1
|
NODA M, MATSUDA T. Central regulation of body fluid homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:283-324. [PMID: 35908954 PMCID: PMC9363595 DOI: 10.2183/pjab.98.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Collapse
Affiliation(s)
- Masaharu NODA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Correspondence should be addressed to: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan (e-mail: )
| | - Takashi MATSUDA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Involvement of glutamatergic mechanisms in the median preoptic nucleus in the dipsogenic response induced by angiotensinergic activation of the subfornical organ in rats. Exp Brain Res 2019; 238:73-80. [PMID: 31784800 DOI: 10.1007/s00221-019-05681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
Experiments were done to investigate the role of glutamatergic systems in the median preoptic nucleus (MnPO) in the water ingestion induced by administration of angiotensin II (ANG II) in the subfornical organ (SFO) in the awake rat. Microdialysis methods were utilized to quantify the extracellular content of glutamate (Glu) in the region of MnPO. Microinjection of ANG II (10-10 M) into the SFO significantly increased the release of Glu in the MnPO in the rats under the condition that water is available for drinking and the rats under the condition that water is not available for drinking. The amount of initial maximal increases in the Glu levels elicited by the ANG II injection was quite similar in drinking and non-drinking rats, whereas the duration of the response was much longer in non-drinking than in drinking rats. The amount of water ingestion in 20 min immediately after the ANG II injection was significantly enhanced by previous injections of N-methyl-D-aspartate (NMDA, 10 μM) into the MnPO, while the ANG II-induced water ingestion was attenuated by pretreatment with the NMDA antagonist dizocilpine (MK-801, 10 μM). The amount of water intake elicited by the ANG II injection into the SFO was enhanced by previous injections of either the non-NMDA agonist kainic acid (KA, 50 μM) or quisqualic acid (QA, 50 μM) into the MnPO. On the contrary, the ANG II-induced drinking response was diminished by pretreatment with the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM) in the MnPO. Each injection of NMDA, KA, and QA into the MnPO produced drinking behavior. These results imply that the glutamatergic neural pathways to the MnPO may transmit the information for eliciting drinking in response to ANG II acting at the SFO. Our data further provide evidence that the ANG II-induced dipsogenic response may be mediated through both NMDA and non-NMDA glutamatergic receptor mechanisms in the MnPO.
Collapse
|
3
|
Simpson NJ, Ferguson AV. The proinflammatory cytokine tumor necrosis factor-α excites subfornical organ neurons. J Neurophysiol 2017. [PMID: 28637815 DOI: 10.1152/jn.00238.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine implicated in cardiovascular and autonomic regulation via actions in the central nervous system. TNF-α-/- mice do not develop angiotensin II (ANG II)-induced hypertension, and administration of TNF-α into the bloodstream of rats increases blood pressure and sympathetic tone. Recent studies have shown that lesion of the subfornical organ (SFO) attenuates the hypertensive and autonomic effects of TNF-α, while direct administration of TNF-α into the SFO increases blood pressure, suggesting the SFO to be a key site for the actions of TNF-α. Therefore, we used patch-clamp techniques to examine both acute and long-term effects of TNF-α on the excitability of Sprague-Dawley rat SFO neurons. It was observed that acute bath application of TNF-α depolarized SFO neurons and subsequently increased action potential firing rate. Furthermore, the magnitude of depolarization and the proportion of depolarized SFO neurons were concentration dependent. Interestingly, following 24-h incubation with TNF-α, the basal firing rate of the SFO neurons was increased and the rheobase was decreased, suggesting that TNF-α elevates SFO neuron excitability. This effect was likely mediated by the transient sodium current, as TNF-α increased the magnitude of the current and lowered its threshold of activation. In contrast, TNF-α did not appear to modulate either the delayed rectifier potassium current or the transient potassium current. These data suggest that acute and long-term TNF-α exposure elevates SFO neuron activity, providing a basis for TNF-α hypertensive and sympathetic effects.NEW & NOTEWORTHY Considerable recent evidence has suggested important links between inflammation and the pathological mechanisms underlying hypertension. The present study describes cellular mechanisms through which acute and long-term exposure of tumor necrosis factor-α (TNF-α) influences the activity of subfornical organ neurons by modulating the voltage-gated transient Na+ current. This provides critical new information regarding the specific pathological mechanisms through which inflammation and TNF-α in particular may result in the development of hypertension.
Collapse
Affiliation(s)
- Nick J Simpson
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Vilhena-Franco T, Mecawi AS, Elias LLK, Antunes-Rodrigues J. Oestradiol effects on neuroendocrine responses induced by water deprivation in rats. J Endocrinol 2016; 231:167-180. [PMID: 27613338 DOI: 10.1530/joe-16-0311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Water deprivation (WD) induces changes in plasma volume and osmolality, which in turn activate several responses, including thirst, the activation of the renin-angiotensin system (RAS) and vasopressin (AVP) and oxytocin (OT) secretion. These systems seem to be influenced by oestradiol, as evidenced by the expression of its receptor in brain areas that control fluid balance. Thus, we investigated the effects of oestradiol treatment on behavioural and neuroendocrine changes of ovariectomized rats in response to WD. We observed that in response to WD, oestradiol treatment attenuated water intake, plasma osmolality and haematocrit but did not change urinary volume or osmolality. Moreover, oestradiol potentiated WD-induced AVP secretion, but did not alter the plasma OT or angiotensin II (Ang II) concentrations. Immunohistochemical data showed that oestradiol potentiated vasopressinergic neuronal activation in the lateral magnocellular PVN (PaLM) and supraoptic (SON) nuclei but did not induce further changes in Fos expression in the median preoptic nucleus (MnPO) or subfornical organ (SFO) or in oxytocinergic neuronal activation in the SON and PVN of WD rats. Regarding mRNA expression, oestradiol increased OT mRNA expression in the SON and PVN under basal conditions and after WD, but did not induce additional changes in the mRNA expression for AVP in the SON or PVN. It also did not affect the mRNA expression of RAS components in the PVN. In conclusion, our results show that oestradiol acts mainly on the vasopressinergic system in response to WD, potentiating vasopressinergic neuronal activation and AVP secretion without altering AVP mRNA expression.
Collapse
Affiliation(s)
- Tatiane Vilhena-Franco
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - André Souza Mecawi
- Department of Physiological SciencesInstitute of Biological and Healthy Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
- Department of PhysiologyFaculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lucila Leico Kagohara Elias
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - José Antunes-Rodrigues
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
5
|
de Souza Mecawi A, Lepletier A, Gomes de Araujo I, Lopes Olivares E, Reis LC. Assessment of brain AT1-receptor on the nocturnal basal and angiotensin-induced thirst and sodium appetite in ovariectomised rats. J Renin Angiotensin Aldosterone Syst 2016; 8:169-75. [DOI: 10.3317/jraas.2007.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Objective. Considering the controversial data regarding the role of the brain renin-angiotensin system (RAS) on the thirst and sodium appetite in ovariectomised rats, we aimed to evaluate the role of the brain angiotensin II (Ang II) AT1-receptor on the nocturnal fluids intake. Materials and methods. Groups of Wistar female rats were ovariectomised and chronically given oestrogen or vehicle to evaluate its influence on effects induced by i.c.v. injection of losartan,Ang I and Ang II. Results. The i.c.v. losartan decreased basal water intake in the ovariectomised group.Ang II but not Ang I-induced nocturnal dipsogenic and natriorexigenic responses in ovariectomised rats. In oestrogen-treated rats, both peptides increased fluids intake. Previously, i.c.v. losartan abolished these effects in all groups. Oestrogen replacement decreased the nocturnal fluids intake, attenuated the losartan and Ang II effects, and highlighted the Ang I response. Conclusions. The present study has shown for the first time the involvement of AT1-receptor in regulating nocturnal basal water and salt intake in ovariectomised rats. In addition, our data have revealed an unexpected increased brain Ang I-mediated fluid intake in oestrogen-treated ovariectomised compared to ovariectomised rats, which was blocked by previous i.c.v. losartan. Our data have therefore shown that oestrogen influences homeostatic behaviours dependent on brain RAS.
Collapse
Affiliation(s)
- André de Souza Mecawi
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, BR465, Km07, 23890-000, Seropédica, RJ, Brazil
| | - Ailin Lepletier
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, BR465, Km07, 23890-000, Seropédica, RJ, Brazil
| | - Iracema Gomes de Araujo
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, BR465, Km07, 23890-000, Seropédica, RJ, Brazil
| | - Emerson Lopes Olivares
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, BR465, Km07, 23890-000, Seropédica, RJ, Brazil
| | - Luís Carlos Reis
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, BR465, Km07, 23890-000, Seropédica, RJ, Brazil,
| |
Collapse
|
6
|
Santollo J, Marshall A, Curtis KS, Speth RC, Clark SD, Daniels D. Divergent effects of ERα and ERβ on fluid intake by female rats are not dependent on concomitant changes in AT1R expression or body weight. Am J Physiol Regul Integr Comp Physiol 2016; 311:R14-23. [PMID: 27122368 DOI: 10.1152/ajpregu.00102.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/25/2016] [Indexed: 01/26/2023]
Abstract
Estradiol (E2) decreases both water and saline intakes by female rats. The ERα and ERβ subtypes are expressed in areas of the brain that control fluid intake; however, the role that these receptors play in E2's antidipsogenic and antinatriorexigenic effects have not been examined. Accordingly, we tested the hypothesis that activation of ERα and ERβ decreases water and saline intakes by female rats. We found a divergence in E2's inhibitory effect on intake: activation of ERα decreased water intake, whereas activation of ERβ decreased saline intake. E2 decreases expression of the angiotensin II type 1 receptor (AT1R), a receptor with known relevance to water and salt intakes, in multiple areas of the brain where ERα and ERβ are differentially expressed. Therefore, we tested for agonist-induced changes in AT1R mRNA expression by RT-PCR and protein expression by analyzing receptor binding to test the hypothesis that the divergent effects of these ER subtypes are mediated by region-specific changes in AT1R expression. Although we found no changes in AT1R mRNA or binding in areas of the brain known to control fluid intake associated with agonist treatment, the experimental results replicate and extend previous findings that body weight changes mediate alterations in AT1R expression in distinct brain regions. Together, the results reveal selective effects of ER subtypes on ingestive behaviors, advancing our understanding of E2's inhibitory role in the controls of fluid intake by female rats.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York
| | - Anikó Marshall
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York
| | - Kathleen S Curtis
- Department of Pharmacology and Physiology, Oklahoma State University, Tulsa, Oklahoma
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida; Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC; and
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York
| | - Derek Daniels
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York;
| |
Collapse
|
7
|
Almeida-Pereira G, Coletti R, Mecawi AS, Reis LC, Elias LLK, Antunes-Rodrigues J. Estradiol and angiotensin II crosstalk in hydromineral balance: Role of the ERK1/2 and JNK signaling pathways. Neuroscience 2016; 322:525-38. [PMID: 26951941 DOI: 10.1016/j.neuroscience.2016.02.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/17/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
The angiotensin II (ANGII) receptor AT1 plays an important role in the control of hydromineral balance, mediating the dipsogenic and natriorexigenic effects and neuroendocrine responses of ANGII. While estradiol (E2) is known to modulate several actions of ANGII in the brain, the molecular and cellular mechanisms of the interaction between E2 and ANGII and its physiological role in the control of body fluids remain unclear. We investigated the influence of E2 (40 μg/kg) pretreatment and extracellular-signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) cell signaling on the dipsogenic and natriorexigenic effects, as well as the neuroendocrine responses to angiotensinergic central stimulation in ovariectomized rats (OVX). We showed that the inhibitory effect of E2 on ANGII-induced water and sodium intake requires the ERK1/2 and JNK signaling pathways. On the other hand, E2 pretreatment prevents the ANGII-induced phosphorylation of ERK and JNK in the lamina terminalis. E2 therapy decreased oxytocin (OT) and vasopressin (AVP) secretion and decreased ERK1/2 phosphorylation in the supraoptic and paraventricular nuclei (SON and PVN, respectively). We found that the AVP secretion induced by ANGII required ERK1/2 signaling, but OT secretion did not involve ERK1/2 signaling. Taken together, these results demonstrate that E2 modulates ANGII-induced water and sodium intake and AVP secretion by affecting the ERK1/2 and JNK pathways in the lamina terminalis and ERK1/2 signaling in the hypothalamic nuclei (PVN and SON) in OVX rats.
Collapse
Affiliation(s)
- G Almeida-Pereira
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
| | - R Coletti
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - A S Mecawi
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, Brazil
| | - L C Reis
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
8
|
Santollo J, Daniels D. Control of fluid intake by estrogens in the female rat: role of the hypothalamus. Front Syst Neurosci 2015; 9:25. [PMID: 25788879 PMCID: PMC4349057 DOI: 10.3389/fnsys.2015.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/13/2015] [Indexed: 01/25/2023] Open
Abstract
Body fluid homeostasis is maintained by a complex network of central and peripheral systems that regulate blood pressure, fluid and electrolyte excretion, and fluid intake. The behavioral components, which include well regulated water and saline intake, are influenced by a number of hormones and neuropeptides. Since the early 1970s, it has been known that the ovarian estrogens play an important role in regulating fluid intake in females by decreasing water and saline intake under a variety of hypovolemic conditions. Behavioral, electrophysiological, gene and protein expression studies have identified nuclei in the hypothalamus, along with nearby forebrain structures such as the subfornical organ (SFO), as sites of action involved in mediating these effects of estrogens and, importantly, all of these brain areas are rich with estrogen receptors (ERs). This review will discuss the multiple ER subtypes, found both in the cell nucleus and associated with the plasma membrane, that provide diversity in the mechanism through which estrogens can induce behavioral changes in fluid intake. We then focus on the relevant brain structures, hypothesized circuits, and various peptides, such as angiotensin, oxytocin, and vasopressin, implicated in the anti-dipsogenic and anti-natriorexigenic actions of the estrogens.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| | - Derek Daniels
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| |
Collapse
|
9
|
Dalmasso C, Amigone JL, Vivas L. Serotonergic system involvement in the inhibitory action of estrogen on induced sodium appetite in female rats. Physiol Behav 2011; 104:398-407. [DOI: 10.1016/j.physbeh.2011.04.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/20/2011] [Accepted: 04/22/2011] [Indexed: 11/29/2022]
|
10
|
Mecawi AS, Lepletier A, Araujo IG, Fonseca FV, Reis LC. Oestrogenic influence on brain AT1receptor signalling on the thirst and sodium appetite in osmotically stimulated and sodium-depleted female rats. Exp Physiol 2008; 93:1002-10. [DOI: 10.1113/expphysiol.2008.042713] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Duan PG, Kawano H, Masuko S. Collateral projections from the subfornical organ to the median preoptic nucleus and paraventricular hypothalamic nucleus in the rat. Brain Res 2008; 1198:68-72. [DOI: 10.1016/j.brainres.2008.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/21/2007] [Accepted: 01/05/2008] [Indexed: 11/29/2022]
|
12
|
Vosges M, Braguer JC, Combarnous Y. Long-term exposure of male rats to low-dose ethinylestradiol (EE2) in drinking water: Effects on ponderal growth and on litter size of their progeny. Reprod Toxicol 2008; 25:161-8. [DOI: 10.1016/j.reprotox.2007.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/30/2007] [Accepted: 12/13/2007] [Indexed: 11/26/2022]
|
13
|
Somponpun SJ. Neuroendocrine regulation of fluid and electrolyte balance by ovarian steroids: contributions from central oestrogen receptors. J Neuroendocrinol 2007; 19:809-18. [PMID: 17850463 DOI: 10.1111/j.1365-2826.2007.01587.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like other hormonally mediated mechanisms, maintenance of body fluid osmolality requires integrated responses from multiple signals at various tissue locales, a large number of which are open to modulation by circulating endocrine factors including the ovarian steroid, oestrogens (E(2)). However, the precise mechanism and the site of action of E(2) in regulating fluid osmolality are not properly understood. More importantly, the biological significance of this action is not clear and the physiological circumstances in which this modulation is engaged remain incomplete. The demonstration of oestrogen receptors (ER) in neural tissues that bear no direct relation to reproduction led us to examine and characterise the expression of ER in brain nuclei that are critical for the maintenance of fluid osmolality. In the rat, ERbeta is prominently expressed in the vasopressin magnocellular neuroendocrine cells of the hypothalamus, whereas ERalpha is localised extensively in the sensory circumventricular organ neurones in the basal forebrain. These nuclei are the primary brain sites that are engaged in defense of fluid perturbation, thus providing a neuroendocrine basis for oestrogenic influence on body fluid regulation. Plasticity in receptor expression that accompanies fluid disturbances at these central loci suggests the functional importance of the receptors and implicates E(2) as one of the fluid regulating hormones in water homeostasis.
Collapse
Affiliation(s)
- S J Somponpun
- Department of Clinical Investigation, Tripler Army Medical Center, Tripler AMC, HI 96859, USA.
| |
Collapse
|
14
|
Krause EG, Curtis KS, Stincic TL, Markle JP, Contreras RJ. Oestrogen and weight loss decrease isoproterenol-induced Fos immunoreactivity and angiotensin type 1 mRNA in the subfornical organ of female rats. J Physiol 2006; 573:251-62. [PMID: 16543266 PMCID: PMC1779697 DOI: 10.1113/jphysiol.2006.106740] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Studies from our laboratory and others show that oestrogen reduces angiotensin II (Ang II)-induced water intake by ovariectomized rats. Elimination of endogenous oestrogen by ovariectomy causes weight gain that can be reversed or prevented by oestrogen replacement. Changes in body weight modify cardiovascular responses to Ang II but whether such changes have similar effects on central and behavioural responses to Ang II is unknown. The goal of this study was to evaluate the contributions of oestrogen and weight loss to isoproterenol (isoprenaline; Iso)-induced Fos immunoreactivity (IR) and to angiotensin type 1 (AT1) receptor mRNA in forebrain regions implicated in the control of fluid balance. Isoproterenol significantly increased Fos IR in the hypothalamic paraventricular and supraoptic nuclei, the subfornical organ (SFO), and the organum vasculosum of the lamina terminalis, but had no effect on AT1 mRNA expression. However, both Iso-induced Fos IR and the AT1 mRNA were attenuated in the SFO of the oestrogen and weight loss groups compared with that of the control group. Consequently, we examined the effect of weight loss on Iso-induced water intake and plasma renin activity (PRA) and found that weight loss decreased water intake after Iso, but had no effect on PRA. Thus, we propose that weight loss decreases Ang II-elicited water intake in the female rat by down-regulating the expression of the AT1 receptor.
Collapse
Affiliation(s)
- Eric G Krause
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32303-1270, USA
| | | | | | | | | |
Collapse
|
15
|
Somponpun SJ, Johnson AK, Beltz T, Sladek CD. Estrogen receptor-α expression in osmosensitive elements of the lamina terminalis: regulation by hypertonicity. Am J Physiol Regul Integr Comp Physiol 2004; 287:R661-9. [PMID: 15142833 DOI: 10.1152/ajpregu.00136.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subfornical organ (SFO), median preoptic nucleus (MnPO), and organum vasculosum lamina terminalis (OVLT), which are associated with the lamina terminalis, are important in the control of body fluid balance. Neurons in these regions express estrogen receptor (ER)-α, but whether the ER-α neurons are activated by hypertonicity and whether hypertonicity regulates ER-α expression are not known. Using fluorescent, double-label immunocytochemistry, we examined the expression of ER-α-immunoreactivity (ir) and Fos-ir in control and water-deprived male rats. In control animals, numerous ER-α-positive neurons were expressed in the periphery of the SFO, in both the dorsal and ventral MnPO, and in the dorsal cap of the OVLT. Fos-positive neurons were sparse in euhydrated rats but were numerous in the SFO, MnPO, and the dorsal cap of the OVLT after 48-h water deprivation. Most ER-α-ir neurons in these areas were positive for Fos, indicating a significant degree of colocalization. To examine the effect of dehydration on ER-α expression, animals with and without lesions surrounding the anterior and ventral portion of the 3rd ventricle (AV3V) were water deprived for 48 h. Water deprivation resulted in a moderate increase in ER-α-ir in the SFO of sham-lesioned rats ( P = 0.03) and a dramatic elevation in AV3V-lesioned animals ( P < 0.05). This was probably induced by the significant increase in plasma osmolality in both dehydrated groups ( P < 0.001) rather than a decrease in blood volume, because hematocrit was significantly increased only in the dehydrated sham-lesioned animals. Thus these studies implicate the osmosensitive regions of the lamina terminalis as possible targets for sex steroid effects on body fluid homeostasis.
Collapse
Affiliation(s)
- Suwit J Somponpun
- Department of Physiology and Biophysics, University of Colorado Health Science Center, 4200 E. Ninth Ave. Box C240, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
16
|
Abstract
In the present study we used intracerebral microdialysis techniques to examine whether angiotensin II (ANG II) modulates the release of serotonin (5-hydroxytryptamine, 5-HT) in the subfornical organ (SFO) in freely moving rats. Extracellular concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the region of the SFO were significantly decreased by microinjection of ANG II (10 pmol, 50 nl), but not by vehicle, into the dialysis site. No significant changes in the 5-HT and 5-HIAA levels caused by ANG II were observed in the sites away from the SFO. Water ingestion significantly enhanced the amount of the decrease in the 5-HT and 5-HIAA concentrations in the SFO area elicited by the ANG II injection. These results show that ANG II may reduce the release of 5-HT in the SFO area, and imply that the 5-HT receptor mechanism in the SFO area may participate in the elicitation of the drinking behavior to ANG II.
Collapse
Affiliation(s)
- Junichi Tanaka
- Department of Curriculum, Teaching and Memory, Naruto University of Education, Naruto, Tokushima 772-8502, Japan.
| | | | | |
Collapse
|