosensitivity of Rb cells to the common chemotherapeutic agents and to explore the role of hypoxia-inducible factor-1α (HIF-1α) in such cellular process. The results showed that BDNF could induce higher expression of HIF-1α via activation of TrkB in human Y-79 retinoblastoma cells, which consequently contributed to its effect against chemotherapeutic agent-induced cytotoxicity and cell apoptosis. However, this protective effect could be potently reversed by knockdown of HIF-1α. Furthermore, BDNF strikingly prevented chemotherapeutic agent-induced alternations of apoptosis-related molecules, which could also be attenuated by silencing HIF-1α. Therefore, our findings demonstrated that BDNF could contribute to chemoresistance of Rb via modulation of HIF-1α expression, indicating that targeting at the BDNF-TrkB/HIF-1α signaling pathway might be a promising strategy for the treatment of retinoblastoma in the future.
Collapse
Affiliation(s)
- Yu Gao
- Department of Ophthalmology, No. 411 Hospital of CPLA, Shanghai, 200081, China
| | - Ming Jing
- Department of Ophthalmology, No. 411 Hospital of CPLA, Shanghai, 200081, China
| | - Rongrong Ge
- Department of Ophthalmology, No. 411 Hospital of CPLA, Shanghai, 200081, China
| | - Lili Lang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200081, China.
| |
Collapse
|
20
|
Hypoxic Adaptation in the Nervous System: Promise for Novel Therapeutics for Acute and Chronic Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:221-43. [PMID: 27343100 DOI: 10.1007/978-1-4899-7678-9_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Homeostasis is the process by which cells adapt to stress and prevent or repair injury. Unique programs have evolved to sense and activate these homeostatic mechanisms and as such, homeostatic sensors may be potent therapeutic targets. The hypoxic response mediated by hypoxia inducible factor (HIF) downstream of oxygen sensing by HIF prolyl 4-hydroxylases (PHDs) has been well-studied, revealing cell-type specific regulation of HIF stability, activity, and transcriptional targets. HIF's paradoxical roles in nervous system development, physiology, and pathology arise from its complex roles in hypoxic adaptation and normoxic biology. Understanding how to engage the hypoxic response so as to recapitulate the protective mechanism of ischemic preconditioning is a high priority. Indeed, small molecules that activate the hypoxic response provide broad neuroprotection in several clinically relevant injury models. Screens for PHD inhibitors have identified novel therapeutics for neuroprotection that are ready to proceed to clinical trials for ischemic stroke. Better understanding the mechanisms of how to engage hypoxic adaption without altering development or physiology may identify additional novel therapeutic targets for diverse acute and chronic neuropathologies.
Collapse
|
21
|
Santra M, Chopp M, Santra S, Nallani A, Vyas S, Zhang ZG, Morris DC. Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. J Neurochem 2015; 136:118-32. [PMID: 26466330 DOI: 10.1111/jnc.13394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/27/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
Thymosin beta 4 (Tβ4), a secreted 43 amino acid peptide, promotes oligodendrogenesis, and improves neurological outcome in rat models of neurologic injury. We demonstrated that exogenous Tβ4 treatment up-regulated the expression of the miR-200a in vitro in rat brain progenitor cells and in vivo in the peri-infarct area of rats subjected to middle cerebral artery occlusion (MCAO). The up-regulation of miR-200a down-regulated the expression of the following targets in vitro and in vivo models: (i) growth factor receptor-bound protein 2 (Grb2), an adaptor protein involved in epidermal growth factor receptor (EGFR)/Grb2/Ras/MEK/ERK1/c-Jun signaling pathway, which negatively regulates the expression of myelin basic protein (MBP), a marker of mature oligodendrocyte; (ii) ERRFI-1/Mig-6, an endogenous potent kinase inhibitor of EGFR, which resulted in activation/phosphorylation of EGFR; (iii) friend of GATA 2, and phosphatase and tensin homolog deleted in chromosome 10 (PTEN), which are potent inhibitors of the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, and resulted in marked activation of AKT; and (iv) transcription factor, p53, which induces pro-apoptotic genes, and possibly reduced apoptosis of the progenitor cells subjected to oxygen glucose deprivation (OGD). Anti-miR-200a transfection reversed all the effects of Tβ4 treatment in vitro. Thus, Tβ4 up-regulated MBP synthesis, and inhibited OGD-induced apoptosis in a novel miR-200a dependent EGFR signaling pathway. Our findings of miR-200a-mediated protection of progenitor cells may provide a new therapeutic importance for the treatment of neurologic injury. Tβ4-induced micro-RNA-200a (miR-200a) regulates EGFR signaling pathways for MBP synthesis and apoptosis: up-regulation of miR-200a after Tβ4 treatment, increases MBP synthesis after targeting Grb2 and thereby inactivating c-Jun from inhibition of MBP synthesis; and also inhibits OGD-mediated apoptosis after targeting EGFR inhibitor (Mig-6), PI3K inhibitors (FOG2 and Pten) and an inducer (p53) of pro-apoptotic genes, for AKT activation and down-regulation of p53. These findings may contribute the therapeutic benefits for stroke and other neuronal diseases associated with demyelination disorders.
Collapse
Affiliation(s)
- Manoranjan Santra
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Sutapa Santra
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Ankita Nallani
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Shivam Vyas
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Daniel C Morris
- Department of Emergency Medicine, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
22
|
|
23
|
Min JW, Hu JJ, He M, Sanchez RM, Huang WX, Liu YQ, Bsoul NB, Han S, Yin J, Liu WH, He XH, Peng BW. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 2015; 99:38-50. [PMID: 26187393 DOI: 10.1016/j.neuropharm.2015.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 01/25/2023]
Abstract
Previous studies have demonstrated that the early suppression of HIF-1α after hypoxia-ischemia (HI) injury provides neuroprotection. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside), an HIF-1α inhibitor, is a c-glycosylated flavone that has been identified in medicinal plants. Therefore, we hypothesized that treatment with vitexin would protect against HI brain injury. Newborn rat pups were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2 at 37 °C). Vitexin (30, 45 or 60 mg/kg) was administered intraperitoneally at 5 min or 3 h after HI. Vitexin, administered 5 min after HI, was neuroprotective as seen by decreased infarct volume evaluated at 48 h post-HI. This neuroprotection was removed when vitexin was administered 3 h after HI. Neuronal cell death, blood-brain barrier (BBB) integrity, brain edema, HIF-1α and VEGF protein levels were evaluated using a combination of Nissl staining, IgG staining, brain water content, immunohistochemistry and Western blot at 24 and 48 h after HI. The long-term effects of vitexin were evaluated by brain atrophy measurement, Nissl staining and neurobehavioral tests. Vitexin (45 mg/kg) ameliorated brain edema, BBB disruption and neuronal cell death; Upregulation of HIF-1α by dimethyloxalylglycine (DMOG) increased the BBB permeability and brain edema compared to HI alone. Vitexin attenuated the increase in HIF-1α and VEGF. Vitexin also had long-term effects of protecting against the loss of ipsilateral brain and improveing neurobehavioral outcomes. In conclusion, our data indicate early HIF-1α inhibition with vitexin provides both acute and long-term neuroprotection in the developing brain after neonatal HI injury.
Collapse
Affiliation(s)
- Jia-Wei Min
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jiang-Jian Hu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Miao He
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Russell M Sanchez
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Neuroscience Institute, Scott & White Hospital, & Central Texas Veterans Health Care System, Temple, TX, USA
| | - Wen-Xian Huang
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yu-Qiang Liu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Najeeb Bassam Bsoul
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Chu HX, Jones NM. Changes in Hypoxia-Inducible Factor-1 (HIF-1) and Regulatory Prolyl Hydroxylase (PHD) Enzymes Following Hypoxic–Ischemic Injury in the Neonatal Rat. Neurochem Res 2015; 41:515-22. [DOI: 10.1007/s11064-015-1641-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 01/31/2023]
|
25
|
Engelhardt S, Huang SF, Patkar S, Gassmann M, Ogunshola OO. Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: a comparative study. Fluids Barriers CNS 2015; 12:4. [PMID: 25879623 PMCID: PMC4429667 DOI: 10.1186/2045-8118-12-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022] Open
Abstract
Background Undisturbed functioning of the blood–brain barrier (BBB) crucially depends on paracellular signaling between its associated cells; particularly endothelial cells, pericytes and astrocytes. Hypoxic and ischemic injuries are closely associated with disturbed BBB function and the contribution of perivascular cells to hypoxic/ischemic barrier regulation has gained increased attention. Regardless, detailed information on the basal hypoxic/ischemic responses of the barrier-associated cells is rare and the outcome of such cell-specific responses on BBB modulation is not well understood. This study investigated crucial parameters of hypoxic/ischemic adaptation in order to characterize individual perivascular cell responses to stress conditions. Methods The brain microvascular endothelial cell line RBE4 (EC cell line) as well as primary rat brain endothelial cells (ECs), pericytes (PCs) and astrocytes (ACs) were exposed to 24 and 48 hours of oxygen deprivation at 1% and 0.2% O2. All primary cells were additionally subjected to combined oxygen and glucose deprivation mimicking ischemia. Central parameters of cellular adaptation and state, such as HIF-1α and HIF-1 target gene induction, actin cytoskeletal architecture, proliferation and cell viability, were compared between the cell types. Results We show that endothelial cells exhibit greater responsiveness and sensitivity to oxygen deprivation than ACs and PCs. This higher sensitivity coincided with rapid and significant stabilization of HIF-1α and its downstream targets (VEGF, GLUT-1, MMP-9 and PHD2), early disruption of the actin cytoskeleton and metabolic impairment in conditions where the perivascular cells remain largely unaffected. Additional adaptation (suppression) of proliferation also likely contributes to astrocytic and pericytic tolerance during severe injury conditions. Moreover, unlike the perivascular cells, ECs were incapable of inducing autophagy (monitored via LC3-II and Beclin-1 expression) - a putative protective mechanism. Notably, both ACs and PCs were significantly more susceptible to glucose than oxygen deprivation with ACs proving to be most resistant overall. Conclusion In summary this work highlights considerable differences in sensitivity to hypoxic/ischemic injury between microvascular endothelial cells and the perivascular cells. This can have marked impact on barrier stability. Such fundamental knowledge provides an important foundation to better understand the complex cellular interactions at the BBB both physiologically and in injury-related contexts in vivo.
Collapse
|
26
|
Huang CY, Chen SY, Fu RH, Huang YC, Chen SY, Shyu WC, Lin SZ, Liu SP. Differentiation of embryonic stem cells into cardiomyocytes used to investigate the cardioprotective effect of salvianolic acid B through BNIP3 involved pathway. Cell Transplant 2015; 24:561-71. [PMID: 25654620 DOI: 10.3727/096368915x686995] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are related to many risk factors, such as diabetes, high blood pressure, smoking, and obesity. Myocardial infarction (MI), a cardiovascular disease, is the most common cause of cardiomyocyte death. In MI, hypoxia induces cardiomyocyte apoptosis; in particular, diabetes combined with MI has a synergistic effect that exacerbates cardiomyocyte death. The hypoxia-inducible factor-1α (HIF1α) transcriptional factor and a BH-3 only protein, Bcl-2 adenovirus E1B 19-kDa interacting protein 3 (BNIP3), are known to play fundamental roles in both adaptive and cell death processes in response to hypoxia. In addition, most cardioprotective studies used H9c2 cells that were not beating, so H9c2 cells may not be the best model for testing cardioprotective effects. Embryonic stem cells (ESCs) are pluripotent stem cells that are able to differentiate into several types of cells, including cardiomyocytes. In this study, we reveal a simple method to differentiate ESCs into cardiomyocytes by using poly-d-lysine-coated plates combined with ITS and N2-containing medium and characterized the ESC-derived cardiomyocytes by cardiomyocyte marker staining. The ESC-derived cardiomyocytes were used to investigate the protective effect of salvianolic acid B (Sal-B) in high glucose combined with hypoxic conditions to mimic diabetes patients with ischemia. The results of MTT and TUNEL assays indicate that Sal-B suppresses the apoptotic effect of treatment with high glucose combined with hypoxia in ESC-derived cardiomyocytes. In particular, Sal-B inhibited HIF1α, BNIP3, and cleavage caspase 3 expression levels, thereby suppressing apoptosis. This is the first study to mention the correlation between BNIP3 and Sal-B for cardioprotective effects. In conclusion, we suggest that Sal-B may be suitable for use as a future cardioprotective medicine.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chang RL, Lin JW, Hsieh DJY, Yeh YL, Shen CY, Day CH, Ho TJ, Viswanadha VP, Kuo WW, Huang CY. Long-term hypoxia exposure enhanced IGFBP-3 protein synthesis and secretion resulting in cell apoptosis in H9c2 myocardial cells. Growth Factors 2015; 33:275-81. [PMID: 26340107 DOI: 10.3109/08977194.2015.1077824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myocardial infarction (MI) usually results in myocardial ischemia, remodeling and hypoxia that lead to cell death. To date, the insulin-like growth factor binding protein-3 (IGFBP3) is known to play an important role in insulin growth factor (IGF) bioavailability. Previous studies have found that hypoxia results in cell apoptosis. However, the detailed mechanism and roles of IGFBP3 in long-term hypoxia (LTH) regulated heart cell apoptosis remains unknown. In this study H9c2 cardiomyoblast cells were treated with investigated long-term hypoxic exposure with the possible mechanisms involved. The results showed that LTH enhanced IGFBP3 protein synthesis and induced its secretion. The accumulated IGFBP3 sequestered Insulin growth factor 1 (IGF-1) away from the type I IGF receptor (IGF-1 R), which blocked the IGF1R/PI3K/Akt survival signaling pathway, resulting in cell apoptosis. According to our findings, IGFBP3 could be a valuable target for developing treatments for cardiac diseases in long-term hypoxia exposure patients.
Collapse
Affiliation(s)
- Ruey-Lin Chang
- a Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - Jing-Wei Lin
- a Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - Dennis Jine-Yuan Hsieh
- b School of Medical Laboratory and Biotechnology, Chung Shan Medical University , Taichung , Taiwan
| | - Yu-Lan Yeh
- c Department of Pathology , Changhua Christian Hospital , Changhua , Taiwan
- d en-Teh Junior College of Medicine, Nursing and Management , Miaoli , Taiwan
| | - Chia-Yao Shen
- e Department of Nursing , Mei Ho University , Pingtung , Taiwan
| | | | - Tsung-Jung Ho
- f Chinese Medicine Department , China Medical University Beigang Hospital , Taichung , Taiwan
| | | | - Wei-Wen Kuo
- h Department of Biological Science and Technology , China Medical University , Taichung , Taiwan
| | - Chih-Yang Huang
- a Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
- i Graduate Institute of Chinese Medical Science, China Medical University , Taichung , Taiwan , and
- j Department of Health and Nutrition Biotechnology , Asia University , Taichung , Taiwan
| |
Collapse
|
28
|
Hypoxia-inducible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia. J Neuropathol Exp Neurol 2014; 73:975-86. [PMID: 25192050 DOI: 10.1097/nen.0000000000000118] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hypoxia administered after transient global cerebral ischemia (tGCI) has been shown to induce neuroprotection in adult rats, but the underlying mechanisms for this protection are unclear. Here, we tested the hypothesis that hypoxic postconditioning (HPC) induces neuroprotection through upregulation of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF), and that this involves phosphatidylinositol-3-kinase (PI3K), p38 mitogen-activated protein kinase (p38 MAPK), and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) pathways. The expression of HIF-1α, VEGF, and cleaved caspase-9 were determined by immunohistochemistry and Western blot. As pharmacologic interventions, the HIF-1α inhibitor 2-methoxyestradiol (2ME2), PI3K inhibitor LY294002, p38 MAPK inhibitor SB203580, and MEK inhibitor U0126 were administered before HPC or after tGCI. We found that HPC maintained the higher expression of HIF-1α and VEGF and decreased cleaved caspase-9 levels in CA1 after tGCI. These effects were reversed by 2ME2 administered before HPC, and the neuroprotection of HPC was abolished. LY294002 and SB203580 decreased the expression of HIF-1α and VEGF after HPC, whereas U0126 increased HIF-1α and VEGF after tGCI. These findings suggested that HIF-1α exerts neuroprotection induced by HPC against tGCI through VEGF upregulation and cleaved caspase-9 downregulation, and that the PI3K, p38 MAPK, and MEK pathways are involved in the regulation of HIF-1α and VEGF.
Collapse
|
29
|
Related expressional change of HIF-1α to the neuroprotective activity of exendin-4 in transient global ischemia. Neuroreport 2014; 25:65-70. [PMID: 24201448 DOI: 10.1097/wnr.0000000000000046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transient global ischemia induces selective hippocampal pyramidal neuronal death. Under conditions of severe ischemic hypoxia, hypoxia-inducible factor-1α (HIF-1α) induces apoptosis. Exendin-4 (Ex-4), the glucagon-like peptide-1 receptor (GLP-1R) agonist, provides neuroprotection against brain damage after cerebral ischemia. We investigated the relationship between Ex-4 and HIF-1α by examining Ex-4-induced changes in HIF-1α expression in the gerbil hippocampus following global brain ischemia (in vivo) and in neuroblastoma cells (SH-SY5Y) and cortical primary neurons (in vitro). Twice-daily administration of Ex-4 (1 μg/kg) for 3 days after ischemia (30 min before and 30 min after ischemia on the day of surgery and 2 more days) decreased the number of Fluoro-Jade B-stained cells in the CA1 pyramidal region of the hippocampus of the ischemic brain. Western blot analysis indicated a significant decrease in HIF-1α expression in the ischemic compared with the Sham brain following Ex-4 treatment. These in-vivo results were confirmed in vitro in SH-SY5Y cells and primary cortical neurons treated with 100 nM of Ex-4 under hypoxic conditions (0.1%>O2). We found that Ex-4 decreased the HIF-1α expression in the SH-SY5Y cell line and primary cortical neurons under hypoxic conditions, and this effect was reversed by cotreatment with exendin (9-39), a GLP-1R antagonist. These results suggest that HIF-1α may be involved in the neuroprotective effect of Ex-4 in the hypoxia-damaged brain.
Collapse
|
30
|
GONG GU, HU LING, LIU YINGHAI, BAI SHURONG, DAI XUEMEI, YIN LIANG, SUN YANGYANG, WANG XIAOWU, HOU LICHAO. Upregulation of HIF-1α protein induces mitochondrial autophagy in primary cortical cell cultures through the inhibition of the mTOR pathway. Int J Mol Med 2014; 34:1133-40. [DOI: 10.3892/ijmm.2014.1850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/26/2014] [Indexed: 11/06/2022] Open
|
31
|
Giles EK, Lawrence AJ, Duncan JR. Exploring the Modulation of Hypoxia-Inducible Factor (HIF)-1α by Volatile Anesthetics as a Possible Mechanism Underlying Volatile Anesthetic-Induced CNS Injury. Neurochem Res 2014; 39:1640-7. [DOI: 10.1007/s11064-014-1379-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 12/11/2022]
|
32
|
Souvenir R, Flores JJ, Ostrowski RP, Manaenko A, Duris K, Tang J. Erythropoietin inhibits HIF-1α expression via upregulation of PHD-2 transcription and translation in an in vitro model of hypoxia-ischemia. Transl Stroke Res 2013; 5:118-27. [PMID: 24323731 DOI: 10.1007/s12975-013-0312-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/09/2013] [Accepted: 11/14/2013] [Indexed: 12/28/2022]
Abstract
Hypoxia inducible factor (HIF)-1α is the central transcriptional factor for the regulation of oxygen-associated genes in response to hypoxia. Erythropoietin (EPO), a hematopoietic growth factor, increases oxygen availability during hypoxia/ischemia and is associated with neuroprotection following hypoxia-ischemia in laboratory models of stroke. However, EPO has failed to translate in a clinical setting. Thus, it is critical to elucidate the key players in EPO-induced neuroprotection. Our preliminary studies have shown that EPO, as a downstream gene of HIF, inhibits HIF-1α in a dose-dependent manner in an in vitro model of hypoxia-ischemia. This study is designed to elucidate the primary mediator of EPO-induced HIF-1α inhibition and subsequent cell survival/neuroprotection. Oxygen and glucose deprivation (OGD) of nerve growth factor-differentiated rat pheochromocytoma (PC-12) cells were used to model hypoxia-ischemia in an in vitro environment. The profile of HIF-1α, HIF-2α and prolyl hydroxylase domain 2 (PHD-2) expression; HIF-1α and prolyl hydroxylase (PHD-2) mRNA levels; matrix metalloproteinase (MMP)-9; and cell death was evaluated in the presence and absence of either EPO or PHD-2 inhibitor during OGD. Our findings showed that EPO treatment resulted in an increase in PHD-2 transcription and translation, inhibition of HIF-1α expression, reactive oxygen species formation, and MMP-9 activity, resulting in increased cell survival after OGD. We also observed that EPO-induced cell survival/neuroprotection was reversed by siRNA silencing of PHD-2. This led to the conclusion that PHD-2 is a key mediator of EPO-induced HIF-1α inhibition and subsequent neuroprotection in an in vitro model of hypoxia-ischemia.
Collapse
Affiliation(s)
- Rhonda Souvenir
- Department of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ye Z, Ye W, Deng Y, Wang J, Zhou G, Zhang X. HIF-1-modified BMSCs improve migration and reduce neuronal apoptosis after stroke in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5936-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Dong Y, Li Y, Feng D, Wang J, Wen H, Liu D, Zhao D, Liu H, Gao G, Yin Z, Qin H. Protective effect of HIF-1α against hippocampal apoptosis and cognitive dysfunction in an experimental rat model of subarachnoid hemorrhage. Brain Res 2013; 1517:114-21. [DOI: 10.1016/j.brainres.2013.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/19/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022]
|
35
|
Effect of different mild hypoxia manipulations on kainic acid-induced seizures in the hippocampus of rats. Neurochem Res 2012; 38:123-32. [PMID: 23065181 DOI: 10.1007/s11064-012-0899-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/20/2012] [Accepted: 10/03/2012] [Indexed: 02/01/2023]
Abstract
The protective effect of the mild hypoxia to the epilepsy has been widely tested. Although it is found that the hypoxia protects the brain by up-regulation of hypoxia-inducible factor-1α, few focused on systematic comparisons between different mild hypoxia manipulations and their effects. The male Sprague-Dawley rats were observed following exposure to hypoxia before and after epilepsy for 3 days with 90 min per day. The effects of different mild hypoxia manipulations on kainic acid-induced epilepsy were compared from the perspective of morphology, molecular biology and behavioral test. Results showed that different mild hypoxia manipulations could inhibit the cell apoptosis of kainic acid-induced rat hippocampus and improve their physiological functions. The effect of preconditioning group was better than that of postconditioning group and that of preconditioning and postconditioning with mild hypoxia group was the best among all the groups. The result showed that the preconditioning and postconditioning of mild hypoxia was recommended pre- and post-epilepsy and exposure to mild hypoxia should be prolonged. These findings might provide new ideas and methods for the clinical treatment of epilepsy.
Collapse
|
36
|
Ogunshola OO, Al-Ahmad A. HIF-1 at the Blood-Brain Barrier: A Mediator of Permeability? High Alt Med Biol 2012; 13:153-61. [DOI: 10.1089/ham.2012.1052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Omolara O. Ogunshola
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zürich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Abraham Al-Ahmad
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
37
|
Li Y, Xia ZL, Chen LB. HIF-1-α and survivin involved in the anti-apoptotic effect of 2ME2 after global ischemia in rats. Neurol Res 2012; 33:583-92. [PMID: 21708067 DOI: 10.1179/1743132810y.0000000013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Survivin is an anti-apoptotic gene that decreases the apoptosis by depressing the expression of caspase-3. Hypoxia-inducible factor-1-alpha (HIF-1-alpha) is a transcription factor specifically activated by hypoxia. 2-methoxyestradiol (2ME2) is an estradiol derivative and a known HIF-1-alpha inhibitor. 2ME2 decreased apoptosis by inhibiting HIF-1-alpha. The aim of the present study was to investigate if survivin is involved in the anti-apoptotic effect of 2ME2. Male adult rats were used to make the global ischemia (GI) model. Ten minutes after GI, 2ME2 was injected intraperitoneally (16 mg/kg weight). Rats were killed at 6 hours, 12 hours, 24 hours, 48 hours, 96 hours, and 7 days. GI produced a marked increase in HIF-1-alpha expressions in the hippocampus at 6 hours and peaked at 48-96 hours. The expressions of survivin and caspase-3 were increased lightly in a similar time course. These molecular changes were accompanied by massive cell loss and apoptosis in the hippocampal regions. 2ME2 treatment reduced the expression of HIF-1-alpha, increased survivin expression, and decreased the expression of caspase-3. These results indicate that survivin and HIF-1-alpha were involved in the anti-apoptotic effect of 2ME2 treated following GI. 2ME2 may decrease the HIF-1-alpha expression, up-regulate the survivin expression, inhibit the expression of caspase-3, and finally reduce apoptosis after GI.
Collapse
Affiliation(s)
- Yun Li
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | | | | |
Collapse
|
38
|
Chen C, Zhou C. Hypoxia-Inducible Factor: A New Hope to Counteract Stroke. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Zheng Y, Zhang YP, Shields LBE, Zhang Y, Siu MW, Burke DA, Zhu J, Hu X, Dimar JR, Shields CB. Effect of heparin following cervical spinal cord injuries in rats. Neurosurgery 2011; 69:930-41; discussion 941. [PMID: 21610554 DOI: 10.1227/neu.0b013e3182241f3b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Risks of neurological deterioration after heparin administration following cervical spinal cord injury (SCI) in humans are unknown. OBJECTIVE To elucidate the safety of heparin following cervical SCI and investigate its potential neuroprotectant role. METHODS Sixty-two Sprague Dawley adult rats were subjected to mild (0.6 mm), moderate (0.9 mm), or severe (1.2 mm) C7-SCI. At each injury severity, intravenous heparin or saline was administered for 72 hours following SCI. Behavioral tests (Basso, Beattie, Bresnahan scores, Hargreave's) were performed before killing the rats at week 7. Half of the rats were killed at day 3, and the remainder at week 7 after SCI. Immunohistochemistry, Western blot analysis, and axonal retrograde tracing were conducted at both times. RESULTS Subpial hemorrhage was greater in heparin-treated animals compared with controls at all severities of SCI day 3 after injury. Counterintuitively, intraparencyhmal hemorrhage was minimal in the lesion epicenter following mild SCI in the heparin-treated animals compared with controls. India ink perfusion revealed greater preservation of microcirculation in heparin-treated animals compared with a reduction in control animals. A decrease in spinal cord perfusion correlated directly with an increase in hypoxia-inducible factor-1α expression. There was significant gray matter sparing, but no change in white matter volume after heparin treatment at week 7 in the mild SCI group. Beneficial effects on hemorrhagic volume, axon sparing, and functional recovery following heparin treatment were not observed in the moderate or severe SCI group. CONCLUSION Heparin treatment following SCI is safe at all degrees of injury. Heparin decreases platelet aggregation and microvascular occlusion, providing a potential neuroprotective effect following mild SCI.
Collapse
Affiliation(s)
- Yiyan Zheng
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yan J, Zhou B, Taheri S, Shi H. Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke. PLoS One 2011; 6:e27798. [PMID: 22110762 PMCID: PMC3218033 DOI: 10.1371/journal.pone.0027798] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/25/2011] [Indexed: 01/02/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a master regulator of cellular adaptation to hypoxia and has been suggested as a potent therapeutic target in cerebral ischemia. Here we show in an ischemic stroke model of rats that inhibiting HIF-1 and its downstream genes by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) significantly increases mortality and enlarges infarct volume evaluated by MRI and histological staining. Interestingly, the HIF-1 inhibition remarkably ameliorates ischemia-induced blood-brain barrier (BBB) disruption determined by Evans blue leakage although it does not affect brain edema. The result demonstrates that HIF-1 inhibition has differential effects on ischemic outcomes and BBB permeability. It indicates that HIF-1 may have different functions in different brain cells. Further analyses show that ischemia upregulates HIF-1 and its downstream genes erythropoietin (EPO), vascular endothelial growth factor (VEGF), and glucose transporter (Glut) in neurons and brain endothelial cells and that YC-1 inhibits their expression. We postulate that HIF-1-induced VEGF increases BBB permeability while certain other proteins coded by HIF-1's downstream genes such as epo and glut provide neuroprotection in an ischemic brain. The results indicate that YC-1 lacks the potential as a cerebral ischemic treatment although it confers certain protection to the cerebral vascular system.
Collapse
Affiliation(s)
- Jingqi Yan
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| | - Bo Zhou
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| | - Saeid Taheri
- Department of Neurology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
41
|
Manzanero S, Gelderblom M, Magnus T, Arumugam TV. Calorie restriction and stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2011; 3:8. [PMID: 21910904 PMCID: PMC3179731 DOI: 10.1186/2040-7378-3-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/12/2011] [Indexed: 12/15/2022]
Abstract
Stroke, a major cause of disability and mortality in the elderly, occurs when a cerebral blood vessel is occluded or ruptured, resulting in ischemic damage and death of brain cells. The injury mechanism involves metabolic and oxidative stress, excitotoxicity, apoptosis and inflammatory processes, including activation of glial cells and infiltration of leukocytes. In animal models, dietary energy restriction, by daily calorie reduction (CR) or intermittent fasting (IF), extends lifespan and decreases the development of age-related diseases. Dietary energy restriction may also benefit neurons, as suggested by experimental evidence showing that CR and IF protect neurons against degeneration in animal models. Recent findings by our group and others suggest the possibility that dietary energy restriction may protect against stroke induced brain injury, in part by inducing the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF); protein chaperones, including heat shock protein 70 (Hsp70) and glucose regulated protein 78 (GRP78); antioxidant enzymes, such as superoxide dismutases (SOD) and heme oxygenase-1 (HO-1), silent information regulator T1 (SIRT1), uncoupling proteins and anti-inflammatory cytokines. This article discusses the protective mechanisms activated by dietary energy restriction in ischemic stroke.
Collapse
Affiliation(s)
- Silvia Manzanero
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | | | |
Collapse
|
42
|
Anju T, Paulose C. Amelioration of hypoxia-induced striatal 5-HT2A receptor, 5-HT transporter and HIF1 alterations by glucose, oxygen and epinephrine in neonatal rats. Neurosci Lett 2011; 502:129-32. [DOI: 10.1016/j.neulet.2011.05.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/25/2011] [Accepted: 05/31/2011] [Indexed: 11/17/2022]
|
43
|
Mu J, Krafft PR, Zhang JH. Hyperbaric oxygen therapy promotes neurogenesis: where do we stand? Med Gas Res 2011; 1:14. [PMID: 22146131 PMCID: PMC3231808 DOI: 10.1186/2045-9912-1-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/27/2011] [Indexed: 11/10/2022] Open
Abstract
Neurogenesis in adults, initiated by injury to the central nervous system (CNS) presents an autologous repair mechanism. It has been suggested that hyperbaric oxygen therapy (HBOT) enhances neurogenesis which accordingly may improve functional outcome after CNS injury. In this present article we aim to review experimental as well as clinical studies on the subject of HBOT and neurogenesis. We demonstrate hypothetical mechanism of HBOT on cellular transcription factors including hypoxia-inducible factors (HIFs) and cAMP response element binding (CREB). We furthermore reveal the discrepancy between experimental findings and clinical trials in regards of HBOT. Further translational preclinical studies followed by improved clinical trials are needed to elucidate potential benefits of HBOT.
Collapse
Affiliation(s)
- Jun Mu
- Department of Physiology, Loma Linda University School of Medicine, 11021 Campus Street, Loma Linda, CA 92354, USA.
| | | | | |
Collapse
|
44
|
Sermeus A, Michiels C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis 2011; 2:e164. [PMID: 21614094 PMCID: PMC3122125 DOI: 10.1038/cddis.2011.48] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/17/2022]
Abstract
When cells sense a decrease in oxygen availability (hypoxia), they develop adaptive responses in order to sustain this condition and survive. If hypoxia lasts too long or is too severe, the cells eventually die. Hypoxia is also known to modulate the p53 pathway, in a manner dependent or not of HIF-1 (hypoxia-inducible factor-1), the main transcription factor activated by hypoxia. The p53 protein is a transcription factor, which is rapidly stabilised by cellular stresses and which has a major role in the cell responses to these stresses. The aim of this review is to compile what has been reported until now about the interconnection between these two important pathways. Indeed, according to the cell line, the severity and the duration of hypoxia, oxygen deficiency influences very differently p53 protein level and activity. Conversely, p53 is also described to affect HIF-1α stability, one of the two subunits of HIF-1, and HIF-1 activity. The direct and indirect interactions between HIF-1α and p53 are described as well as the involvement in this complex network of their respective ubiquitin ligases von Hippel Lindau protein and murine double minute 2. Finally, the synergistic or antagonistic effects of p53 and HIF-1 on some important cellular pathways are discussed.
Collapse
Affiliation(s)
- A Sermeus
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur–FUNDP, Namur, Belgium
| | - C Michiels
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur–FUNDP, Namur, Belgium
| |
Collapse
|
45
|
Anju TR, Jayanarayanan S, Paulose CS. Decreased GABAB receptor function in the cerebellum and brain stem of hypoxic neonatal rats: role of glucose, oxygen and epinephrine resuscitation. J Biomed Sci 2011; 18:31. [PMID: 21569387 PMCID: PMC3114712 DOI: 10.1186/1423-0127-18-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023] Open
Abstract
Background- Hypoxia during the first week of life can induce neuronal death in vulnerable brain regions usually associated with an impairment of cognitive function that can be detected later in life. The neurobiological changes mediated through neurotransmitters and other signaling molecules associated with neonatal hypoxia are an important aspect in establishing a proper neonatal care. Methods- The present study evaluated total GABA, GABAB receptor alterations, gene expression changes in GABAB receptor and glutamate decarboxylase in the cerebellum and brain stem of hypoxic neonatal rats and the resuscitation groups with glucose, oxygen and epinephrine. Radiolabelled GABA and baclofen were used for receptor studies of GABA and GABAB receptors respectively and Real Time PCR analysis using specific probes for GABAB receptor and GAD mRNA was done for gene expression studies. Results- The adaptive response of the body to hypoxic stress resulted in a reduction in total GABA and GABAB receptors along with decreased GABAB receptor and GAD gene expression in the cerebellum and brain stem. Hypoxic rats supplemented with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GAD. Resuscitation with oxygen alone and epinephrine was less effective in reversing the receptor alterations. Conclusions- Being a source of immediate energy, glucose can reduce the ATP-depletion-induced changes in GABA and oxygenation, which helps in encountering hypoxia. The present study suggests that reduction in the GABAB receptors functional regulation during hypoxia plays an important role in central nervous system damage. Resuscitation with glucose alone and glucose and oxygen to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.
Collapse
Affiliation(s)
- Thoppil R Anju
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022 Kerala, India.
| | | | | |
Collapse
|
46
|
Anju TR, Korah PK, Jayanarayanan S, Paulose CS. Enhanced brain stem 5HT₂A receptor function under neonatal hypoxic insult: role of glucose, oxygen, and epinephrine resuscitation. Mol Cell Biochem 2011; 354:151-60. [PMID: 21484469 DOI: 10.1007/s11010-011-0814-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/05/2011] [Indexed: 01/23/2023]
Abstract
Molecular processes regulating brain stem serotonergic receptors play an important role in the control of respiration. We evaluated 5-HT(2A) receptor alterations in the brain stem of neonatal rats exposed to hypoxic insult and the effect of glucose, oxygen, and epinephrine resuscitation in ameliorating these alterations. Hypoxic stress increased the total 5-HT and 5-HT(2A) receptor number along with an up regulation of 5-HT Transporter and 5-HT(2A) receptor gene in the brain stem of neonates. These serotonergic alterations were reversed by glucose supplementation alone and along with oxygen to hypoxic neonates. The enhanced brain stem 5-HT(2A) receptors act as a modulator of ventilatory response to hypoxia, which can in turn result in pulmonary vasoconstriction and cognitive dysfunction. The adverse effects of 100% oxygenation and epinephrine administration to hypoxic neonates were also reported. This has immense clinical significance in neonatal care.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Binding, Competitive
- Brain Stem/metabolism
- Epinephrine/pharmacology
- Epinephrine/therapeutic use
- Glucose/pharmacology
- Glucose/therapeutic use
- Hypoxia/drug therapy
- Hypoxia/metabolism
- Hypoxia, Brain/drug therapy
- Hypoxia, Brain/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Ketanserin/pharmacology
- Maze Learning
- Memory
- Oxygen/pharmacology
- Oxygen/therapeutic use
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Resuscitation
- Serotonin/pharmacology
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- T R Anju
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala, India
| | | | | | | |
Collapse
|
47
|
Imamura R, Isaka Y, Sandoval RM, Ori A, Adamsky S, Feinstein E, Molitoris BA, Takahara S. Intravital Two-Photon Microscopy Assessment of Renal Protection Efficacy of siRNA for p53 in Experimental Rat Kidney Transplantation Models. Cell Transplant 2010; 19:1659-70. [DOI: 10.3727/096368910x516619] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury, which is unavoidable in renal transplantation, frequently influences both short- and long-term allograft survival. Despite decades of laboratory and clinical investigations, and the advent of renal replacement therapy, the overall mortality rate due to acute tubular injury has changed little. I/R-induced DNA damage results in p53 activation in proximal tubule cells (PTC), leading to their apoptosis. Therefore, we examined the therapeutic effect of temporary p53 inhibition in two rat renal transplantation models on structural and functional aspects of injury using intravital two-photon microscopy. Nephrectomized Sprague-Dawley rats received syngeneic left kidney transplantation either after 40 min of intentional warm ischemia or after combined 5-h cold and 30-min warm ischemia of the graft. Intravenously administrated siRNA for p53 (siP53) has previously been shown to be filtered and reabsorbed by proximal tubular epithelial cells following the warm ischemia/reperfusion injury in a renal clamp model. Here, we showed that it was also taken up by PTC following 5 h of cold ischemia. Compared to saline-treated recipients, treatment with siP53 resulted in conservation of renal function and significantly suppressed the I/R-induced increase in serum creatinine in both kidney transplantation models. Intravital two-photon microscopy revealed that siP53 significantly ameliorated structural and functional damage to the kidney assessed by quantification of tubular cast formation and the number of apoptotic and necrotic tubular cells and by evaluation of blood flow rate. In conclusion, systemic administration of siRNA for p53 is a promising new approach to protect kidneys from I/R injury in renal transplantation.
Collapse
Affiliation(s)
- Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ruben M. Sandoval
- Department of Medicine, Division of Nephrology, Indiana Center for Biological Microscopy, Indiana University, Bloomington, IN, USA
| | - Asaf Ori
- Quark Pharmaceuticals Inc., Fremont, CA, USA
| | | | | | - Bruce A. Molitoris
- Department of Medicine, Division of Nephrology, Indiana Center for Biological Microscopy, Indiana University, Bloomington, IN, USA
| | - Shiro Takahara
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
48
|
Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, Kalinski H, Skaliter R, Erlich S, Feinstein E. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 2009; 20:1754-64. [PMID: 19470675 PMCID: PMC2723992 DOI: 10.1681/asn.2008111204] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 04/02/2009] [Indexed: 01/11/2023] Open
Abstract
Proximal tubule cells (PTCs), which are the primary site of kidney injury associated with ischemia or nephrotoxicity, are the site of oligonucleotide reabsorption within the kidney. We exploited this property to test the efficacy of siRNA targeted to p53, a pivotal protein in the apoptotic pathway, to prevent kidney injury. Naked synthetic siRNA to p53 injected intravenously 4 h after ischemic injury maximally protected both PTCs and kidney function. PTCs were the primary site for siRNA uptake within the kidney and body. Following glomerular filtration, endocytic uptake of Cy3-siRNA by PTCs was rapid and extensive, and significantly reduced ischemia-induced p53 upregulation. The duration of the siRNA effect in PTCs was 24 to 48 h, determined by levels of p53 mRNA and protein expression. Both Cy3 fluorescence and in situ hybridization of siRNA corroborated a short t(1/2) for siRNA. The extent of renoprotection, decrease in cellular p53 and attenuation of p53-mediated apoptosis by siRNA were dose- and time-dependent. Analysis of renal histology and apoptosis revealed improved injury scores in both cortical and corticomedullary regions. siRNA to p53 was also effective in a model of cisplatin-induced kidney injury. Taken together, these data indicate that rapid delivery of siRNA to proximal tubule cells follows intravenous administration. Targeting siRNA to p53 leads to a dose-dependent attenuation of apoptotic signaling, suggesting potential therapeutic benefit for ischemic and nephrotoxic kidney injury.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush V.A. Medical Center, Indianapolis, Indiana
| | - Pierre C. Dagher
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ruben M. Sandoval
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush V.A. Medical Center, Indianapolis, Indiana
| | - Silvia B. Campos
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush V.A. Medical Center, Indianapolis, Indiana
| | - Hagit Ashush
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Eduard Fridman
- Department of Pathology, Sheba Medical Center, Sackler School of Medicine, Tel Ha-Shomer, Israel
| | - Anat Brafman
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Alexander Faerman
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Simon J. Atkinson
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Hagar Kalinski
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Rami Skaliter
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
- Development Division, Quark Pharmaceuticals Inc, Boulder, Colorado
| | - Shai Erlich
- Development Division, Quark Pharmaceuticals Inc, Boulder, Colorado
| | - Elena Feinstein
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| |
Collapse
|
49
|
Desferroxamine infusion increases cerebral blood flow: a potential association with hypoxia-inducible factor-1. Clin Sci (Lond) 2009; 116:771-9. [PMID: 19014354 DOI: 10.1042/cs20080320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Finding an effective means to improve cerebral perfusion during hypoxic/ischaemic stress is essential for neuroprotection. Studies in animal models of stroke have shown that desferroxamine activates HIF-1 (hypoxia-inducible factor-1), reduces brain damage and promotes functional recovery. The present study was designed to investigate the effects of desferroxamine infusion on the cerebral circulation in humans. Fifteen volunteers were enrolled in a randomized double-blind placebo-controlled crossover study. We measured cerebral blood flow velocity by transcranial Doppler ultrasonography in the middle cerebral artery, arterial blood pressure, end-tidal CO(2), as well as HIF-1 protein and serum lactate dehydrogenase concentrations in response to 8 h of desferroxamine compared with placebo infusion. Cerebrovascular resistance was calculated from the ratio of steady-state beat-to-beat values for blood pressure to blood flow velocity. We found that desferroxamine infusion was associated with a significant cerebral vasodilation. Moreover, decreased cerebrovascular resistance was temporally correlated with an increased HIF-1 protein concentration as well as HIF-1 transcriptional activation, as measured by serum lactate dehydrogenase concentration. The findings of the present study provide preliminary data suggesting that activators of HIF-1, such as desferroxamine, may protect neurons against ischaemic injury by dilating cerebral vessels and enhancing cerebral perfusion.
Collapse
|
50
|
Neural phosphoproteomics of a chronic hypoxia model—Lymnaea stagnalis. Neuroscience 2009; 161:621-34. [DOI: 10.1016/j.neuroscience.2009.03.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/03/2009] [Accepted: 03/16/2009] [Indexed: 11/18/2022]
|