1
|
Zhou Y, Zhou W, Rao Y, He J, Huang Y, Zhao P, Li J. Dysregulated energy and protein homeostasis and the loss of GABAergic amacrine cells in aging retina. Exp Eye Res 2024; 245:109985. [PMID: 38945518 DOI: 10.1016/j.exer.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Aging is a major risk factor for the development or the worsening of retinal degenerative conditions. The intricate network of the neural retina determined that the retinal aging is a complicated process. The aim of this study is to delineate the transcriptomic changes of major retinal neurons during aging in C57BL/6 mice at single-cell level. We analyzed the transcriptional profiles of the photoreceptor, bipolar, amacrine, and Müller glial cells of 1.5-2 and 24-30 months old mice using single-cell RNA sequencing technique. We selectively confirmed the differences in gene expression using immunofluorescence staining and RNA in situ hybridization analysis. We found that each retinal cell type had unique changes upon aging. However, they all showed signs of dysregulated glucose and energy metabolism, and perturbed proteostasis. In particular, old Müller glia exhibited the most profound changes, including the upregulation of cell metabolism, stress-responses, antigen-presentation and immune responses and metal ion homeostasis. The dysregulated gliogenesis and differentiation was confirmed by the presence of Müller glia expressing rod-specific genes in the inner nuclear layer and the outer plexiform layer of the old retina. We further pinpointed the specific loss of GABAergic amacrine cells in old retina. Our study emphasized changes of amacrine and Müller glia during retinal aging, provided resources for further research on the molecular and cellular regulatory mechanisms underlying aging-associated retinal deterioration.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yue Huang
- Department of Ophthalmology, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 202150, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Alicea-Delgado M, García-Arrarás JE. Wnt/β-catenin signaling pathway regulates cell proliferation but not muscle dedifferentiation nor apoptosis during sea cucumber intestinal regeneration. Dev Biol 2021; 480:105-113. [PMID: 34481794 DOI: 10.1016/j.ydbio.2021.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022]
Abstract
Regeneration is a key developmental process by which organisms recover vital tissue and organ components following injury or disease. A growing interest is focused on the elucidation and characterization of the molecular mechanisms involved in these regenerative processes. We have now analyzed the possible role of the Wnt/β-catenin pathway on the regeneration of the intestine in the sea cucumber Holothuria glaberrima. For this we have studied the expression in vivo of Wnt-associated genes and have implemented the use of Dicer-substrate interference RNA (DsiRNA) to knockdown the expression of β-catenin transcript on gut rudiment explants. Neither cell dedifferentiation nor apoptosis were affected by the reduction of β-catenin transcripts in the gut rudiment explants. Yet, the number of proliferating cells decreased significantly following the interference, suggesting that the Wnt/β-catenin signaling pathway plays a significant role in cell proliferation, but not in cell dedifferentiation nor apoptosis during the regeneration of the intestine. The development of the in vitro RNAi protocol is a significant step in analyzing specific gene functions involved in echinoderm regeneration.
Collapse
Affiliation(s)
- Miosotis Alicea-Delgado
- Biology Department, University of Puerto Rico - Río Piedras Campus, San Juan, PR, 00925, USA
| | - José E García-Arrarás
- Biology Department, University of Puerto Rico - Río Piedras Campus, San Juan, PR, 00925, USA.
| |
Collapse
|
3
|
Yang M, Wang Q, Chen J, Wang Y, Zhang Y, Qin Q. Identification of candidate SNPs and genes associated with anti-RGNNV using GWAS in the red-spotted grouper, Epinephelus akaara. FISH & SHELLFISH IMMUNOLOGY 2021; 112:31-37. [PMID: 33609701 DOI: 10.1016/j.fsi.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The red-spotted grouper, Epinephelus akaara, has been cultured widely in China, and in several countries of Southeast Asia, due to its important economic value. However, in recent years the outbreak of disease caused by red-spotted grouper nervous necrosis virus (RGNNV) has caused mass mortality in the stage of the grouper lifecycle from fry to juvenile, resulting in considerable economic loss in commercial aquaculture. However, the molecular mechanism underlying anti-RGNNV infection in red-spotted grouper has never been fully understood. To identify the anti-RGNNV related markers and candidate genes, we performed a genome-wide association study (GWAS) on a natural population of 100 individuals for a full-genome screen of the red-spotted grouper. In this research, 36,311 single, high quality nucleotide polymorphisms (SNPs) were developed. Two significantly associated SNPs and three suggestively associated SNPs were identified at the genome level. From these identified SNPs, five candidate genes were annotated: EPHA7, Osbpl2, GPC5, CDH4 and Pou3f1. These genes are involved in nervous system development, retinal formation, and lipid metabolism regulation. In combination with studies on the characteristics of NNV infection, it was speculated that in the fry stage of the grouper lifecycle, the immune system is not fully developed. Therefore, improved resistance to RGNNV may come through regulating nervous system development or lipid metabolism related pathways. In addition, the genotypes of SNPs associated with disease-resistant traits were analyzed. The markers and genes obtained in this study may facilitate a marker-assisted selection for red-spotted grouper aiming at disease resistance to RGNNV.
Collapse
Affiliation(s)
- Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jinpeng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuxin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yong Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong, Institute of Applied Biological Resources, Guangzhou, 510260, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong, Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
4
|
Yaparla A, Koubourli DV, Popovic M, Grayfer L. Exploring the relationships between amphibian (Xenopus laevis) myeloid cell subsets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103798. [PMID: 32745480 DOI: 10.1016/j.dci.2020.103798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The differentiation of distinct leukocyte subsets is governed by lineage-specific growth factors that elicit disparate expression of transcription factors and markers by the developing cell populations. For example, macrophages (Mφs) and granulocytes (Grns) arise from common granulocyte-macrophage progenitors in response to distinct myeloid growth factors. In turn, myelopoiesis of the Xenopus laevis anuran amphibian appears to be unique to other studied vertebrates in several respects while the functional differentiation of amphibian Mφs and Grns from their progenitor cells remains poorly understood. Notably, the expression of colony stimulating factor-1 receptor (CSF-1R) or CSF-3R on granulocyte-macrophage progenitors marks their commitment to Mφ- or Grn-lineages, respectively. CSF-1R is activated by the colony stimulating factor-1 (CSF-1) and interleukin (IL-34) cytokines, resulting in morphologically and functionally distinct Mφ cell types. Conversely, CSF-3R is ligated by CSF-3 in a process indispensable for granulopoiesis. Presently, we explore the relationships between X. laevis CSF-1-Mφs, IL-34-Mφs and CSF-3-Grns by examining their expression of key lineage-specific transcription factor and myeloid marker genes as well as their enzymology. Our findings suggest that while the CSF-1- and IL-34-Mφs share some commonalities, the IL-34-Mφs possess transcriptional patterns more akin to the CSF-3-Grns. IL-34-Mφs also possess robust expression of dendritic cell-associated transcription factors and surface marker genes, further underlining the difference between this cell type and the CSF-1-derived frog Mφ subset. Moreover, the three myeloid populations differ in their respective tartrate-resistant acid phosphatase, specific- and non-specific esterase activity. Together, this work grants new insights into the developmental relatedness of these three frog myeloid subsets.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - Daphne V Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| | - Milan Popovic
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
5
|
Huckenpahler AL, Lookfong NA, Warr E, Heffernan E, Carroll J, Collery RF. Noninvasive Imaging of Cone Ablation and Regeneration in Zebrafish. Transl Vis Sci Technol 2020; 9:18. [PMID: 32983626 PMCID: PMC7500127 DOI: 10.1167/tvst.9.10.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose To observe and characterize cone degeneration and regeneration in a selective metronidazole-mediated ablation model of ultraviolet-sensitive (UV) cones in zebrafish using in vivo optical coherence tomography (OCT) imaging. Methods Twenty-six sws1:nfsB-mCherry;sws2:eGFP zebrafish were imaged with OCT, treated with metronidazole to selectively kill UV cones, and imaged at 1, 3, 7, 14, 28, or 56 days after ablation. Regions 200 × 200 µm were cropped from volume OCT scans to count individual UV cones before and after ablation. Fish eyes were fixed, and immunofluorescence staining was used to corroborate cone density measured from OCT and to track monocyte response. Results Histology shows significant loss of UV cones after metronidazole treatment with a slight increase in observable blue cone density one day after treatment (Kruskal, Wallis, P = 0.0061) and no significant change in blue cones at all other timepoints. Regenerated UV cones measured from OCT show significantly lower density than pre-cone-ablation at 14, 28, and 56 days after ablation (analysis of variance, P < 0.01, P < 0.0001, P < 0.0001, respectively, 15.9% of expected nonablated levels). Histology shows significant changes to monocyte morphology (mixed-effects analysis, P < 0.0001) and retinal position (mixed-effects analysis, P < 0.0001). Conclusions OCT can be used to observe loss of individual cones selectively ablated by metronidazole prodrug activation and to quantify UV cone loss and regeneration in zebrafish. OCT images also show transient changes to the blue cone mosaic and inner retinal layers that occur concomitantly with selective UV cone ablation. Translational Relevance Profiling cone degeneration and regeneration using in vivo imaging enables experiments that may lead to a better understanding of cone regeneration in vertebrates.
Collapse
Affiliation(s)
- Alison L Huckenpahler
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Emma Warr
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elizabeth Heffernan
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ross F Collery
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Chen XJ, Zhang ZC, Wang XY, Zhao HQ, Li ML, Ma Y, Ji YY, Zhang CJ, Wu KC, Xiang L, Sun LF, Zhou M, Jin ZB. The Circular RNome of Developmental Retina in Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:339-349. [PMID: 31877410 PMCID: PMC6938940 DOI: 10.1016/j.omtn.2019.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) represent a class of noncoding RNAs with a wide expression pattern, and they constitute an important layer of the genome regulatory network. To date, the expression pattern and regulatory potency of circRNAs in the retina, a key part of the central nervous system, are not yet well understood. In this study, RNAs from five stages (E18.5, P1, P7, P14, and P30) of mouse retinal development were sequenced. A total of 9,029 circRNAs were identified. Most circRNAs were expressed in different stages with a specific signature, and their expression patterns were different from those of their host linear transcripts. Some circRNAs could act as sponges for several retinal microRNAs (miRNAs). Furthermore, circTulp4 could function as a competitive endogenous RNA (ceRNA) to regulate target genes. Remarkably, silencing circTulp4 in vivo led to mice having a thin outer nuclear layer (ONL) and defective retinal function. In addition, we found that circRNAs were dysregulated at a much earlier time point than that of disease onset in a retinal degeneration model (rd8 mice). In summary, we provide the first circRNA expression atlas during retinal development and highlight a key biological role for circRNAs in retinal development and degeneration.
Collapse
Affiliation(s)
- Xue-Jiao Chen
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China
| | - Zi-Cheng Zhang
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiao-Yun Wang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China
| | - Heng-Qiang Zhao
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Meng-Lan Li
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China
| | - Yue Ma
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China
| | - Yang-Yang Ji
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China
| | - Chang-Jun Zhang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China
| | - Kun-Chao Wu
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China
| | - Lue Xiang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China
| | - Lan-Fang Sun
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China
| | - Meng Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China; School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Zi-Bing Jin
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou 325027, China.
| |
Collapse
|
7
|
Chakravarthy H, Devanathan V. Molecular Mechanisms Mediating Diabetic Retinal Neurodegeneration: Potential Research Avenues and Therapeutic Targets. J Mol Neurosci 2018; 66:445-461. [PMID: 30293228 DOI: 10.1007/s12031-018-1188-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes with a prevalence rate of 35%, and no effective treatment options. Since the most visible clinical features of DR are microvascular irregularities, therapeutic interventions often attempt to reduce microvascular injury, but only after permanent retinal damage has ensued. However, recent data suggests that diabetes initially affects retinal neurons, leading to neurodegeneration as an early occurrence in DR, before onset of the more noticeable vascular abnormalities. In this review, we delineate the sequence of initiating events leading to retinal degeneration in DR, considering neuronal dysfunction as a primary event. Key molecular mechanisms and potential biomarkers associated with retinal neuronal degeneration in diabetes are discussed. In addition to glial reactivity and inflammation in the diabetic retina, the contribution of neurotrophic factors, cell adhesion molecules, apoptosis markers, and G protein signaling to neurodegenerative pathways warrants further investigation. These studies could complement recent developments in innovative treatment strategies for diabetic retinopathy, such as targeting retinal neuroprotection, promoting neuronal regeneration, and attempts to re-program other retinal cell types into functional neurons. Indeed, several ongoing clinical trials are currently attempting treatment of retinal neurodegeneration by means of such novel therapeutic avenues. The aim of this article is to highlight the crucial role of neurodegeneration in early retinopathy progression, and to review the molecular basis of neuronal dysfunction as a first step toward developing early therapeutic interventions that can prevent permanent retinal damage in diabetes. ClinicalTrials.gov: NCT02471651, NCT01492400.
Collapse
Affiliation(s)
- Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research (IISER), Transit campus: C/o. Sree Rama Engineering College Campus, Karakambadi Road, Mangalam, Tirupati, 517507, India
| | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research (IISER), Transit campus: C/o. Sree Rama Engineering College Campus, Karakambadi Road, Mangalam, Tirupati, 517507, India.
| |
Collapse
|
8
|
Gust KA, Stanley JK, Wilbanks MS, Mayo ML, Chappell P, Jordan SM, Moores LC, Kennedy AJ, Barker ND. The increased toxicity of UV-degraded nitroguanidine and IMX-101 to zebrafish larvae: Evidence implicating oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:228-245. [PMID: 28763742 DOI: 10.1016/j.aquatox.2017.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Insensitive munitions (IMs) improve soldier safety by decreasing sympathetic detonation during training and use in theatre. IMs are being increasingly deployed, although the environmental effects of IM constituents such as nitroguanidine (NQ) and IM mixture formulations such as IMX-101 remain largely unknown. In the present study, we investigated the acute (96h) toxicity of NQ and IMX-101 to zebrafish larvae (21d post-fertilization), both in the parent materials and after the materials had been irradiated with environmentally-relevant levels of ultraviolet (UV) light. The UV-treatment increased the toxicity of NQ by 17-fold (LC50 decreased from 1323mg/L to 77.2mg/L). Similarly, UV-treatment increased the toxicity of IMX-101 by nearly two fold (LC50 decreased from 131.3 to 67.6mg/L). To gain insight into the cause(s) of the observed UV-enhanced toxicity of the IMs, comparative molecular responses to parent and UV-treated IMs were assessed using microarray-based global transcript expression assays. Both gene set enrichment analysis (GSEA) and differential transcript expression analysis coupled with pathway and annotation cluster enrichment were conducted to provide functional interpretations of expression results and hypothetical modes of toxicity. The parent NQ exposure caused significant enrichment of functions related to immune responses and proteasome-mediated protein metabolism occurring primarily at low, sublethal exposure levels (5.5 and 45.6mg/L). Enriched functions in the IMX-101 exposure were indicative of increased xenobiotic metabolism, oxidative stress mitigation, protein degradation, and anti-inflammatory responses, each of which displayed predominantly positive concentration-response relationships. UV-treated NQ had a fundamentally different transcriptomic expression profile relative to parent NQ causing positive concentration-response relationships for genes involved in oxidative-stress mitigation pathways and inhibited expression of multiple cadherins that facilitate zebrafish neurological and retinal development. Transcriptomic profiles were similar between UV-treated versus parent IMX-101 exposures. However, more significant and diverse enrichment as well as greater magnitudes of differential expression for oxidative stress responses were observed in UV-treated IMX-101 exposures. Further, transcriptomics indicated potential for cytokine signaling suppression providing potential connections between oxidative stress and anti-inflammatory responses. Given the overall results, we hypothesize that the increased toxicity of UV-irradiated NQ and the IMX-101 mixture result from breakdown products with elevated potential to elicit oxidative stress.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA.
| | - Jacob K Stanley
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA; Stanley Environmental Consulting, Waynesboro, MS 39367, USA
| | - Mitchell S Wilbanks
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA
| | - Michael L Mayo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA
| | | | - Shinita M Jordan
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA
| | - Lee C Moores
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA
| | - Alan J Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA
| | | |
Collapse
|
9
|
N-Cadherin is Involved in Neuronal Activity-Dependent Regulation of Myelinating Capacity of Zebrafish Individual Oligodendrocytes In Vivo. Mol Neurobiol 2016; 54:6917-6930. [PMID: 27771903 DOI: 10.1007/s12035-016-0233-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023]
Abstract
Stimulating neuronal activity increases myelin sheath formation by individual oligodendrocytes, but how myelination is regulated by neuronal activity in vivo is still not fully understood. While in vitro studies have revealed the important role of N-cadherin in myelination, our understanding in vivo remains quite limited. To obtain the role of N-cadherin during activity-dependent regulation of myelinating capacity of individual oligodendrocytes, we successfully built an in vivo dynamic imaging model of the Mauthner cell at the subcellular structure level in the zebrafish central nervous system. Enhanced green fluorescent protein (EGFP)-tagged N-cadherin was used to visualize the stable accumulations and mobile transports of N-cadherin by single-cell electroporation at the single-cell level. We found that pentylenetetrazol (PTZ) significantly enhanced the accumulation of N-cadherin in Mauthner axons, a response that was paralleled by enhanced sheath number per oligodendrocytes. By offsetting this phenotype using oligopeptide (AHAVD) which blocks the function of N-cadherin, we showed that PTZ regulates myelination in an N-cadherin-dependent manner. What is more, we further suggested that PTZ influences N-cadherin and myelination via a cAMP pathway. Consequently, our data indicated that N-cadherin is involved in neuronal activity-dependent regulation of myelinating capacity of zebrafish individual oligodendrocytes in vivo.
Collapse
|
10
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 538] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
11
|
Liu Q, Bhattarai S, Wang N, Sochacka-Marlowe A. Differential expression of protocadherin-19, protocadherin-17, and cadherin-6 in adult zebrafish brain. J Comp Neurol 2015; 523:1419-42. [PMID: 25612302 DOI: 10.1002/cne.23746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/05/2023]
Abstract
Cell adhesion molecule cadherins play important roles in both development and maintenance of adult structures. Most studies on cadherin expression have been carried out in developing organisms, but information on cadherin distribution in adult vertebrate brains is limited. In this study we used in situ hybridization to examine mRNA expression of three cadherins, protocadherin-19, protocadherin-17, and cadherin-6 in adult zebrafish brain. Each cadherin exhibits a distinct expression pattern in the fish brain, with protocadherin-19 and protocadherin-17 showing much wider and stronger expression than that of cadherin-6. Both protocadherin-19 and protocadherin-17-expressing cells occur throughout the brain, with strong expression in the ventromedial telencephalon, periventricular regions of the thalamus and anterior hypothalamus, stratum periventriculare of the optic tectum, dorsal tegmental nucleus, granular regions of the cerebellar body and valvula, and superficial layers of the facial and vagal lobes. Numerous sensory structures (e.g., auditory, gustatory, lateral line, olfactory, and visual nuclei) and motor nuclei (e.g., oculomotor, trochlear, trigeminal motor, abducens, and vagal motor nuclei) contain protocadherin-19 and/or protocadherin-17-expressing cell. Expression of these two protocadherins is similar in the ventromedial telencephalon, thalamus, hypothalamus, facial, and vagal lobes, but substantially different in the dorsolateral telencephalon, intermediate layers of the optic tectum, and cerebellar valvula. In contrast to the two protocadherins, cadherin-6 expression is much weaker and limited in the adult fish brain.
Collapse
Affiliation(s)
- Qin Liu
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, Ohio, 44325
| | | | | | | |
Collapse
|
12
|
Developmental localization of adhesion and scaffolding proteins at the cone synapse. Gene Expr Patterns 2014; 16:36-50. [PMID: 25176525 DOI: 10.1016/j.gep.2014.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 11/22/2022]
Abstract
The cone synapse is a complex signaling hub composed of the cone photoreceptor terminal and the dendrites of bipolar and horizontal cells converging around multiple ribbon synapses. Factors that promote organization of this structure are largely unexplored. In this study we characterize the localization of adhesion and scaffolding proteins that are localized to the cone synapse, including alpha-n-catenin, beta-catenin, gamma-protocadherin, cadherin-8, MAGI2 and CASK. We describe the localization of these proteins during development of the mouse retina and in the adult macaque retina and find that these proteins are concentrated at the cone synapse. The localization of these proteins was then characterized at the cellular and subcellular levels. Alpha-n-catenin, gamma-protocadherin and cadherin-8 were concentrated in the dendrites of bipolar cells that project to the cone synapse but were not detected or stained very dimly in the dendrites of cells projecting to rod synapses. This study adds to our knowledge of cone synapse development by characterizing the developmental localization of these factors and identifies these factors as candidates for functional analysis of cone synapse formation.
Collapse
|
13
|
Lenkowski JR, Raymond PA. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 2014; 40:94-123. [PMID: 24412518 DOI: 10.1016/j.preteyeres.2013.12.007] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/28/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine.
Collapse
Affiliation(s)
- Jenny R Lenkowski
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| | - Pamela A Raymond
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Nagashima M, Barthel LK, Raymond PA. A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development 2013; 140:4510-21. [PMID: 24154521 DOI: 10.1242/dev.090738] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Müller glia function as retinal stem cells in adult zebrafish. In response to loss of retinal neurons, Müller glia partially dedifferentiate, re-express neuroepithelial markers and re-enter the cell cycle. We show that the immunoglobulin superfamily adhesion molecule Alcama is a novel marker of multipotent retinal stem cells, including injury-induced Müller glia, and that each Müller glial cell divides asymmetrically only once to produce an Alcama-negative, proliferating retinal progenitor. The initial mitotic division of Müller glia involves interkinetic nuclear migration, but mitosis of retinal progenitors occurs in situ. Rapidly dividing retinal progenitors form neurogenic clusters tightly associated with Alcama/N-cadherin-labeled Müller glial radial processes. Genetic suppression of N-cadherin function interferes with basal migration of retinal progenitors and subsequent regeneration of HuC/D(+) inner retinal neurons.
Collapse
Affiliation(s)
- Mikiko Nagashima
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
15
|
Liu Q, Dalman M, Chen Y, Akhter M, Brahmandam S, Patel Y, Lowe J, Thakkar M, Gregory AV, Phelps D, Riley C, Londraville RL. Knockdown of leptin A expression dramatically alters zebrafish development. Gen Comp Endocrinol 2012; 178:562-72. [PMID: 22841760 PMCID: PMC3428433 DOI: 10.1016/j.ygcen.2012.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 01/13/2023]
Abstract
Using morpholino antisense oligonucleotide (MO) technology, we blocked leptin A or leptin receptor expression in embryonic zebrafish, and analyzed consequences of leptin A knock-down on fish development. Embryos injected with leptin A or leptin receptor MOs (leptin A or leptin receptor morphants) had smaller bodies and eyes, undeveloped inner ear, enlarged pericardial cavity, curved body and/or tail and larger yolk compared to control embryos of the same stages. The defects persisted in 6-9 days old larvae. We found that blocking leptin A function had little effect on the development of early brain (1 day old), but differentiation of both the morphant dorsal brain and retinal cells was severely disrupted in older (2 days old) embryos. Despite the enlarged pericardial cavity, differentiation of cardiac cells appeared to be similar to control embryos. Formation of the morphants' inner ear is also severely disrupted, which corroborates existing reports of leptin receptor expression in inner ear of both zebrafish and mammals. Co-injection of leptin A MO and recombinant leptin results in partial rescue of the wild-type phenotype. Our results suggest that leptin A plays distinct roles in zebrafish development.
Collapse
Affiliation(s)
- Qin Liu
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, OH 44325
| | - Mark Dalman
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, OH 44325
| | - Yun Chen
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, OH 44325
| | - Mashal Akhter
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, OH 44325
| | - Sravya Brahmandam
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, OH 44325
| | - Yesha Patel
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, OH 44325
| | - Josef Lowe
- Northeast Ohio Medical University, Rootstown, OH 44272
| | | | - Akil-Vuai Gregory
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, OH 44325
| | - Daryllanae Phelps
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, OH 44325
| | - Caitlin Riley
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, OH 44325
| | - Richard L. Londraville
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, OH 44325
- To whom correspondence should be addressed: Phone: 330-972-7151; Fax: 330-972-8445;
| |
Collapse
|
16
|
Clendenon SG, Sarmah S, Shah B, Liu Q, Marrs JA. Zebrafish cadherin-11 participates in retinal differentiation and retinotectal axon projection during visual system development. Dev Dyn 2012; 241:442-54. [PMID: 22247003 DOI: 10.1002/dvdy.23729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2011] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cadherins orchestrate tissue morphogenesis by controlling cell adhesion, migration and differentiation. Various cadherin family members are expressed in the retina and other neural tissues during embryogenesis, regulating development of these tissues. Cadherin-11 (Cdh11) is expressed in mesenchymal, bone, epithelial, neural and other tissues, and this cadherin was shown to control cell migration and differentiation in neural crest, tumor and bone cells. Our previous studies characterized Cdh11 expression and function in zebrafish. RESULTS Here, we report effects of Cdh11 loss-of-function on visual system development using morpholino oligonucleotide knockdown methods. Cdh11 is expressed in the retina and lens during retinal differentiation. Cdh11 loss-of-function produced defects in retinal differentiation and lens development. Cdh11 loss-of-function also reduced retinotectal axon projection and organization, consistent with known Cdh11 function in cell migration. CONCLUSION Cdh11 expression in the developing visual system and Cdh11 loss-of-function phenotype illustrates the critical role for differential cadherin activity in visual system differentiation and organization.
Collapse
Affiliation(s)
- Sherry G Clendenon
- Department of Medicine, Indiana University Medical Center, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Exposure of the zebrafish retina to intense light is a noninvasive method to elicit the selective degeneration of photoreceptors. In zebrafish, photoreceptor degeneration is followed by robust photoreceptor regeneration from stem cells that are intrinsic to the teleost retina. Two recent light-lesioning methods have been developed, each with specific advantages. The first involves a prolonged period of dark adaptation followed by exposure to high-intensity halogen lighting at ∼3,000-20,000 lux for 3-4 days. This causes widespread degeneration of rod and cone cells in the dorsal and central regions of the retina. The second method uses ultrahigh-intensity lighting at intensities greater than 120,000 lux, with an exposure time of 30 min. This causes degeneration of rod and cone cells within a relatively narrow naso-temporal band in the central retina. The advantages of the first (lower light intensity) technique are the widespread destruction of photoreceptors and the lower cost of equipment. The advantages of the second (higher light intensity) technique are the elimination of the prolonged dark adaptation and short duration of the exposure, thereby allowing experiments to be conducted more rapidly.
Collapse
|
18
|
Blackmore MG. Molecular control of axon growth: insights from comparative gene profiling and high-throughput screening. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206595 DOI: 10.1016/b978-0-12-398309-1.00004-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration in the mammalian adult central nervous system (CNS) is limited by an intrinsically low capacity for axon growth in many CNS neurons. In contrast, embryonic, peripheral, and many nonmammalian neurons are capable of successful regeneration. Numerous studies have compared mammalian CNS neurons to their counterparts in regenerating systems in an effort to identify candidate genes that control regenerative ability. This review summarizes work using this comparative strategy and examines our current understanding of gene function in axon growth, highlighting the emergence of genome-wide expression profiling and high-throughput screening strategies to identify novel regulators of axon growth.
Collapse
Affiliation(s)
- Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
19
|
Abstract
After central nervous system (CNS) injury axons fail to regenerate often leading to persistent neurologic deficit although injured peripheral nervous system (PNS) axons mount a robust regenerative response that may lead to functional recovery. Some of the failures of CNS regeneration arise from the many glial-based inhibitory molecules found in the injured CNS, whereas the intrinsic regenerative potential of some CNS neurons is actively curtailed during CNS maturation and limited after injury. In this review, the molecular basis for extrinsic and intrinsic modulation of axon regeneration within the nervous system is evaluated. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which is used to develop improved treatments for nervous system injury.
Collapse
Affiliation(s)
- Toby A Ferguson
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
20
|
Burden-Gulley SM, Gates TJ, Craig SEL, Gupta M, Brady-Kalnay SM. Stimulation of N-cadherin-dependent neurite outgrowth by small molecule peptide mimetic agonists of the N-cadherin HAV motif. Peptides 2010; 31:842-9. [PMID: 20153391 DOI: 10.1016/j.peptides.2010.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/30/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
Abstract
N-cadherin is a cell adhesion molecule that promotes axon outgrowth and synapse formation during the development of the central nervous system. In addition, N-cadherin promotes glial cell adhesion and myelination of axons. Therefore, stimulating N-cadherin function with N-cadherin agonists could be used therapeutically to promote regeneration of the nervous system and remyelination after injury or disease. In the extracellular domain of N-cadherin, the amino acid sequence HAV is required for N-cadherin-mediated adhesion and neurite outgrowth. The ADH-1 cyclic peptide, derived from the N-cadherin HAV site, is an effective antagonist of N-cadherin-mediated neurite outgrowth and is currently being tested in clinical trials for cancer chemotherapy. Of interest, a dimeric version of this cyclic peptide, N-Ac-CHAVDINGHAVDIC-NH(2), functions as an N-cadherin agonist. This dimeric peptide agonist and the peptide antagonist ADH-1 both have limitations as drugs due to their metabolic instability and lack of oral delivery. To address this issue Adherex Technologies Inc. generated a small molecule library of peptidomimetics to the HAV region of N-cadherin, which would be more amenable to therapeutic use. We screened the Adherex library for compounds that altered neurite outgrowth and identified eight N-cadherin agonists that stimulated N-cadherin-dependent neurite outgrowth. Five of these agonists also stimulated retinal cell migration. These small molecule agonists may be effective reagents for promoting axon growth and remyelination after injury or disease.
Collapse
Affiliation(s)
- Susan M Burden-Gulley
- Department of Molecular Biology & Microbiology, Case Western Reserve University, Cleveland, OH 44106, United States.
| | | | | | | | | |
Collapse
|
21
|
Liu Q, Londraville R, Marrs JA, Wilson AL, Mbimba T, Murakami T, Kubota F, Zheng W, Fatkins DG. Cadherin-6 function in zebrafish retinal development. Dev Neurobiol 2008; 68:1107-22. [PMID: 18506771 PMCID: PMC2562688 DOI: 10.1002/dneu.20646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cadherin cell-adhesion molecules play crucial roles in vertebrate development including the development of the visual system. Most studies have focused on examining functions of classical type I cadherins (e.g., cadherin-2) in visual system development. There is little information on the function of classical type II cadherins (e.g., cadherin-6) in the development of the vertebrate visual system. To gain insight into cadherin-6 role in the formation of the retina, we analyzed differentiation of retinal ganglion cells (RGCs), amacrine cells, and photoreceptors in zebrafish embryos injected with cadherin-6 specific antisense morpholino oligonucleotides. Differentiation of the retinal neurons in cadherin-6 knockdown embryos (cdh6 morphants) was analyzed using multiple markers. We found that expression of transcription factors important for retinal development was greatly reduced, and expression of Notch-Delta genes and proneural gene ath5 was altered in the cdh6 morphant retina. The retinal lamination was present in the morphants, although the morphant eyes were significantly smaller than control embryos due mainly to decreased cell proliferation. Differentiation of the RGCs, amacrine cells, and photoreceptors was severely disrupted in the cdh6 morphants due to a significant delay in neural differentiation. Our results suggest that cadherin-6 plays an important role in the normal formation of the zebrafish retina. (c) 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008.
Collapse
Affiliation(s)
- Qin Liu
- Department of Biology, University of Akron, Akron, OH 44325
| | | | - James A. Marrs
- Department of Medicine, Indiana University Medical Center, Indianapolis, IN 46202
| | - Amy L. Wilson
- Department of Biology, University of Akron, Akron, OH 44325
| | - Thomas Mbimba
- Department of Biology, University of Akron, Akron, OH 44325
| | - Tohru Murakami
- Neuromuscular and Developmental Anatomy, Gunma University Graduate School of Medicine 39-22, Gunma, 371-8511, Japan
| | - Fumitaka Kubota
- Neuromuscular and Developmental Anatomy, Gunma University Graduate School of Medicine 39-22, Gunma, 371-8511, Japan
| | - Weiping Zheng
- Department of Chemistry, University of Akron, Akron, OH 44325
| | | |
Collapse
|
22
|
Sherpa T, Fimbel SM, Mallory DE, Maaswinkel H, Spritzer SD, Sand JA, Li L, Hyde DR, Stenkamp DL. Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev Neurobiol 2008; 68:166-81. [PMID: 18000816 DOI: 10.1002/dneu.20568] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retinas of adult teleost fish can regenerate neurons following injury. The current study provides the first documentation of functional whole retina regeneration in the zebrafish, Danio rerio, following intraocular injection of the cytotoxin, ouabain. Loss and replacement of laminated retinal tissue was monitored by analysis of cell death and cell proliferation, and by analysis of retina-specific gene expression patterns. The spatiotemporal process of retinal ganglion cell (RGC) regeneration was followed through the use of selective markers, and was found to largely recapitulate the spatiotemporal process of embryonic ganglion cell neurogenesis, over a more protracted time frame. However, the re-expression of some ganglion cell markers was not observed. The growth and pathfinding of ganglion cell axons was evaluated by measurement of the optic nerve head (ONH), and the restoration of normal ONH size was found to correspond to the time of recovery of two visually-mediated behaviors. However, some abnormalities were noted, including overproduction of RGCs, and progressive and excessive growth of the ONH at longer recovery times. This model system for whole-retina regeneration has provided an informative view of the regenerative process.
Collapse
Affiliation(s)
- Tshering Sherpa
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yurco P, Cameron DA. Cellular correlates of proneural and notch-delta gene expression in the regenerating zebrafish retina. Vis Neurosci 2007; 24:437-43. [PMID: 17822581 DOI: 10.1017/s0952523807070496] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 05/08/2007] [Indexed: 11/05/2022]
Abstract
Fish can regenerate retinal neurons following ocular injury. Evidence is mounting that astrocytic glia function as inducible, regenerative stem cells in this process, but the underlying molecular events that enable neuronal regeneration are comparatively unclear. In the current study gene array, quantitative real-time PCR,in situhybridization, and immunohistochemical approaches were used to identify, in the damaged retina of adult zebrafish, correlations between transcriptional events and entry into the cell cycle by Müller cells, a type of astrocytic cell present in all vertebrate retinas that is a candidate ‘stem cell’ of regenerated neurons. A proneural gene (achaete-scute homolog 1a,ash1a) and neurogenic components of the Notch signaling pathway, includingnotch3anddeltaA, were implicated. An injury-induced, enhanced expression ofash1awas observed in Müller cells, which is hypothesized to contribute to the transition of these cells, or their cellular progeny, into anotch3-expressing, regenerative progenitor. A model of vertebrate retinal repair is suggested in which damage-induced expression of proneural genes, plus canonical Notch-Delta signaling, could contribute to retinal stem cell promotion and subsequent regenerative neurogenesis.
Collapse
Affiliation(s)
- Patrick Yurco
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
24
|
Tanaka M, Murayama D, Nagashima M, Higashi T, Mawatari K, Matsukawa T, Kato S. Purpurin expression in the zebrafish retina during early development and after optic nerve lesion in adults. Brain Res 2007; 1153:34-42. [PMID: 17466280 DOI: 10.1016/j.brainres.2007.03.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/23/2007] [Accepted: 03/26/2007] [Indexed: 11/19/2022]
Abstract
Purpurin, a retina-specific protein, is known to play a role in cell adhesion during development of the chicken retina. Although purpurin has been significantly detected in adult chicken retina, its function in the matured retina is not well understood. Therefore, to determine the expression pattern of purpurin in the retina, we simultaneously investigated expression patterns of purpurin in the zebrafish retina during development in larvae and optic nerve regeneration after nerve transection in adults. In early development, levels of purpurin suddenly increased in the zebrafish retina 3 to 5 days after fertilization, and purpurin-positive immunoreactivity was diffusely located in all retinal layers. In contrast, levels of purpurin mRNA rapidly increased in the adult retina 1-3 days after optic nerve transection, and rapidly declined by 10 days after injury. Signal for purpurin mRNA was seen only in photoreceptors. Immunohistochemistry showed that levels of purpurin protein were also increased in the retina 1-3 days after nerve injury, but positive staining was located in photoreceptors and ganglion cells, and the staining in ganglion cells was stronger than that in photoreceptors. Thus, the transient expression of purpurin protein was greatly different during development and optic nerve regeneration. In the former, purpurin may be required in all retinal layers, whereas in the latter, purpurin may be required for injured ganglion cells.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Molecular Neurobiology, Graduate School of Medicine, University of Kanazawa, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Ghai K, Stanke JJ, Fischer AJ. Patterning of the circumferential marginal zone of progenitors in the chicken retina. Brain Res 2007; 1192:76-89. [PMID: 17320838 PMCID: PMC2775427 DOI: 10.1016/j.brainres.2007.01.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/10/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
A circumferential marginal zone (CMZ) of retinal progenitors has been identified in most vertebrate classes, with the exception of mammals. Little is known about the formation of the CMZ during late stages of embryonic retinal histogenesis. Thus, the purpose of this study was to characterize the formation and patterning of the CMZ in the embryonic chicken retina. We identified progenitors by assaying for the expression of proliferating cell nuclear antigen (PCNA), N-cadherin and the nestin-related filament transitin, and newly generated cells by using BrdU-birthdating. We found that there is a gradual spatial restriction of progenitors into a discreet CMZ during late stages of embryonic development between E16 and hatching, at about E21. In addition, we found that retinal neurons remain immature for prolonged periods of time in far peripheral regions of the retina. Early markers of neuronal differentiation (such as HuC/D, calretinin and visinin) are expressed by neurons that are found directly adjacent to the CMZ. By contrast, genes (protein kinase C, calbindin, red/green opsin) that are expressed with a delay (7-10 days) after terminal mitosis in the central retina are not expressed until as many as 30 days after terminal mitosis in the far peripheral retina. We conclude that the neurons that are generated by late-stage CMZ progenitors differentiate much more slowly than neurons generated during early stages of retinal development. We propose that the microenvironment within the far peripheral retina at late stages of development permits the maintenance of a zone of progenitors and slows the differentiation of neurons.
Collapse
Affiliation(s)
| | | | - Andy J. Fischer
- corresponding author: Andy J. Fischer, Department of Neuroscience, Ohio State University, College of Medicine and Public Health, 3020 Graves Hall, 333 W. 10 Ave, Columbus, OH 43210-1239, USA. Telephone: (614) 292-3524; Fax: (614) 688-8742;
| |
Collapse
|
26
|
Abstract
The retinas of teleost fish have long been of interest to developmental neurobiologists for their persistent plasticity during growth, life history changes, and response to injury. Because the vertebrate retina is a highly conserved tissue, the study of persistent plasticity in teleosts has provided insights into mechanisms for postembryonic retinal neurogenesis in mammals. In addition, in the past 10 years there has been an explosion in the use of teleost fish-zebrafish (Danio rerio) in particular-to understand the mechanisms of embryonic retinal neurogenesis in a model vertebrate with genetic resources. This review summarizes the key features of teleost retinal neurogenesis that make it a productive and interesting experimental system, and focuses on the contributions to our knowledge of retinal neurogenesis that uniquely required or significantly benefited from the use of a fish model system.
Collapse
Affiliation(s)
- Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
27
|
Rodger J, King CE, Lukehurst S, Chen PB, Dunlop SA, Beazley LD, Ziman MR. Changing Pax6 expression correlates with axon outgrowth and restoration of topography during optic nerve regeneration. Neuroscience 2006; 142:1043-54. [PMID: 16973301 DOI: 10.1016/j.neuroscience.2006.07.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/10/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Pax6, a member of the highly conserved developmental Pax gene family, plays a crucial role in early eye development and continues to be expressed in adult retinal ganglion cells (RGCs). Here we have used Western blots and immunohistochemistry to investigate the expression of Pax6 in the formation and refinement of topographic projections during optic nerve regeneration in zebrafish and lizard. In zebrafish with natural (12-h light/dark cycle) illumination, Pax6 expression in RGCs was decreased during axon outgrowth and increased during the restoration of the retinotectal map. Rearing fish in stroboscopic illumination to prevent retinotopic refinement resulted in a prolonged decrease in Pax6 levels; return to natural light conditions resulted in map refinement and restoration of normal Pax6 levels. In lizard, RGC axons spontaneously regenerate but remain in a persistent state of regrowth and do not restore topography; visual training during regeneration, however, allows a stabilization of connections and return of topography. Pax6 was persistently decreased in untrained animals but remained increased in trained ones. In both species, changes in expression were not due to cell division or cell death. The results suggest that decreased Pax6 expression is permissive for axon regeneration and extensive searching, while higher levels of Pax6 are associated with restoration of topography.
Collapse
Affiliation(s)
- J Rodger
- School of Animal Biology M092, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC DEVELOPMENTAL BIOLOGY 2006; 6:36. [PMID: 16872490 PMCID: PMC1564002 DOI: 10.1186/1471-213x-6-36] [Citation(s) in RCA: 365] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 07/26/2006] [Indexed: 12/22/2022]
Abstract
Background The persistence in adult teleost fish of retinal stem cells that exhibit all of the features of true 'adult stem cells' – self-renewal, multipotency, and the capacity to respond to injury by mitotic activation with the ability to regenerate differentiated tissues – has been known for several decades. However, the specialized cellular and molecular characteristics of these adult retinal stem cells and the microenvironmental niches that support their maintenance in the differentiated retina and regulate their activity during growth and regeneration have not yet been elucidated. Results Our data show that the zebrafish retina has two kinds of specialized niches that sustain retinal stem cells: 1) a neuroepithelial germinal zone at the interface between neural retina and ciliary epithelium, called the ciliary marginal zone (CMZ), a continuous annulus around the retinal circumference, and 2) the microenvironment around some Müller glia in the differentiated retina. In the uninjured retina, scattered Müller glia (more frequently those in peripheral retina) are associated with clusters of proliferating retinal progenitors that are restricted to the rod photoreceptor lineage, but following injury, the Müller-associated retinal progenitors can function as multipotent retinal stem cells to regenerate other types of retinal neurons. The CMZ has several features in common with the neurogenic niches in the adult mammalian brain, including access to the apical epithelial surface and a close association with blood vessels. Müller glia in the teleost retina have a complex response to local injury that includes some features of reactive gliosis (up-regulation of glial fibrillary acidic protein, GFAP, and re-entry into the cell cycle) together with dedifferentiation and re-acquisition of phenotypic and molecular characteristics of multipotent retinal progenitors in the CMZ (diffuse distribution of N-cadherin, activation of Notch-Delta signaling, and expression of rx1, vsx2/Chx10, and pax6a) along with characteristics associated with radial glia (expression of brain lipid binding protein, BLBP). We also describe a novel specific marker for Müller glia, apoE. Conclusion The stem cell niches that support multi-lineage retinal progenitors in the intact, growing and regenerating teleost retina have properties characteristic of neuroepithelia and neurogenic radial glia. The regenerative capacity of the adult zebrafish retina with its ability to replace lost retinal neurons provides an opportunity to discover the molecular regulators that lead to functional repair of damaged neural tissue.
Collapse
Affiliation(s)
- Pamela A Raymond
- Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linda K Barthel
- Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - John J Perkowski
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Das AV, Edakkot S, Thoreson WB, James J, Bhattacharya S, Ahmad I. Membrane properties of retinal stem cells/progenitors. Prog Retin Eye Res 2005; 24:663-81. [PMID: 15939659 DOI: 10.1016/j.preteyeres.2005.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The membrane properties of cells help integrate extrinsic information relayed through growth factors, chemokines, extracellular matrix, gap junctions and neurotransmitters towards modulating cell-intrinsic properties, which in turn determine whether cells remain quiescent, proliferate, differentiate, establish contact with other cells or remove themselves by activating programmed cell death. This review highlights some of the membrane properties of early and late retinal stem cells/progenitors, which are likely to be helpful in the identification and enrichment of these cells and in understanding mechanisms underlying their maintenance and differentiation. Understanding of membrane properties of retinal stem cells/progenitors is essential for the successful formulation of approaches to treat retinal degeneration and diseases by cell therapy.
Collapse
Affiliation(s)
- Ani V Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198-7691, USA
| | | | | | | | | | | |
Collapse
|
30
|
Senut MC, Gulati-Leekha A, Goldman D. An element in the alpha1-tubulin promoter is necessary for retinal expression during optic nerve regeneration but not after eye injury in the adult zebrafish. J Neurosci 2004; 24:7663-73. [PMID: 15342733 PMCID: PMC6729619 DOI: 10.1523/jneurosci.2281-04.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 07/12/2004] [Accepted: 07/14/2004] [Indexed: 11/21/2022] Open
Abstract
We have shown previously that a 1.696 kb upstream fragment of the goldfish alpha1-tubulin promoter was capable of driving green fluorescent protein (GFP) expression in the developing and regenerating zebrafish CNS in a pattern closely mimicking the endogenous alpha1-tubulin gene. Comparison of fish and rat alpha1-tubulin promoters identified a 64 bp region with a conserved repetitive homeodomain (HD) consensus sequence core (TAAT) and a nearby basic helix-loop-helix binding E-box sequence (CANNTG), which led us to speculate that it could be of importance for regulating alpha1-tubulin gene transcription. To address this issue, we examined the ability of deletion mutants of the 1.696 kb promoter to drive expression of GFP in zebrafish retinal cells under normal conditions and after injury. Interestingly, although wild-type 1.696 kb and mutant promoters, lacking the E-box and/or HD sequences, exhibited rather similar patterns of GFP expression in the developing retina, significant differences were noticed in the mature retina. First, although the 1.696 kb promoter directed transgene expression to retinal neurons and progenitor cells, the activity of mutant promoters was drastically reduced. Second, we found that the E-box and HD sequences were necessary for transgene reinduction during optic nerve regeneration, but were not as important for transgene expression in regenerating retinal neurons after eye injury. In this latter lesion model, remarkably, both 1.696 kb and mutant promoters targeted GFP expression to Müller glia-like cells, some of which re-entered the cell cycle. These new findings will be useful for identifying the molecular signals necessary for successful CNS regeneration.
Collapse
Affiliation(s)
- Marie-Claude Senut
- University of Michigan, Mental Health Research Institute, Department of Biological Chemistry, Ann Arbor, Michigan 48109-0720, USA
| | | | | |
Collapse
|
31
|
Liu Q, Azodi E, Kerstetter AE, Wilson AL. Cadherin-2 and cadherin-4 in developing, adult and regenerating zebrafish cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 150:63-71. [PMID: 15126039 DOI: 10.1016/j.devbrainres.2004.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 01/11/2023]
Abstract
Cadherins are cell adhesion molecules that regulate development of a variety of tissues and maintenance of adult structures. In this study, we examined expression of two zebrafish classical cadherins, cadherin-2 and cadherin-4, in the cerebellum of developing, normal adult, and regenerating adult zebrafish using in situ hybridization and immunohistochemical methods. Cadherin-2 was widely expressed by the cerebellum of embryonic (24-50-h post fertilization) and larval zebrafish (3-14 days). Cadherin-2 expression became much reduced in the adult cerebellum, but it was greatly up-regulated in the regenerating adult cerebellum. Cadherin-4 was not detected in the embryonic cerebellum, but it was expressed in the Purkinje cells of the larval and adult cerebellum. To gain insight into cadherin-2 role in the formation of the cerebellum, we analyzed embryos injected with a specific cadherin-2 antisense morpholino oligonucleotide (cdh2MO1), and found that the cerebellar development of the cdh2MO1-injected embryos was severely disrupted. This phenotype was confirmed by examining a cadherin-2 mutant, glass onion. Our results suggest that cadherins are crucial for the normal development of the zebrafish cerebellum, and they may also be involved in the regeneration of injured fish cerebellum.
Collapse
Affiliation(s)
- Q Liu
- Department of Biology, University of Akron, Akron, 185 East Mill Street, Akron, OH 44325-3908, USA.
| | | | | | | |
Collapse
|
32
|
Matsukawa T, Arai K, Koriyama Y, Liu Z, Kato S. Axonal Regeneration of Fish Optic Nerve after Injury. Biol Pharm Bull 2004; 27:445-51. [PMID: 15056844 DOI: 10.1248/bpb.27.445] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since Sperry's work in the 1950s, it has been known that the central nervous system (CNS) neurons of lower vertebrates such as fish and amphibians can regenerate after axotomy, whereas the CNS neurons of mammals become apoptotic after axotomy. The goldfish optic nerve (ON) is one of the most studied animal models of CNS regeneration. Morphological changes in the goldfish retina and tectum after ON transection were first researched in the 1970s-1980s. Many biochemical studies of neurite outgrowth-promoting substances were then carried out in the 1980s-1990s. Many factors have been reported to be active substances that show increased levels during fish ON regeneration, as shown by using various protein chemistry techniques. However, there are very few molecular cloning techniques for studying ON regeneration after injury. In this review article, we summarize the neurite outgrowth-promoting factors reported by other researchers and describe our strategies for searching for ON regenerating molecules using a differential hybridization technique in the goldfish visual system. The process of goldfish ON regeneration after injury is very long. It takes about half a year from the start of axonal regrowth to complete restoration of vision. The process has been classified into three stages: early, middle and late. We screened for genes with increased expression during regeneration using axotomized goldfish retinal and tectal cDNA libraries and obtained stage-specific cDNA clones that were upregulated in the retina and tectum. We further discuss functional roles of these molecules in the regeneration processes of goldfish ON.
Collapse
Affiliation(s)
- Toru Matsukawa
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | | | |
Collapse
|