1
|
Chen AY, Owens MC, Liu KF. Coordination of RNA modifications in the brain and beyond. Mol Psychiatry 2023; 28:2737-2749. [PMID: 37138184 PMCID: PMC11758487 DOI: 10.1038/s41380-023-02083-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Gene expression regulation is a critical process throughout the body, especially in the nervous system. One mechanism by which biological systems regulate gene expression is via enzyme-mediated RNA modifications, also known as epitranscriptomic regulation. RNA modifications, which have been found on nearly all RNA species across all domains of life, are chemically diverse covalent modifications of RNA nucleotides and represent a robust and rapid mechanism for the regulation of gene expression. Although numerous studies have been conducted regarding the impact that single modifications in single RNA molecules have on gene expression, emerging evidence highlights potential crosstalk between and coordination of modifications across RNA species. These potential coordination axes of RNA modifications have emerged as a new direction in the field of epitranscriptomic research. In this review, we will highlight several examples of gene regulation via RNA modification in the nervous system, followed by a summary of the current state of the field of RNA modification coordination axes. In doing so, we aim to inspire the field to gain a deeper understanding of the roles of RNA modifications and coordination of these modifications in the nervous system.
Collapse
Affiliation(s)
- Anthony Yulin Chen
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, 19081, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
The role of post-transcriptional modifications during development. Biol Futur 2022:10.1007/s42977-022-00142-3. [PMID: 36481986 DOI: 10.1007/s42977-022-00142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
AbstractWhile the existence of post-transcriptional modifications of RNA nucleotides has been known for decades, in most RNA species the exact positions of these modifications and their physiological function have been elusive until recently. Technological advances, such as high-throughput next-generation sequencing (NGS) methods and nanopore-based mapping technologies, have made it possible to map the position of these modifications with single nucleotide accuracy, and genetic screens have uncovered the “writer”, “reader” and “eraser” proteins that help to install, interpret and remove such modifications, respectively. These discoveries led to intensive research programmes with the aim of uncovering the roles of these modifications during diverse biological processes. In this review, we assess novel discoveries related to the role of post-transcriptional modifications during animal development, highlighting how these discoveries can affect multiple aspects of development from fertilization to differentiation in many species.
Collapse
|
3
|
RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms222111870. [PMID: 34769301 PMCID: PMC8584444 DOI: 10.3390/ijms222111870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The intrinsic cellular heterogeneity and molecular complexity of the mammalian nervous system relies substantially on the dynamic nature and spatiotemporal patterning of gene expression. These features of gene expression are achieved in part through mechanisms involving various epigenetic processes such as DNA methylation, post-translational histone modifications, and non-coding RNA activity, amongst others. In concert, another regulatory layer by which RNA bases and sugar residues are chemically modified enhances neuronal transcriptome complexity. Similar RNA modifications in other systems collectively constitute the cellular epitranscriptome that integrates and impacts various physiological processes. The epitranscriptome is dynamic and is reshaped constantly to regulate vital processes such as development, differentiation and stress responses. Perturbations of the epitranscriptome can lead to various pathogenic conditions, including cancer, cardiovascular abnormalities and neurological diseases. Recent advances in next-generation sequencing technologies have enabled us to identify and locate modified bases/sugars on different RNA species. These RNA modifications modulate the stability, transport and, most importantly, translation of RNA. In this review, we discuss the formation and functions of some frequently observed RNA modifications—including methylations of adenine and cytosine bases, and isomerization of uridine to pseudouridine—at various layers of RNA metabolism, together with their contributions to abnormal physiological conditions that can lead to various neurodevelopmental and neurological disorders.
Collapse
|
4
|
Șelaru A, Costache M, Dinescu S. Epitranscriptomic signatures in stem cell differentiation to the neuronal lineage. RNA Biol 2021; 18:51-60. [PMID: 34582322 PMCID: PMC8677044 DOI: 10.1080/15476286.2021.1985348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Considered to be a field that is continuously growing, epitranscriptomics analyzes the modifications that occur in RNA transcripts and their downstream effects. As epigenetic modifications found in DNA and histones exhibit specific roles on various biological processes, also epitranscriptomic marks control gene expression patterns that are crucial for proper cell proliferation, differentiation and tissue development. Thus, various epitranscriptomic signatures have been identified to play specific roles during stem cell differentiation towards the neuronal and glial lineages, axonal guidance, synaptic plasticity, thus leading to the development of the mature brain tissue. Here we describe in-depth molecular mechanism underlying the most important RNA modifications with emerging roles in the nervous system.
Collapse
Affiliation(s)
- Aida Șelaru
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
Park CW, Lee SM, Yoon KJ. Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain. BMB Rep 2020. [PMID: 33148378 PMCID: PMC7704224 DOI: 10.5483/bmbrep.2020.53.11.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proper development of the nervous system is critical for its function, and deficits in neural development have been impli-cated in many brain disorders. A precise and predictable developmental schedule requires highly coordinated gene expression programs that orchestrate the dynamics of the developing brain. Especially, recent discoveries have been showing that various mRNA chemical modifications can affect RNA metabolism including decay, transport, splicing, and translation in cell type- and tissue-specific manner, leading to the emergence of the field of epitranscriptomics. Moreover, accumulating evidences showed that certain types of RNA modifications are predominantly found in the developing brain and their dysregulation disrupts not only the developmental processes, but also neuronal activities, suggesting that epitranscriptomic mechanisms play critical post-transcriptional regulatory roles in development of the brain and etiology of brain disorders. Here, we review recent advances in our understanding of molecular regulation on transcriptome plasticity by RNA modifications in neurodevelopment and how alterations in these RNA regulatory programs lead to human brain disorders.
Collapse
Affiliation(s)
- Chan-Woo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sung-Min Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
6
|
Angelova MT, Dimitrova DG, Dinges N, Lence T, Worpenberg L, Carré C, Roignant JY. The Emerging Field of Epitranscriptomics in Neurodevelopmental and Neuronal Disorders. Front Bioeng Biotechnol 2018; 6:46. [PMID: 29707539 PMCID: PMC5908907 DOI: 10.3389/fbioe.2018.00046] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 01/19/2023] Open
Abstract
Analogous to DNA methylation and histone modifications, RNA modifications represent a novel layer of regulation of gene expression. The dynamic nature and increasing number of RNA modifications offer new possibilities to rapidly alter gene expression upon specific environmental changes. Recent lines of evidence indicate that modified RNA molecules and associated complexes regulating and “reading” RNA modifications play key roles in the nervous system of several organisms, controlling both, its development and function. Mutations in several human genes that modify transfer RNA (tRNA) have been linked to neurological disorders, in particular to intellectual disability. Loss of RNA modifications alters the stability of tRNA, resulting in reduced translation efficiency and generation of tRNA fragments, which can interfere with neuronal functions. Modifications present on messenger RNAs (mRNAs) also play important roles during brain development. They contribute to neuronal growth and regeneration as well as to the local regulation of synaptic functions. Hence, potential combinatorial effects of RNA modifications on different classes of RNA may represent a novel code to dynamically fine tune gene expression during brain function. Here we discuss the recent findings demonstrating the impact of modified RNAs on neuronal processes and disorders.
Collapse
Affiliation(s)
- Margarita T Angelova
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Dilyana G Dimitrova
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Nadja Dinges
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Tina Lence
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Lina Worpenberg
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Clément Carré
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Jean-Yves Roignant
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
7
|
Abstract
Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.
Collapse
Affiliation(s)
- Greg M Arndt
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Karen L MacKenzie
- Personalised Medicine Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
8
|
Zhu JY, Ye Q, Zhao QP, Ming ZP, Grevelding CG, Jiang MS, Dong HF. Effects of protein extract from head-foot tissue of Oncomelania hupensis on the growth and gene expression of mother sporocysts of Schistosoma japonicum. Parasitol Res 2011; 110:721-31. [PMID: 21800125 DOI: 10.1007/s00436-011-2548-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 10/17/2022]
Abstract
Oncomelania hupensis is the intermediate host of Schistosoma japonicum. In the present study, we investigated the effects of protein extracts from head-foot or gland tissue of O. hupensis on mother sporocysts of S. japonicum cultured in vitro. In the presence of head-foot protein extract of snails from the native province Hunan, in-vitro-transformed mother sporocysts presented not only a longer survival time and stronger motility, but also a bigger size than parasites cultured with protein extracts of glands of the same snail or head-foot tissue of a non-native snail from the Hubei province. Using suppression subtractive hybridization, two subtractive libraries were constructed on the basis of RNA of sporocysts cultured with or without native snail head-foot protein extract. A number of 31 transcripts were found to be up-regulated. Sequence analyses revealed that they represented genes involved among others in metabolic process, electron transport chain, response to chemical stimulus, and oxidation-reduction processes. Opposite to that 20 down-regulated transcripts were among others related to pseudouridine synthesis, RNA processing, and ribosome biogenesis. The differential expression of three of these transcripts, encoding cytochrome c oxidase subunit 2 (Cox2), NADH-ubiquinone oxidoreductase (ND1), and dyskeratosis congenita 1 protein (DKC1), were confirmed by real-time PCR. The promoted development and the differential gene expression of cultured sporocysts under the influence of head-foot protein extract of native O. hupensis implied not only its ability to improve in vitro culture conditions for intramolluscan stages, it may also represent a priming result with respect to the identification and characterization of factors involved in the parasite-host interplay between S. japonicum and O. hupensis.
Collapse
Affiliation(s)
- Jun Yong Zhu
- Department of Parasitology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei Province, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Scheinfeld MH, Lui YW, Kolb EA, Engel HM, Gomes WA, Weidenheim KM, Bello JA. The neuroradiological findings in a case of Revesz syndrome. Pediatr Radiol 2007; 37:1166-70. [PMID: 17874088 DOI: 10.1007/s00247-007-0592-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 07/03/2007] [Accepted: 07/13/2007] [Indexed: 10/22/2022]
Abstract
Revesz syndrome is a variant of dyskeratosis congenita characterized by aplastic anemia, retinopathy, and central nervous system abnormalities. We describe a 3-year-old boy in whom the spectrum of neuroimaging findings, including intracranial calcifications, cerebellar hypoplasia and unusual brain lesions were found by biopsy to be gliosis despite their enhancement and progression. In patients with dyskeratosis-related syndromes, non-neoplastic parenchymal brain lesions occur and gliosis should be considered in the differential diagnosis for progressive enhancing brain lesions. Should this finding be confirmed consistently in additional cases, brain biopsy could potentially be avoided.
Collapse
Affiliation(s)
- Meir H Scheinfeld
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Mehler MF, Mattick JS. Noncoding RNAs and RNA Editing in Brain Development, Functional Diversification, and Neurological Disease. Physiol Rev 2007; 87:799-823. [PMID: 17615389 DOI: 10.1152/physrev.00036.2006] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The progressive maturation and functional plasticity of the nervous system in health and disease involve a dynamic interplay between the transcriptome and the environment. There is a growing awareness that the previously unexplored molecular and functional interface mediating these complex gene-environmental interactions, particularly in brain, may encompass a sophisticated RNA regulatory network involving the twin processes of RNA editing and multifaceted actions of numerous subclasses of non-protein-coding RNAs. The mature nervous system encompasses a wide range of cell types and interconnections. Long-term changes in the strength of synaptic connections are thought to underlie memory retrieval, formation, stabilization, and effector functions. The evolving nervous system involves numerous developmental transitions, such as neurulation, neural tube patterning, neural stem cell expansion and maintenance, lineage elaboration, differentiation, axonal path finding, and synaptogenesis. Although the molecular bases for these processes are largely unknown, RNA-based epigenetic mechanisms appear to be essential for orchestrating these precise and versatile biological phenomena and in defining the etiology of a spectrum of neurological diseases. The concerted modulation of RNA editing and the selective expression of non-protein-coding RNAs during seminal as well as continuous state transitions may comprise the plastic molecular code needed to couple the intrinsic malleability of neural network connections to evolving environmental influences to establish diverse forms of short- and long-term memory, context-specific behavioral responses, and sophisticated cognitive capacities.
Collapse
Affiliation(s)
- Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
11
|
Shibutani M, Lee KY, Igarashi K, Woo GH, Inoue K, Nishimura T, Hirose M. Hypothalamus region-specific global gene expression profiling in early stages of central endocrine disruption in rat neonates injected with estradiol benzoate or flutamide. Dev Neurobiol 2007; 67:253-69. [PMID: 17443786 DOI: 10.1002/dneu.20349] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To identify genes linked to early stages of disruption of brain sexual differentiation, hypothalamic region-specific microarray analyses were performed using a microdissection technique with neonatal rats exposed to endocrine-acting drugs. To validate the methodology, the expression fidelity of microarrays was first examined with two-round amplified antisense RNAs (aRNAs) from methacarn-fixed paraffin-embedded tissue (PET) in comparison with expression in unfixed frozen tissue (UFT). Decline of expression fidelity when compared with the 1x-amplified aRNAs from UFTs was found as a result of the preferential amplification of the 3' side of mRNAs in the second round in vitro transcription. However, expression patterns for the 2x-amplified aRNAs were mostly identical between methacarn-fixed PET and UFT, suggesting no obvious influence of methacarn fixation and subsequent paraffin embedding on expression levels. Next, in the main experiment, neonatal rats at birth were treated subcutaneously either with estradiol benzoate (EB; 10 microg/pup) or flutamide (FA; 250 microg/pup), and medial preoptic area (MPOA)-specific microarray analysis was performed 24 h later using 2x-amplified aRNAs from methacarn-fixed PET. Numbers of genes showing constitutively high expression in the MPOA predominated in males, implying a link with male-type growth supported by perinatal testosterone. Around 60% of genes showing sex differences in expression demonstrated altered levels after EB treatment in females, suggesting an involvement of genes necessary for brain sexual differentiation. When compared with EB, FA affected a rather small number of genes, but fluctuation was mostly observed in females, as with EB. Moreover, many selected genes common to EB and FA showed down-regulation in females with both drugs, suggesting a common mechanism for endocrine center disruption in females, at least at early stages of post-natal development.
Collapse
Affiliation(s)
- Makoto Shibutani
- Division of Pathology, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Rogelj B. Brain-specific small nucleolar RNAs. J Mol Neurosci 2007; 28:103-9. [PMID: 16679551 DOI: 10.1385/jmn:28:2:103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/30/1999] [Accepted: 08/08/2005] [Indexed: 11/11/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a group of noncoding RNAs that function mainly as guides for modification of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). A subgroup of snoRNAs was found to be predominantly expressed in the brain; and interestingly, these brain-specific snoRNAs (b-snoRNAs) appear not to be involved in modification of rRNAs and snRNAs, raising the question of what their function and targets might be. Expression studies of b-snoRNAs in mice have shown potential involvement of two b-snoRNAs, MBII-48 and MBII-52, in learning and memory. HBII-52, the human homolog of MBII-52, appears to be involved with regulation of 5-HT(2C) receptor subunit mRNA. Furthermore, several reports link the disruption of expression of a specific b-snoRNA, HBII-85, with a neurobehavioral disorder, Prader-Willi syndrome. This paper reviews the current knowledge of the properties, expression, and functions of b-snoRNAs.
Collapse
Affiliation(s)
- Boris Rogelj
- Department of Neuroscience, Institute of Psychiatry, King's College London, London, UK.
| |
Collapse
|
13
|
Abstract
In eukaryotes, the site-specific formation of the two prevalent types of rRNA modified nucleotides, 2'-O-methylated nucleotides and pseudouridines, is directed by two large families of snoRNAs. These are termed box C/D and H/ACA snoRNAs, respectively, and exert their function through the formation of a canonical guide RNA duplex at the modification site. In each family, one snoRNA acts as a guide for one, or at most two modifications, through a single, or a pair of appropriate antisense elements. The two guide families now appear much larger than anticipated and their role not restricted to ribosome synthesis only. This is reflected by the recent detection of guides that can target other cellular RNAs, including snRNAs, tRNAs and possibly even mRNAs, and by the identification of scores of tissue-specific specimens in mammals. Recent characterization of homologs of eukaryotic modification guide snoRNAs in Archaea reveals the ancient origin of these non-coding RNA families and offers new perspectives as to their range of function.
Collapse
Affiliation(s)
- Jean Pierre Bachellerie
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4,France.
| | | | | |
Collapse
|
14
|
Salowsky R, Heiss NS, Benner A, Wittig R, Poustka A. Basal transcription activity of the dyskeratosis congenita gene is mediated by Sp1 and Sp3 and a patient mutation in a Sp1 binding site is associated with decreased promoter activity. Gene 2002; 293:9-19. [PMID: 12137939 DOI: 10.1016/s0378-1119(02)00725-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The multisystem disorder dyskeratosis congenita (DKC) is caused by mutations in the DKC1 gene. The protein dyskerin is a component of the box H+ACA small nucleolar RNAs (snoRNAs) and is also functionally associated with the RNA component of the human telomerase. The majority of mutations are missense mutations, although single examples of non-coding mutations have been described. One of these is a point mutation in a putative Sp1 binding site in the 5'-upstream region of the DKC1 gene which presumably represents the promoter region of the gene. In this report, we compare the promoter sequences of both the human and mouse genes and provide a first functional characterisation of the human DKC1 promoter. This includes a characterisation of the disease-associated implications caused by the mutation identified in one patient. By reporter gene analysis, functional regions of the DKC1 promoter were delineated. The core promoter region critical for basal level of transcription was found to lie at -10 to -180. Bandshift- and supershift experiments clearly demonstrated a mutual binding of transcription factors Sp1 and Sp3 to two of five putative GC-box/Sp1-binding sites located within the core promoter region. An additional GC-box interacts only with the Sp1 transcription factor. Further, we provide evidence that the DKC1 mutation in one of the Sp1 binding sites results in reduced promoter activity.
Collapse
Affiliation(s)
- Rüdiger Salowsky
- Division of Molecular Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
15
|
Helder MN, Wisman GBA, van der Zee GJ. Telomerase and telomeres: from basic biology to cancer treatment. Cancer Invest 2002; 20:82-101. [PMID: 11855380 DOI: 10.1081/cnv-120000370] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The limited capacity to divide is one of the major differences between normal somatic cells and cancerous cells. This 'finite life span' of somatic cells is closely linked to loss of telomeric DNA at telomeres, the 'chromosome caps' consisting of repeated (7TAGGG) sequences., In more than 85% of advanced cancers, this telomeric attrition is compensated by telomerase, 'the immortality enzyme', implying that telomerase inhibition may restore mortality in tumor cells. This review discusses the progress in research on the structure and function of telomeres and the telomerase holoenzyme. In addition, new developments in telomere/telomerase targeting compounds such as antisense oligonucleotides and G-quadruplex stabilizing substances, but also new telomerase expression-related strategies such as telomerase promoter-driven suicide gene therapy and telomerase immunotherapy will be presented. It will be discussed how these data can be implemented in telomerase-directed therapies.
Collapse
Affiliation(s)
- Marco N Helder
- Department of Gynaecological Oncology, University Hospital Groningen, The Netherlands
| | | | | |
Collapse
|