1
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
2
|
Arnolds O, Stoll R. Characterization of a fold in TANGO1 evolved from SH3 domains for the export of bulky cargos. Nat Commun 2023; 14:2273. [PMID: 37080980 PMCID: PMC10119292 DOI: 10.1038/s41467-023-37705-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
Bulky cargos like procollagens, apolipoproteins, and mucins exceed the size of conventional COPII vesicles. During evolution a process emerged in metazoans, predominantly governed by the TANGO1 protein family, that organizes cargo at the exit sites of the endoplasmic reticulum and facilitates export by the formation of tunnel-like connections between the ER and Golgi. Hitherto, cargo-recognition appeared to be mediated by an SH3-like domain. Based on structural and dynamic data as well as interaction studies from NMR spectroscopy and microscale thermophoresis presented here, we show that the luminal cargo-recognition domain of TANGO1 adopts a new functional fold for which we suggest the term MOTH (MIA, Otoraplin, TALI/TANGO1 homology) domain. These MOTH domains, as well as an evolutionary intermediate found in invertebrates, constitute a distinct domain family that emerged from SH3 domains and acquired the ability to bind collagen.
Collapse
Affiliation(s)
- Oliver Arnolds
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum, Germany
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Kim YH, Beak SH, Charidimou A, Song M. Discovering New Genes in the Pathways of Common Sporadic Neurodegenerative Diseases: A Bioinformatics Approach. J Alzheimers Dis 2016; 51:293-312. [PMID: 26836166 DOI: 10.3233/jad-150769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Late onset Alzheimer's disease (AD) and Parkinson's disease (PD) are mostly "sporadic" age-related neurodegenerative disorders, but with a clear genetic component. However, their genetic architecture is complex and heterogeneous, largely remaining a conundrum, with only a handful of well-established genetic risk factors consistently associated with these diseases. It is possible that numerous, yet undiscovered, AD and PD related genes might exist. We focused on the 'gene' as a mediator to find new potential genes that might have a relationship with both disorders using bio-literature mining techniques. Based on Entrez Gene, we extracted the genes and directional gene-gene relation in the entire MEDLINE records and then constructed a directional gene-gene network. We identified common genes associated with two different but related diseases by performing shortest path analysis on the network. With our approach, we were able to identify and map already known genes that have a direct relationship with PD and AD. In addition, we identified 7 genes previously unknown to be a bridge between these two disorders. We confirmed 4 genes, ROS1, FMN1, ATP8A2, and SNORD12C, by biomedical literature and further checked 3 genes, ERVK-10, PRS, and C7orf49, that might have a high possibility to be related with both diseases. Additional experiments were performed to demonstrate the effectiveness of our proposed method. Comparing to the co-occurrence approach, our approach detected 25% more candidate genes and verified 10% more genes that have the relationship between both diseases than the co-occurrence approach did.
Collapse
Affiliation(s)
- Yong Hwan Kim
- Department of Library and Information Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Seung Han Beak
- Institute of Convergence, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Andreas Charidimou
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Min Song
- Department of Library and Information Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
4
|
Torktaz I, Behjati M, Rostami A. Phylogenetic analysis of otospiralin protein. Adv Biomed Res 2016; 5:41. [PMID: 27099854 PMCID: PMC4815520 DOI: 10.4103/2277-9175.178787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 05/26/2015] [Indexed: 11/15/2022] Open
Abstract
Background: Fibrocyte-specific protein, otospiralin, is a small protein, widely expressed in the central nervous system as neuronal cell bodies and glia. The increased expression of otospiralin in reactive astrocytes implicates its role in signaling pathways and reparative mechanisms subsequent to injury. Indeed, otospiralin is considered to be essential for the survival of fibrocytes of the mesenchymal nonsensory regions of the cochlea. It seems that other functions of this protein are not yet completely understood. Materials and Methods: Amino acid sequences of otospiralin from 12 vertebrates were derived from National Center for Biotechnology Information database. Phylogenetic analysis and phylogeny estimation were performed using MEGA 5.0.5 program, and neighbor-joining tree was constructed by this software. Results: In this computational study, the phylogenetic tree of otospiralin has been investigated. Therefore, dendrograms of otospiralin were depicted. Alignment performed in MUSCLE method by UPGMB algorithm. Also, entropy plot determined for a better illustration of amino acid variations in this protein. Conclusion: In the present study, we used otospiralin sequence of 12 different species and by constructing phylogenetic tree, we suggested out group for some related species.
Collapse
Affiliation(s)
- Ibrahim Torktaz
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohaddeseh Behjati
- Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Rostami
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
5
|
Kong B, Wu W, Valkovska N, Jäger C, Hong X, Nitsche U, Friess H, Esposito I, Erkan M, Kleeff J, Michalski CW. A common genetic variation of melanoma inhibitory activity-2 labels a subtype of pancreatic adenocarcinoma with high endoplasmic reticulum stress levels. Sci Rep 2015; 5:8109. [PMID: 25657029 PMCID: PMC4319175 DOI: 10.1038/srep08109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
HNF1 homeobox A (HNF1A)-mediated gene expression constitutes an essential component of the secretory pathway in the exocrine pancreas. Melanoma inhibitory activity 2 (MIA2), a protein facilitating protein secretion, is an HNF1A target. Protein secretion is precisely coordinated by the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) system. Here, we demonstrate that HNFA and MIA2 are expressed in a subset of human PDAC tissues and that HNF1A induced MIA2 in vitro. We identified a common germline variant of MIA2 (c.A617G: p.I141M) associated with a secretory defect of the MIA2 protein in PDAC cells. Patients carrying MIA2I141M survived longer after tumor resection but the survival benefit was restricted to those patients who received adjuvant chemotherapy. The MIA2I141M variant was associated with high expression of ER stress/UPR genes – in particular those of the ERN1/XBP arm – in human PDAC samples. Accordingly, PDAC cell lines expressing the MIA2I141M variant expressed high levels of ERN1 and were more sensitive to gemcitabine. These findings define an interaction between the common MIA2I141M variant and the ER stress/UPR system and specify a subgroup of PDAC patients who are more likely to benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Bo Kong
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Weiwei Wu
- Department of Surgery, Technische Universität München, Munich, Germany
| | | | - Carsten Jäger
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Xin Hong
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Mert Erkan
- Department of Surgery, Koc School of Medicine, Istanbul, Turkey
| | - Jörg Kleeff
- Department of Surgery, Technische Universität München, Munich, Germany
| | | |
Collapse
|
6
|
Katbamna B, Klutz N, Pudrith C, Lavery JP, Ide CF. Prenatal smoke exposure: effects on infant auditory system and placental gene expression. Neurotoxicol Teratol 2013; 38:61-71. [PMID: 23665419 DOI: 10.1016/j.ntt.2013.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/29/2022]
Abstract
Prenatal smoke exposure has been shown to change cochlear echo response amplitudes and auditory brainstem response (ABR) wave latencies in newborns. Since gene expression changes are often synchronized in different tissue types, the goal of the present work was to determine the relationships between prenatal smoke exposure induced changes in hearing responses with changes in placental gene expression. Results showed significant cotinine level elevations in mothers who smoked ≥10cigarettes/day during their pregnancy compared to no detectable cotinine in nonsmoking mothers. Cochlear echo response amplitudes in the 2-8kHz range and ABR wave latencies, specifically wave V and interpeak interval I-V, were also significantly reduced in newborns of smoking mothers. Functional pathway analysis of upregulated placental genes using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online software showed significant enrichment of terms associated with neurodevelopmental processes including glutamatergic and cholinergic systems and a number of wingless type proteins in the top two tiers with corrected enrichment p-values of ≤0.05. Other relevant functional pathways were significant at unadjusted enrichment p-values of 0.001-0.11 and included calcium signaling, neurotransmission/neurological processes and oxidative stress. The neurological process clusters included 7 genes (EML2, OTOR, SLC26A5, TBL1X, TECTA, USH1C and USH1G) known to modulate cochlear outer hair cell motility. We localized proteins encoded by the top two regulated genes, TBL1X and USH1C, using immunohistochemistry to placental stem and anchoring villi associated with active contractile function. These placental genes may mediate active contraction and relaxation in the placental villi, for example, during maternal-fetal perfusion matching, similar to the active lengthening and shortening of the cochlear outer hair cells during sensory transduction. Thus, the functional consequence of their alteration in the cochlea would be reflected as a decline in cochlear echoes as shown in this study. Such parallel changes suggest the potential utility of placental gene expression as a surrogate for evaluating changes in the developing cochlea related to potential aberrant cochlear function in newborns with prenatal smoke exposure.
Collapse
Affiliation(s)
- Bharti Katbamna
- Department of Speech Pathology and Audiology, Western Michigan University, Kalamazoo, MI 49008-5355, United States.
| | | | | | | | | |
Collapse
|
7
|
Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S. Intrinsic regenerative potential of murine cochlear supporting cells. Sci Rep 2011; 1:26. [PMID: 22355545 PMCID: PMC3216513 DOI: 10.1038/srep00026] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/17/2011] [Indexed: 12/17/2022] Open
Abstract
The lack of cochlear regenerative potential is the main cause for the permanence of hearing loss. Albeit quiescent in vivo, dissociated non-sensory cells from the neonatal cochlea proliferate and show ability to generate hair cell-like cells in vitro. Only a few non-sensory cell-derived colonies, however, give rise to hair cell-like cells, suggesting that sensory progenitor cells are a subpopulation of proliferating non-sensory cells. Here we purify from the neonatal mouse cochlea four different non-sensory cell populations by fluorescence-activated cell sorting (FACS). All four populations displayed proliferative potential, but only lesser epithelial ridge and supporting cells robustly gave rise to hair cell marker-positive cells. These results suggest that cochlear supporting cells and cells of the lesser epithelial ridge show robust potential to de-differentiate into prosensory cells that proliferate and undergo differentiation in similar fashion to native prosensory cells of the developing inner ear.
Collapse
Affiliation(s)
- Saku T Sinkkonen
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Comparison of Otoraplin Gene Expressions in Osteoblasts Grown on Fibronectin and GRGDSP Peptide-Coated Titanium Disks. ACTA ACUST UNITED AC 2009. [DOI: 10.5466/ijoms.7.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Bosserhoff AK. Melanoma inhibitory activity (MIA): an important molecule in melanoma development and progression. ACTA ACUST UNITED AC 2006; 18:411-6. [PMID: 16280006 DOI: 10.1111/j.1600-0749.2005.00274.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cutaneous malignant melanoma is the leading cause of skin cancer death in industrialized countries. Melanoma development and progression are well defined by clinical and histopathological aspects; however, detailed analysis of molecular changes is still ongoing. The protein MIA, which is strongly expressed in melanoma cells but not in melanocytes, is likely to represent a key molecule regulating melanoma progression. Consistent with this, several in vitro and in vivo model systems indicate a direct involvement of MIA in melanoma migration and invasion, with recent studies suggesting a central role for MIA in early melanoma development by regulating important melanoma-related pathways and molecules. The latest developments in MIA research are summarized in this review, which describes recently published data related to the MIA protein structure and function, the role of MIA in melanoma development and progression, and the regulation of MIA expression. Furthermore, newly discovered MIA-homologous genes are discussed.
Collapse
|
10
|
Delprat B, Ruel J, Guitton MJ, Hamard G, Lenoir M, Pujol R, Puel JL, Brabet P, Hamel CP. Deafness and cochlear fibrocyte alterations in mice deficient for the inner ear protein otospiralin. Mol Cell Biol 2005; 25:847-53. [PMID: 15632083 PMCID: PMC543414 DOI: 10.1128/mcb.25.2.847-853.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the cochlea, the mammalian auditory organ, fibrocytes of the mesenchymal nonsensory regions play important roles in cochlear physiology, including the maintenance of ionic and hydric components in the endolymph. Occurrence of human deafness in fibrocyte alterations underlines their critical roles in auditory function. We recently described a novel gene, Otos, which encodes otospiralin, a small protein of unknown function that is produced by the fibrocytes of the cochlea and vestibule. We now have generated mice with deletion of Otos and found that they show moderate deafness, with no frequency predominance. Histopathology revealed a degeneration of type II and IV fibrocytes, while hair cells and stria vascularis appeared normal. Together, these findings suggest that impairment of fibrocytes caused by the loss in otospiralin leads to abnormal cochlear physiology and auditory function. This moderate dysfunction may predispose to age-related hearing loss.
Collapse
Affiliation(s)
- Benjamin Delprat
- INSERM U.583, Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, Institut des Neurosciences de Montpellier, Hôpital Saint-Eloi, BP 74103, 80, rue Augustin Fliche, 34295 Montpellier cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bosserhoff AK, Moser M, Buettner R. Characterization and expression pattern of the novel MIA homolog TANGO. Gene Expr Patterns 2004; 4:473-9. [PMID: 15183315 DOI: 10.1016/j.modgep.2003.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 12/10/2003] [Accepted: 12/10/2003] [Indexed: 11/25/2022]
Abstract
A novel human gene, TANGO, encoding a MIA ('melanoma inhibitory activity') homologous protein was identified by a gene bank search. TANGO, together with the homologous genes MIA, OTOR (FPD, MIAL) and MIA2 define a novel gene family sharing important structural features, significant homology at both the nucleotide and protein level, and similar genomic organization. The four members share 34-45% amino acid identity and 47-59% cDNA sequence identity. TANGO encodes a mature protein of 103 amino acids in addition to a hydrophobic secretory signal sequence. Sequence homology confirms the highly conserved SH3 structure present also in MIA, OTOR and MIA2. Thus, it appears that there are a number of extracellular proteins with SH3-fold like structures. Interestingly, in situ hybridization, RT-PCR and Northern Blots revealed very broad TANGO expression patterns in contrast to the highly restricted expression patterns previously determined for the other members of the MIA gene family. The only cells lacking TANGO expression are cells belonging to the hematopoetic system. High levels of TANGO expression were observed both during embryogenesis and in adult tissues.
Collapse
Affiliation(s)
- A K Bosserhoff
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany.
| | | | | |
Collapse
|
12
|
Davies SR, Li J, Okazaki K, Sandell LJ. Tissue-restricted expression of the Cdrap/Mia gene within a conserved multigenic housekeeping locus. Genomics 2004; 83:667-78. [PMID: 15028289 DOI: 10.1016/j.ygeno.2003.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Accepted: 09/09/2003] [Indexed: 11/25/2022]
Abstract
The mouse cartilage-derived retinoic acid-sensitive protein (Cdrap/Mia) gene is expressed primarily in cartilage. Various promoter motifs that participate in restricted gene expression have been identified. To define mechanisms of regulation further, we determined the DNA sequence of 12 kb flanking this gene. We show that two genes, Snrpa and Rab4b, that have characteristics of housekeeping genes, including ubiquitous expression, closely flank Cdrap/Mia. We found the exon/intron structure and the organization of the gene locus to be conserved between the mouse and the human chromosomes, suggestive of functional relevance. DNase I hypersensitivity assays comparing expressing and nonexpressing cells indicate that the chromatin structure surrounding Cdrap/Mia is not greatly altered for transcription. The tissue-restricted expression of Cdrap/Mia, located between two housekeeping genes, provides a distinctive model for restricted transcriptional regulation from a multigenic locus.
Collapse
Affiliation(s)
- Sherri R Davies
- Department of Orthopaedic Surgery, Washington University at Barnes-Jewish Hospital, Mail Stop 90-34-674, 216 South Kingshighway, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Although gene expression profiling by microarray analysis is a useful tool for assessing global levels of transcriptional activity, variability associated with the data sets usually requires that observed differences be validated by some other method, such as real-time quantitative polymerase chain reaction (real-time PCR). However, non-specific amplification of non-target genes is frequently observed in the latter, confounding the analysis in approximately 40% of real-time PCR attempts when primer-specific labels are not used. Here we present an experimentally validated algorithm for the identification of transcript-specific PCR primers on a genomic scale that can be applied to real-time PCR with sequence-independent detection methods. An online database, PrimerBank, has been created for researchers to retrieve primer information for their genes of interest. PrimerBank currently contains 147 404 primers encompassing most known human and mouse genes. The primer design algorithm has been tested by conventional and real-time PCR for a subset of 112 primer pairs with a success rate of 98.2%.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Molecular Biology, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, USA
| | | |
Collapse
|
14
|
Fukao T, Matsuo N, Zhang GX, Urasawa R, Kubo T, Kohno Y, Kondo N. Single base substitutions at the initiator codon in the mitochondrial acetoacetyl-CoA thiolase (ACAT1/T2) gene result in production of varying amounts of wild-type T2 polypeptide. Hum Mutat 2003; 21:587-92. [PMID: 12754704 DOI: 10.1002/humu.10209] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Initiator codon mutations are relatively uncommon and less well characterized compared to other types of mutations. We identified a novel initiator codon mutation (c.2T>C) heterozygously in a Japanese patient (Patient GK30) with mitochondrial acetoacetyl-CoA thiolase (T2) gene deficiency (ACAT1 deficiency); c.149delC was on the other allele. We examined translation efficiencies of nine mutant T2 cDNAs harboring one-base substitutions at the initiator methionine codon using in vivo transient expression analysis. We found that all the mutants produced wild-type T2 polypeptide, to various degrees (wild type (100%) > c.1A>C (66%) > c.2T>C, c.3G>C, c.3G>T (22%) > c3G>A, c.1A>G (11%) > c.2T>A, c.2T>G, c.1A>T (7.4%)). T2 mRNA expression levels in Patient GK08 (a homozygote of c.2T>A) and Patient GK30 fibroblasts, respectively, were almost the same as in control fibroblasts, when examined using semiquantitative PCR. This means that initiator codon mutations did not affect T2 mRNA levels. We propose that all one-base substitutions at the initiator methionine codon in the T2 gene could be mutations, which retain some residual T2 activity.
Collapse
Affiliation(s)
- Toshiyuki Fukao
- Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Bosserhoff AK, Moser M, Schölmerich J, Buettner R, Hellerbrand C. Specific expression and regulation of the new melanoma inhibitory activity-related gene MIA2 in hepatocytes. J Biol Chem 2003; 278:15225-31. [PMID: 12586826 DOI: 10.1074/jbc.m212639200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The novel human gene MIA2 encoding a melanoma inhibitory activity (MIA) homologous protein was identified by a GenBank(TM) search. MIA2, together with MIA, OTOR, and TANGO, belongs to the novel MIA gene family sharing important structural features, significant homology at both the nucleotide and protein levels, and similar genomic organization. In situ hybridization, reverse transcriptase-PCR, and Northern blots presented a highly tissue-specific MIA2 expression pattern in the liver. Promoter studies analyzing transcriptional regulation of MIA2 revealed an HNF-1-binding site at position -236 controlling hepatocyte-specific expression. Mutation of the site led to a complete loss of promoter activity in HepG2 cell. Further sites detected in the MIA2 promoter were consensus binding sites for SMAD and STAT3, Consistently, stimulation of MIA2 mRNA expression occurred by treatment with interleukin-6, transforming growth factor-beta, and conditioned medium from activated hepatic stellate cells. In accordance with these results, MIA2 mRNA was found to be increased in liver tissue of patients with chronic hepatitis C infection compared with controls. MIA2 mRNA levels were significantly higher in patients with severe fibrosis or inflammation than in patients with less severe fibrosis or inflammation. In summary our data indicate that MIA2 represents a potential novel acute phase protein and MIA2 expression responds to liver damage. The increased transcription in more severe chronic liver disease suggests that MIA2 may serve as a marker of hepatic disease activity and severity.
Collapse
Affiliation(s)
- Anja K Bosserhoff
- Institute of Pathology and Department of Internal Medicine I, University of Regensburg, 93053 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
16
|
Stoll R, Renner C, Buettner R, Voelter W, Bosserhoff AK, Holak TA. Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implications for extended interactions of SH3 domains. Protein Sci 2003; 12:510-9. [PMID: 12592021 PMCID: PMC2312446 DOI: 10.1110/ps.0222603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The melanoma inhibitory activity (MIA) protein is a clinically valuable marker in patients with malignant melanoma as enhanced values diagnose metastatic melanoma stages III and IV. Here, we report the backbone dynamics of human MIA studied by (15)N NMR relaxation experiments. The folded core of human MIA is found to be rigid, but several loops connecting beta-sheets, such as the RT-loop for example, display increased mobility on picosecond to nanosecond time scales. One of the most important dynamic features is the pronounced flexibility of the distal loop, comprising residues Asp 68 to Ala 75, where motions on time scales up to milliseconds occur. Further, significant exchange contributions are observed for residues of the canonical binding site of SH3 domains including the RT-loop, the n-Src loop, for the loop comprising residues 13 to 19, which we refer to as the"disulfide loop", in part for the distal loop, and the carboxyl terminus of human MIA. The functional importance of this dynamic behavior is discussed with respect to the biological activity of several point mutations of human MIA. The results of this study suggest that the MIA protein and the recently identified highly homologous fibrocyte-derived protein (FDP)/MIA-like (MIAL) constitute a new family of secreted proteins that adopt an SH3 domain-like fold in solution with expanded ligand interactions.
Collapse
Affiliation(s)
- Raphael Stoll
- Max Planck Institute of Biochemistry, D-82152 München, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Hau P, Wise P, Bosserhoff AK, Blesch A, Jachimczak P, Tschertner I, Bogdahn U, Apfel R. Cloning and characterization of the expression pattern of a novel splice product MIA (splice) of malignant melanoma-derived growth-inhibiting activity (MIA/CD-RAP) [corrected]. J Invest Dermatol 2002; 119:562-9. [PMID: 12230496 DOI: 10.1046/j.1523-1747.2002.00501.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Melanoma-inhibiting activity/cartilage-derived retinoic acid-sensitive protein, a 11 kDa protein, is mainly expressed in cartilage during embryogenesis, and is related to invasion, metastasis, and immunomodulation of melanoma and glioma cells in vivo and in vitro. Here, we describe an alternative splice product of this gene termed melanoma-inhibiting activity (splice), lacking exon 2 of the original protein. A predicted frameshift by alternate splicing results in a unique C-terminal portion of the protein. Consistent with this, a protein migrating at the predicted molecular weight of the splice form (3.5 kDa) was detected using an N-terminal specific antibody. This band was undetectable when using a C-terminal specific antibody. In addition, we describe the expression pattern of melanoma-inhibiting activity (splice) in different human tumors. Expression was shown in tissue samples of five of six primary melanomas, 11 of 12 primary sites of metastatic melanomas, 10 of 10 systemic metastases of melanomas, four of four central nervous system metastases of melanomas, six of eight primary melanoma cultures, and five of five melanoma cell lines. Only a faint signal was obtained in tissue samples of five of six naevi. Interestingly, seven of eight nonmelanocytic tissue samples and five of seven glioma cell lines showed weak expression of melanoma-inhibiting activity (splice). Approaching first functional aspects, reverse transcriptase-polymerase chain reaction showed weak expression of melanoma-inhibiting activity (splice) in relation to melanoma-inhibiting activity in nonmelanocytic and strong expression in melanocytic cells. Staining with a specific anti-serum raised against a synthetic peptide resembling the amino acid sequence of melanoma-inhibiting activity (splice) showed a more nuclear staining pattern in comparison with melanoma-inhibiting activity. Furthermore, incubation of melanoma and glioma cell cultures with transforming growth factor-beta2 showed inverse regulation of the mRNA of melanoma-inhibiting activity and melanoma-inhibiting activity (splice), both suggesting also a different function within the physiologic role of this unique family of proteins. Melanoma-inhibiting activity (splice) has no homology to any other known protein so far. Whereas the biologic function of melanoma-inhibiting activity (splice) is not clear yet, it might provide a relevant diagnostic and therapeutic tool for malignant melanomas.
Collapse
Affiliation(s)
- Peter Hau
- Department of Neurology, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Mesenchymal nonsensory regions of the inner ear are important structures surrounding the neurosensory epithelium that are believed to participate in the ionic homeostasis of the cochlea and vestibule. We report here the discovery of otospiralin, an inner ear-specific protein that is produced by fibrocytes from these regions, including the spiral ligament and spiral limbus in the cochlea and the maculae and semicircular canals in the vestibule. Otospiralin is a novel 6.4 kDa protein of unknown function that shares a protein motif with the gag p30 core shell nucleocapsid protein of type C retroviruses. To evaluate its functional importance, we downregulated otospiralin by cochlear perfusion of antisense oligonucleotides in guinea pigs. This led to a rapid threshold elevation of the compound action potentials and irreversible deafness. Cochlear examination by transmission electron microscopy revealed hair cell loss and degeneration of the organ of Corti. This demonstrates that otospiralin is essential for the survival of the neurosensory epithelium.
Collapse
|