1
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
2
|
Coronel MM, Linderman SW, Martin KE, Hunckler MD, Medina JD, Barber G, Riley K, Yolcu ES, Shirwan H, García AJ. Delayed graft rejection in autoimmune islet transplantation via biomaterial immunotherapy. Am J Transplant 2023; 23:1709-1722. [PMID: 37543091 PMCID: PMC10837311 DOI: 10.1016/j.ajt.2023.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
The induction of operational immune tolerance is a major goal in beta-cell replacement strategies for the treatment of type 1 diabetes. Our group previously reported long-term efficacy via biomaterial-mediated programmed death ligand 1 (PD-L1) immunotherapy in islet allografts in nonautoimmune models. In this study, we evaluated autoimmune recurrence and allograft rejection during islet transplantation in spontaneous nonobese diabetic (NOD) mice. Graft survival and metabolic function were significantly prolonged over 60 days in recipients of syngeneic islets receiving the biomaterial-delivered immunotherapy, but not in control animals. The biomaterial-mediated PD-L1 immunotherapy resulted in delayed allograft rejection in diabetic NOD mice compared with controls. Discrimination between responders and nonresponders was attributed to the enriched presence of CD206+ program death 1+ macrophages and exhausted signatures in the cytotoxic T cell compartment in the local graft microenvironment. Notably, draining lymph nodes had similar remodeling in innate and adaptive immune cell populations. This work establishes that our biomaterial platform for PD-L1 delivery can modulate immune responses to transplanted islets in diabetic NOD mice and, thus, can provide a platform for the development of immunologic strategies to curb the allo- and autoimmune processes in beta-cell transplant recipients.
Collapse
Affiliation(s)
- María M Coronel
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen W Linderman
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael D Hunckler
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Juan D Medina
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Graham Barber
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kayle Riley
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Esma S Yolcu
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
3
|
Pearson JA, Peng J, Huang J, Yu X, Tai N, Hu Y, Sha S, Flavell RA, Zhao H, Wong FS, Wen L. NLRP6 deficiency expands a novel CD103 + B cell population that confers immune tolerance in NOD mice. Front Immunol 2023; 14:1147925. [PMID: 36911699 PMCID: PMC9995752 DOI: 10.3389/fimmu.2023.1147925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Gut microbiota have been linked to modulating susceptibility to Type 1 diabetes; however, there are many ways in which the microbiota interact with host cells, including through microbial ligand binding to intracellular inflammasomes (large multi-subunit proteins) to initiate immune responses. NLRP6, a microbe-recognizing inflammasome protein, is highly expressed by intestinal epithelial cells and can alter susceptibility to cancer, obesity and Crohn's disease; however, the role of NLRP6 in modulating susceptibility to autoimmune diabetes, was previously unknown. Methods We generated NLRP6-deficient Non-obese diabetic (NOD) mice to study the effect of NLRP6-deficiency on the immune cells and susceptibility to Type 1 diabetes development. Results NLRP6-deficient mice exhibited an expansion of CD103+ B cells and were protected from type 1 diabetes. Moreover, NLRP6-deficient CD103+ B cells express regulatory markers, secreted higher concentrations of IL-10 and TGFb1 cytokines and suppressed diabetogenic T cell proliferation, compared to NLRP6-sufficient CD103+ B cells. Microarray analysis of NLRP6-sufficient and -deficient CD103+ B cells identified 79 significantly different genes including genes regulated by lipopolysaccharide (LPS), tretinoin, IL-10 and TGFb, which was confirmed in vitro following LPS stimulation. Furthermore, microbiota from NLRP6-deficient mice induced CD103+ B cells in colonized NLRP6-sufficient germ-free mice; however, the long-term maintenance of the CD103+ B cells required the absence of NLRP6 in the hosts, or continued exposure to microbiota from NLRP6-deficient mice. Discussion Together, our data indicate that NLRP6 deficiency promotes expansion and maintenance of a novel TGF -dependent CD103+ Breg population. Thus, targeting NLRP6 therapeutically may prove clinically useful.
Collapse
Affiliation(s)
- James A. Pearson
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jian Peng
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Xiaoqing Yu
- Department of Bioinformatics & Data Science, School of Public Health, Yale University, New Haven, CT, United States
| | - Ningwen Tai
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Youjia Hu
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Sha Sha
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Richard A. Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Hongyu Zhao
- Department of Bioinformatics & Data Science, School of Public Health, Yale University, New Haven, CT, United States
| | - F. Susan Wong
- Department of Bioinformatics & Data Science, School of Public Health, Yale University, New Haven, CT, United States
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
4
|
Ye S, Hua S, Zhou M. Transient B-cell depletion and regulatory T-cells mediation in combination with adenovirus mediated IGF-1 prevents and reverses autoimmune diabetes in NOD mice. Autoimmunity 2022; 55:529-537. [PMID: 36226521 DOI: 10.1080/08916934.2022.2128782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type 1 diabetes (T1D) is one of the T cells mediated autoimmune diseases, although B cells also play an important role in the development. Both T cell and B cell targeted immunotherapies exhibited efficacies in preventing and reversing the T1D. Current study was performed to investigate the protective effects of anti-CD20/CD3 bi-specific antibody (bsAb) in combination with adenovirus mediated mouse insulin-like growth factor 1 (Adv-mIGF-1) gene on T1D in non-obese diabetes (NOD) mice. To simultaneously restore the proportion of Th cells and block the interaction of B cells as well as mediate T cell populations, the NOD model mice were randomly assigned to four groups received the saline, anti-CD20/CD3 bsAb and Adv-mIGF-1 gene alone or combination, respectively. After 16-consecutive weeks intervention, the ELISA, RT-PCR, western blot and histopathological analysis were performed to assess the pancreatic tissues and serum samples to evaluate the treatment effects. Chronic treatment of combination therapy improved T1D morbidity by improving the compartment and function of the CD4+Foxp3+ Tregs, reversing the secretion of insulin, controlling the blood glucose levels (BGLs) and alleviating insulitis as well as cell apoptosis in the NOD model mice. Moreover, current combination therapy also accelerated the proliferation and differentiation of pancreatic β cells via suppressing the apoptosis-related factors, including caspase-3, caspase-8 and Fas, and activating the Bcl-2-related anti-apoptotic pathway. Furthermore, the cytokeratin-19 (CK-19) and pancreatic duodenal homoplasmic box-1 (PDX-1), as two important stem cell markers of pancreas were both significantly improved by treatment of combination therapy. On conclusions, chronic treatment of anti-CD20/CD3 bsAb in combination with Adv-mIGF-1 gene exerts synergistic protection on T1D in the NOD mice.
Collapse
Affiliation(s)
- Shujun Ye
- Department of Pharmacy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, PR China
| | - Saimei Hua
- Department of Pharmacy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, PR China
| | - Meiyang Zhou
- Department of Nephrology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
5
|
B Cells and Microbiota in Autoimmunity. Int J Mol Sci 2021; 22:ijms22094846. [PMID: 34063669 PMCID: PMC8125537 DOI: 10.3390/ijms22094846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Trillions of microorganisms inhabit the mucosal membranes maintaining a symbiotic relationship with the host's immune system. B cells are key players in this relationship because activated and differentiated B cells produce secretory immunoglobulin A (sIgA), which binds commensals to preserve a healthy microbial ecosystem. Mounting evidence shows that changes in the function and composition of the gut microbiota are associated with several autoimmune diseases suggesting that an imbalanced or dysbiotic microbiota contributes to autoimmune inflammation. Bacteria within the gut mucosa may modulate autoimmune inflammation through different mechanisms from commensals ability to induce B-cell clones that cross-react with host antigens or through regulation of B-cell subsets' capacity to produce cytokines. Commensal signals in the gut instigate the differentiation of IL-10 producing B cells and IL-10 producing IgA+ plasma cells that recirculate and exert regulatory functions. While the origin of the dysbiosis in autoimmunity is unclear, compelling evidence shows that specific species have a remarkable influence in shaping the inflammatory immune response. Further insight is necessary to dissect the complex interaction between microorganisms, genes, and the immune system. In this review, we will discuss the bidirectional interaction between commensals and B-cell responses in the context of autoimmune inflammation.
Collapse
|
6
|
Sun L, Xi S, He G, Li Z, Gang X, Sun C, Guo W, Wang G. Two to Tango: Dialogue between Adaptive and Innate Immunity in Type 1 Diabetes. J Diabetes Res 2020; 2020:4106518. [PMID: 32802890 PMCID: PMC7415089 DOI: 10.1155/2020/4106518] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a long-term and chronic autoimmune disorder, in which the immune system attacks the pancreatic β-cells. Both adaptive and innate immune systems are involved in T1DM development. Both B-cells and T-cells, including CD4 + and CD8 + T-cells, as well as other T-cell subsets, could affect onset of autoimmunity. Furthermore, cells involved in innate immunity, including the macrophages, dendritic cells, and natural killer (NK) cells, could also accelerate or decelerate T1DM development. In this review, the crosstalk and function of immune cells in the pathogenesis of T1DM, as well as the corresponding therapeutic interventions, are discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Shugang Xi
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Guangyu He
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| |
Collapse
|
7
|
Chen K, Xue Q, Liu F, Liu L, Yu C, Bian G, Zhang K, Fang C, Song J, Ju G, Wang J. B lymphocytes expressing high levels of PD-L1 are key regulators of diabetes development in non-obese diabetic mice. Mol Immunol 2019; 114:289-298. [DOI: 10.1016/j.molimm.2019.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 01/13/2023]
|
8
|
Miani M, Le Naour J, Waeckel-Enée E, Verma SC, Straube M, Emond P, Ryffel B, van Endert P, Sokol H, Diana J. Gut Microbiota-Stimulated Innate Lymphoid Cells Support β-Defensin 14 Expression in Pancreatic Endocrine Cells, Preventing Autoimmune Diabetes. Cell Metab 2018; 28:557-572.e6. [PMID: 30017352 DOI: 10.1016/j.cmet.2018.06.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/19/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022]
Abstract
The gut microbiota is essential for the normal function of the gut immune system, and microbiota alterations are associated with autoimmune disorders. However, how the gut microbiota prevents autoimmunity in distant organs remains poorly defined. Here we reveal that gut microbiota conditioned innate lymphoid cells (ILCs) induce the expression of mouse β-defensin 14 (mBD14) by pancreatic endocrine cells, preventing autoimmune diabetes in the non-obese diabetic (NOD) mice. MBD14 stimulates, via Toll-like receptor 2, interleukin-4 (IL-4)-secreting B cells that induce regulatory macrophages, which in turn induce protective regulatory T cells. The gut microbiota-derived molecules, aryl hydrocarbon receptor (AHR) ligands and butyrate, promote IL-22 secretion by pancreatic ILCs, which induce expression of mBD14 by endocrine cells. Dysbiotic microbiota and low-affinity AHR allele explain the defective pancreatic expression of mBD14 observed in NOD mice. Our study reveals a yet unidentified crosstalk between ILCs and endocrine cells in the pancreas that is essential for the prevention of autoimmune diabetes development.
Collapse
Affiliation(s)
- Michela Miani
- Institut Necker-Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Universités, Paris, France
| | - Julie Le Naour
- Institut Necker-Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Universités, Paris, France
| | - Emmanuelle Waeckel-Enée
- Institut Necker-Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Universités, Paris, France
| | - Subash Chand Verma
- Institut Necker-Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Universités, Paris, France
| | - Marjolène Straube
- Sorbonne Universités, École Normale Supérieure, CNRS, INSERM, Assistance Publique Hopitaux de Paris (APHP) Laboratoire des Biomolécules (LBM), Paris, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; CHRU de Tours, Service de Médecine Nucléaire In Vitro, Tours, France
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-University of Orleans, 3B, Orleans, France; IDM, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Peter van Endert
- Institut Necker-Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Universités, Paris, France
| | - Harry Sokol
- Sorbonne Universités, École Normale Supérieure, CNRS, INSERM, Assistance Publique Hopitaux de Paris (APHP) Laboratoire des Biomolécules (LBM), Paris, France; Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France; Department of Gastroenterology, Saint Antoine Hospital, APHP, Paris, France
| | - Julien Diana
- Institut Necker-Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Universités, Paris, France.
| |
Collapse
|
9
|
Buckner JH, Greenbaum CJ. Stacking the Deck: Studies of Patients with Multiple Autoimmune Diseases Propelled Our Understanding of Type 1 Diabetes as an Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2017; 199:3011-3013. [DOI: 10.4049/jimmunol.1701299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Banday VS, Thyagarajan R, Lejon K. Contribution of both B-cell intrinsic alterations as well as non-hematopoietic-derived factors in the enhanced immune response of the NOD mouse. Autoimmunity 2017; 50:363-369. [PMID: 28686488 DOI: 10.1080/08916934.2017.1344977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The underlying cellular and molecular mechanism for the development of Type 1 diabetes is still to be fully revealed. We have previously demonstrated that the NOD mouse, a model for Type 1 diabetes, display a prolonged and enhanced immune response to both self and non-self-antigens. The molecular explanation for this defect however, has not been determined. In this study we immunized NOD and C57BL/6 (B6) with the conventional antigen i.e. hen egg lysozyme (HEL) and analyzed B cell activation, germinal center reaction and antibody clearance. Corroborating our previous observations NOD mice responded robustly to a single immunization of HEL. Immunofluorescence analysis of the spleen revealed an increased number of germinal centers in unimmunized NOD compared to B6. However, post immunization germinal center numbers were similar in NOD and B6. NOD mice showed lower response to BCR stimulation with anti-IgM, in particular at lower concentrations of anti-IgM. Antibody clearance in vivo did not differ between the strains. To determine the cell type that is responsible for the prolonged and enhance immune response, we reconstituted NOD-RAGs with cells from primed donors in different combinations. NOD B cells were required to reproduce the phenotype; however the non-lymphoid compartment of NOD origin also played a role. Based on our results we propose that preexisting GCs in the NOD promote the robust response and alteration in the BCR signaling could promote survival of stimulated cells. Overall, this mechanism could in turn also contribute to the activation and maintenance of autoreactive B cells in the NOD mouse.
Collapse
Affiliation(s)
- Viqar Showkat Banday
- a Department of Clinical Microbiology, Division of Immunology , Umeå University , Umeå , Sweden
| | - Radha Thyagarajan
- a Department of Clinical Microbiology, Division of Immunology , Umeå University , Umeå , Sweden
| | - Kristina Lejon
- a Department of Clinical Microbiology, Division of Immunology , Umeå University , Umeå , Sweden
| |
Collapse
|
11
|
Burrack AL, Martinov T, Fife BT. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:343. [PMID: 29259578 PMCID: PMC5723426 DOI: 10.3389/fendo.2017.00343] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Brian T. Fife,
| |
Collapse
|
12
|
Franks SE, Getahun A, Hogarth PM, Cambier JC. Targeting B cells in treatment of autoimmunity. Curr Opin Immunol 2016; 43:39-45. [PMID: 27718447 DOI: 10.1016/j.coi.2016.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/10/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023]
Abstract
B cells have emerged as effective targets for therapeutic intervention in autoimmunities in which the ultimate effectors are antibodies, as well as those in which T cells are primary drivers of inflammation. Proof of this principle has come primarily from studies of the efficacy of Rituximab, an anti-CD20 mAb that depletes B cells, in various autoimmune settings. These successes have inspired efforts to develop more effective anti-CD20s tailored for specific needs, as well as biologicals and small molecules that suppress B cell function without the risks inherent in B cell depletion. Here we review the current status of B cell-targeted therapies for autoimmunity.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, CO, USA
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, CO, USA; Department of Biomedical Research, National Jewish Health, Denver, CO, USA
| | - P Mark Hogarth
- Centre for Biomedicine, Burnet Institute, Melbourne, Vic., Australia; Department of Immunology, Monash University, Melbourne, Vic., Australia; Department of Pathology, University of Melbourne, Melbourne, Vic., Australia
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, CO, USA; Department of Biomedical Research, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
13
|
Banday VS, Thyagarajan R, Sundström M, Lejon K. Increased expression of TACI on NOD B cells results in germinal centre reaction anomalies, enhanced plasma cell differentiation and immunoglobulin production. Immunology 2016; 149:297-305. [PMID: 27444337 DOI: 10.1111/imm.12651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
B cells have an important pathogenic role in the development of type 1 diabetes in the non-obese diabetic (NOD) mouse. We have previously reported that NOD mice display an increased percentage of TACIhigh -expressing B cells compared with C57BL/6 mice and this trait is linked to chromosomes 1 and 8. In this paper the genetic association of the transmembrane activator, calcium modulator and cyclophilin ligand interactor (TACI) trait was confirmed using double congenic NOD.B6C1/Idd22 mice. TACI ligation by a proliferation-inducing ligand (APRIL) has been shown to influence plasma cell differentiation, immunoglobulin production and isotype switch. Hence, the functional consequence of the up-regulation of TACI on NOD B cells was analysed both in vitro and in vivo. NOD B cells stimulated with APRIL showed an enhanced plasma cell differentiation and class switch to IgG and IgA compared with B cells from C57BL/6 mice. Moreover, flow cytometry analyses revealed that germinal centre B cells in NOD failed to down-regulate TACI. Availability of the TACI ligand B-cell activating factor (BAFF) has been shown to be a limiting factor in the germinal centre reaction. In line with this, upon immunization with 4-hydroxy-3-nitrophenylacetyl hapten-conjugated hen egg lysozyme, NOD mice produced higher titres of low-affinity antibodies compared with C57BL/6 mice. This observation was supported by the detection of increased levels of BAFF in NOD germinal centres after immunization compared with C57BL/6 by immunofluorescence. Our results support the hypothesis that increased TACI expression on NOD B cells contributes to the pathogenesis of type 1 diabetes in the NOD mouse.
Collapse
Affiliation(s)
- Viqar S Banday
- Department of Clinical Microbiology, Division of Immunology, Umeå University, Umeå, Sweden
| | - Radha Thyagarajan
- Department of Clinical Microbiology, Division of Immunology, Umeå University, Umeå, Sweden
| | - Mia Sundström
- Department of Clinical Microbiology, Division of Immunology, Umeå University, Umeå, Sweden
| | - Kristina Lejon
- Department of Clinical Microbiology, Division of Immunology, Umeå University, Umeå, Sweden.
| |
Collapse
|
14
|
Wilson CS, Elizer SK, Marshall AF, Stocks BT, Moore DJ. Regulation of B lymphocyte responses to Toll-like receptor ligand binding during diabetes prevention in non-obese diabetic (NOD) mice. J Diabetes 2016; 8:120-31. [PMID: 25564999 PMCID: PMC4598313 DOI: 10.1111/1753-0407.12263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/12/2014] [Accepted: 12/23/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Interactions between genetic risk factors and the environment drive type 1 diabetes (T1D). The system of Toll-like receptors (TLR) detects these environmental triggers; however, the target cell that intermediates these interactions to drive T1D remains unknown. METHODS We investigated the effect of TLR pathway activation (myeloid differentiation primary response 88 [MyD88] vs TIR-domain-containing adapter-inducing interferon-β [TRIF]) on B cell subsets via flow cytometry, including their activation, survival, proliferation, and cytoskeletal mobilization. The effect of polyinosinic-polycytidylic acid (poly(I:C)) on diabetes development was addressed, including the B cell-dependent activation of diabetes-protective DX5+ cells, using genetic models and adoptive transfer. RESULTS B lymphocytes from non-obese diabetic (NOD) mice expressed enhanced levels of TLR-responsive proteins. Ex vivo analysis of B lymphocyte subsets demonstrated that TLR3 stimulation via TRIF deletes cells exhibiting a marginal zone phenotype, whereas MyD88-dependent ligands enhance their survival. In vivo, marginal zone B cells were activated by poly(I:C) and were unexpectedly retained in the spleen of NOD mice, in contrast with the mobilization of these cells in non-autoimmune mice, a phenotype we traced to defective actin cytoskeletal dynamics. These activated B cells mediated TLR3-induced diabetes protection. CONCLUSIONS Immunotherapies must account for both B cell location and activation, and these properties may differ in autoimmune and healthy settings.
Collapse
Affiliation(s)
- Christopher S. Wilson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, School of Medicine, 1161 21st Ave South. Nashville, TN 37232-2363
| | - Sydney K. Elizer
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University, School of Medicine, 2200 Children's Way. Nashville, TN 37232-2363
| | - Andrew F. Marshall
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University, School of Medicine, 2200 Children's Way. Nashville, TN 37232-2363
| | - Blair T. Stocks
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, School of Medicine, 1161 21st Ave South. Nashville, TN 37232-2363
- Vanderbilt Medical Scientist Training Program
| | - Daniel J. Moore
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, School of Medicine, 1161 21st Ave South. Nashville, TN 37232-2363
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University, School of Medicine, 2200 Children's Way. Nashville, TN 37232-2363
| |
Collapse
|
15
|
Carrascal J, Carrillo J, Arpa B, Egia-Mendikute L, Rosell-Mases E, Pujol-Autonell I, Planas R, Mora C, Mauricio D, Ampudia RM, Vives-Pi M, Verdaguer J. B-cell anergy induces a Th17 shift in a novel B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse. Eur J Immunol 2015; 46:593-608. [PMID: 26639224 DOI: 10.1002/eji.201445376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 11/09/2015] [Accepted: 12/01/2015] [Indexed: 11/06/2022]
Abstract
Autoreactive B lymphocytes play a key role as APCs in diaebetogenesis. However, it remains unclear whether B-cell tolerance is compromised in NOD mice. Here, we describe a new B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse, where the transgenes derive from an islet-infiltrating B lymphocyte of a (8.3-NODxNOR) F1 mouse. The 116C-NOD mouse produces clonal B lymphocytes with pancreatic islet beta cell specificity. The incidence of T1D in 116C-NOD mice is decreased in both genders when compared with NOD mice. Moreover, several immune selection mechanisms (including clonal deletion and anergy) acting on the development, phenotype, and function of autoreactive B lymphocytes during T1D development have been identified in the 116C-NOD mouse. Surprisingly, a more accurate analysis revealed that, despite their anergic phenotype, 116C B cells express some costimulatory molecules after activation, and induce a T-cell shift toward a Th17 phenotype. Furthermore, this shift on T lymphocytes seems to occur not only when both T and B cells contact, but also when helper T (Th) lineage is established. The 116C-NOD mouse model could be useful to elucidate the mechanisms involved in the generation of Th-cell lineages.
Collapse
Affiliation(s)
- Jorge Carrascal
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Jorge Carrillo
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Berta Arpa
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Leire Egia-Mendikute
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Estela Rosell-Mases
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Irma Pujol-Autonell
- Immunology Department, Institut d'Investigacio Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Raquel Planas
- Immunology Department, Institut d'Investigacio Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Conchi Mora
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Dídac Mauricio
- Department of Endocrinology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Maria Ampudia
- Immunology Department, Institut d'Investigacio Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Marta Vives-Pi
- Immunology Department, Institut d'Investigacio Germans Trias i Pujol, Badalona, Barcelona, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Pearson JA, Wong FS, Wen L. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun 2015; 66:76-88. [PMID: 26403950 DOI: 10.1016/j.jaut.2015.08.019] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
Abstract
Type 1 Diabetes (T1D) is an autoimmune disease characterized by the pancreatic infiltration of immune cells resulting in T cell-mediated destruction of the insulin-producing beta cells. The successes of the Non-Obese Diabetic (NOD) mouse model have come in multiple forms including identifying key genetic and environmental risk factors e.g. Idd loci and effects of microorganisms including the gut microbiota, respectively, and how they may contribute to disease susceptibility and pathogenesis. Furthermore, the NOD model also provides insights into the roles of the innate immune cells as well as the B cells in contributing to the T cell-mediated disease. Unlike many autoimmune disease models, the NOD mouse develops spontaneous disease and has many similarities to human T1D. Through exploiting these similarities many targets have been identified for immune-intervention strategies. Although many of these immunotherapies did not have a significant impact on human T1D, they have been shown to be effective in the NOD mouse in early stage disease, which is not equivalent to trials in newly-diagnosed patients with diabetes. However, the continued development of humanized NOD mice would enable further clinical developments, bringing T1D research to a new translational level. Therefore, it is the aim of this review to discuss the importance of the NOD model in identifying the roles of the innate immune system and the interaction with the gut microbiota in modifying diabetes susceptibility. In addition, the role of the B cells will also be discussed with new insights gained through B cell depletion experiments and the impact on translational developments. Finally, this review will also discuss the future of the NOD mouse and the development of humanized NOD mice, providing novel insights into human T1D.
Collapse
Affiliation(s)
- James A Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F Susan Wong
- Diabetes Research Group, Institute of Molecular & Experimental Medicine, School of Medicine, Cardiff University, Wales, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
17
|
Diabetes and Tryptophan Metabolism. TRYPTOPHAN METABOLISM: IMPLICATIONS FOR BIOLOGICAL PROCESSES, HEALTH AND DISEASE 2015. [DOI: 10.1007/978-3-319-15630-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Hinman RM, Smith MJ, Cambier JC. B cells and type 1 diabetes ...in mice and men. Immunol Lett 2014; 160:128-32. [PMID: 24472603 DOI: 10.1016/j.imlet.2014.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/14/2014] [Indexed: 12/25/2022]
Abstract
Nearly 70% of newly produced B cells express autoreactive antigen receptors and must be silenced to prevent autoimmunity. Failure of silencing mechanisms is apparent in type 1 diabetes (T1D), where islet antigen-specific B cells appear critical for development of disease. Evidence for a B cell role in T1D includes success of B cell targeted anti-CD20 therapy, which delays T1D progression in both NOD mice and new onset patients. Demonstrating the importance of specificity, NOD mice whose B cell repertoire is biased toward insulin reactivity show increased disease development, while bias away from insulin reactivity largely prevents disease. Finally, though not required for illness, high affinity insulin autoantibodies are often the first harbingers of T1D. B cell cytokine production and auto-antigen presentation to self-reactive T cells are likely important in pathogenesis. Here we review B cell function, as described above, in T1D in humans and the non-obese diabetic (NOD) mouse. We will discuss recent broad-based B cell depletion studies and how they may provide the basis for refinement of future treatments for the disorder.
Collapse
Affiliation(s)
- Rochelle M Hinman
- University of Colorado Denver and National Jewish Health, Denver, CO, United States.
| | - Mia J Smith
- University of Colorado Denver and National Jewish Health, Denver, CO, United States.
| | - John C Cambier
- University of Colorado Denver and National Jewish Health, Denver, CO, United States; Department of Immunology, National Jewish Health, Rm 803A, Goodman Building, 1400 Jackson Street, Denver, CO 80206, United States.
| |
Collapse
|
19
|
Ziegler AI, Le Page MA, Maxwell MJ, Stolp J, Guo H, Jayasimhan A, Hibbs ML, Santamaria P, Miller JF, Plebanski M, Silveira PA, Slattery RM. The CD19 signalling molecule is elevated in NOD mice and controls type 1 diabetes development. Diabetologia 2013; 56:2659-68. [PMID: 24013782 DOI: 10.1007/s00125-013-3038-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/08/2013] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is characterised by early peri-islet insulitis and insulin autoantibodies, followed by invasive insulitis and beta cell destruction. The immunological events that precipitate invasive insulitis are not well understood. We tested the hypothesis that B cells in diabetes-prone NOD mice drive invasive insulitis through elevated expression of CD19 and consequent enhanced uptake and presentation of beta cell membrane-bound antigens to islet invasive T cells. METHODS CD19 expression and signalling pathways in B cells from NOD and control mice were compared. Expansion of CD8(+) T cells specific for insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) were compared in CD19-deficient and wild-type NOD mice and this was correlated with insulitis severity. The therapeutic potential of anti-CD19 treatment during the period of T cell activation was assessed for its ability to block invasive insulitis. RESULTS CD19 expression and signalling in B cells was increased in NOD mice. CD19 deficiency significantly diminished the expansion of CD8(+) T cells with specificity for the membrane-bound beta cell antigen, IGRP. Conversely the reduction in CD8(+) T cells with specificity for the soluble beta cell antigen, insulin, was relatively small and not significant. CONCLUSIONS/INTERPRETATION Elevated CD19 on NOD B cells promotes presentation of the membrane-bound antigen, IGRP, mediating the expansion of autoreactive T cells specific for antigens integral to beta cells, which are critical for invasive insulitis and diabetes. Downregulating the CD19 signalling pathway in insulin autoantibody-positive individuals before the development of type 1 diabetes may prevent expansion of islet-invasive T cells and preserve beta cell mass.
Collapse
Affiliation(s)
- Alexandra I Ziegler
- Department of Immunology, Monash University, AMREP building, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Advances in our understanding of the pathophysiology of Type 1 diabetes: lessons from the NOD mouse. Clin Sci (Lond) 2013; 126:1-18. [PMID: 24020444 DOI: 10.1042/cs20120627] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T1D (Type 1 diabetes) is an autoimmune disease caused by the immune-mediated destruction of pancreatic β-cells. Studies in T1D patients have been limited by the availability of pancreatic samples, a protracted pre-diabetic phase and limitations in markers that reflect β-cell mass and function. The NOD (non-obese diabetic) mouse is currently the best available animal model of T1D, since it develops disease spontaneously and shares many genetic and immunopathogenic features with human T1D. Consequently, the NOD mouse has been extensively studied and has made a tremendous contribution to our understanding of human T1D. The present review summarizes the key lessons from NOD mouse studies concerning the genetic susceptibility, aetiology and immunopathogenic mechanisms that contribute to autoimmune destruction of β-cells. Finally, we summarize the potential and limitations of immunotherapeutic strategies, successful in NOD mice, now being trialled in T1D patients and individuals at risk of developing T1D.
Collapse
|
21
|
Brezar V, Carel JC, Boitard C, Mallone R. Beyond the hormone: insulin as an autoimmune target in type 1 diabetes. Endocr Rev 2011; 32:623-69. [PMID: 21700723 DOI: 10.1210/er.2011-0010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin is not only the hormone produced by pancreatic β-cells but also a key target antigen of the autoimmune islet destruction leading to type 1 diabetes. Despite cultural biases between the fields of endocrinology and immunology, these two facets should not be regarded separately, but rather harmonized in a unifying picture of diabetes pathogenesis. There is increasing evidence suggesting that metabolic factors (β-cell dysfunction, insulin resistance) and immunological components (inflammation and β-cell-directed adaptive immune responses) may synergize toward islet destruction, with insulin standing at the crossroad of these pathways. This concept further calls for a revision of the classical dichotomy between type 1 and type 2 diabetes because metabolic and immune mechanisms may both contribute to different extents to the development of different forms of diabetes. After providing a background on the mechanisms of β-cell autoimmunity, we will explain the role of insulin and its precursors as target antigens expressed not only by β-cells but also in the thymus. Available knowledge on the autoimmune antibody and T-cell responses against insulin will be summarized. A unifying scheme will be proposed to show how different aspects of insulin biology may lead to β-cell destruction and may be therapeutically exploited. We will argue about possible reasons why insulin remains the mainstay of metabolic control in type 1 diabetes but has so far failed to prevent or halt β-cell autoimmunity as an immune modulatory reagent.
Collapse
Affiliation(s)
- Vedran Brezar
- Institut National de la Santé et de la Recherche Médicale, Unité 986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, and Paris Descartes University, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Roberto Mallone
- INSERM, U986, DeAR Lab Avenir, Cochin-Saint Vincent de Paul Hospital, Paris, France.
| | | |
Collapse
|
23
|
Chamberlain JL, Attridge K, Wang CJ, Ryan GA, Walker LSK. B cell depletion in autoimmune diabetes: insights from murine models. Expert Opin Ther Targets 2011; 15:703-14. [PMID: 21366498 PMCID: PMC3997824 DOI: 10.1517/14728222.2011.561320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The incidence of type 1 diabetes (T1D) is rising for reasons that largely elude us. New strategies aimed at halting the disease process are needed. One type of immune cell thought to contribute to T1D is the B lymphocyte. The first Phase II trial of B cell depletion in new onset T1D patients indicated that this slowed the destruction of insulin-producing pancreatic beta cells. The mechanistic basis of the beneficial effects remains unclear. AREAS COVERED Studies of B cell depletion and deficiency in animal models of T1D. How B cells can influence T cell-dependent autoimmune diabetes in animal models. The heterogeneity of B cell populations and current evidence for the potential contribution of specific B cell subsets to diabetes, with emphasis on marginal zone B cells and B1 B cells. EXPERT OPINION B cells can influence the T cell response to islet antigens and B cell depletion or genetic deficiency is associated with decreased insulitis in animal models. New evidence suggests that B1 cells may contribute to diabetes pathogenesis. A better understanding of the roles of individual B cell subsets in disease will permit fine-tuning of therapeutic strategies to modify these populations.
Collapse
Affiliation(s)
- Jayne L Chamberlain
- University of Birmingham Medical School, School of Immunity & Infection, IBR Building, Birmingham B15 2TT, UK
| | - Kesley Attridge
- University of Birmingham Medical School, School of Immunity & Infection, IBR Building, Birmingham B15 2TT, UK
| | - Chun Jing Wang
- University of Birmingham Medical School, School of Immunity & Infection, IBR Building, Birmingham B15 2TT, UK
| | - Gemma A Ryan
- University of Birmingham Medical School, School of Immunity & Infection, IBR Building, Birmingham B15 2TT, UK
| | - Lucy SK Walker
- University of Birmingham Medical School, Medical Research Council Center for Immune Regulation, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Lv H, Havari E, Pinto S, Gottumukkala RVSRK, Cornivelli L, Raddassi K, Matsui T, Rosenzweig A, Bronson RT, Smith R, Fletcher AL, Turley SJ, Wucherpfennig K, Kyewski B, Lipes MA. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest 2011; 121:1561-73. [PMID: 21436590 DOI: 10.1172/jci44583] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/19/2011] [Indexed: 01/25/2023] Open
Abstract
Autoimmunity has long been linked to myocarditis and its sequela, dilated cardiomyopathy, the leading causes of heart failure in young patients. However, the underlying mechanisms are poorly defined, with most clinical investigations focused on humoral autoimmunity as the target for intervention. Here, we show that the α-isoform of myosin heavy chain (α-MyHC, which is encoded by the gene Myh6) is the pathogenic autoantigen for CD4+ T cells in a spontaneous mouse model of myocarditis. Further, we found that Myh6 transcripts were absent in mouse medullary thymic epithelial cells (mTECs) and peripheral lymphoid stromal cells, which have been implicated in mediating central and peripheral T cell tolerance, respectively. Transgenic expression of α-MyHC in thymic epithelium conferred tolerance to cardiac myosin and prevented myocarditis, demonstrating that α-MyHC is a primary autoantigen in this disease process. Remarkably, we found that humans also lacked α-MyHC in mTECs and had high frequencies of α-MyHC-specific T cells in peripheral blood, with markedly augmented T cell responses to α-MyHC in patients with myocarditis. Since α-MyHC constitutes a small fraction of MyHC in human heart, these findings challenge the longstanding notion that autoimmune targeting of MyHC is due to its cardiac abundance and instead suggest that it is targeted as a result of impaired T cell tolerance mechanisms. These results thus support a role for T cell-specific therapies for myocarditis.
Collapse
Affiliation(s)
- Huijuan Lv
- Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Okazaki T, Okazaki IM, Wang J, Sugiura D, Nakaki F, Yoshida T, Kato Y, Fagarasan S, Muramatsu M, Eto T, Hioki K, Honjo T. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. ACTA ACUST UNITED AC 2011; 208:395-407. [PMID: 21300912 PMCID: PMC3039848 DOI: 10.1084/jem.20100466] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new mouse model of spontaneous autoimmune disease reveals an important role for the inhibitory co-receptor LAG-3 in suppressing autoimmunity. Stimulatory and inhibitory co-receptors play fundamental roles in the regulation of the immune system. We describe a new mouse model of spontaneous autoimmune disease. Activation-induced cytidine deaminase–linked autoimmunity (aida) mice harbor a loss-of-function mutation in the gene encoding lymphocyte activation gene 3 (LAG-3), an inhibitory co-receptor. Although LAG-3 deficiency alone did not induce autoimmunity in nonautoimmune-prone mouse strains, it induced lethal myocarditis in BALB/c mice deficient for the gene encoding the inhibitory co-receptor programmed cell death 1 (PD-1). In addition, LAG-3 deficiency alone accelerated type 1 diabetes mellitus in nonobese diabetic mice. These results demonstrate that LAG-3 acts synergistically with PD-1 and/or other immunoregulatory genes to prevent autoimmunity in mice.
Collapse
Affiliation(s)
- Taku Okazaki
- Division of Immune Regulation, Institute for Genome Research, University of Tokushima, Kuramoto, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cox SL, Silveira PA. Emerging roles for B lymphocytes in Type 1 diabetes. Expert Rev Clin Immunol 2010; 5:311-24. [PMID: 20477009 DOI: 10.1586/eci.09.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Self-reactive B lymphocytes play two main pathological roles in autoimmune diseases: as secretors of autoantibodies and as specialized antigen-presenting cells that present self-components to autoreactive T lymphocytes. In recognition of these roles, recent clinical trials have utilized B-lymphocyte-depleting monoclonal antibodies to treat various autoimmune diseases, with encouraging results in those where humoral autoimmunity is clearly important. Surprisingly, recent results in animal models suggest that B-lymphocyte depletion may also be effective in the treatment of T-lymphocyte-mediated autoimmune diseases, such as Type 1 diabetes (T1D). This article reviews the experimental evidence that has uncovered pathogenic as well as regulatory roles for B lymphocytes in the prodrome of T1D and how this information is being used to develop novel therapeutic strategies to treat the disease.
Collapse
Affiliation(s)
- S Lewis Cox
- Immunology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
27
|
Xu B, Cook RE, Michie SA. Alpha4beta7 integrin/MAdCAM-1 adhesion pathway is crucial for B cell migration into pancreatic lymph nodes in nonobese diabetic mice. J Autoimmun 2010; 35:124-9. [PMID: 20488663 DOI: 10.1016/j.jaut.2010.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/13/2010] [Accepted: 04/23/2010] [Indexed: 01/21/2023]
Abstract
Although B cells are crucial antigen-presenting cells in the initiation of T cell autoimmunity to islet beta cell autoantigens in type 1 diabetes (T1D), adhesion molecules that control migration of B cells into pancreatic lymph nodes (PanLN) in the nonobese diabetic (NOD) mouse model of human T1D have not been defined. In this study, we found that B cells from PanLN of 3-4-week-old female NOD mice expressed high levels of alpha(4) integrin and LFA-1 and intermediate levels of beta(7) integrin; half of B cells were L-selectin(high). In short-term in vivo lymphocyte migration assays, B cells migrated from the bloodstream into PanLN more efficiently than into peripheral LNs. Moreover, antibodies to mucosal addressin cell adhesion molecule 1 (MAdCAM-1) and alpha(4)beta(7) integrin inhibited >90% of B cell migration into PanLN. In contrast, antibodies to peripheral node addressin, L-selectin or LFA-1 partially inhibited B cell migration into PanLN. Furthermore, one intraperitoneal injection of anti-MAdCAM-1 antibody into 3-week-old NOD mice significantly inhibited entry of B cells into PanLN for at least 2 weeks. Taken together, these results indicate that the alpha(4)beta(7) integrin/MAdCAM-1 adhesion pathway plays a predominant role in migration of B cells into PanLN in NOD mice. Thus, specific blockage of alpha(4)beta(7) integrin/MAdCAM-1 adhesion pathway-mediated B cell migration may be a potential treatment for T1D.
Collapse
Affiliation(s)
- Baohui Xu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5176, USA.
| | | | | |
Collapse
|
28
|
Abstract
IMPORTANCE OF THE FIELD Type 1 diabetes mellitus (T1D) is a T-cell mediated autoimmune disease with selective destruction of beta cells. Immunological interventions are directed at arresting the loss of beta-cell function with the promise that this will make it easier for patients to control their glucose levels. AREAS COVERED IN THIS REVIEW This review provides a summary of the preclinical and clinical research published between 1992 and 2009 using teplizumab and other anti-CD3 antibodies to arrest the loss of beta-cell function in new onset T1D. Data from animal and human studies on the probable mechanism of action of teplizumab are also reviewed. WHAT THE READER WILL GAIN A broad perspective on the use of teplizumab in inducing disease specific tolerance. TAKE HOME MESSAGE In Phase I/II randomized control trials, in patients with new onset T1D, teplizumab slowed the rate of loss of beta-cell function over 2 years of follow-up. Treated patients had better glycemic control and lower insulin requirements. Adverse events so far are mild and of limited duration. Phase III clinical trials are underway to confirm these results and to determine if two courses of drug have greater efficacy in arresting loss of beta-cell function.
Collapse
Affiliation(s)
- Umesh B Masharani
- Division of Endocrinology and Metabolism, Department of Medicine, University of California-San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | |
Collapse
|
29
|
Driver JP, Serreze DV, Chen YG. Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 2010; 33:67-87. [DOI: 10.1007/s00281-010-0204-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/18/2010] [Indexed: 01/12/2023]
|
30
|
Accounting for chance in the calculus of autoimmune disease. Med Hypotheses 2010; 74:289-93. [DOI: 10.1016/j.mehy.2009.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/06/2009] [Indexed: 11/18/2022]
|
31
|
Affiliation(s)
- Susan H. Smith
- Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | - Thomas F. Tedder
- Department of Immunology, Duke University Medical Center, Durham, North Carolina
- Corresponding author: Thomas F. Tedder,
| |
Collapse
|
32
|
Coffey LCK, Berman DM, Willman MA, Kenyon NS. Immune cell populations in nonhuman primate islets. Cell Transplant 2009; 18:1213-22. [PMID: 19650973 DOI: 10.3727/096368909x12483162196728] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Islet transplantation is a promising cellular therapy for the treatment of type 1 diabetes (T1D). The immunogenicity of isolated islets has been of interest to the transplant community for many years, as upon transplantation, islets are damaged or destroyed through specific and nonspecific inflammatory and immune events. Antigen presenting cells (APC) are crucial intermediates in the generation of both innate and specific immune responses, and it has long been understood that some APC are resident in islets in situ, as well as after isolation. Our aim was to identify and characterize intraislet resident populations of APC and other immune cells in islets from nonhuman primates (Macaca fascicularis) in situ (pancreas biopsies obtained prerecovery) and after isolation using immunohistochemistry, confocal microscopy, and flow cytometry. The numbers of cells obtained in situ are similar to those in islets postisolation. Each isolated islet equivalent contains an average of 21.8 immune cells, 14.7 (67%) of which are APC. Many of these APC are dentritic cells and, surprisingly, 50% are B lymphocytes. The number of islet-resident immune cells increases with islet size, with greater numbers in large versus small islets (p < 0.001). The APC were localized around the exterior or spread evenly throughout the islets, with no definitive orientation identified. This knowledge will be useful to develop tailored modulation strategies to decrease immunogenicity, enhance engraftment, and ultimately prevent islet rejection.
Collapse
Affiliation(s)
- Lane C K Coffey
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
33
|
Dufour FD, Baxter AG, Silveira PA. Interactions between B-Lymphocytes and Type 1 NKT Cells in Autoimmune Diabetes. J Immunotoxicol 2008; 5:249-57. [DOI: 10.1080/15476910802131543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
34
|
Xiu Y, Wong CP, Bouaziz JD, Hamaguchi Y, Wang Y, Pop SM, Tisch RM, Tedder TF. B lymphocyte depletion by CD20 monoclonal antibody prevents diabetes in nonobese diabetic mice despite isotype-specific differences in Fc gamma R effector functions. THE JOURNAL OF IMMUNOLOGY 2008; 180:2863-75. [PMID: 18292508 DOI: 10.4049/jimmunol.180.5.2863] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NOD mice deficient for B lymphocytes from birth fail to develop autoimmune or type 1 diabetes. To assess whether B cell depletion influences type 1 diabetes in mice with an intact immune system, NOD female mice representing early and late preclinical stages of disease were treated with mouse anti-mouse CD20 mAbs. Short-term CD20 mAb treatment in 5-wk-old NOD female mice reduced B cell numbers by approximately 95%, decreased subsequent insulitis, and prevented diabetes in >60% of littermates. In addition, CD20 mAb treatment of 15-wk-old NOD female mice significantly delayed, but did not prevent, diabetes onset. Protection from diabetes did not result from altered T cell numbers or subset distributions, or regulatory/suppressor T cell generation. Rather, impaired CD4+ and CD8+ T cell activation in the lymph nodes of B cell-depleted NOD mice may delay diabetes onset. B cell depletion was achieved despite reduced sensitivity of NOD mice to CD20 mAbs compared with C57BL/6 mice. Decreased B cell depletion resulted from deficient FcgammaRI binding of IgG2a/c CD20 mAbs and 60% reduced spleen monocyte numbers, which in combination reduced Ab-dependent cellular cytotoxicity. With high-dose CD20 mAb treatment (250 microg) in NOD mice, FcgammaRIII and FcgammaRIV compensated for inadequate FcgammaRI function and mediated B cell depletion. Thereby, NOD mice provide a model for human FcgammaR polymorphisms that reduce therapeutic mAb efficacy in vivo. Moreover, this study defines a new, clinically relevant approach whereby B cell depletion early in the course of disease development may prevent diabetes or delay progression of disease.
Collapse
Affiliation(s)
- Yan Xiu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bour-Jordan H, Salomon BL, Thompson HL, Santos R, Abbas AK, Bluestone JA. Constitutive expression of B7-1 on B cells uncovers autoimmunity toward the B cell compartment in the nonobese diabetic mouse. THE JOURNAL OF IMMUNOLOGY 2007; 179:1004-12. [PMID: 17617592 DOI: 10.4049/jimmunol.179.2.1004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NOD mouse is an invaluable model for the study of autoimmune diabetes. Furthermore, although less appreciated, NOD mice are susceptible to other autoimmune diseases that can be differentially manifested by altering the balance of T cell costimulatory pathways. In this study, we show that constitutively expressing B7-1 on B cells (NOD-B7-1B-transgenic mice) resulted in reduced insulitis and completely protected NOD mice from developing diabetes. Furthermore, B7-1 expression led to a dramatic reduction of the B cell compartment due to a selective deletion of follicular B cells in the spleen, whereas marginal zone B cells were largely unaffected. B cell depletion was dependent on B cell specificity, mediated by CD8(+) T cells, and occurred exclusively in the autoimmune-prone NOD background. Our results suggest that B cell deletion was a consequence of the specific activation of autoreactive T cells directed at peripheral self Ags presented by maturing B cells that expressed B7-1 costimulatory molecules. This study underscores the importance of B7 costimulatory molecules in controlling the amplitude and target of autoimmunity in genetically prone individuals and has important implications in the use of costimulatory pathway antagonists in the treatment of human autoimmune diseases.
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- University of California, San Francisco Diabetes Center, Department of Medicine, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
36
|
Puertas MC, Carrillo J, Pastor X, Ampudia RM, Alba A, Planas R, Pujol-Borrell R, Vives-Pi M, Verdaguer J. Phenotype and functional characteristics of islet-infiltrating B-cells suggest the existence of immune regulatory mechanisms in islet milieu. Diabetes 2007; 56:940-9. [PMID: 17395741 DOI: 10.2337/db06-0428] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cells participate in the autoimmune response that precedes the onset of type 1 diabetes, but how these cells contribute to disease progression is unclear. In this study, we analyzed the phenotype and functional characteristics of islet-infiltrating B-cells in the diabetes-prone NOD mouse and in the insulitis-prone but diabetes-resistant (NOD x NOR)F1 mouse. The results indicate that B-cells accumulate in the islets of both mice influenced by sex traits. Phenotypically and functionally, these B-cells are highly affected by the islet inflammatory milieu, which may keep them in a silenced status. Moreover, although islet-infiltrating B-cells seem to be antigen experienced, they can only induce islet-infiltrating T-cell proliferation when they act as accessory cells. Thus, these results strongly suggest that islet-infiltrating B-cells do not activate islet-infiltrating T-cells in situ, although they may affect the progression of the disease otherwise.
Collapse
Affiliation(s)
- Maria Carmen Puertas
- Unit of Immunology, Departament de Ciencies Mediques Basiques, Facultat de Medicina, Universitat de Lleida, Carrer Montserrat Roig 2, 25008 Lleida, Catalonia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Silveira PA, Grey ST. B cells in the spotlight: innocent bystanders or major players in the pathogenesis of type 1 diabetes. Trends Endocrinol Metab 2006; 17:128-35. [PMID: 16580840 DOI: 10.1016/j.tem.2006.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 03/06/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
It has long been established that type 1 diabetes (T1D) is a T cell-mediated autoimmune disease, with CD4+ and CD8+ T cells being largely responsible for the destruction of beta cells within the pancreatic islets of Langerhans. Although autoantibodies specific for islet cell proteins are regularly detected in individuals with T1D and can be utilized as effective markers for predicting the onset of disease, they are not believed to be directly pathogenic to beta cells. Thus, activation of autoantibody-secreting B cells has long been regarded as a secondary consequence of the ongoing self-reactive T cell response. However, recently, studies in the nonobese diabetic mouse model of disease have demonstrated that B cells are an important component in the development of T1D by virtue of their ability to act as the preferential antigen presenting cell population required for efficient expansion of diabetogenic CD4+ T cells. Furthermore, autoantibodies might also be responsible for mediating early beta cell pathogenesis in this model.
Collapse
Affiliation(s)
- Pablo A Silveira
- Immunology and Inflammation Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
38
|
Abstract
Autoantibodies have been used as good markers for the prediction of future development of type 1 diabetes mellitus (T1DM), but are not thought to be pathogenic in this disease. The role of B cells that produce autoantibodies in the pathogenesis of human T1DM is largely unknown. In the non-obese diabetic (NOD) mouse model of autoimmune diabetes, it has been shown that B cells may contribute multifariously to the pathogenesis of the disease. Some aspects of deficiencies of B cell tolerance may lead to the circulation of autoreactive B cells. In addition, the antigen-presenting function of autoantigen specific B cells is likely to be particularly important, and autoantibodies are also considered to play a critical role. This review discusses the possible aspects of B cells involved in the development of autoimmune diabetes.
Collapse
Affiliation(s)
- F Susan Wong
- Department of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | | |
Collapse
|
39
|
Moore DJ, Noorchashm H, Lin TH, Greeley SA, Naji A. NOD B-cells are insufficient to incite T-cell-mediated anti-islet autoimmunity. Diabetes 2005; 54:2019-25. [PMID: 15983202 DOI: 10.2337/diabetes.54.7.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although it is well established that B-cells are required for the development of diabetes in the nonobese diabetic (NOD) mouse, the nature of their role remains unknown. Herein, we investigate the hypothesis that B-cells in this autoimmune background actively disrupt the tolerant state of those T-cells with which they interact. We demonstrate that NOD B-cells express elevated levels of crucial molecules involved in antigen presentation (including CD21/35, major histocompatibility complex class II, and CD40), alterations that invite the possibility of inappropriate T-cell activation. However, when chimeric animals are generated in which all B-cells are NOD-derived, a tolerant state is maintained. These data demonstrate that although B-cells are required for the development of autoimmunity, they are not sufficient to disrupt established tolerance. Moreover, non-B-cell antigen-presenting cells may be the critical actors in the establishment of the tolerant state; this function may be absent in NOD mice as they are characterized by deficient professional antigen-presenting cell function.
Collapse
Affiliation(s)
- Daniel J Moore
- Department of Pediatrics, Vanderbilt Children's Hospital, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Autoimmunity is a complex process that likely results from the summation of multiple defective tolerance mechanisms. The NOD mouse strain is an excellent model of autoimmune disease and an important tool for dissecting tolerance mechanisms. The strength of this mouse strain is that it develops spontaneous autoimmune diabetes, which shares many similarities to autoimmune or type 1a diabetes (T1D) in human subjects, including the presence of pancreas-specific autoantibodies, autoreactive CD4+ and CD8+ T cells, and genetic linkage to disease syntenic to that found in humans. During the past ten years, investigators have used a wide variety of tools to study these mice, including immunological reagents and transgenic and knockout strains; these tools have tremendously enhanced the study of the fundamental disease mechanisms. In addition, investigators have recently developed a number of therapeutic interventions in this animal model that have now been translated into human therapies. In this review, we summarize many of the important features of disease development and progression in the NOD strain, emphasizing the role of central and peripheral tolerance mechanisms that affect diabetes in these mice. The information gained from this highly relevant model of human disease will lead to potential therapies that may alter the development of the disease and its progression in patients with T1D.
Collapse
Affiliation(s)
- Mark S Anderson
- Diabetes Center, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
41
|
Rolf J, Motta V, Duarte N, Lundholm M, Berntman E, Bergman ML, Sorokin L, Cardell SL, Holmberg D. The enlarged population of marginal zone/CD1d(high) B lymphocytes in nonobese diabetic mice maps to diabetes susceptibility region Idd11. THE JOURNAL OF IMMUNOLOGY 2005; 174:4821-7. [PMID: 15814708 DOI: 10.4049/jimmunol.174.8.4821] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NOD mouse is an important experimental model for human type 1 diabetes. T cells are central to NOD pathogenesis, and their function in the autoimmune process of diabetes has been well studied. In contrast, although recognized as important players in disease induction, the role of B cells is not clearly understood. In this study we characterize different subpopulations of B cells and demonstrate that marginal zone (MZ) B cells are expanded 2- to 3-fold in NOD mice compared with nondiabetic C57BL/6 (B6) mice. The NOD MZ B cells displayed a normal surface marker profile and localized to the MZ region in the NOD spleen. Moreover, the MZ B cell population developed early during the ontogeny of NOD mice. By 3 wk of age, around the time when autoreactive T cells are first activated, a significant MZ B cell population of adult phenotype was found in NOD, but not B6, mice. Using an F2(B6 x NOD) cross in a genome-wide scan, we map the control of this trait to a region on chromosome 4 (logarithm of odds score, 4.4) which includes the Idd11 and Idd9 diabetes susceptibility loci, supporting the hypothesis that this B cell trait is related to the development of diabetes in the NOD mouse.
Collapse
Affiliation(s)
- Julia Rolf
- Section for Immunology, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Robe AJ, Kirby JA, Jones DEJ, Palmer JM. A key role for autoreactive B cells in the breakdown of T-cell tolerance to pyruvate dehydrogenase complex in the mouse. Hepatology 2005; 41:1106-12. [PMID: 15830397 DOI: 10.1002/hep.20642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The key immunological event in the pathogenesis of the autoimmune liver disease primary biliary cirrhosis is breakdown of T-cell self-tolerance to pyruvate dehydrogenase complex (PDC). The mechanism resulting in this breakdown of tolerance remains unclear. Mice exposed to self-PDC mount no immune response; however, animals coexposed to self-PDC and PDC of foreign origin (which in isolation induces a cross-reactive antibody but not an autoreactive T-cell response) show breakdown of T-cell as well as B-cell tolerance. This observation raises the possibility that a cross-reactive antibody response to self-PDC can promote breakdown of T-cell tolerance. The aim of this study was to address the hypothesis that breakdown of T-cell tolerance to PDC can be driven by the presence of B cells and/or antibodies cross-reactive with this self-antigen. Naive female SJL/J mice were exposed to self-PDC alone and in the presence of purified splenic B cells from animals primed with foreign PDC (or controls) or purified immunoglobulin (Ig) G from the same animals. Breakdown of T-cell tolerance was assessed by splenic T-cell proliferative response to antigen at 5 weeks. CD4(+) T-cell proliferative responses indicative of breakdown of T-cell tolerance to self-PDC were seen in the majority (7 of 9, 78%) of animals receiving self-PDC together with purified PDC-reactive B cells. Tolerance breakdown was not seen in animals receiving self-PDC with purified anti-PDC IgG or with B cells from animals sensitized with an irrelevant antigen. In conclusion, breakdown of T-cell tolerance to the highly conserved self-antigen PDC may be mediated by high-level presentation of self-derived epitopes by activated cross-reactive B cells.
Collapse
Affiliation(s)
- Amanda J Robe
- Liver Research Group, University of Newcastle, Newcastle-upon-Tyne, UK
| | | | | | | |
Collapse
|
43
|
O'Neill SK, Shlomchik MJ, Glant TT, Cao Y, Doodes PD, Finnegan A. Antigen-specific B cells are required as APCs and autoantibody-producing cells for induction of severe autoimmune arthritis. THE JOURNAL OF IMMUNOLOGY 2005; 174:3781-8. [PMID: 15749919 DOI: 10.4049/jimmunol.174.6.3781] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells play an important role in rheumatoid arthritis, but whether they are required as autoantibody-producing cells as well as APCs has not been determined. We assessed B cell autoantibody and APC functions in a murine model of autoimmune arthritis, proteoglycan (PG)-induced arthritis, using both B cell-deficient mice and Ig-deficient mice (mIgM) mice that express an H chain transgene encoding for membrane-bound, but not secreted, IgM. The IgH transgene, when paired with endogenous lambda L chain, recognizes the hapten 4-hydroxy-3-nitro-phenyl acetyl and is expressed on 1-4% of B cells. B cell-deficient and mIgM mice do not develop arthritis after immunization with PG. In adoptive transfer of PG-induced arthritis into SCID mice, T cells from mIgM mice immunized with PG were unable to transfer disease even when B cells from PG-immunized wild-type mice were provided, suggesting that the T cells were not adequately primed and that Ag-specific B cells may be required. In fact, when PG was directly targeted to the B cell Ig receptor through a conjugate of 4-hydroxy-3-nitrophenyl acetyl-PG, T cells in mIgM mice were activated and competent to transfer arthritis. Such T cells caused mild arthritis in the absence of autoantibody, demonstrating a direct pathogenic role for T cells activated by Ag-specific B cells. Transfer of arthritic serum alone induced only mild and transient arthritis. However, both autoreactive T cells and autoantibody are required to cause severe arthritis, indicating that both B cell-mediated effector pathways contribute synergistically to autoimmune disease.
Collapse
Affiliation(s)
- Shannon K O'Neill
- Department of Immunology/Microbiology, Rush University medical Center, Cohn Research Building, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
44
|
Carrillo J, Puertas MC, Alba A, Ampudia RM, Pastor X, Planas R, Riutort N, Alonso N, Pujol-Borrell R, Santamaria P, Vives-Pi M, Verdaguer J. Islet-infiltrating B-cells in nonobese diabetic mice predominantly target nervous system elements. Diabetes 2005; 54:69-77. [PMID: 15616012 DOI: 10.2337/diabetes.54.1.69] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cells accumulate in pancreatic islets during the autoimmune response that precedes the onset of type 1 diabetes. However, the role and antigenic specificity of these cells remain a mystery. To elucidate the antigenic repertoire of islet-infiltrating B-cells in type 1 diabetes, we generated hybridoma cell lines of islet-infiltrating B-cells from nonobese diabetic (NOD) mice and NOD mice expressing a diabetogenic T-cell receptor (8.3-NOD). Surprisingly, characterization of the tissue specificity of the antibodies secreted by these cells revealed that a predominant fraction of these hybridomas produce antibodies specific for the pancreatic nervous system. Similar results were obtained with B-cell hybridomas derived from mild insulinic lesions of diabetes-resistant (NOD x NOR)F1 and 8.3-(NOD x NOR)F1 mice. Immunoglobulin class analyses further indicated that most islet-derived hybridomas had arisen from B-cells that had undergone immunoglobulin class switch recombination, suggesting that islet-associated B-cells are involved in active, T-helper-driven immune responses against local antigenic targets. This is the first evidence showing the existence of a predominant active B-cell response in situ against pancreatic nervous system elements in diabetogenesis. Our data are consistent with the idea that this B-cell response precedes the progression of insulitis to overt diabetes, thus strongly supporting the idea that pancreatic nervous system elements are early targets in type 1 diabetes.
Collapse
Affiliation(s)
- Jorge Carrillo
- Servei d'Immunologia, Hospital Universitari Germans Trias i Pujol, Carretera del Canyet s/n, 08916 Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wong FS, Wen L, Tang M, Ramanathan M, Visintin I, Daugherty J, Hannum LG, Janeway CA, Shlomchik MJ. Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes 2004; 53:2581-7. [PMID: 15448087 DOI: 10.2337/diabetes.53.10.2581] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cells are important in the development of type 1 diabetes, but their role is not completely defined. Although B-cells produce autoantibodies, these are not thought to be pathogenic; however, their antigen-presenting function is postulated to be critical. To examine the relative importance of these functions of B-cells, we have generated nonobese diabetic (NOD) B-cell-deficient mice that express a transgene encoding a mutant heavy chain immunoglobulin transgene on the cell surface but cannot secrete immunoglobulins (mIgs). This allowed us to dissect the importance of the relative roles of antigen presentation, dissociated from antibody production. We found that the expression of the mIg transgene increased insulitis and the incidence of diabetes compared with transgene-negative NOD B-cell-deficient mice, indicating that the ability to produce antibodies is not necessary for B-cells to have some effect on the development of diabetes. However, diabetes was not restored to the level seen in normal NOD mice. This may relate to reduced ability to activate an islet-specific T-cell repertoire, presumably due to the reduced islet-specific B-cell repertoire. Our results implicate a specific antigen-presenting function for B-cells.
Collapse
Affiliation(s)
- F Susan Wong
- Department of Pathology and Microbiology, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The autoantibody assays that exist and that are being refined are of increasing importance to a broad spectrum of endocrine disorders. This is particularly true for type IA diabetes, which is one of the best-studied organ-specific autoimmune diseases. Autoantibodies are used as valuable markers in prediction and prevention studies of type IA diabetes. Autoantibodies related to other endocrine organs are also important because multiple related autoimmune endocrine and non-endocrine disorders are increased in frequency in patients and their families with autoimmunity. The availability of highly sensitive and specific autoantibody assays for the various endocrine disorders can allow physicians to better diagnose and promptly treat these conditions.
Collapse
Affiliation(s)
- Devasenan Devendra
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Box B140, Denver, CO 80262, USA
| | | | | |
Collapse
|
47
|
Rietz C, Screpanti V, Brenden N, Böhme J, Fernández C. Overexpression of bcl-2 in T cells affects insulitis in the nonobese diabetic mouse. Scand J Immunol 2003; 57:342-9. [PMID: 12662297 DOI: 10.1046/j.1365-3083.2003.01244.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nonobese diabetic (NOD) mouse is a useful model for human autoimmune diabetes. The gene for the anti-apoptotic protein Bcl-2 has previously been suggested as a probable susceptibility candidate for the NOD mouse disease. In this study, we investigated how overexpression of Bcl-2 in lymphocytes might affect insulitis in NOD mice. A bcl-2 transgene expressed constitutively under the SV40-promoter and the 5'Igh enhancer, Emu, was bred onto NOD background. Two bcl-2 transgenic NOD strains were produced and analysed, one with overexpression of Bcl-2 on only B cells and the other with overexpression of Bcl-2 on both B and T cells. Subsequent to verification of expression pattern and functionality of the transgene, insulitis intensity was investigated in different backcross generations of the two transgenic strains. Overexpression of Bcl-2 on both B and T cells leads to a statistically significant protection of the mice from insulitis compared with normal littermates. Overexpression of Bcl-2 on only B cells, on the other hand, does not have any statistically significant effect on insulitis. Possible mechanisms for the effect of Bcl-2 on insulitis in NOD mice are discussed.
Collapse
Affiliation(s)
- C Rietz
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
48
|
Chiu PP, Jevnikar AM, Danska JS. Genetic control of T and B lymphocyte activation in nonobese diabetic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:7169-79. [PMID: 11739540 DOI: 10.4049/jimmunol.167.12.7169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Type 1 diabetes in nonobese diabetic (NOD) mice is characterized by the infiltration of T and B cells into pancreatic islets. T cells bearing the TCR Vbeta3 chain are disproportionately represented in the earliest stages of islet infiltration (insulitis) despite clonal deletion of most Vbeta3(+) immature thymocytes by the mammary tumor virus-3 (Mtv-3) superantigen (SAg). In this report we showed that a high frequency of NOD Vbeta3(+) T cells that escape deletion are activated in vivo and that this phenotype is linked to the Mtv-3 locus. One potential mechanism of SAg presentation to peripheral T cells is by activated B cells. Consistent with this idea, we found that NOD mice harbor a significantly higher frequency of activated B cells than nondiabetes-prone strains. These activated NOD B cells expressed cell surface molecules consistent with APC function. At the molecular level, the IgH repertoire of activated B cells in NOD mice was equivalent to resting B cells, suggesting a polyclonal response in vivo. Genetic analysis of the activated B cell phenotype showed linkage to Idd1, the NOD MHC haplotype (H-2(g7)). Finally, Vbeta3(+) thymocyte deletion and peripheral T cell activation did not require B cells, suggesting that other APC populations are sufficient to generate both Mtv-3-linked phenotypes. These data provide insight into the genetic regulation of NOD autoreactive lymphocyte activation that may contribute to failure of peripheral tolerance and the pathogenesis of type I diabetes.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Antigens, Differentiation, T-Lymphocyte/analysis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- B-Lymphocytes/immunology
- Cells, Cultured
- Chromosome Mapping
- Clonal Deletion
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Flow Cytometry
- Genes, T-Cell Receptor beta
- Immunoglobulin Variable Region/genetics
- Lectins, C-Type
- Lymphocyte Activation
- Major Histocompatibility Complex
- Mice
- Mice, Inbred NOD
- Proviruses/immunology
- Receptors, Antigen, T-Cell/metabolism
- Superantigens/genetics
- Superantigens/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- P P Chiu
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Department of Surgery, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
49
|
Charlton B, Zhang MD, Slattery RM. B lymphocytes not required for progression from insulitis to diabetes in non-obese diabetic mice. Immunol Cell Biol 2001; 79:597-601. [PMID: 11903619 DOI: 10.1046/j.1440-1711.2001.01045.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have implicated B lymphocytes in the pathogenesis of diabetes in the non-obese diabetic (NOD) mouse. While it is clear that B lymphocytes are necessary, it has not been clear at which stage of disease they play a role; early, late or both. To clarify when B lymphocytes are needed, T lymphocytes were transferred from 5-week-old NOD female mice to age-matched NOD/severe combined immunodeficiency (SCID) recipient mice. NOD/SCID mice, which lack functionally mature T and B lymphocytes, do not normally develop insulitis or insulin-dependent diabetes melitus (IDDM). The NOD/SCID mice that received purified T lymphocytes from 5-week-old NOD mice subsequently developed insulitis and diabetes even though they did not have detectable B lymphocytes. This suggests that while B lymphocytes may be essential for an initial priming event they are not requisite for disease progression in the NOD mouse.
Collapse
Affiliation(s)
- B Charlton
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | |
Collapse
|
50
|
Rietz C, Screpanti V, Brenden N, Fernández C. Neonatal pattern of V(H) gene utilization in nonobese diabetic mice does not correlate with development of insulitis. Scand J Immunol 2001; 54:470-6. [PMID: 11696198 DOI: 10.1046/j.1365-3083.2001.00991.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nonobese diabetic (NOD) mouse model is a model of human autoimmune insulin dependent diabetes, IDDM. The effector cells of the disease have been shown to be T cells, but also B cells seem to contribute. Adult NOD mice have been shown to display a bias in their utilization of immunoglobulin (Ig) variable heavy (V(H)) genes. In this study the analysis of VH gene utilization in NOD mice protected from insulitis by transgenic insertion of a major histocompatibility complex (MHC) class II E(alpha) gene, point out that the bias in V(H) gene expression is not correlated to disease development. The aberrant V(H) gene utilization pattern in mice with the NOD genetic background is instead suggested to be a consequence of a deregulation of the apoptosis inhibiting gene bcl-2. We also investigated if prolonged in vitro survival of NOD lymphocytes is correlated to disease development. The E(alpha) transgenic NOD mice were shown to display a prolonged in vitro survival of spleen T cells, similar to normal NOD mice. These results indicate that defective death mechanisms of T cells may not be primarily involved in the development of autoimmune disease in these mice. However, in contrast to results from other groups, no difference in in vitro survival could be detected for B cells from mice with NOD genetic background compared to C57BL/6 mice.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Cell Survival
- DNA Primers/genetics
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Disease Models, Animal
- Genes, Immunoglobulin
- Genes, MHC Class II
- Genes, bcl-2
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Lymphocytes/immunology
- Lymphocytes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
Collapse
Affiliation(s)
- C Rietz
- Transplantation Biology, Department of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|