1
|
Blokhina EA, Mardanova ES, Zykova AA, Shuklina MA, Stepanova LA, Tsybalova LM, Ravin NV. Chimeric Virus-like Particles of Physalis Mottle Virus as Carriers of M2e Peptides of Influenza a Virus. Viruses 2024; 16:1802. [PMID: 39599916 PMCID: PMC11598990 DOI: 10.3390/v16111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Plant viruses and virus-like particles (VLPs) are safe for mammals and can be used as a carrier/platform for the presentation of foreign antigens in vaccine development. The aim of this study was to use the coat protein (CP) of Physalis mottle virus (PhMV) as a carrier to display the extracellular domain of the transmembrane protein M2 of influenza A virus (M2e). M2e is a highly conserved antigen, but to induce an effective immune response it must be linked to an adjuvant or carrier VLP. Four tandem copies of M2e were either fused to the N-terminus of the full-length PhMV CP or replaced the 43 N-terminal amino acids of the PhMV CP. Only the first fusion protein was successfully expressed in Escherichia coli, where it self-assembled into spherical VLPs of about 30 nm in size. The particles were efficiently recognized by anti-M2e antibodies, indicating that the M2e peptides were exposed on the surface. Subcutaneous immunization of mice with VLPs carrying four copies of M2e induced high levels of M2e-specific IgG antibodies in serum and protected animals from a lethal influenza A virus challenge. Therefore, PhMV particles carrying M2e peptides may become useful research tools for the development of recombinant influenza vaccines.
Collapse
Affiliation(s)
- Elena A. Blokhina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Eugenia S. Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna A. Zykova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marina A. Shuklina
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia
| | - Liudmila A. Stepanova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia
| | - Liudmila M. Tsybalova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
2
|
Chung YH, Zhao Z, Jung E, Omole AO, Wang H, Sutorus L, Steinmetz NF. Systemic Administration of Cowpea Mosaic Virus Demonstrates Broad Protection Against Metastatic Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308237. [PMID: 38430536 PMCID: PMC11095214 DOI: 10.1002/advs.202308237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Indexed: 03/04/2024]
Abstract
The key challenge in cancer treatment is prevention of metastatic disease which is therapeutically resistant and carries poor prognoses necessitating efficacious prophylactic approaches that prevent metastasis and recurrence. It is previously demonstrated that cowpea mosaic virus (CPMV) induces durable antitumor responses when used in situ, i.e., intratumoral injection. As a new direction, it is showed that CPMV demonstrates widespread effectiveness as an immunoprophylactic agent - potent efficacy is demonstrated in four metastatic models of colon, ovarian, melanoma, and breast cancer. Systemic administration of CPMV stimulates the innate immune system, enabling attack of cancer cells; processing of the cancer cells and associated antigens leads to systemic, durable, and adaptive antitumor immunity. Overall, CPMV demonstrated broad efficacy as an immunoprophylactic agent in the rejection of metastatic cancer.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
| | - Zhongchao Zhao
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Eunkyeong Jung
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Anthony O. Omole
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Hanyang Wang
- Department of BiologyUniversity of California, San DiegoLa JollaCA92093USA
| | - Lucas Sutorus
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Nicole F. Steinmetz
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Department of RadiologyUniversity of California, San DiegoLa JollaCA92093USA
- Institute for Materials Discovery and DesignUniversity of California, San DiegoLa JollaCA92093USA
- Center for Engineering in CancerUniversity of California, San DiegoLa JollaCA92093USA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
3
|
Wu Z, Bayón JL, Kouznetsova TB, Ouchi T, Barkovich KJ, Hsu SK, Craig SL, Steinmetz NF. Virus-like Particles Armored by an Endoskeleton. NANO LETTERS 2024; 24:2989-2997. [PMID: 38294951 DOI: 10.1021/acs.nanolett.3c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Many virus-like particles (VLPs) have good chemical, thermal, and mechanical stabilities compared to those of other biologics. However, their stability needs to be improved for the commercialization and use in translation of VLP-based materials. We developed an endoskeleton-armored strategy for enhancing VLP stability. Specifically, the VLPs of physalis mottle virus (PhMV) and Qβ were used to demonstrate this concept. We built an internal polymer "backbone" using a maleimide-PEG15-maleimide cross-linker to covalently interlink viral coat proteins inside the capsid cavity, while the native VLPs are held together by only noncovalent bonding between subunits. Endoskeleton-armored VLPs exhibited significantly improved thermal stability (95 °C for 15 min), increased resistance to denaturants (i.e., surfactants, pHs, chemical denaturants, and organic solvents), and enhanced mechanical performance. Single-molecule force spectroscopy demonstrated a 6-fold increase in rupture distance and a 1.9-fold increase in rupture force of endoskeleton-armored PhMV. Overall, this endoskeleton-armored strategy provides more opportunities for the development and applications of materials.
Collapse
Affiliation(s)
- Zhuohong Wu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
| | - Jorge L Bayón
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Krister J Barkovich
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Sean K Hsu
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Barkovich KJ, Wu Z, Zhao Z, Simms A, Chang EY, Steinmetz NF. Physalis Mottle Virus-Like Nanocarriers with Expanded Internal Loading Capacity. Bioconjug Chem 2023; 34:1585-1595. [PMID: 37615599 PMCID: PMC10538386 DOI: 10.1021/acs.bioconjchem.3c00269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An ongoing challenge in precision medicine is the efficient delivery of therapeutics to tissues/organs of interest. Nanoparticle delivery systems have the potential to overcome traditional limitations of drug and gene delivery through improved pharmacokinetics, tissue targeting, and stability of encapsulated cargo. Physalis mottle virus (PhMV)-like nanoparticles are a promising nanocarrier platform which can be chemically targeted on the exterior and interior surfaces through reactive amino acids. Cargo-loading to the internal cavity is achieved with thiol-reactive small molecules. However, the internal loading capacity of these nanoparticles is limited by the presence of a single reactive cysteine (C75) per coat protein with low inherent reactivity. Here, we use structure-based design to engineer cysteine-added mutants of PhMV VLPs that display increased reactivity toward thiol-reactive small molecules. Specifically, the A31C and S137C mutants show a greater than 10-fold increased rate of reactivity towards thiol-reactive small molecules, and PhMV Cys1 (A31C), PhMV Cys2 (S137C), and PhMV Cys1+2 (double mutant) VLPs display up to three-fold increased internal loading of the small molecule chemotherapeutics aldoxorubicin and vcMMAE and up to four-fold increased internal loading of the MRI imaging reagent DOTA(Gd). These results further improve upon a promising plant virus-based nanocarrier system for use in targeted delivery of small-molecule drugs and imaging reagents in vivo.
Collapse
Affiliation(s)
- Krister J Barkovich
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhuohong Wu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhongchao Zhao
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Andrea Simms
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Barkovich KJ, Zhao Z, Steinmetz NF. iRGD-targeted Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Delivery. SMALL SCIENCE 2023; 3:2300067. [PMID: 38465197 PMCID: PMC10923535 DOI: 10.1002/smsc.202300067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Nanomedicine provides a promising platform for the molecular treatment of disease. An ongoing challenge in nanomedicine is the targeted delivery of intravenously administered nanoparticles to particular tissues, which is of special interest in cancer. In this study, we show that the conjugation of iRGD peptides, which specifically target tumor neovasculature, to the surface of Physalis mottle virus (PhMV)-like nanoparticles leads to rapid cellular uptake in vitro and tumor homing in vivo. We then show that iRGD-targeted PhMV loaded with the chemotherapeutic doxorubicin shows increased potency in a murine flank xenograft model of cancer. Our results validate that PhMV-like nanoparticles can be targeted to tumors through iRGD-peptide conjugation and suggest that iRGD-PhMV provides a promising platform for the targeted delivery of molecular cargo to tumors.
Collapse
Affiliation(s)
| | - Zhongchao Zhao
- Department of NanoEngineering, University of California, San Diego, San Diego, CA
- Center for Nano-ImmunoEngineering, University of California, San Diego, San Diego, CA
| | - Nicole F. Steinmetz
- Department of Radiology, University of California, San Diego, San Diego, CA
- Department of NanoEngineering, University of California, San Diego, San Diego, CA
- Center for Nano-ImmunoEngineering, University of California, San Diego, San Diego, CA
- Department of Bioengineering, University of California, San Diego, San Diego, CA
- Institute for Materials Discovery and Design, University of California, San Diego, CA
- Moores Cancer Center, University of California, San Diego, San Diego, CA
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, San Diego, CA
| |
Collapse
|
6
|
Kheirvari M, Liu H, Tumban E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses 2023; 15:1109. [PMID: 37243195 PMCID: PMC10223759 DOI: 10.3390/v15051109] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Virus-like particles (VLPs) have gained a lot of interest within the past two decades. The use of VLP-based vaccines to protect against three infectious agents-hepatitis B virus, human papillomavirus, and hepatitis E virus-has been approved; they are very efficacious and offer long-lasting immune responses. Besides these, VLPs from other viral infectious agents (that infect humans, animals, plants, and bacteria) are under development. These VLPs, especially those from human and animal viruses, serve as stand-alone vaccines to protect against viruses from which the VLPs were derived. Additionally, VLPs, including those derived from plant and bacterial viruses, serve as platforms upon which to display foreign peptide antigens from other infectious agents or metabolic diseases such as cancer, i.e., they can be used to develop chimeric VLPs. The goal of chimeric VLPs is to enhance the immunogenicity of foreign peptides displayed on VLPs and not necessarily the platforms. This review provides a summary of VLP vaccines for human and veterinary use that have been approved and those that are under development. Furthermore, this review summarizes chimeric VLP vaccines that have been developed and tested in pre-clinical studies. Finally, the review concludes with a snapshot of the advantages of VLP-based vaccines such as hybrid/mosaic VLPs over conventional vaccine approaches such as live-attenuated and inactivated vaccines.
Collapse
Affiliation(s)
| | | | - Ebenezer Tumban
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
7
|
Ogrina A, Balke I, Kalnciema I, Skrastina D, Jansons J, Bachmann MF, Zeltins A. Bacterial expression systems based on Tymovirus-like particles for the presentation of vaccine antigens. Front Microbiol 2023; 14:1154990. [PMID: 37032851 PMCID: PMC10076540 DOI: 10.3389/fmicb.2023.1154990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Virus-like particles (VLPs) are virus-derived artificial nanostructures that resemble a native virus-stimulating immune system through highly repetitive surface structures. Improved safety profiles, flexibility in vaccine construction, and the ease of VLP production and purification have highlighted VLPs as attractive candidates for universal vaccine platform generation, although exploration of different types of expression systems for their development is needed. Here, we demonstrate the construction of several simple Escherichia coli expression systems for the generation of eggplant mosaic virus (EMV) VLP-derived vaccines. We used different principles of antigen incorporation, including direct fusion of EMV coat protein (CP) with major cat allergen Feld1, coexpression of antigen containing and unmodified (mosaic) EMV CPs, and two coexpression variants of EMV VLPs and antigen using synthetic zipper pair 18/17 (SYNZIP 18/17), and coiled-coil forming peptides E and K (Ecoil/Kcoil). Recombinant Fel d 1 chemically coupled to EMV VLPs was included as control experiments. All EMV-Feld1 variants were expressed in E. coli, formed Tymovirus-like VLPs, and were used for immunological evaluation in healthy mice. The immunogenicity of these newly developed vaccine candidates demonstrated high titers of Feld1-specific Ab production; however, a comparably high immune response against carrier EMV was also observed. Antibody avidity tests revealed very specific Ab production (more than 50% specificity) for four out of the five vaccine candidates. Native Feld1 recognition and subclass-specific antibody tests suggested that the EMV-SZ18/17-Feld1 complex and chemically coupled EMV-Feld1 vaccines may possess characteristics for further development.
Collapse
Affiliation(s)
- Anete Ogrina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ina Balke
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ieva Kalnciema
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- *Correspondence: Andris Zeltins,
| |
Collapse
|
8
|
Hu H, Steinmetz NF. Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine. Cancers (Basel) 2021; 13:2909. [PMID: 34200802 PMCID: PMC8230452 DOI: 10.3390/cancers13122909] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
To develop a human epidermal growth factor receptor-2 (HER2)-specific cancer vaccine, using a plant virus-like particle (VLP) platform. Copper-free click chemistry and infusion encapsulation protocols were developed to prepare VLPs displaying the HER2-derived CH401 peptide epitope, with and without Toll-like receptor 9 (TLR9) agonists loaded into the interior cavity of the VLPs; Physalis mottle virus (PhMV)-based VLPs were used. After prime-boost immunization of BALB/c mice through subcutaneous administration of the vaccine candidates, sera were collected and analyzed by enzyme-linked immunosorbent assay (ELISA) for the CH401-specific antibodies; Th1 vs. Th2 bias was determined by antibody subtyping and splenocyte assay. Efficacy was assessed by tumor challenge using DDHER2 tumor cells. We successful developed two VLP-based anti-HER2 vaccine candidates-PhMV-CH401 vs. CpG-PhMV-CH401; however, the addition of the CpG adjuvant did not confer additional immune priming. Both VLP-based vaccine candidates elicited a strong immune response, including high titers of HER2-specific immunoglobulins and increased toxicity of antisera to DDHER2 tumor cells. DDHER2 tumor growth was delayed, leading to prolonged survival of the vaccinated vs. naïve BALB/C mice. The PhMV-based anti-HER2 vaccine PhMV-CH401, demonstrated efficacy as an anti-HER2 cancer vaccine. Our studies highlight that VLPs derived from PhMV are a promising platform to develop cancer vaccines.
Collapse
Affiliation(s)
- He Hu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA;
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA;
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Center for Nano Immuno-Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| |
Collapse
|
9
|
Hu H, Steinmetz NF. Doxorubicin-Loaded Physalis Mottle Virus Particles Function as a pH-Responsive Prodrug Enabling Cancer Therapy. Biotechnol J 2020; 15:e2000077. [PMID: 32918857 PMCID: PMC7888571 DOI: 10.1002/biot.202000077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/02/2020] [Indexed: 12/26/2022]
Abstract
The controlled release of drugs using nanoparticle-based delivery vehicles is a promising strategy to improve the safety and efficacy of chemotherapy. A simple, scalable, and reproducible strategy is developed to synthesize a drug delivery system (DDS) by loading 6-maleimidocaproyl-hydrazone doxorubicin (DOX-EMCH) into the empty core of virus-like particles (VLPs) derived from Physalis mottle virus (PhMV) via a combination of chemical conjugation to cysteine residues and π-π stacking interactions with the anchored doxorubicin molecule. The DOX-EMCH prodrug features an acid-sensitive hydrazine linker that triggers the release of doxorubicin in the slightly acidic extracellular tumor microenvironment or acidic endosomal or lysosomal compartments following cellular uptake. The VLP external surface is coated with polyethylene glycol (PEG) to prevent non-specific uptake and improve biocompatibility. The DOX-PhMV-PEG particles are stable in vitro and show greater efficacy in vivo compared to free doxorubicin in a breast tumor mouse model (using MDA-MB-231 cells and nude mice): 92% of the tumor-bearing mice treated with DOX-PhMV-PEG are completely cured compared to 27% of those treated with free doxorubicin under the same conditions, representing a 3.4-fold improvement. These results lay a foundation for the further development of this biological drug delivery system for a new generation of chemotherapy products.
Collapse
Affiliation(s)
- He Hu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla CA 92039, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla CA 92039, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla CA 92039, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla CA 92039, USA
| |
Collapse
|
10
|
Shukla S, Wang C, Beiss V, Cai H, Washington T, Murray AA, Gong X, Zhao Z, Masarapu H, Zlotnick A, Fiering S, Steinmetz NF. The unique potency of Cowpea mosaic virus (CPMV) in situ cancer vaccine. Biomater Sci 2020; 8:5489-5503. [PMID: 32914796 PMCID: PMC8086234 DOI: 10.1039/d0bm01219j] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunosuppressive tumor microenvironment enables cancer to resist immunotherapies. We have established that intratumoral administration of plant-derived Cowpea mosaic virus (CPMV) nanoparticles as an in situ vaccine overcomes the local immunosuppression and stimulates a potent anti-tumor response in several mouse cancer models and canine patients. CPMV does not infect mammalian cells but acts as a danger signal that leads to the recruitment and activation of innate and subsequently, adaptive immune cells. In the present study we addressed whether other icosahedral viruses or virus-like particles (VLPs) of plant, bacteriophage and mammalian origin can be similarly employed as intratumoral immunotherapy. Our results indicate that CPMV in situ vaccine outperforms Cowpea chlorotic mottle virus (CCMV), Physalis mosaic virus (PhMV), Sesbania mosaic virus (SeMV), bacteriophage Qβ VLPs, or Hepatitis B virus capsids (HBVc). Furthermore, ex vivo and in vitro assays reveal unique features of CPMV that makes it an inherently stronger immune stimulant.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Chao Wang
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Veronique Beiss
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Torus Washington
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Abner A Murray
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xingjian Gong
- Department of Bioengineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhongchao Zhao
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, IN 47405, USA
| | - Hema Masarapu
- Department of Virology, Sri Venkateswara University, Tirupati 517502, India
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, IN 47405, USA
| | - Steven Fiering
- Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA. and Department of Bioengineering, University of California-San Diego, La Jolla, CA 92039, USA and Department of Radiology, University of California-San Diego, La Jolla, CA 92039, USA and Moores Cancer Center, University of California-San Diego, La Jolla, CA 92039, USA and Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
| |
Collapse
|
11
|
Hu H, Masarapu H, Gu Y, Zhang Y, Yu X, Steinmetz NF. Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18213-18223. [PMID: 31074602 PMCID: PMC7060085 DOI: 10.1021/acsami.9b03956] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
One of the greatest challenges in nanomedicine is the low efficiency with which nanoparticles are delivered to lesions such as tumors in vivo. Here, we show that Physalis mottle virus (PhMV)-like nanoparticles can be developed as bimodal contrast agents to achieve long circulation, specific targeting capability, and efficient delivery to tumors in vivo. The self-assembling coat protein nanostructure offers various opportunities to modify the internal and external surfaces separately. After loading the internal cavity of the particles with the fluorescent dye Cy5.5 and paramagnetic Gd(III) complexes, we modified the outer surface by PEGylation and conjugation with targeting peptides. Using this combined approach, we were able to monitor a human prostate tumor model for up to 10 days by near-infrared fluorescence and magnetic resonance imaging, with up to 6% of the injection dose remaining. Our results show that PhMV-like nanoparticles provide a promising and innovative platform for the development of next-generation diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- He Hu
- Department of NanoEngineering, University of California—San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Hema Masarapu
- Department of Virology, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Yifan Zhang
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California—San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Moores Cancer Center, University of California—San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California—San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Vasques RM, Correa RFT, da Silva LA, Blawid R, Nagata T, Ribeiro BM, Ardisson-Araújo DMP. Assembly of tomato blistering mosaic virus-like particles using a baculovirus expression vector system. Arch Virol 2019; 164:1753-1760. [PMID: 31025116 DOI: 10.1007/s00705-019-04262-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/27/2019] [Indexed: 01/23/2023]
Abstract
The expression of several structural proteins from a wide variety of viruses in heterologous cell culture systems results in the formation of virus-like particles (VLPs). These VLPs structurally resemble the wild-type virus particles and have been used to study viral assembly process and as antigens for diagnosis and/or vaccine development. Tomato blistering mosaic virus (ToBMV) is a tymovirus that has a 6.3-kb positive-sense ssRNA genome. We have employed the baculovirus expression vector system (BEVS) for the production of tymovirus-like particles (tVLPs) in insect cells. Two recombinant baculoviruses containing the ToBMV wild-type coat protein (CP) gene or a modified short amino-terminal deletion (Δ2-24CP) variant were constructed and used to infect insect cells. Both recombinant viruses were able to express ToBMV CP and Δ2-24CP from infected insect cells that self-assembled into tVLPs. Therefore, the N-terminal residues (2-24) of the native ToBMV CP were shown not to be essential for self-assembly of tVLPs. We also constructed a third recombinant baculovirus containing a small sequence coding for the major epitope of the chikungunya virus (CHIKV) envelope protein 2 (E2) replacing the native CP N-terminal 2-24 amino acids. This recombinant virus also produced tVLPs. In summary, ToBMV VLPs can be produced in a baculovirus/insect cell heterologous expression system, and the N-terminal residues 2-24 of the CP are not essential for this assembly, allowing its potential use as a protein carrier that facilitates antigen purification and might be used for diagnosis.
Collapse
Affiliation(s)
- Raquel Medeiros Vasques
- Laboratory of Microscopy and Virology, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
| | | | - Leonardo Assis da Silva
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
| | - Rosana Blawid
- Laboratory of Phytovirology, Department of Agronomy, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Tatsuya Nagata
- Laboratory of Microscopy and Virology, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
| | - Bergmann Morais Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, Brazil
| | - Daniel M P Ardisson-Araújo
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
13
|
Sahithi KD, Nancy PA, Vishnu Vardhan GP, Kumanan K, Vijayarani K, Hema M. Detection of infectious bursal disease virus (IBDV) antibodies using chimeric plant virus-like particles. Vet Microbiol 2019; 229:20-27. [PMID: 30642595 DOI: 10.1016/j.vetmic.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023]
Abstract
The aim of the present study is to use Physalis mottle virus (PhMV) coat protein (CP) as a scaffold to display the neutralizing epitopes of Infectious bursal disease virus (IBDV) VP2. For this, three different chimeric constructs were synthesized by replacing the N-terminus of PhMV CP with tandem repeats of neutralizing epitopes of IBDV VP2 and expressed in Escherichia coli. Expression analysis revealed that all the three recombinant chimeric coat protein subunits are soluble in nature and self-assembled into virus-like particles (VLPs) as evidenced through sucrose density gradient ultracentrifugation. The chimeric VLPs were characterized by various biochemical and biophysical techniques and found that they are stable and structurally sound. When the chimeric VLPs were used as coating antigen, they were able to detect IBDV antibodies. These results indicated that the chimeric VLPs can be used as potential vaccine candidates for the control of IBDV, which needs to be further evaluated in animal models.
Collapse
Affiliation(s)
| | - Pandirajan Arul Nancy
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | | | - Kathaperumal Kumanan
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India.
| | - Kanagaraj Vijayarani
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Masarapu Hema
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.
| |
Collapse
|
14
|
Masarapu H, Patel BK, Chariou PL, Hu H, Gulati NM, Carpenter BL, Ghiladi RA, Shukla S, Steinmetz NF. Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs. Biomacromolecules 2017; 18:4141-4153. [PMID: 29144726 DOI: 10.1021/acs.biomac.7b01196] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Platform technologies based on plant virus nanoparticles (VNPs) and virus-like particles (VLPs) are attracting the attention of researchers and clinicians because the particles are biocompatible, biodegradable, noninfectious in mammals, and can readily be chemically and genetically engineered to carry imaging agents and drugs. When the Physalis mottle virus (PhMV) coat protein is expressed in Escherichia coli, the resulting VLPs are nearly identical to the viruses formed in vivo. Here, we isolated PhMV-derived VLPs from ClearColi cells and carried out external and internal surface modification with fluorophores using reactive lysine-N-hydroxysuccinimide ester and cysteine-maleimide chemistries, respectively. The uptake of dye-labeled particles was tested in a range of cancer cells and monitored by confocal microscopy and flow cytometry. VLPs labeled internally on cysteine residues were taken up with high efficiency by several cancer cell lines and were colocalized with the endolysosomal marker LAMP-1 within 6 h, whereas VLPs labeled externally on lysine residues were taken up with lower efficiency, probably reflecting differences in surface charge and the propensity to bind to the cell surface. The infusion of dye and drug molecules into the cavity of the VLPs revealed that the photosensitizer (PS), Zn-EpPor, and the drugs crystal violet, mitoxantrone (MTX), and doxorubicin (DOX) associated stably with the carrier via noncovalent interactions. We confirmed the cytotoxicity of the PS-PhMV and DOX-PhMV particles against prostate cancer, ovarian and breast cancer cell lines, respectively. Our results show that PhMV-derived VLPs provide a new platform technology for the delivery of imaging agents and drugs, with preferential uptake into cancer cells. These particles could therefore be developed as multifunctional tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Hema Masarapu
- Department of Virology, Sri Venkateswara University , Tirupati, 517 502 Andhra Pradesh, India
| | | | | | | | | | - Bradley L Carpenter
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
15
|
In vitro assembly of polymorphic virus-like particles from the capsid protein of a nodavirus. Virology 2016; 496:106-115. [DOI: 10.1016/j.virol.2016.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022]
|
16
|
Efficient production of Tymovirus like particles displaying immunodominant epitopes of Japanese Encephalitis Virus envelope protein. Protein Expr Purif 2015; 113:35-43. [PMID: 25959459 DOI: 10.1016/j.pep.2015.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 11/21/2022]
Abstract
Japanese Encephalitis (JE) is a mosquito borne arboviral infection caused by Japanese Encephalitis Virus (JEV). It is a major cause of viral encephalitis in Asian countries including India. In the present study, we have used a Tymovirus [i.e. Physalis Mottle Virus (PhMV) coat protein (CP)], which forms virus like particles (VLPs) as a template to display immunodominant epitopes of JEV envelope (E) protein. The immunodominant epitopes of JEV were inserted at the N-terminus of the wild type PhMV CP, and these constructs were cloned and expressed in Escherichia coli. The chimeric proteins were purified from the inclusion bodies and evaluated for VLP formation. The purified protein was identified by Western blotting and VLP formation was studied and confirmed by transmission electron microscopy and dynamic light scattering. Finally, the immunogenicity was studied in mice. Our results indicate that the chimeric protein with JEV epitopes assembled efficiently to form VLPs generating neutralizing antibodies. Hence, we report the purified chimeric VLP would be a potent vaccine candidate, which needs to be evaluated in a mouse challenge model.
Collapse
|
17
|
Natilla A, Murphy C, Hammond RW. Mutations in the alpha-helical region of the amino terminus of the Maize rayado fino virus capsid protein and CP:RNA ratios affect virus-like particle encapsidation of RNAs. Virus Res 2015; 196:70-8. [PMID: 25102332 DOI: 10.1016/j.virusres.2014.07.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 11/25/2022]
Abstract
Viral-based nanoplatforms rely on balancing the delicate array of virus properties to optimally achieve encapsidation of foreign materials with various potential objectives. We investigated the use of Maize rayado fino virus (MRFV)-virus-like particles (VLPs) as a multifunctional nanoplatform and their potential application as protein cages. MRFV-VLPs are composed of two serologically related, carboxy co-terminal coat proteins (CP1 and CP2) which are capable of self-assembling in Nicotiana benthamiana plants into 30nm particles with T=3 symmetry. The N-terminus of CP1 was targeted for genetic modification to exploit the driving forces for VLP assembly, packaging and retention of RNA in vivo and in vitro. The N-terminus of MRFV-CP1 contains a peptide sequence of 37 amino acids which has been predicted to have an alpha-helical structure, is rich in hydrophobic amino acids, facilitates CP-RNA interactions, and is not required for self-assembly. Amino acid substitutions were introduced in the 37 amino acid N-terminus by site-directed mutagenesis and the mutant VLPs produced in plants by a Potato virus X (PVX)-based vector were tested for particle stability and RNA encapsidation. All mutant CPs resulted in production of VLPs which encapsidated non-viral RNAs, including PVX genomic and subgenomic (sg) RNAs, 18S rRNA and cellular and viral mRNAs. In addition, MRFV-VLPs encapsidated GFP mRNA when was expressed in plant cells from the pGD vector. These results suggest that RNA packaging in MRFV-VLPs is predominantly driven by electrostatic interactions between the N-terminal 37 amino acid extension of CP1 and RNA, and that the overall species concentration of RNA in the cellular pool may determine the abundance and species of the RNAs packaged into the VLPs. Furthermore, RNA encapsidation is not required for VLPs stability, VLPs formed from MRFV-CP1 were stable at temperatures up to 70°C, and can be disassembled into CP monomers, which can then reassemble in vitro into complete VLPs either in the absence or presence of RNAs.
Collapse
Affiliation(s)
- Angela Natilla
- United States Department of Agriculture, Beltsville Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, United States.
| | - Charles Murphy
- United States Department of Agriculture, Beltsville Agricultural Research Service, Electron and Confocal Microscopy Unit, Beltsville, MD 20705, United States
| | - Rosemarie W Hammond
- United States Department of Agriculture, Beltsville Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, United States
| |
Collapse
|
18
|
The N-terminal region containing the zinc finger domain of tobacco streak virus coat protein is essential for the formation of virus-like particles. Arch Virol 2013; 159:413-23. [PMID: 24036956 DOI: 10.1007/s00705-013-1822-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
Abstract
Tobacco streak virus (TSV), a member of the genus Ilarvirus (family Bromoviridae), has a tripartite genome and forms quasi-isometric virions. All three viral capsids, encapsidating RNA 1, RNA 2 or RNA 3 and subgenomic RNA 4, are constituted of a single species of coat protein (CP). Formation of virus-like particles (VLPs) could be observed when the TSV CP gene was cloned and the recombinant CP (rCP) was expressed in E. coli. TSV VLPs were found to be stabilized by Zn(2+) ions and could be disassembled in the presence of 500 mM CaCl2. Mutational analysis corroborated previous studies that showed that an N-terminal arginine-rich motif was crucial for RNA binding; however, the results presented here demonstrate that the presence of RNA is not a prerequisite for assembly of TSV VLPs. Instead, the N-terminal region containing the zinc finger domain preceding the arginine-rich motif is essential for assembly of these VLPs.
Collapse
|
19
|
Abstract
Over the last three decades, virus-like particles (VLPs) have evolved to become a widely accepted technology, especially in the field of vaccinology. In fact, some VLP-based vaccines are currently used as commercial medical products, and other VLP-based products are at different stages of clinical study. Several remarkable advantages have been achieved in the development of VLPs as gene therapy tools and new nanomaterials. The analysis of published data reveals that at least 110 VLPs have been constructed from viruses belonging to 35 different families. This review therefore discusses the main principles in the cloning of viral structural genes, the relevant host systems and the purification procedures that have been developed. In addition, the methods that are used to characterize the structural integrity, stability, and components, including the encapsidated nucleic acids, of newly synthesized VLPs are analyzed. Moreover, some of the modifications that are required to construct VLP-based carriers of viral origin with defined properties are discussed, and examples are provided.
Collapse
Affiliation(s)
- Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga 1067, Latvia.
| |
Collapse
|
20
|
Turnip yellow mosaic virus forms infectious particles without the native beta-annulus structure and flexible coat protein N-terminus. Virology 2012; 422:165-73. [DOI: 10.1016/j.virol.2011.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/20/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022]
|
21
|
Natilla A, Hammond RW. Maize rayado fino virus virus-like particles expressed in tobacco plants: A new platform for cysteine selective bioconjugation peptide display. J Virol Methods 2011; 178:209-15. [PMID: 21963393 DOI: 10.1016/j.jviromet.2011.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 11/18/2022]
Abstract
Maize rayado fino virus (MRFV) virus-like-particles (VLPs) produced in tobacco plants were examined for their ability to serve as a novel platform to which a variety of peptides can be covalently displayed when expressed through a Potato virus X (PVX)-based vector. To provide an anchor for chemical modifications, three Cys-MRFV-VLPs mutants were created by substituting several of the amino acids present on the shell of the wild-type MRFV-VLPs with cysteine residues. The mutant designated Cys 2-VLPs exhibited, under native conditions, cysteine thiol reactivity in bioconjugation reactions with a fluorescent dye. In addition, this Cys 2-VLPs was cross-linked by NHS-PEG4-Maleimide to 17 (F) and 8 (HN) amino acid long peptides, corresponding to neutralizing epitopes of Newcastle disease virus (NDV). The resulting Cys 2-VLPs-F and Cys 2-VLPs-HN were recognized in Western blots by antibodies to MRFV as well as to F and HN. The results demonstrated that plant-produced MRFV-VLPs have the ability to function as a novel platform for the multivalent display of surface ligands.
Collapse
Affiliation(s)
- Angela Natilla
- United States Department of Agriculture, Agricultural Research Service, Plant Sciences Institute, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| | | |
Collapse
|
22
|
Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2011; 9:1149-76. [PMID: 20923267 DOI: 10.1586/erv.10.115] [Citation(s) in RCA: 591] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome, potentially yielding safer and cheaper vaccine candidates. A handful of prophylactic VLP-based vaccines is currently commercialized worldwide: GlaxoSmithKline's Engerix (hepatitis B virus) and Cervarix (human papillomavirus), and Merck and Co., Inc.'s Recombivax HB (hepatitis B virus) and Gardasil (human papillomavirus) are some examples. Other VLP-based vaccine candidates are in clinical trials or undergoing preclinical evaluation, such as, influenza virus, parvovirus, Norwalk and various chimeric VLPs. Many others are still restricted to small-scale fundamental research, despite their success in preclinical tests. This article focuses on the essential role of VLP technology in new-generation vaccines against prevalent and emergent diseases. The implications of large-scale VLP production are discussed in the context of process control, monitorization and optimization. The main up- and down-stream technical challenges are identified and discussed accordingly. Successful VLP-based vaccine blockbusters are briefly presented concomitantly with the latest results from clinical trials and the recent developments in chimeric VLP-based technology for either therapeutic or prophylactic vaccination.
Collapse
Affiliation(s)
- António Roldão
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Apartado 127, P-2781-901, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
23
|
Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli. Virus Res 2010; 147:208-15. [DOI: 10.1016/j.virusres.2009.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/02/2009] [Accepted: 11/08/2009] [Indexed: 11/18/2022]
|
24
|
Chandran D, Shahana PV, Rani GS, Sugumar P, Shankar CR, Srinivasan VA. Display of neutralizing epitopes of Canine parvovirus and a T-cell epitope of the fusion protein of Canine distemper virus on chimeric tymovirus-like particles and its use as a vaccine candidate both against Canine parvo and Canine distemper. Vaccine 2009; 28:132-9. [DOI: 10.1016/j.vaccine.2009.09.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/01/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
|
25
|
Hema M, Nagendrakumar SB, Yamini R, Chandran D, Rajendra L, Thiagarajan D, Parida S, Paton DJ, Srinivasan VA. Chimeric tymovirus-like particles displaying foot-and-mouth disease virus non-structural protein epitopes and its use for detection of FMDV-NSP antibodies. Vaccine 2007; 25:4784-94. [PMID: 17499404 DOI: 10.1016/j.vaccine.2007.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 04/04/2007] [Accepted: 04/07/2007] [Indexed: 11/24/2022]
Abstract
Expression of Physalis mottle tymovirus (PhMV) coat protein (CP) in Escherichia coli (E. coli) was earlier shown to self-assemble into empty capsids that are nearly identical to the capsids formed in vivo. Aminoacid substitutions were made at the N-terminus of wild-type PhMV CP with single or tandem repeats of infection related B-cell epitopes of foot-and-mouth disease virus (FMDV) non-structural proteins (NSPs) 3B1, 3B2, 3AB, 3D and 3ABD of lengths 48, 66, 49, 51 and 55, respectively to produce chimeras pR-Ph-3B1, pR-Ph-3B2, pR-Ph- 3AB, pR-Ph-3D and pR-Ph-3ABD. Expression of these constructs in E. coli resulted in chimeric proteins which self-assembled into chimeric tymovirus-like particles (TVLPs), Ph-3B1, Ph-3B2, Ph-3AB, Ph-3D and Ph-3ABD as determined by ultracentrifugation and electron microscopy. Ph-3B1, Ph-3B2, Ph-3AB and Ph-3ABD reacted with polyclonal anti-3AB antibodies in ELISA and electroblot immunoassay, while wild-type PhMV TVLP and Ph-3D antigens did not react. An indirect ELISA (I-ELISA) was developed using Ph-3AB to detect FMDV-NSP antibodies in sera of animals that showed clinical signs of FMD. Field serum samples from cattle, buffalos, sheep, goats and pigs were examined by using these chimeric TVLPs for the differentiation of FMDV infected animals from vaccinated animals (DIVA). The assay was demonstrated to be highly specific (100%) and reproducible with sensitivity levels (94%) comparable to the Ceditest kit (P>0.05).
Collapse
Affiliation(s)
- Masarapu Hema
- Indian Immunologicals Limited, Rakshapuram, Gachibowli, Hyderabad 500032, Andhra Pradesh, India
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Umashankar M, Murthy MRN, Singh SA, Appu Rao AG, Savithri HS. The role of inter-subunit ionic interactions in the assembly of Physalis mottle tymovirus. Arch Virol 2006; 151:1917-31. [PMID: 16732495 DOI: 10.1007/s00705-006-0783-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
Physalis mottle tymovirus (PhMV) is a small spherical plant virus with its RNA genome encapsidated in a protein shell made of 180 identical coat protein (CP) subunits. The amino acid residues involved in two interfacial salt bridges, Asp-83/Arg-159 and Arg-68/Asp-150 and Lys-153, were targeted for mutagenesis with a view to delineate the role of interfacial ionic interactions in the subunit folding and assembly of the virus. R159A and D83A-R159A recombinant CP (rCP) mutants formed stable T = 3 capsids, indicating that the D83-R159 interfacial salt bridge is dispensable for the folding and assembly of PhMV. However, D150A and R68Q-D150A mutant rCPs were present in the insoluble fraction, suggesting that the R68-D150 interfacial salt bridge is crucial for subunit folding and assembly. Similarly, K153Q, D83A-K153Q, and H69A-K153Q mutant rCPs were present in the insoluble fraction. Interestingly, the R68Q-D150A, D83A-K153Q, and H69A-K153Q double mutant rCPs could be refolded into partially folded soluble heterogeneous aggregates of 14-16 S. The results further confirm our earlier observation that subunit folding and assembly are concerted events in PhMV.
Collapse
Affiliation(s)
- M Umashankar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
27
|
Palucha A, Loniewska A, Satheshkumar S, Boguszewska-Chachulska AM, Umashankar M, Milner M, Haenni AL, Savithri HS. Virus-like particles: models for assembly studies and foreign epitope carriers. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:135-68. [PMID: 16164974 PMCID: PMC7119358 DOI: 10.1016/s0079-6603(05)80004-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Virus‐like particles (VLPs), formed by the structural elements of viruses, have received considerable attention over the past two decades. The number of reports on newly obtained VLPs has grown proportionally with the systems developed for the expression of these particles. The chapter outlines the recent achievements in two important fields of research brought about by the availability of VLPs produced in a foreign host. These are: (1) The requirements for VLP assembly and (2) the use of VLPs as carriers for foreign epitopes. VLP technology is a rapidly advancing domain of molecular and structural biology. Extensive progress in VLP studies was achieved as the insect cell based protein production system was developed. This baculovirus expression system has many advantages for the synthesis of viral structural proteins resulting in the formation of VLPs. It allows production of large amounts of correctly folded proteins while also providing cell membranes that can serve as structural elements for enveloped viruses. These features give us the opportunity to gain insights into the interactions and requirements accompanying VLP formation that are similar to the assembly events occurring in mammalian cells. Other encouraging elements are the ability to easily scale up the system and the simplicity of purification of the assembled VLPs. The growing number of VLPs carrying foreign protein fragments on their surface and studies on the successful assembly of these chimeric molecules is a promising avenue towards the development of a new technology, in which the newly designed VLPs will be directed to particular mammalian cell types by exposing specific binding domains. The progress made in modeling the surface of VLPs makes them to date the best candidates for the design of delivery systems that can efficiently reach their targets.
Collapse
Affiliation(s)
- Andrzej Palucha
- Institute of Biochemistry and Biophysics, Pawinskiego 5a, 02-106 Warszawa, Poland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bink HHJ, Roepan SK, Pleij CWA. Two histidines of the coat protein of turnip yellow mosaic virus at the capsid interior are crucial for viability. Proteins 2004; 55:236-44. [PMID: 15048817 DOI: 10.1002/prot.10600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RNA-coat protein interactions in turnip yellow mosaic virus (TYMV) have been shown to involve low pK proton-donating groups. Two different types of interaction have been proposed. In the so-called type I interaction, protonated C-residues interact with acidic amino acids at low pH, thereby providing a rationale for the high C-content (38%) of the genomic RNA. The type II interaction involves charged histidines interacting with phosphates of the RNA backbone. Site-directed mutagenesis of the TYMV coat protein and subsequent in vivo analysis were performed to distinguish between these two types of RNA-protein interaction. The results reveal a prominent role for the histidines H68 and H180, since mutation to an alanine residue inhibits symptom development on secondary leaves, indicating that spreading of the virus in the plant is blocked. Viral RNA and coat protein synthesis are not altered, showing that these two histidines may play a role in the process of RNA encapsidation. Overexpression of the TYMV coat protein in Escherichia coli leads to the formation of bona fide capsids, showing that the two histidines are not critical in capsid assembly. Mutagenesis of the acidic amino acids D11, E135, and D143 to alanine apparently did not interfere with virus viability. The functional role of the histidines during the infection cycle is discussed in terms of the structure of the coat protein, both at the level of amino acid sequence conservation among the members of the Tymoviridae family and as the three-dimensional structure of the coat protein.
Collapse
Affiliation(s)
- Hugo H J Bink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
29
|
Rogel A, Benvenisti L, Sela I, Edelbaum O, Tanne E, Shachar Y, Zanberg Y, Gontmakher T, Khayat E, Stram Y. Vaccination with E. coli recombinant empty viral particles of infectious bursal disease virus (IBDV) confer protection. Virus Genes 2003; 27:169-75. [PMID: 14501195 DOI: 10.1023/a:1025780611356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The A genome segment of the highly virulent Infectious bursal disease virus (IBDV) was amplified using long and accurate-RT-PCR (LA-RT-PCR). The entire sequence region encoding VP2, VP4, and VP3 in that order was cloned and sequenced. Following subcloning into the Escherichia coli expression vector pET21a under the T7 promoter, viral proteins were expressed and processed as demonstrated by Western blot analysis. Virus-like particles could be visualized by immuno-electron microscopy in IPTG-induced cells suggesting that viral assembly can take place in E. coli. Induction of anti-IBDV antibodies was detected in chickens immunized with purified recombinant IBDV by intra muscular (i.m.) injection. Furthermore, the vaccinated chickens were protected when challenged with the Gep 5 isolate of IBDV.
Collapse
Affiliation(s)
- Arie Rogel
- Virology Division, Kimron Veterinary Institute, P.O. Box 12, Beit-Dagan 50250, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Umashankar M, Murthy MRN, Savithri HS. Mutation of interfacial residues disrupts subunit folding and particle assembly of Physalis mottle tymovirus. J Biol Chem 2003; 278:6145-52. [PMID: 12477730 DOI: 10.1074/jbc.m207992200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Virus-like particles (VLPs) serve as excellent model systems to identify the pathways of virus assembly. To gain insights into the assembly mechanisms of the Physalis mottle tymovirus (PhMV), six interfacial residues, identified based on the crystal structure of the native and recombinant capsids, were targeted for mutagenesis. The Q37E, Y67A, R68Q, D83A, I123A, and S145A mutants of the PhMV recombinant coat protein (rCP) expressed in Escherichia coli were soluble. However, except for the S145A mutant, which assembled into VLPs similar to that of wild type rCP capsids, all the other mutants failed to assemble into VLPs. Furthermore, the purified Q37E, Y67A, R68Q, D83A, and I123A rCP mutants existed essentially as partially folded monomers as revealed by sucrose density gradient analysis, circular dichroism, fluorescence, thermal, and urea denaturation studies. The rCP mutants locked into such conformations probably lack the structural signals/features that would allow them to assemble into capsids. Thus, the mutation of residues involved in inter-subunit interactions in PhMV disrupts both subunit folding and particle assembly.
Collapse
|
31
|
Lokesh GL, Gowri TDS, Satheshkumar PS, Murthy MRN, Savithri HS. A molecular switch in the capsid protein controls the particle polymorphism in an icosahedral virus. Virology 2002; 292:211-23. [PMID: 11878924 DOI: 10.1006/viro.2001.1242] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recombinant coat protein (CP) of Sesbania mosaic virus (SeMV; genus Sobemovirus) was found to self-assemble into capsids encapsidating 23S rRNA and CP mRNA in Escherichia coli. The CP lacking 22 amino acids from the N-terminus assembled into stable T = 3 capsids that appeared similar to SeMV, indicating that the N-terminal 22 amino acid residues are dispensable for T = 3 assembly. Two distinct capsids, T = 1 and pseudo T = 2, were observed when the N-terminal 36 amino acids encompassing the arginine-rich motif (N-ARM) were removed. Only T = 1 particles were observed upon deletion of 65 amino acids from the N-terminus, which also included the sequence element for the beta-annulus. These results reveal that N-ARM acts as a molecular switch in regulating T = 3 assembly. Formation of stable pseudo T = 2 particles shows that pentamers of AB dimers could nucleate assembly at icosahedral-5-folds. Capsids assembled from the N-terminally truncated proteins also encapsidated 23S rRNA and CP mRNA, suggesting the presence of sites outside the N-terminal 65 residues that may be involved in RNA--protein interactions.
Collapse
Affiliation(s)
- G L Lokesh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
32
|
Krishna SS, Sastri M, Savithri HS, Murthy MR. Structural studies on the empty capsids of Physalis mottle virus. J Mol Biol 2001; 307:1035-47. [PMID: 11286554 DOI: 10.1006/jmbi.2001.4533] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional crystal structure of the empty capsid of Physalis mottle tymovirus has been determined to 3.2 A resolution. The empty capsids crystallized in the space group P1, leading to 60-fold non-crystallographic redundancy. The known structure of Physalis mottle virus was used as a phasing model to initiate the structure determination by real-space electron-density averaging. The main differences between the structures of the native and the empty capsids were in residues 10 to 28 of the A-subunit, residues 1 to 9 of the B-subunit and residues 1 to 5 of the C-subunit, which are ordered only in the native virus particles. An analysis of the subunit disposition reveals that the virus has expanded radially outward by approximately 1.8 A in the empty particles. The A-subunits move in a direction that makes 10 degrees to the icosahedral 5-fold axes of symmetry. The B and C-subunits move along vectors making 12 degrees and 15 degrees to the quasi 6-fold axes. The quaternary organization of the pentameric and hexameric capsomeres are not altered significantly. However, the pentamer-hexamer contacts are reduced. Therefore, encapsidation of RNA appears to cause a reduction in the particle radius concomittant with the ordering of the N-terminal arm in the three subunits. These structural changes in Physalis mottle virus appear to be larger than the corresponding changes observed in viruses for which both the empty and full particle structures have been determined.
Collapse
Affiliation(s)
- S S Krishna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | | | | | | |
Collapse
|
33
|
Ng JC, Liu S, Perry KL. Cucumber mosaic virus mutants with altered physical properties and defective in aphid vector transmission. Virology 2000; 276:395-403. [PMID: 11040130 DOI: 10.1006/viro.2000.0569] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two mutant strains of cucumber mosaic virus (CMV) were investigated with respect to virion stability and molecular determinants of aphid vector transmission. The mutant 2A1-MT-60x, derived from the mechanically passaged wild type 2A1-AT, is poorly transmissible by the aphid Aphis gossypii and not transmissible by the aphid Myzus persicae, whereas the wild type virus is transmissible by both aphid species. The mutant phenotype was shown to be conferred by a single encoded amino acid change of alanine to threonine at position 162 of the coat protein (CP). Modifying the mutant CP gene to encode the wild type sequence (alanine) at position 162 restored aphid transmission. To test for a correspondence between changes in the physical stability of virions and defects in aphid transmission, a urea disruption assay was developed. Virions of aphid-transmissible strains 2A1-AT and CMV-Fny were stable with treatments of up to between 3 and 4 M urea. In this assay mutant viruses 2A1-MT-60x and CMV-M were less stable, as they were completely disrupted at urea concentrations of 2 and 1 M urea, respectively. The mutant 2A1-MT-60x also accumulated at a reduced level in infected squash relative to the wild type virus. These studies suggest that a primary factor in the loss of aphid transmissibility of some strains of CMV is a reduction in virion stability.
Collapse
Affiliation(s)
- J C Ng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | | | | |
Collapse
|
34
|
Krishna SS, Hiremath CN, Munshi SK, Prahadeeswaran D, Sastri M, Savithri HS, Murthy MR. Three-dimensional structure of physalis mottle virus: implications for the viral assembly. J Mol Biol 1999; 289:919-34. [PMID: 10369772 DOI: 10.1006/jmbi.1999.2787] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the T=3 single stranded RNA tymovirus, physalis mottle virus (PhMV), has been determined to 3.8 A resolution. PhMV crystals belong to the rhombohedral space group R 3, with one icosahedral particle in the unit cell leading to 20-fold non-crystallographic redundancy. Polyalanine coordinates of the related turnip yellow mosaic virus (TYMV) with which PhMV coat protein shares 32 % amino acid sequence identity were used for obtaining the initial phases. Extensive phase refinement by real space molecular replacement density averaging resulted in an electron density map that revealed density for most of the side-chains and for the 17 residues ordered in PhMV, but not seen in TYMV, at the N terminus of the A subunits. The core secondary and tertiary structures of the subunits have a topology consistent with the capsid proteins of other T=3 plant viruses. The N-terminal arms of the A subunits, which constitute 12 pentamers at the icosahedral 5-fold axes, have a conformation very different from the conformations observed in B and C subunits that constitute hexameric capsomers with near 6-fold symmetry at the icosahedral 3-fold axes. An analysis of the interfacial contacts between protein subunits indicates that the hexamers are held more strongly than pentamers and hexamer-hexamer contacts are more extensive than pentamer-hexamer contacts. These observations suggest a plausible mechanism for the formation of empty capsids, which might be initiated by a change in the conformation of the N-terminal arm of the A subunits. The structure also provides insights into immunological and mutagenesis results. Comparison of PhMV with the sobemovirus, sesbania mosaic virus reveals striking similarities in the overall tertiary fold of the coat protein although the capsid morphologies of these two viruses are very different.
Collapse
Affiliation(s)
- S S Krishna
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, 560 012, India.
| | | | | | | | | | | | | |
Collapse
|
35
|
Sastri M, Reddy DS, Krishna SS, Murthy MR, Savithri HS. Identification of a discrete intermediate in the assembly/disassembly of physalis mottle tymovirus through mutational analysis. J Mol Biol 1999; 289:905-18. [PMID: 10369771 DOI: 10.1006/jmbi.1999.2786] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Assembly intermediates of icosahedral viruses are usually transient and are difficult to identify. In the present investigation, site-specific and deletion mutants of the coat protein gene of physalis mottle tymovirus (PhMV) were used to delineate the role of specific amino acid residues in the assembly of the virus and to identify intermediates in this process. N-terminal 30, 34, 35 and 39 amino acid deletion and single C-terminal (N188) deletion mutant proteins of PhMV were expressed in Escherichia coli. Site-specific mutants H69A, C75A, W96A, D144N, D144N-T151A, K143E and N188A were also constructed and expressed. The mutant protein lacking 30 amino acid residues from the N terminus self-assembled to T=3 particles in vivo while deletions of 34, 35 and 39 amino acid residues resulted in the mutant proteins that were insoluble. Interestingly, the coat protein (pR PhCP) expressed using pRSET B vector with an additional 41 amino acid residues at the N terminus also assembled into T=3 particles that were more compact and had a smaller diameter. These results demonstrate that the amino-terminal segment is flexible and either the deletion or addition of amino acid residues at the N terminus does not affect T=3 capsid assembly. In contrast, the deletion of even a single residue from the C terminus (PhN188Delta1) resulted in capsids that were unstable. These capsids disassembled to a discrete intermediate with a sedimentation coefficent of 19.4 S. However, the replacement of C-terminal asparagine 188 by alanine led to the formation of stable capsids. The C75A and D144N mutant proteins also assembled into capsids that were as stable as the pR PhCP, suggesting that C75 and D144 are not crucial for the T=3 capsid assembly. pR PhW96A and pR PhD144N-T151A mutant proteins failed to form capsids and were present as heterogeneous aggregates. Interestingly, the pR PhK143E mutant protein behaved in a manner similar to the C-terminal deletion protein in forming unstable capsids. The intermediate with an s value of 19.4 S was the major assembly product of pR PhH69A mutant protein and could correspond to a 30mer. It is possible that the assembly or disassembly is arrested at a similar stage in pR PhN188Delta1, pR PhH69A and pR PhK143E mutant proteins.
Collapse
Affiliation(s)
- M Sastri
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | | | | | | | |
Collapse
|
36
|
Chapdelaine Y, Hohn T. The cauliflower mosaic virus capsid protein: assembly and nucleic acid binding in vitro. Virus Genes 1998; 17:139-50. [PMID: 9857987 DOI: 10.1023/a:1008064623335] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The capsid protein of the cauliflower mosaic virus (CaMV) was expressed in a bacterial system to study CaMV assembly. Bacterial lysates contained soluble particulate material and insoluble inclusion bodies that were both used for analysis. In vitro renaturation of pIV derivatives lead to the appearance of folded sheets or large tubular structures in electron microscopy. The region between amino acid positions 77 and 332 is sufficient for self-aggregation of pIV in vitro. C-terminal deletion to amino acid position 265 still allowed dimerization but prevented further aggregation. Nucleic acid binding assays of immobilized pIV derivatives demonstrated that a region located upstream of the retroviral "zinc finger-like" motif is involved in unspecific binding dsDNA, ssDNA and RNA.
Collapse
|