1
|
Pardo B, Herrada-Soler E, Satrústegui J, Contreras L, del Arco A. AGC1 Deficiency: Pathology and Molecular and Cellular Mechanisms of the Disease. Int J Mol Sci 2022; 23:528. [PMID: 35008954 PMCID: PMC8745132 DOI: 10.3390/ijms23010528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.
Collapse
Affiliation(s)
- Beatriz Pardo
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eduardo Herrada-Soler
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Araceli del Arco
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro Regional de Investigaciones Biomédicas, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla La Mancha, 45071 Toledo, Spain
| |
Collapse
|
2
|
Köse MD, Kagnici M, Özdemir TR, Erdur CB, Erdemir G, Karakoyun M, Guzin Y, Ceylaner S, Genel F. Clinical findings in five Turkish patients with citrin deficiency and identification of a novel mutation on SLC25A13. J Pediatr Endocrinol Metab 2020; 33:157-163. [PMID: 31809266 DOI: 10.1515/jpem-2019-0377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
Background Citrin deficiency (CD) is an autosomal recessive genetic disorder caused by a defect in the mitochondrial aspartate/glutamate antiporter, citrin. Three clinical manifestations have been described until today. Case presentation We reported 5 CD patients from two families. Four patients were male and one patient was female. Two of them have NICCD (neonatal intrahepatic cholestasis caused by citrin deficiency); three of them have CTLN2 (adult-onset type II citrullinemia). Both NICCD patients showed typical clinical and biochemical changes with a diagnosis confirmed by mutations in the SLC25A13 gene. We detected a previously unreported homozygous novel mutation c.478delC (L160Wfs*36 ) on the SLC25A13 gene. All of the CTLN2 patients were siblings. Proband was a 15-year-old mentally retarded and autistic male who had admitted to our emergency with disorientation. Laboratory data showed hyperammonemia and citrullinemia. Conclusions Two different profiles of age-related CD have been depicted with this article. It has been aimed to underline that the CD can be observed in different forms not only in neonatals or little infants but also in adolescents. This article is the first case series that covers both NICCD and CTLN2 cases together and that has been published in Turkey. Considering the fact that especially the majority of CTLN2 cases have been identified in Asian countries, our article has vital importance in terms of defining phenotypic features of the disease.
Collapse
Affiliation(s)
- Melis Demir Köse
- Behçet Uz Children Research and Training Hospital, Pediatric Metabolism and Nutrition Department, Ismet Kaptan Street, 35100, İzmir, Turkey
| | - Mehtap Kagnici
- Behçet Uz Children Training and Research Hospital, Pediatric Metabolism and Nutrition Department, Izmir, Turkey
| | - Taha Reşit Özdemir
- Tepecik Training and Research Hospital, Genetics Department, Izmir, Turkey
| | - Cahit Barış Erdur
- Behçet Uz Children Training and Research Hospital, Pediatric Gastroenterology, Hepatology and Nutrition Department, Izmir, Turkey
| | - Gülin Erdemir
- Behçet Uz Children Training and Research Hospital, Pediatric Gastroenterology, Hepatology and Nutrition Department, Izmir, Turkey
| | - Miray Karakoyun
- Tepecik Children Training and Research Hospital, Pediatric Gastroenterology, Hepatology and Nutrition Department, Izmir, Turkey
| | - Yiğit Guzin
- Behçet Uz Children Training and Research Hospital, Pediatrics Department, Izmir, Turkey
| | | | - Ferah Genel
- Behçet Uz Children Training and Research Hospital, Pediatric Allergy and Immunology Department, Izmir, Istanbul, Turkey
| |
Collapse
|
3
|
Zhang L, Li Y, Shi W, Gao J, Tian Y, Li Y, Guo Y, Cui S, Zhang X. Identification of a novel splicing mutation in the SLC25A13 gene from a patient with NICCD: a case report. BMC Pediatr 2019; 19:348. [PMID: 31607264 PMCID: PMC6790242 DOI: 10.1186/s12887-019-1751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/27/2019] [Indexed: 11/30/2022] Open
Abstract
Background Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is an autosomal recessive disorder and one of the most common inherent causes of cholestatic jaundice in Asian infants. Mutations in the SLC25A13 gene, which encodes citrin protein expressed in the liver, have been identified as the genetic cause for NICCD. Case presentation Here, we report a 4-month-old female with clinical features including jaundice, hyperbilirubinemia, hyperlactacidemia, and abnormal liver function. The patient was diagnosed with NICCD by differential diagnosis using genetic analysis. Mutations in 60 jaundice-related genes were tested by using amplicon sequencing, which was performed on an Ion S5XL genetic analyzer. A compound heterozygous mutation in the SLC25A13 gene was identified, consisting of a known deletion SLC25A13:c.852_855delTATG and a novel splicing mutation SLC25A13:c.1841 + 3_1841 + 4delAA. Sanger sequencing for the proband and her parents was performed to validate the result and reveal the source of mutations. Conclusion A compound heterozygous mutation in the SLC25A13 gene was identified in a 4-month-old female patient with NICCD. Our data suggest that amplicon sequencing is a helpful tool for the differential diagnosis of inherited diseases with similar symptoms. Further studies of the mutation spectrum of neonatal jaundice in China are warranted.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.,International Joint Research Laboratory for US-China Prenatal Medicine Of Henan, Zhengzhou, China
| | - Yingying Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Wenli Shi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Jinshuang Gao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.,International Joint Research Laboratory for US-China Prenatal Medicine Of Henan, Zhengzhou, China
| | - Yuan Tian
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.,International Joint Research Laboratory for US-China Prenatal Medicine Of Henan, Zhengzhou, China
| | - Ying Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.,International Joint Research Laboratory for US-China Prenatal Medicine Of Henan, Zhengzhou, China
| | - Yaqing Guo
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.,International Joint Research Laboratory for US-China Prenatal Medicine Of Henan, Zhengzhou, China
| | - Shihong Cui
- International Joint Research Laboratory for US-China Prenatal Medicine Of Henan, Zhengzhou, China. .,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Xiaoan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China. .,International Joint Research Laboratory for US-China Prenatal Medicine Of Henan, Zhengzhou, China.
| |
Collapse
|
4
|
Deletion of a Long-Range Dlx5 Enhancer Disrupts Inner Ear Development in Mice. Genetics 2018; 208:1165-1179. [PMID: 29301908 DOI: 10.1534/genetics.117.300447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/09/2017] [Indexed: 12/19/2022] Open
Abstract
Distal enhancers are thought to play important roles in the spatiotemporal regulation of gene expression during embryonic development, but few predicted enhancer elements have been shown to affect transcription of their endogenous genes or to alter phenotypes when disrupted. Here, we demonstrate that a 123.6-kb deletion within the mouse Slc25a13 gene is associated with reduced transcription of Dlx5, a gene located 660 kb away. Mice homozygous for the Slc25a13 deletion mutation [named hyperspin (hspn)] have malformed inner ears and are deaf with balance defects, whereas previously reported Slc25a13 knockout mice showed no phenotypic abnormalities. Inner ears of Slc25a13hspn/hspn mice have malformations similar to those of Dlx5-/- embryos, and Dlx5 expression is severely reduced in the otocyst but not the branchial arches of Slc25a13hspn/hspn embryos, indicating that the Slc25a13hspn deletion affects otic-specific enhancers of Dlx5 In addition, transheterozygous Slc25a13+/hspn Dlx5+/- mice exhibit noncomplementation with inner ear dysmorphologies similar to those of Slc25a13hspn/hspn and Dlx5-/-embryos, verifying a cis-acting effect of the Slc25a13hspn deletion on Dlx5 expression. CRISPR/Cas9-mediated deletions of putative enhancer elements located within the Slc25a13hspn deleted region failed to phenocopy the defects of Slc25a13hspn/hspn mice, suggesting the possibility of multiple enhancers with redundant functions. Our findings in mice suggest that analogous enhancer elements in the human SLC25A13 gene may regulate DLX5 expression and underlie the hearing loss that is associated with split-hand/-foot malformation 1 syndrome. Slc25a13hspn/hspn mice provide a new animal model for studying long-range enhancer effects on Dlx5 expression in the developing inner ear.
Collapse
|
5
|
Kim Y, Choi JY, Lee SH, Lee BH, Yoo HW, Han YM. Malfunction in Mitochondrial β-Oxidation Contributes to Lipid Accumulation in Hepatocyte-Like Cells Derived from Citrin Deficiency-Induced Pluripotent Stem Cells. Stem Cells Dev 2016; 25:636-47. [PMID: 26914390 DOI: 10.1089/scd.2015.0342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Citrin deficiency (CD) is a recessive genetic disorder caused by mutations in the citrin gene SLC25A13. CD causes various symptoms related to nutrient metabolism such as urea cycle failure, abnormal amino acid levels, and fatty liver. To understand the pathophysiology of CD, the molecular phenotypes were investigated using induced pluripotent stem cells derived from fibroblasts of CD patient (CD-iPSCs). In this study, we demonstrate that aberrant mitochondrial β-oxidation may lead to fatty liver in CD patients. CD-iPSCs normally differentiated into hepatocytes, similar to wild-type iPSCs (WT-iPSCs). However, hepatocytes derived from CD-iPSCs (CD-HLCs) did not exhibit ureogenesis. Cellular triglyceride and lipid granule levels were significantly increased in CD-HLCs compared with WT-HLCs. Peroxisome proliferator-activated receptor-α (PPAR-α) and its target genes which are involved in mitochondrial β-oxidation were downregulated in CD-HLCs, and treatment with a PPAR-α agonist partially reduced the lipid accumulation in CD-HLCs. In addition, the mitochondria in CD-HLCs exhibited abnormal morphologies. Based on these observations, we conclude that the lipid accumulation in CD-HLCs results from dysfunctional mitochondrial β-oxidation and abnormal mitochondrial structure.
Collapse
Affiliation(s)
- Yeji Kim
- 1 Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.,2 Center for Stem Cell Differentiation , KAIST, Daejeon, Republic of Korea
| | - Jung-Yun Choi
- 2 Center for Stem Cell Differentiation , KAIST, Daejeon, Republic of Korea.,3 Graduate School of Medical Science and Engineering , KAIST, Daejeon, Republic of Korea
| | - Sang-Hee Lee
- 4 BioMedical Research Center , KAIST, Daejeon, Republic of Korea
| | - Beom-Hee Lee
- 5 Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine , Seoul, Republic of Korea
| | - Han-Wook Yoo
- 5 Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine , Seoul, Republic of Korea
| | - Yong-Mahn Han
- 1 Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.,2 Center for Stem Cell Differentiation , KAIST, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Zhang MH, Gong JY, Wang JS. Citrin deficiency presenting as acute liver failure in an eight-month-old infant. World J Gastroenterol 2015; 21:7331-7334. [PMID: 26109823 PMCID: PMC4476898 DOI: 10.3748/wjg.v21.i23.7331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/10/2015] [Accepted: 03/12/2015] [Indexed: 02/06/2023] Open
Abstract
Citrin deficiency typically presents as neonatal intrahepatic cholestasis and resolves in late infancy. Here we report a case of citrin deficiency that presented as acute liver failure in late infancy in an apparently healthy child. The full-term male infant weighed 3400 g at birth, and exhibited normal development for eight months, at which time he contracted bronchial pneumonia. The infant developed jaundice and laboratory tests indicated elevated bilirubin and ammonia levels and an abnormal coagulation profile. Plasma amino acid analysis showed elevated levels of tyrosine, methionine, citrulline, and arginine. Citrin deficiency was suspected, and genomic DNA analysis revealed a mutation (IVS16ins3kb) in SLC25A13, which encodes a mitochondrial aspartate-glutamate carrier protein. The infant was immediately put on a lactose-free, medium-chain-triglyceride-enriched formula with ursodeoxycholic acid and lipid-soluble vitamins. However, cholestasis and abnormal laboratory indices persisted, and the infant died at the age of 11.5 mo, two days before a scheduled liver transplantation. This case demonstrates that citrin deficiency can present in late infancy as acute liver failure triggered by infection, and may require liver transplantation.
Collapse
|
7
|
Boon ACM, Williams RW, Sinasac DS, Webby RJ. A novel genetic locus linked to pro-inflammatory cytokines after virulent H5N1 virus infection in mice. BMC Genomics 2014; 15:1017. [PMID: 25418976 PMCID: PMC4256927 DOI: 10.1186/1471-2164-15-1017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/22/2014] [Indexed: 12/15/2022] Open
Abstract
Background Genetic variation in the human population is a key determinant of influenza disease severity. A single nucleotide polymorphism in the antiviral gene IFITM3 was linked to outcomes during the 2009 H1N1 pandemic. To identify variant host genes associated with increased virus replication and severe disease, we performed a quantitative trait locus analysis on pro-inflammatory cytokine production 48 hours after intranasal infection with highly pathogenic H5N1 influenza virus. Results Pro-inflammatory cytokines CCL2, TNFα and IFN-α, were measured by ELISA in lung homogenates of DBA/2J (D2), C57BL/6J (B6) and 44 different BXD recombinant inbred mouse strains. Virus titer was also assessed in a subset of these animals. CCL2 (8-fold), TNFα (24-fold) and IFN-α (8-fold) concentrations varied significantly among the different BXD RI strains. Importantly, cytokine concentration correlated very well (r =0.86-0.96, P <0.0001) with virus titer suggesting that early cytokine production is due to increased virus infection and replication. Linkage analysis of cytokine concentration revealed a significant locus on chromosome 6 associated with differences in TNFα, IFN-α and CCL2 cytokine concentration (LRS =26). This locus accounted for nearly 20% of the observed phenotypic variation in the BXD population studied. Sequence and RNA expression analysis identified several candidate host genes containing missense mutations or deletions; Samd9l, Ica1, and Slc25a13. To study the role of Slc25a13, we obtained Slc25a13 knockout line, but upon challenge with H5N1 influenza virus observed no effect on CCL2 production, or morbidity and mortality. Conclusion A novel genetic locus on chromosome 6 modulates early pro-inflammatory cytokine production and virus replication after highly pathogenic influenza virus infection. Candidate genes, Samd9l and Ica1, may be important for the control of influenza virus infection and pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1017) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrianus C M Boon
- Departments of Internal Medicine, Division of Infectious Diseases, Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
8
|
Molecular genetics of citrullinemia types I and II. Clin Chim Acta 2014; 431:1-8. [DOI: 10.1016/j.cca.2014.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 12/16/2022]
|
9
|
Liu G, Wei X, Chen R, Zhou H, Li X, Sun Y, Xie S, Zhu Q, Qu N, Yang G, Chu Y, Wu H, Lan Z, Wang J, Yang Y, Yi X. A novel mutation of the SLC25A13 gene in a Chinese patient with citrin deficiency detected by target next-generation sequencing. Gene 2014; 533:547-53. [DOI: 10.1016/j.gene.2013.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/06/2013] [Accepted: 10/11/2013] [Indexed: 01/29/2023]
|
10
|
Chen R, Wang XH, Fu HY, Zhang SR, Abudouxikuer K, Saheki T, Wang JS. Different regional distribution of SLC25A13 mutations in Chinese patients with neonatal intrahepatic cholestasis. World J Gastroenterol 2013; 19:4545-4551. [PMID: 23901231 PMCID: PMC3725380 DOI: 10.3748/wjg.v19.i28.4545] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/24/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differences in the mutation spectra of the SLC25A13 gene mutations from specific regions of China.
METHODS: Genetic analyses of SLC25A13 mutations were performed in 535 patients with neonatal intrahepatic cholestasis from our center over eight years. Unrelated infants with at least one mutant allele were enrolled to calculate the proportion of SLC25A13 mutations in different regions of China. The boundary between northern and southern China was drawn at the historical border of the Yangtze River.
RESULTS: A total of 63 unrelated patients (about 11% of cases with intrahepatic cholestasis) from 16 provinces or municipalities in China had mutations in the SLC25A13 gene, of these 16 (25%) were homozygotes, 28 (44%) were compound heterozygotes and 19 (30%) were heterozygotes. In addition to four well described common mutations (c.851_854del, c.1638_1660dup23, c.615+5G>A and c.1750+72_1751-4dup17insNM_138459.3:2667 also known as IVS16ins3kb), 13 other mutation types were identified, including three novel mutations: c.985_986insT, c.287T>C and c.1349A>G. According to the geographical division criteria, 60 mutant alleles were identified in patients from the southern areas of China, 43 alleles were identified in patients from the border, and 4 alleles were identified in patients from the northern areas of China. The proportion of four common mutations was higher in south region (56/60, 93%) than that in the border region (34/43, 79%, χ2 = 4.621, P = 0.032) and the northern region (2/4, 50%, χ2 = 8.288, P = 0.041).
CONCLUSION: The SLC25A13 mutation spectra among the three regions of China were different, providing a basis for the improvement of diagnostic strategies and interpretation of genetic diagnosis.
Collapse
|
11
|
Wang LY, Chen NI, Chen PW, Chiang SC, Hwu WL, Lee NC, Chien YH. Newborn screening for citrin deficiency and carnitine uptake defect using second-tier molecular tests. BMC MEDICAL GENETICS 2013; 14:24. [PMID: 23394329 PMCID: PMC3575349 DOI: 10.1186/1471-2350-14-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 02/07/2013] [Indexed: 11/26/2022]
Abstract
Background Tandem mass spectrometry (MS/MS) analysis is a powerful tool for newborn screening, and many rare inborn errors of metabolism are currently screened using MS/MS. However, the sensitivity of MS/MS screening for several inborn errors, including citrin deficiency (screened by citrulline level) and carnitine uptake defect (CUD, screened by free carnitine level), is not satisfactory. This study was conducted to determine whether a second-tier molecular test could improve the sensitivity of citrin deficiency and CUD detection without increasing the false-positive rate. Methods Three mutations in the SLC25A13 gene (for citrin deficiency) and one mutation in the SLC22A5 gene (for CUD) were analyzed in newborns who demonstrated an inconclusive primary screening result (with levels between the screening and diagnostic cutoffs). Results The results revealed that 314 of 46 699 newborns received a second-tier test for citrin deficiency, and two patients were identified; 206 of 30 237 newborns received a second-tier testing for CUD, and one patient was identified. No patients were identified using the diagnostic cutoffs. Although the incidences for citrin deficiency (1:23 350) and CUD (1:30 000) detected by screening are still lower than the incidences calculated from the mutation carrier rates, the second-tier molecular test increases the sensitivity of newborn screening for citrin deficiency and CUD without increasing the false-positive rate. Conclusions Utilizing a molecular second-tier test for citrin deficiency and carnitine transporter deficiency is feasible.
Collapse
Affiliation(s)
- Li-Yun Wang
- Graduate Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Fu HY, Zhang SR, Wang XH, Saheki T, Kobayashi K, Wang JS. The mutation spectrum of the SLC25A13 gene in Chinese infants with intrahepatic cholestasis and aminoacidemia. J Gastroenterol 2011; 46:510-8. [PMID: 20927635 DOI: 10.1007/s00535-010-0329-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/10/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND SLC25A13 gene mutations cause citrin deficiency, which leads to neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). Information on the mutation spectrum of SLC25A13 in the Chinese population is limited. The aim of this study was to explore the mutation spectrum of the SLC25A13 gene in Chinese infants with intrahepatic cholestasis and various forms of aminoacidemia. METHODS Sequence analyses were performed on 39 infants with intrahepatic cholestasis and various forms of aminoacidemia. Novel mutations were subjected to homology and structural analyses. Western blots were performed when liver specimens available. RESULTS Genetic testing revealed the presence of SLC25A13 gene mutations (9 heterozygotes, 6 homozygotes and 13 compound heterozygotes) in 28 infants. Subsequent Western blot analysis revealed 22 cases of citrin deficiency, accounting for 56.4% of the 39 patients. Twelve types of mutations, including nine known mutations and three novel mutations, were found. Of the 49 mutated alleles, known ones include 851del4 (26 alleles, 53.1%), 1638ins23 (6 alleles, 12.2%), IVSl6ins3kb (3 alleles, 6.1%), IVS6+5G>A (2 alleles, 4.1%), E601K (2 alleles, 4.1%) and IVS11+1G>A, R184X, R360X and R585H (1 allele each, 2.0%). The three novel mutations were a splice site change (IVS6+1G>A), a deletion mutation (1092_1095delT) and a missense mutation (L85P), each in one allele. CONCLUSIONS The mutation spectrum of the SLC25A13 gene in a Chinese population of infants with intrahepatic cholestasis with various forms of aminoacidemia was found to be different from that of other population groups in East Asia. The SLC25A13 gene mutation is the most important cause of infantile intrahepatic cholestasis with various forms of aminoacidemia.
Collapse
Affiliation(s)
- Hai-Yan Fu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai 201102, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Development of a galactose biosensor with galactose oxidase-immobilized epidermis of Solanum lycopersicum: Potential point-of-care testing for citrin deficiency in high-prevalence areas. Clin Chim Acta 2011; 412:391-2. [DOI: 10.1016/j.cca.2010.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 11/22/2022]
|
15
|
Fu HY, Zhang SR, Yu H, Wang XH, Zhu QR, Wang JS. Most common SLC25A13 mutation in 400 Chinese infants with intrahepatic cholestasis. World J Gastroenterol 2010; 16:2278-82. [PMID: 20458766 PMCID: PMC2868222 DOI: 10.3748/wjg.v16.i18.2278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish the real time fluorescence polymerase chain reaction (RT-PCR) with dual labeled probes for fast detection of SLC25A13 gene mutation 851del4.
METHODS: Four hundred infants (< 1 year of age) with unexplained intrahepatic cholestasis from 18 provinces or municipalities in China were enrolled in this study for detecting their SLC25A13 gene mutation 851del4. Suitable primers and fluorescence-labeled probes for detecting SLC25A13 gene mutation 841del4 were designed. Normal and mutant sequences were detected by PCR with two fluorescence-labeled probes. After a single RT-PCR, results were obtained by analyzing the take-off curves. Twenty-four positive and 14 negative samples were retested by direct sequencing.
RESULTS: Eight homozygous and 30 heterozygous mutations were detected in 46 mutant alleles with a 851del4 mutation rate of 5.8% (46/800). Twenty-six and 20 mutant alleles were observed respectively, in 474 and 242 alleles from the intermediate and southern areas of China. No mutant allele was detected in 84 alleles from northern China. Twenty-four positive samples including 4 homozygous and 20 heterozygous mutations, and 14 negative samples were retested by direct sequencing, which confirmed that the accuracy of RT-PCR was 100%.
CONCLUSION: RT-PCR can detect the mutation 851del4 in infants with intrahepatic cholestasis with an accuracy of 100%.
Collapse
|
16
|
Satrústegui J, Contreras L, Ramos M, Marmol P, del Arco A, Saheki T, Pardo B. Role of aralar, the mitochondrial transporter of aspartate-glutamate, in brain N-acetylaspartate formation and Ca(2+) signaling in neuronal mitochondria. J Neurosci Res 2008; 85:3359-66. [PMID: 17497669 DOI: 10.1002/jnr.21299] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aralar, the Ca(2+)-dependent mitochondrial aspartate-glutamate carrier expressed in brain and skeletal muscle, is a member of the malate-aspartate NADH shuttle. Disrupting the gene for aralar, SLC25a12, in mice has enabled the discovery of two new roles of this carrier. On the one hand, it is required for synthesis of brain aspartate and N-acetylaspartate, a neuron-born metabolite that supplies acetate for myelin lipid synthesis; and on the other, it is essential for the transmission of small Ca(2+) signals to mitochondria via an increase in mitochondrial NADH.
Collapse
Affiliation(s)
- Jorgina Satrústegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma, 28049, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Deignan JL, Cederbaum SD, Grody WW. Contrasting features of urea cycle disorders in human patients and knockout mouse models. Mol Genet Metab 2008; 93:7-14. [PMID: 17933574 PMCID: PMC2692509 DOI: 10.1016/j.ymgme.2007.08.123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 08/19/2007] [Accepted: 08/19/2007] [Indexed: 10/22/2022]
Abstract
The urea cycle exists for the removal of excess nitrogen from the body. Six separate enzymes comprise the urea cycle, and a deficiency in any one of them causes a urea cycle disorder (UCD) in humans. Arginase is the only urea cycle enzyme with an alternate isoform, though no known human disorder currently exists due to a deficiency in the second isoform. While all of the UCDs usually present with hyperammonemia in the first few days to months of life, most disorders are distinguished by a characteristic profile of plasma amino acid alterations that can be utilized for diagnosis. While enzyme assay is possible, an analysis of the underlying mutation is preferable for an accurate diagnosis. Mouse models for each of the urea cycle disorders exist (with the exception of NAGS deficiency), and for almost all of them, their clinical and biochemical phenotypes rather closely resemble the phenotypes seen in human patients. Consequently, all of the current mouse models are highly useful for future research into novel pharmacological and dietary treatments and gene therapy protocols for the management of urea cycle disorders.
Collapse
Affiliation(s)
- Joshua L. Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- The Mental Retardation Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Stephen D. Cederbaum
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
- The Mental Retardation Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Wayne W. Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
- The Mental Retardation Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
18
|
Abstract
Citrin is a liver-type mitochondrial aspartate-glutamate carrier encoded by the SLC25A13 gene, and its deficiency causes adult-onset type II citrullinemia and neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). Here, the authors investigated clinical findings in Korean infants with NICCD and performed mutation analysis on the SLC25A13 gene. Of 47 patients with neonatal cholestasis, three infants had multiple aminoacidemia (involving citrulline, methionine, and arginine) and galactosemia, and thus were diagnosed as having NICCD. Two of these three showed failure to thrive. The laboratory findings showed hypoproteinemia and hyperammonemia, and liver biopsies revealed micro-macrovesicular fatty liver and cholestasis. The three patients each harbored compound heterozygous 1,638-1,660 dup/ S225X mutation, compound heterozygous 851del4/S225X mutation, and heterozygous 1,638-1,660 dup mutation, respectively. With nutritional manipulation, liver functions were normalized and catch-up growth was achieved. NICCD should be considered in the differential diagnosis of cholestatic jaundice in Korean infants.
Collapse
Affiliation(s)
- Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Han Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Kee Seo
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Satrústegui J, Pardo B, Del Arco A. Mitochondrial Transporters as Novel Targets for Intracellular Calcium Signaling. Physiol Rev 2007; 87:29-67. [PMID: 17237342 DOI: 10.1152/physrev.00005.2006] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca2+signaling in mitochondria is important to tune mitochondrial function to a variety of extracellular stimuli. The main mechanism is Ca2+entry in mitochondria via the Ca2+uniporter followed by Ca2+activation of three dehydrogenases in the mitochondrial matrix. This results in increases in mitochondrial NADH/NAD ratios and ATP levels and increased substrate uptake by mitochondria. We review evidence gathered more than 20 years ago and recent work indicating that substrate uptake, mitochondrial NADH/NAD ratios, and ATP levels may be also activated in response to cytosolic Ca2+signals via a mechanism that does not require the entry of Ca2+in mitochondria, a mechanism depending on the activity of Ca2+-dependent mitochondrial carriers (CaMC). CaMCs fall into two groups, the aspartate-glutamate carriers (AGC) and the ATP-Mg/Picarriers, also named SCaMC (for short CaMC). The two mammalian AGCs, aralar and citrin, are members of the malate-aspartate NADH shuttle, and citrin, the liver AGC, is also a member of the urea cycle. Both types of CaMCs are activated by Ca2+in the intermembrane space and function together with the Ca2+uniporter in decoding the Ca2+signal into a mitochondrial response.
Collapse
Affiliation(s)
- Jorgina Satrústegui
- Departamento de Biología Molecular Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Facultad de Ciencias, Universidad Autónoma, Madrid, Spain.
| | | | | |
Collapse
|
20
|
Lu YB, Kobayashi K, Ushikai M, Tabata A, Iijima M, Li MX, Lei L, Kawabe K, Taura S, Yang Y, Liu TT, Chiang SH, Hsiao KJ, Lau YL, Tsui LC, Lee DH, Saheki T. Frequency and distribution in East Asia of 12 mutations identified in the SLC25A13 gene of Japanese patients with citrin deficiency. J Hum Genet 2005; 50:338-346. [PMID: 16059747 DOI: 10.1007/s10038-005-0262-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 05/26/2005] [Indexed: 02/07/2023]
Abstract
Deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier (AGC), encoded by the SLC25A13 gene on chromosome 7q21.3, causes autosomal recessive disorders: adult-onset type II citrullinemia (CTLN2) and neonatal hepatitis associated with intrahepatic cholestasis (NICCD). So far, we have described 12 SLC25A13 mutations: 11 were from Japan and one from Israel. Three mutations found in Chinese and Vietnamese patients were the same as those in Japanese patients. In the present study, we identified a novel mutation IVS6+1G>C in a Japanese CTLN2 patient and widely screened 12 SLC25A13 mutations found in Japanese patients in control individuals from East Asia to confirm our preliminary results that the carrier frequency was high in Asian populations. Mutations 851-854del and 1638-1660dup were found in all Asian countries tested, and 851-854del associated with 290-haplotype in microsatellite marker D7S1812 was especially frequent. Other mutations frequently detected were IVS11+1G>A in Japanese and Korean, S225X in Japanese, and IVS6+5G>A in Chinese populations. We found a remarkable difference in carrier rates in China (including Taiwan) between north (1/940) and south (1/48) of the Yangtze River. We detected many carriers in Chinese (64/4169 = 1/65), Japanese (20/1372 = 1/69) and Korean (22/2455 = 1/112) populations, suggesting that over 80,000 East Asians are homozygotes with two mutated SLC25A13 alleles.
Collapse
Affiliation(s)
- Yao Bang Lu
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Keiko Kobayashi
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Miharu Ushikai
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ayako Tabata
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Mikio Iijima
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Meng Xian Li
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Lei Lei
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kotaro Kawabe
- Division of Gene Research, Research Centre for Life Science Resources, Kagoshima University, Kagoshima, Japan
| | - Satoru Taura
- Division of Gene Research, Research Centre for Life Science Resources, Kagoshima University, Kagoshima, Japan
| | - Yanling Yang
- Department of Pediatrics, The First Hospital of Peking University, Beijing, China
| | - Tze-Tze Liu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | - Yu-Lung Lau
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Lap-Chee Tsui
- Vice Chancellor's Office, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Dong Hwan Lee
- Department of Pediatrics, Soonchunhyang University Hospital, Seoul, Korea
| | - Takeyori Saheki
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
21
|
Sinasac DS, Moriyama M, Jalil MA, Begum L, Li MX, Iijima M, Horiuchi M, Robinson BH, Kobayashi K, Saheki T, Tsui LC. Slc25a13-knockout mice harbor metabolic deficits but fail to display hallmarks of adult-onset type II citrullinemia. Mol Cell Biol 2004; 24:527-36. [PMID: 14701727 PMCID: PMC343808 DOI: 10.1128/mcb.24.2.527-536.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult-onset type II citrullinemia (CTLN2) is an autosomal recessive disease caused by mutations in SLC25A13, the gene encoding the mitochondrial aspartate/glutamate carrier citrin. The absence of citrin leads to a liver-specific, quantitative decrease of argininosuccinate synthetase (ASS), causing hyperammonemia and citrullinemia. To investigate the physiological role of citrin and the development of CTLN2, an Slc25a13-knockout (also known as Ctrn-deficient) mouse model was created. The resulting Ctrn-/- mice were devoid of Slc25a13 mRNA and citrin protein. Liver mitochondrial assays revealed markedly decreased activities in aspartate transport and the malate-aspartate shuttle. Liver perfusion also demonstrated deficits in ureogenesis from ammonia, gluconeogenesis from lactate, and an increase in the lactate-to-pyruvate ratio within hepatocytes. Surprisingly, Ctrn-/- mice up to 1 year of age failed to show CTLN2-like symptoms due to normal hepatic ASS activity. Serological measures of glucose, amino acid, and ammonia metabolism also showed no significant alterations. Nitrogen-loading treatments produced only minor changes in the hepatic ammonia and amino acid levels. These results suggest that citrin deficiency alone may not be sufficient to produce a CTLN2-like phenotype in mice. These observations are compatible, however, with the variable age of onset, incomplete penetrance, and strong ethnic bias seen in CTLN2 where additional environmental and/or genetic triggers are now suspected.
Collapse
Affiliation(s)
- David S Sinasac
- Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ramos M, del Arco A, Pardo B, Martínez-Serrano A, Martínez-Morales JR, Kobayashi K, Yasuda T, Bogónez E, Bovolenta P, Saheki T, Satrústegui J. Developmental changes in the Ca2+-regulated mitochondrial aspartate-glutamate carrier aralar1 in brain and prominent expression in the spinal cord. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:33-46. [PMID: 12763579 DOI: 10.1016/s0165-3806(03)00097-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aralar1 and citrin are two isoforms of the mitochondrial carrier of aspartate-glutamate (AGC), a calcium regulated carrier, which is important in the malate-aspartate NADH shuttle. The expression and cell distribution of aralar1 and citrin in brain cells has been studied during development in vitro and in vivo. Aralar1 is the only isoform expressed in neurons and its levels undergo a marked increase during in vitro maturation, which is higher than the increase in mitochondrial DNA in the same time window. The enrichment in aralar1 per mitochondria during neuronal maturation is associated with a prominent rise in the function of the malate-aspartate NADH shuttle. Paradoxically, during in vivo development of rat or mouse brain there is very little postnatal increase in total aralar1 levels per mitochondria. This is explained by the fact that astrocytes develop postnatally, have aralar1 levels much lower than neurons, and their increase masks that of aralar1. Aralar1 mRNA and protein are widely expressed throughout neuron-rich areas in adult mouse CNS with clear enrichments in sets of neuronal nuclei in the brainstem and, particularly, in the ventral horn of the spinal cord. These aralar1-rich neurons represent a subset of the cytochrome oxidase-rich neurons in the same areas. The presence of aralar1 could reflect a tonic activity of these neurons, which is met by the combination of high malate-aspartate NADH shuttle and respiratory chain activities.
Collapse
Affiliation(s)
- Milagros Ramos
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Saheki T, Kobayashi K, Iijima M, Nishi I, Yasuda T, Yamaguchi N, Gao HZ, Jalil MA, Begum L, Li MX. Pathogenesis and pathophysiology of citrin (a mitochondrial aspartate glutamate carrier) deficiency. Metab Brain Dis 2002; 17:335-46. [PMID: 12602510 DOI: 10.1023/a:1021961919148] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adult-onset type II citrullinemia (CTLN2), characterized by a liver-specific deficiency of urea cycle enzyme, argininosuccinate synthetase, is caused by mutations in SLC25A13 that encodes a calcium binding mitochondrial solute carrier protein, citrin. Citrin deficiency causes not only CTLN2 but also neonatal intrahepatic cholestasis caused by citrin deficiency at neonatal period. Moreover citrin and its isoform aralar were found to be aspartate glutamate carrier. From the viewpoint of the metabolic functions of citrin as aspartate glutamate carrier in urea synthesis and NADH shuttle, symptoms of CTLN2 and neonatal intrahepatic cholestasis caused by citrin deficiency are analyzed.
Collapse
Affiliation(s)
- Takeyori Saheki
- Department of Biochemistry, Faculty of Medicine, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
del Arco A, Morcillo J, Martínez-Morales JR, Galián C, Martos V, Bovolenta P, Satrústegui J. Expression of the aspartate/glutamate mitochondrial carriers aralar1 and citrin during development and in adult rat tissues. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3313-20. [PMID: 12084073 DOI: 10.1046/j.1432-1033.2002.03018.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aralar1 and citrin are members of the subfamily of calcium-binding mitochondrial carriers and correspond to two isoforms of the mitochondrial aspartate/glutamate carrier (AGC). These proteins are activated by Ca2+ acting on the external side of the inner mitochondrial membrane. Although it is known that aralar1 is expressed mainly in skeletal muscle, heart and brain, whereas citrin is present in liver, kidney and heart, the precise tissue distribution of the two proteins in embryonic and adult tissues is largely unknown. We investigated the pattern of expression of aralar1 and citrin in murine embryonic and adult tissues at the mRNA and protein levels. In situ hybridization analysis indicates that both isoforms are expressed strongly in the branchial arches, dermomyotome, limb and tail buds at early embryonic stages. However, citrin was more abundant in the ectodermal components of these structures whereas aralarl had a predominantly mesenchymal localization. The strong expression of citrin in the liver was acquired postnatally, whereas the characteristic expression of aralar1 in skeletal muscle was detected at E18 and that in the heart began early in development (E11) and was preferentially localized to auricular myocardium in late embryonic stages. Aralar1 was also expressed in bone marrow, T-lymphocytes and macrophages, including Kupffer cells in the liver, indicating that this is the major AGC isoform present in the hematopoietic system. Both aralar1 and citrin were expressed in fetal gut and adult stomach, ovary, testis, and pancreas, but only aralar1 is enriched in lung and insulin-secreting beta cells. These results show that aralar1 is expressed in many more tissues than originally believed and is absent from hepatocytes, where citrin is the only AGC isoform present. This explains why citrin deficiency in humans (type II citrullinemia) only affects the liver and suggests that aralar1 may compensate for the lack of citrin in other tissues.
Collapse
Affiliation(s)
- Araceli del Arco
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049-Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Begum L, Jalil MA, Kobayashi K, Iijima M, Li MX, Yasuda T, Horiuchi M, del Arco A, Satrústegui J, Saheki T. Expression of three mitochondrial solute carriers, citrin, aralar1 and ornithine transporter, in relation to urea cycle in mice. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:283-92. [PMID: 11997094 DOI: 10.1016/s0167-4781(01)00376-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present report describes the expression profiles of different tissues and developmental changes of mouse aspartate/glutamate carrier (AGC) genes, Slc25a13 and Slc25a12, and an ornithine transporter gene, Ornt1, in relation to urea cycle enzyme genes, carbamoylphosphate synthetase I (CPS) and argininosuccinate synthetase (ASS). Slc25a13 encodes citrin, recently found to be deficient in adult-onset type II citrullinemia and to function as AGC together with its isoform and product of Slc25a12, aralar1. Citrin was broadly distributed, but mainly in the liver, kidney and heart. Aralar1 was expressed in diaphragm, skeletal muscle, heart, brain and kidney, but not in the liver. These distribution profiles are different from the restricted of Ornt1, ASS and CPS. Citrin, ASS, CPS and Ornt1 showed similar patterns of developmental changes in the liver and small intestine, where they play a role in urea and arginine synthesis. Dietary, hormonal and physical manipulations caused varied changes of CPS, ASS and Ornt1 in the liver, but the change of citrin was not so marked as that of the others. Analysis using RT-PCR and restriction enzyme digestion revealed that the ornithine transporter most expressed is Ornt1, although Ornt2 is detectable at a minute level. All these results suggest that citrin as AGC plays a role in urea synthesis as well as many fundamental metabolic pathways in the liver, and shares metabolic functions with aralar1 in other tissues, and that Ornt1 is an important component in urea synthesis in the liver and in arginine synthesis in the small intestine during the neonatal period.
Collapse
Affiliation(s)
- Laila Begum
- Department of Biochemistry, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, 890-8520, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yamaguchi N, Kobayashi K, Yasuda T, Nishi I, Iijima M, Nakagawa M, Osame M, Kondo I, Saheki T. Screening of SLC25A13 mutations in early and late onset patients with citrin deficiency and in the Japanese population: Identification of two novel mutations and establishment of multiple DNA diagnosis methods for nine mutations. Hum Mutat 2002; 19:122-30. [PMID: 11793471 DOI: 10.1002/humu.10022] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have recently identified SLC25A13 on chromosome 7q21.3 as the gene responsible for adult-onset type II citrullinemia (CTLN2) and found seven mutations in the SLC25A13 gene of CTLN2 patients. Most recently, the SLC25A13 mutations have been detected in neonatal/infantile patients with a type of neonatal hepatitis associated with cholestasis (NICCD). In the present study, we identified a novel mutation, E601X, in the SLC25A13 gene and established multiple DNA diagnosis methods for eight mutations by using a genetic analyzer with GeneScan and the single primer extension procedure (SNaPshot). An additional novel missense mutation (variation), E601K, was detected by SNaPshot analysis and was indistinguishable from the mutation E601X detected by the PCR/RFLP method. Multiple DNA diagnoses for the nine mutations revealed that 100 (male/female: 70/30) out of 115 CTLN2 and 38 (14/24) out of 45 NICCD patients tested were homozygotes or compound heterozygotes. The frequency of homozygotes carrying SLC25A13 mutations in both alleles is estimated to be minimally 1 in 21,000 from carrier detection (18 in 1,315 individuals tested) in the Japanese population. The differences in the gender ratio and in mutation types between CTLN2 and NICCD patients are significant. It is, however, unknown whether all homozygotes with mutated SLC25A13 in both alleles suffer from NICCD, CTLN2, both, or neither.
Collapse
Affiliation(s)
- Naoki Yamaguchi
- Department of Biochemistry, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Iijima M, Jalil A, Begum L, Yasuda T, Yamaguchi N, Xian Li M, Kawada N, Endou H, Kobayashi K, Saheki T. Pathogenesis of adult-onset type II citrullinemia caused by deficiency of citrin, a mitochondrial solute carrier protein: tissue and subcellular localization of citrin. ADVANCES IN ENZYME REGULATION 2001; 41:325-42. [PMID: 11384753 DOI: 10.1016/s0065-2571(00)00022-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M Iijima
- Department of Biochemistry, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, 890-8520, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yasuda T, Yamaguchi N, Kobayashi K, Nishi I, Horinouchi H, Jalil MA, Li MX, Ushikai M, Iijima M, Kondo I, Saheki T. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet 2000; 107:537-45. [PMID: 11153906 DOI: 10.1007/s004390000430] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adult-onset type II citrullinemia (CTLN2) is characterized by a liver-specific deficiency of argininosuccinate synthetase (ASS) protein. We have recently identified the gene responsible for CTLN2, viz., SLC25A13, which encodes a calcium-binding mitochondrial carrier protein, designated citrin, and found five mutations of the SLC25A13 gene in CTLN2 patients. In the present study, we have identified two novel mutations, 1800ins1 and R605X, in SLC25A13 mRNA and the SLC25A13 gene. Diagnostic analysis for the seven mutations in 103 CTLN2 patients diagnosed by biochemical and enzymatic studies has revealed that 102 patients had one or two of the seven mutations and 93 patients were homozygotes or compound heterozygotes. These results indicate that CTLN2 is caused by an abnormality in the SLC25A13 gene, and that our criteria for CTLN2 before DNA diagnosis are correct. Five of 22 patients from consanguineous unions have been shown to be compound heterozygotes, suggesting a high frequency of the mutated genes. The frequency of homozygotes is calculated to be more than 1 in 20,000 from carrier detection (6 in 400 individuals tested) in the Japanese population. We have detected no cross-reactive immune materials in the liver of CTLN2 patients with any of the seven mutations by Western blot analysis with anti-human citrin antibody. From these findings, we hypothesize that CTLN2 is caused by a complete deletion of citrin, although the mechanism of ASS deficiency is still unknown.
Collapse
Affiliation(s)
- T Yasuda
- Department of Biochemistry, Faculty of Medicine, Kagoshima University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|