1
|
Gajarsky M, Stadlbauer P, Sponer J, Cucchiarini A, Dobrovolna M, Brazda V, Mergny JL, Trantirek L, Lenarcic Zivkovic M. DNA Quadruplex Structure with a Unique Cation Dependency. Angew Chem Int Ed Engl 2024; 63:e202313226. [PMID: 38143239 DOI: 10.1002/anie.202313226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023]
Abstract
DNA quadruplex structures provide an additional layer of regulatory control in genome maintenance and gene expression and are widely used in nanotechnology. We report the discovery of an unprecedented tetrastranded structure formed from a native G-rich DNA sequence originating from the telomeric region of Caenorhabditis elegans. The structure is defined by multiple properties that distinguish it from all other known DNA quadruplexes. Most notably, the formation of a stable so-called KNa-quadruplex (KNaQ) requires concurrent coordination of K+ and Na+ ions at two distinct binding sites. This structure provides novel insight into G-rich DNA folding under ionic conditions relevant to eukaryotic cell physiology and the structural evolution of telomeric DNA. It highlights the differences between the structural organization of human and nematode telomeric DNA, which should be considered when using C. elegans as a model in telomere biology, particularly in drug screening applications. Additionally, the absence/presence of KNaQ motifs in the host/parasite introduces an intriguing possibility of exploiting the KNaQ fold as a plausible antiparasitic drug target. The structure's unique shape and ion dependency and the possibility of controlling its folding by using low-molecular-weight ligands can be used for the design or discovery of novel recognition DNA elements and sensors.
Collapse
Affiliation(s)
- Martin Gajarsky
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Current address: Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Petr Stadlbauer
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Anne Cucchiarini
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Michaela Dobrovolna
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkynova 464, 61200, Brno, Czech Republic
| | - Vaclav Brazda
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkynova 464, 61200, Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Lukas Trantirek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Martina Lenarcic Zivkovic
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
2
|
Khan S, Singh A, Nain N, Kukreti S. Alkali cation-mediated topology displayed by an exonic G-rich sequence of TRPA1 gene. J Biomol Struct Dyn 2023; 41:9997-10008. [PMID: 36458452 DOI: 10.1080/07391102.2022.2150686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
G-rich sequences are intrinsic parts of the genome, widespread in promoters, telomeres, or other regulatory regions. The in vivo existence and biological significance have established the functional aspect of G-quadruplex structures and thus have developed immense interest in exploring their therapeutic aspects. Herein, using biophysical methods, we examined the structural status and comprehensive cation-dependence of a 17-bp G-rich genomic sequence (SKGT17) located in the coding region of the human TRPA1 gene, known to be associated with various neurovascular, cardiovascular, and respiratory conditions. TRPA1 is primarily seen as a therapeutic target for the development of novel analgesics. Bioinformatics analysis has suggested that 17-bp quadruplex motif is a binding site for transcription factor 'Sp1'. The formation and recognition of SKGT17 G-quadruplex might impact its regulatory functioning. Biophysical studies confirmed that the presence of alkali metal ions facilitated the formation of G-quadruplex in parallel topology. Native gel further substantiated the formation of a biomolecular species. Circular dichroism (CD), UV-thermal melting (Tm), and CD melting confirmed the formation of parallel G-quadruplex with metal ion-dependent stability. The stability of the G-quadruplex formed is found to be significantly high in the presence of K+ ions than that of other ions. Intriguingly, we have also established that this segment of the TRAP1 gene favors G-quadruplex formation over its participation in the corresponding duplex formation under K+ ions conditions. This study attempts to explain the rationale for the stabilization of G-quadruplex in the presence of alkali metal ions and may add to a better understanding and insights into DNA-metal ions interactions.
Collapse
Affiliation(s)
- Shoaib Khan
- Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, India
| | - Nishu Nain
- Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Zalar M, Wang B, Plavec J, Šket P. Insight into Tetramolecular DNA G-Quadruplexes Associated with ALS and FTLD: Cation Interactions and Formation of Higher-Ordered Structure. Int J Mol Sci 2023; 24:13437. [PMID: 37686239 PMCID: PMC10487854 DOI: 10.3390/ijms241713437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The G4C2 hexanucleotide repeat expansion in the c9orf72 gene is a major genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), with the formation of G-quadruplexes directly linked to the development of these diseases. Cations play a crucial role in the formation and structure of G-quadruplexes. In this study, we investigated the impact of biologically relevant potassium ions on G-quadruplex structures and utilized 15N-labeled ammonium cations as a substitute for K+ ions to gain further insights into cation binding and exchange dynamics. Through nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we demonstrate that the single d(G4C2) repeat, in the presence of 15NH4+ ions, adopts a tetramolecular G-quadruplex with an all-syn quartet at the 5'-end. The movement of 15NH4+ ions through the central channel of the G-quadruplex, as well as to the bulk solution, is governed by the vacant cation binding site, in addition to the all-syn quartet at the 5'-end. Furthermore, the addition of K+ ions to G-quadruplexes folded in the presence of 15NH4+ ions induces stacking of G-quadruplexes via their 5'-end G-quartets, leading to the formation of stable higher-ordered species.
Collapse
Affiliation(s)
- Matja Zalar
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
- EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| |
Collapse
|
4
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
5
|
Escaja N, Mir B, Garavís M, González C. Non-G Base Tetrads. Molecules 2022; 27:5287. [PMID: 36014524 PMCID: PMC9414646 DOI: 10.3390/molecules27165287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Tetrads (or quartets) are arrangements of four nucleobases commonly involved in the stability of four-stranded nucleic acids structures. Four-stranded or quadruplex structures have attracted enormous attention in the last few years, being the most extensively studied guanine quadruplex (G-quadruplex). Consequently, the G-tetrad is the most common and well-known tetrad. However, this is not the only possible arrangement of four nucleobases. A number of tetrads formed by the different nucleobases have been observed in experimental structures. In most cases, these tetrads occur in the context of G-quadruplex structures, either inserted between G-quartets, or as capping elements at the sides of the G-quadruplex core. In other cases, however, non-G tetrads are found in more unusual four stranded structures, such as i-motifs, or different types of peculiar fold-back structures. In this report, we review the diversity of these non-canonical tetrads, and the structural context in which they have been found.
Collapse
Affiliation(s)
- Núria Escaja
- Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Martí i Franquès 1–11, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Bartomeu Mir
- Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Martí i Franquès 1–11, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Miguel Garavís
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
6
|
Bao Y, Zhang X, Xiang X, Zhang Y, Zhao B, Guo X. Revealing the effect of intramolecular interactions on DNA SERS detection: SERS capability for structural analysis. Phys Chem Chem Phys 2022; 24:10311-10317. [PMID: 35437563 DOI: 10.1039/d1cp05607g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intramolecular interactions are key factors for constructing the secondary conformations of biomolecules and they are also vital for biomolecular functions. Their effect on the surface-enhanced Raman spectroscopy (SERS) spectra is also important for reliable label-free detection. The current work focuses on three GCGC-quadruplexes as model molecules for SERS studies, which contain both the G-quartet and the GCGC-quartet. Their spectra are compared with the ones of the G-quadruplex and the duplex. The present work presents the specific effect of intramolecular interactions, including various Watson-Crick and Hoogsteen hydrogen bonds as well as base stacking, on the SERS signals of closely-related secondary conformations. The overall results indicated a significant influence on the direct label-free detection of DNA molecules and the SERS capability for secondary structural analysis.
Collapse
Affiliation(s)
- Ying Bao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yujing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
8
|
Maity A, Winnerdy FR, Chang WD, Chen G, Phan AT. Intra-locked G-quadruplex structures formed by irregular DNA G-rich motifs. Nucleic Acids Res 2020; 48:3315-3327. [PMID: 32100003 PMCID: PMC7102960 DOI: 10.1093/nar/gkaa008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
G-rich DNA sequences with tracts of three or more continuous guanines (G≥3) are known to have high propensity to adopt stable G-quadruplex (G4) structures. Bioinformatic analyses suggest high prevalence of G-rich sequences with short G-tracts (G≤2) in the human genome. However, due to limited structural studies, the folding principles of such sequences remain largely unexplored and hence poorly understood. Here, we present the solution NMR structure of a sequence named AT26 consisting of irregularly spaced G2 tracts and two isolated single guanines. The structure is a four-layered G4 featuring two bi-layered blocks, locked between themselves in an unprecedented fashion making it a stable scaffold. In addition to edgewise and propeller-type loops, AT26 also harbors two V-shaped loops: a 2-nt V-shaped loop spanning two G-tetrad layers and a 0-nt V-shaped loop spanning three G-tetrad layers, which are named as VS- and VR-loop respectively, based on their distinct structural features. The intra-lock motif can be a basis for extending the G-tetrad core and a very stable intra-locked G4 can be formed by a sequence with G-tracts of various lengths including several G2 tracts. Findings from this study will aid in understanding the folding of G4 topologies from sequences containing irregularly spaced multiple short G-tracts.
Collapse
Affiliation(s)
- Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Weili Denyse Chang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Gang Chen
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
9
|
Pavc D, Wang B, Spindler L, Drevenšek-Olenik I, Plavec J, Šket P. GC ends control topology of DNA G-quadruplexes and their cation-dependent assembly. Nucleic Acids Res 2020; 48:2749-2761. [PMID: 31996902 PMCID: PMC7049726 DOI: 10.1093/nar/gkaa058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/22/2023] Open
Abstract
GCn and GCnCG, where n = (G2AG4AG2), fold into well-defined, dimeric G-quadruplexes with unprecedented folding topologies in the presence of Na+ ions as revealed by nuclear magnetic resonance spectroscopy. Both G-quadruplexes exhibit unique combination of structural elements among which are two G-quartets, A(GGGG)A hexad and GCGC-quartet. Detailed structural characterization uncovered the crucial role of 5'-GC ends in formation of GCn and GCnCG G-quadruplexes. Folding in the presence of 15NH4+ and K+ ions leads to 3'-3' stacking of terminal G-quartets of GCn G-quadruplexes, while 3'-GC overhangs in GCnCG prevent dimerization. Results of the present study expand repertoire of possible G-quadruplex structures. This knowledge will be useful in DNA sequence design for nanotechnological applications that may require specific folding topology and multimerization properties.
Collapse
Affiliation(s)
- Daša Pavc
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Lea Spindler
- University of Maribor, Faculty of Mechanical Engineering, 2000 Maribor, Slovenia
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Irena Drevenšek-Olenik
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
- EN-FIST Center of Excellence, 1000 Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Yuan WF, Wan LY, Peng H, Zhong YM, Cai WL, Zhang YQ, Ai WB, Wu JF. The influencing factors and functions of DNA G-quadruplexes. Cell Biochem Funct 2020; 38:524-532. [PMID: 32056246 PMCID: PMC7383576 DOI: 10.1002/cbf.3505] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/28/2022]
Abstract
G‐quadruplexes form folded structures because of tandem repeats of guanine sequences in DNA or RNA. They adopt a variety of conformations, depending on many factors, including the type of loops and cations, the nucleotide strand number, and the main strand polarity of the G‐quadruplex. Meanwhile, the different conformations of G‐quadruplexes have certain influences on their biological functions, such as the inhibition of transcription, translation, and DNA replication. In addition, G‐quadruplex binding proteins also affect the structure and function of G‐quadruplexes. Some chemically synthesized G‐quadruplex sequences have been shown to have biological activities. For example, bimolecular G‐quadruplexes of AS1411 act as targets of exogenous drugs that inhibit the proliferation of malignant tumours. G‐quadruplexes are also used as vehicles to deliver nanoparticles. Thus, it is important to identify the factors that influence G‐quadruplex structures and maintain the stability of G‐quadruplexes. Herein, we mainly discuss the factors influencing G‐quadruplexes and the synthetic G‐quadruplex, AS1411. Significance of the study This review summarizes the factors that influence G‐quadruplexes and the functions of the synthetic G‐quadruplex, AS1411. It also discusses the use of G‐quadruplexes for drug delivery in tumour therapy.
Collapse
Affiliation(s)
- Wen-Fang Yuan
- Medical College, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Lin-Yan Wan
- The People's Hospital, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Hu Peng
- Medical College, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Surgeon, The Yiling Hospital of Yichang, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yuan-Mei Zhong
- Medical College, China Three Gorges University, Yichang, China
| | - Wen-Li Cai
- Medical College, China Three Gorges University, Yichang, China
| | - Yan-Qiong Zhang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Wen-Bing Ai
- Surgeon, The Yiling Hospital of Yichang, Yichang, China
| | - Jiang-Feng Wu
- Medical College, China Three Gorges University, Yichang, China.,The People's Hospital, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Surgeon, The Yiling Hospital of Yichang, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| |
Collapse
|
11
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
12
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019; 58:13834-13839. [DOI: 10.1002/anie.201907740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
13
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
14
|
Vinnarasi S, Radhika R, Vijayakumar S, Shankar R. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:317-339. [PMID: 30794082 DOI: 10.1080/07391102.2019.1574239] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human telomerase referred as 'terminal transferase' is a nucleoprotein enzyme which inhibits the disintegration of telomere length and act as a drug target for the anticancer therapy. The tandem repeating structure of telomere sequence forms the guanine-rich quadruplex structures that stabilize stacked tetrads. In our present work, we have investigated the interaction of quercetin with DNA tetrads using DFT. Geometrical analysis revealed that the influence of quercetin drug induces the structural changes into the DNA tetrads. Among DNA tetrads, the quercetin stacked with GCGC tetrad has the highest interaction energy of -88.08 kcal/mol. The binding mode and the structural stability are verified by the absorption spectroscopy method. The longer wavelength was found at 380 nm and it exhibits bathochromic shift. The findings help us to understand the binding nature of quercetin drug with DNA tetrads and it also inhibits the telomerase activity. Further, the quercetin drug interacted with G-quadruplex DNA by using molecular dynamics (MD) simulation studies for 100 ns simulation at different temperatures and different pH levels (T = 298 K, 320 K and pH = 7.4, 5.4). The structural stability of the quercetin with G-quadruplex structure is confirmed by RMSD. For the acidic condition (pH = 5.4), the binding affinity is higher toward G-quadruplex DNA, this result resembles that the quercetin drug is well interacted with G-quadruplex DNA at acidic condition (pH = 7.4) than the neutral condition. The obtained results show that quercetin drug stabilizes the G-quadruplex DNA, which regulates telomerase enzyme and it potentially acts as a novel anti-cancer agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Vinnarasi
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - R Radhika
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - S Vijayakumar
- Department of Medical Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - R Shankar
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
15
|
Sediqi H, Wray A, Jones C, Jones M. Application of Spectral Phasor analysis to sodium microenvironments in myoblast progenitor cells. PLoS One 2018; 13:e0204611. [PMID: 30379959 PMCID: PMC6209149 DOI: 10.1371/journal.pone.0204611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
Sodium ions (Na+) are key regulators of molecular events in many cellular processes, yet the dynamics of this ion remain poorly defined. Developing approaches to identify and characterise Na+ microenvironments will enable more detailed elucidation of the mechanisms of signal transduction. Here we report the application of Spectral Phasor analysis to the Na+ fluorophore, CoroNa Green, to identify and spatially map spectral emissions that report Na+ microenvironments. We use differentiating stem cells where Na+ fluxes were reported as an antecedent. Myoblast stem cells were induced to differentiate by serum starvation and then fixed at intervals between 0 and 40-minutes of differentiation prior to addition of CoroNa Green. The fluorescent intensity was insufficient to identify discrete Na+ microenvironments. However, using Spectral Phasor analysis we identified spectral shifts in CoroNa Green fluorescence which is related to the Na+ microenvironment. Further, spectral-heterogeneity appears to be contingent on the distance of Na+ from the nucleus in the early stages of differentiation. Spectral Phasor analysis of CoroNa Green in fixed stem cells demonstrates for the first time that CoroNa Green has unique spectral emissions depending on the nature of the Na+ environment in differentiating stem cells. Applying Spectral Phasor analysis to CoroNa Green in live stem cells is likely to further elucidate the role of Na+ microenvironments in the differentiation process.
Collapse
Affiliation(s)
- Hamid Sediqi
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Alex Wray
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Christopher Jones
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Mark Jones
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
16
|
(C2G4)n repeat expansion sequences from the C9orf72 gene form an unusual DNA higher-order structure in the pH range of 5-6. PLoS One 2018; 13:e0198418. [PMID: 29912891 PMCID: PMC6005549 DOI: 10.1371/journal.pone.0198418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022] Open
Abstract
Massive expansion of a DNA hexanucleotide sequence repeat (C2G4) within the human C9orf72 gene has been linked to a number of neurodegenerative diseases. In sodium or potassium salt solutions, single-stranded d(C2G4)n DNAs fold to form G-quadruplexes. We have found that in magnesium or lithium salt solutions, especially under slightly acidic conditions, d(C2G4)n oligonucleotides fold to form a distinctive higher order structure whose most striking feature is an “inverted” circular dichroism spectrum, which is distinguishable from the spectrum of the left handed DNA double-helix, Z-DNA. On the basis of CD spectroscopy, gel mobility as well as chemical protection analysis, we propose that this structure, which we call “iCD-DNA”, may be a left-handed Hoogsteen base-paired duplex, an unorthodox G-quadruplex/i-motif composite, or a non-canonical, “braided” DNA triplex. Given that iCD-DNA forms under slightly acidic solution conditions, we do not know at this point in time whether or not it forms within living cells.
Collapse
|
17
|
Li PT, Wang ZF, Chu IT, Kuan YM, Li MH, Huang MC, Chiang PC, Chang TC, Chen CT. Expression of the human telomerase reverse transcriptase gene is modulated by quadruplex formation in its first exon due to DNA methylation. J Biol Chem 2017; 292:20859-20870. [PMID: 29084850 DOI: 10.1074/jbc.m117.808022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/23/2017] [Indexed: 11/06/2022] Open
Abstract
DNA secondary structures and methylation are two well-known mechanisms that regulate gene expression. The catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), is overexpressed in ∼90% of human cancers to maintain telomere length for cell immortalization. Binding of CCCTC-binding factor (CTCF) to the first exon of the hTERT gene can down-regulate its expression. However, DNA methylation in the first exon can prevent CTCF binding in most cancers, but the molecular mechanism is unknown. The NMR analysis showed that a stretch of guanine-rich sequence in the first exon of hTERT and located within the CTCF-binding region can form two secondary structures, a hairpin and a quadruplex. A key finding was that the methylation of cytosine at the specific CpG dinucleotides will participate in quartet formation, causing the shift of the equilibrium from the hairpin structure to the quadruplex structure. Of further importance was the finding that the quadruplex formation disrupts CTCF protein binding, which results in an increase in hTERT gene expression. Our results not only identify quadruplex formation in the first exon promoted by CpG dinucleotide methylation as a regulator of hTERT expression but also provide a possible mechanistic insight into the regulation of gene expression via secondary DNA structures.
Collapse
Affiliation(s)
- Pei-Tzu Li
- From the Departments of Biochemical Science and Technology and
| | - Zi-Fu Wang
- the Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - I-Te Chu
- the Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Chemistry, National Taiwan University and
| | - Yen-Min Kuan
- From the Departments of Biochemical Science and Technology and
| | - Ming-Hao Li
- the Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Mu-Ching Huang
- From the Departments of Biochemical Science and Technology and
| | - Pei-Chi Chiang
- From the Departments of Biochemical Science and Technology and
| | - Ta-Chau Chang
- the Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan .,Chemistry, National Taiwan University and
| | - Chin-Tin Chen
- From the Departments of Biochemical Science and Technology and
| |
Collapse
|
18
|
Ding Y, Xie L, Zhang C, Xu W. Real-space evidence of the formation of the GCGC tetrad and its competition with the G-quartet on the Au(111) surface. Chem Commun (Camb) 2017; 53:9846-9849. [PMID: 28825090 DOI: 10.1039/c7cc05548j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From the interplay of high-resolution scanning tunneling microscopy (STM) imaging and density functional theory (DFT) calculations, we show the first real-space evidence of the formation of GCGC tetrad on an Au(111) surface, and further investigate its competition with the well-known G-quartet with the aid of NaCl under ultrahigh vacuum (UHV) conditions.
Collapse
Affiliation(s)
- Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | |
Collapse
|
19
|
Zamiri B, Mirceta M, Bomsztyk K, Macgregor RB, Pearson CE. Quadruplex formation by both G-rich and C-rich DNA strands of the C9orf72 (GGGGCC)8•(GGCCCC)8 repeat: effect of CpG methylation. Nucleic Acids Res 2015; 43:10055-64. [PMID: 26432832 PMCID: PMC4787773 DOI: 10.1093/nar/gkv1008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
Unusual DNA/RNA structures of the C9orf72 repeat may participate in repeat expansions or pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Expanded repeats are CpG methylated with unknown consequences. Typically, quadruplex structures form by G-rich but not complementary C-rich strands. Using CD, UV and electrophoresis, we characterized the structures formed by (GGGGCC)8 and (GGCCCC)8 strands with and without 5-methylcytosine (5mCpG) or 5-hydroxymethylcytosine (5hmCpG) methylation. All strands formed heterogenous mixtures of structures, with features of quadruplexes (at pH 7.5, in K(+), Na(+) or Li(+)), but no feature typical of i-motifs. C-rich strands formed quadruplexes, likely stabilized by G•C•G•C-tetrads and C•C•C•C-tetrads. Unlike G•G•G•G-tetrads, some G•C•G•C-tetrad conformations do not require the N7-Guanine position, hence C9orf72 quadruplexes still formed when N7-deazaGuanine replace all Guanines. 5mCpG and 5hmCpG increased and decreased the thermal stability of these structures. hnRNPK, through band-shift analysis, bound C-rich but not G-rich strands, with a binding preference of unmethylated > 5hmCpG > 5mCpG, where methylated DNA-protein complexes were retained in the wells, distinct from unmethylated complexes. Our findings suggest that for C-rich sequences interspersed with G-residues, one must consider quadruplex formation and that methylation of quadruplexes may affect epigenetic processes.
Collapse
Affiliation(s)
- Bita Zamiri
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Mila Mirceta
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle WA 98109, USA
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
20
|
Brčić J, Plavec J. Solution structure of a DNA quadruplex containing ALS and FTD related GGGGCC repeat stabilized by 8-bromodeoxyguanosine substitution. Nucleic Acids Res 2015; 43:8590-600. [PMID: 26253741 PMCID: PMC4787828 DOI: 10.1093/nar/gkv815] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
A prolonged expansion of GGGGCC repeat within non-coding region of C9orf72 gene has been identified as the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which are devastating neurodegenerative disorders. Formation of unusual secondary structures within expanded GGGGCC repeat, including DNA and RNA G-quadruplexes and R-loops was proposed to drive ALS and FTD pathogenesis. Initial NMR investigation on DNA oligonucleotides with four repeat units as the shortest model with the ability to form an unimolecular G-quadruplex indicated their folding into multiple G-quadruplex structures in the presence of K+ ions. Single dG to 8Br-dG substitution at position 21 in oligonucleotide d[(G4C2)3G4] and careful optimization of folding conditions enabled formation of mostly a single G-quadruplex species, which enabled determination of a high-resolution structure with NMR. G-quadruplex structure adopted by d[(G4C2)3GGBrGG] is composed of four G-quartets, which are connected by three edgewise C-C loops. All four strands adopt antiparallel orientation to one another and have alternating syn-anti progression of glycosidic conformation of guanine residues. One of the cytosines in every loop is stacked upon the G-quartet contributing to a very compact and stable structure.
Collapse
Affiliation(s)
- Jasna Brčić
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia EN-FIST Center of Excellence, Ljubljana, Slovenia
| |
Collapse
|
21
|
Manukyan A, Tekin A. First principles potential for the cytosine dimer. Phys Chem Chem Phys 2015; 17:14685-701. [DOI: 10.1039/c5cp00553a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new first principles potential for the cytosine dimer.
Collapse
Affiliation(s)
- Artür Manukyan
- Informatics Institute
- Istanbul Technical University
- Istanbul
- Turkey
| | - Adem Tekin
- Informatics Institute
- Istanbul Technical University
- Istanbul
- Turkey
| |
Collapse
|
22
|
A tetrahelical DNA fold adopted by tandem repeats of alternating GGG and GCG tracts. Nat Commun 2014; 5:5831. [PMID: 25500730 PMCID: PMC4275592 DOI: 10.1038/ncomms6831] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 11/12/2014] [Indexed: 01/21/2023] Open
Abstract
DNA can form diverse higher-order structures, whose details are greatly dependent on nucleotide sequence. G-rich sequences containing four or more repeats of three guanines are expected to form G-quadruplexes. Here we show that DNA sequences with GGGAGCG repeats found in the regulatory region of the PLEKHG3 gene are capable of forming tetrahelical DNA structures that are distinct from G-quadruplexes. The d(GGGAGCGAGGGAGCG) sequence, VK1, forms a dimer. Two VK1 sequences connected by an adenine residue, VK2, fold into a monomer, which shares identical structural characteristics with the VK1 fold. Their four-stranded architectures are stabilized by four G-C, four G-A and six G-G base pairs. No G-quartets or Hoogsteen-type hydrogen-bonded guanine residues are present and the overall topology is conserved in the presence of Li(+), Na(+), K(+) and NH4(+) ions. Unique structural features include two edgewise loops on each side of the structure stabilized by three G-G base pairs in N1-carbonyl symmetric geometry.
Collapse
|
23
|
Abstract
This review summarizes the results of structural studies carried out with analogs of G-quadruplexes built from natural nucleotides. Several dozens of base-, sugar-, and phosphate derivatives of the biological building blocks have been incorporated into more than 50 potentially quadruplex forming DNA and RNA oligonucleotides and the stability and folding topology of the resultant intramolecular, bimolecular and tetramolecular architectures characterized. The TG4T, TG5T, the 15 nucleotide-long thrombin binding aptamer, and the human telomere repeat AG3(TTAG3)3 sequences were modified in most cases, and four guanine analogs can be noted as being particularly useful in structural studies. These are the fluorescent 2-aminopurine, the 8-bromo-, and 8-methylguanines, and the hypoxanthine. The latter three analogs stabilize a given fold in a mixture of structures making possible accurate structural determinations by circular dichroism and nuclear magnetic resonance measurements.
Collapse
Affiliation(s)
- Janos Sagi
- a Rimstone Laboratory , RLI, 29 Lancaster Way, Cheshire , CT , 06410 , USA
| |
Collapse
|
24
|
Abstract
G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes.
Collapse
Affiliation(s)
- Christopher Jacques Lech
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
25
|
Structural probes in quadruplex nucleic acid structure determination by NMR. Molecules 2012; 17:13073-86. [PMID: 23128087 PMCID: PMC6268857 DOI: 10.3390/molecules171113073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022] Open
Abstract
Traditionally, isotope-labelled DNA and RNA have been fundamental to nucleic acid structural studies by NMR. Four-stranded nucleic acid architectures studies increasingly benefit from a plethora of nucleotide conjugates for resonance assignments, the identification of hydrogen bond alignments, and improving the population of preferred species within equilibria. In this paper, we review their use for these purposes. Most importantly we identify reasons for the failure of some modifications to result in quadruplex formation.
Collapse
|
26
|
Escaja N, Viladoms J, Garavís M, Villasante A, Pedroso E, González C. A minimal i-motif stabilized by minor groove G:T:G:T tetrads. Nucleic Acids Res 2012; 40:11737-47. [PMID: 23042679 PMCID: PMC3526289 DOI: 10.1093/nar/gks911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The repetitive DNA sequences found at telomeres and centromeres play a crucial role in the structure and function of eukaryotic chromosomes. This role may be related to the tendency observed in many repetitive DNAs to adopt non-canonical structures. Although there is an increasing recognition of the importance of DNA quadruplexes in chromosome biology, the co-existence of different quadruplex-forming elements in the same DNA structure is still a matter of debate. Here we report the structural study of the oligonucleotide d(TCGTTTCGT) and its cyclic analog d<pTCGTTTCGTT>. Both sequences form dimeric quadruplex structures consisting of a minimal i-motif capped, at both ends, by a slipped minor groove-aligned G:T:G:T tetrad. These mini i-motifs, which do not exhibit the characteristic CD spectra of other i-motif structures, can be observed at neutral pH, although they are more stable under acidic conditions. This finding is particularly relevant since these oligonucleotide sequences do not contain contiguous cytosines. Importantly, these structures resemble the loop moiety adopted by an 11-nucleotide fragment of the conserved centromeric protein B (CENP-B) box motif, which is the binding site for the CENP-B.
Collapse
Affiliation(s)
- Núria Escaja
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Adrian M, Heddi B, Phan AT. NMR spectroscopy of G-quadruplexes. Methods 2012; 57:11-24. [DOI: 10.1016/j.ymeth.2012.05.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 12/24/2022] Open
|
28
|
|
29
|
Cang X, Šponer J, Cheatham TE. Insight into G-DNA structural polymorphism and folding from sequence and loop connectivity through free energy analysis. J Am Chem Soc 2011; 133:14270-9. [PMID: 21761922 PMCID: PMC3168932 DOI: 10.1021/ja107805r] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The lengths of G-tracts and their connecting loop sequences determine G-quadruplex folding and stability. Complete understanding of the sequence–structure relationships remains elusive. Here, single-loop G-quadruplexes were investigated using explicit solvent molecular dynamics (MD) simulations to characterize the effect of loop length, loop sequence, and G-tract length on the folding topologies and stability of G-quadruplexes. Eight loop types, including different variants of lateral, diagonal, and propeller loops, and six different loop sequences [d0 (i.e., no intervening residues in the loop), dT, dT2, dT3, dTTA, and dT4] were considered through MD simulation and free energy analysis. In most cases the free energetic estimates agree well with the experimental observations. The work also provides new insight into G-quadruplex folding and stability. This includes reporting the observed instability of the left propeller loop, which extends the rules for G-quadruplex folding. We also suggest a plausible explanation why human telomere sequences predominantly form hybrid-I and hybrid-II type structures in K+ solution. Overall, our calculation results indicate that short loops generally are less stable than longer loops, and we hypothesize that the extreme stability of sequences with very short loops could possibly derive from the formation of parallel multimers. The results suggest that free energy differences, estimated from MD and free energy analysis with current force fields and simulation protocols, are able to complement experiment and to help dissect and explain loop sequence, loop length, and G-tract length and orientation influences on G-quadruplex structure.
Collapse
Affiliation(s)
- Xiaohui Cang
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Hall 201, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
30
|
Cang X, Šponer J, Cheatham TE. Explaining the varied glycosidic conformational, G-tract length and sequence preferences for anti-parallel G-quadruplexes. Nucleic Acids Res 2011; 39:4499-512. [PMID: 21296760 PMCID: PMC3105399 DOI: 10.1093/nar/gkr031] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 01/08/2023] Open
Abstract
Guanine-rich DNA sequences tend to form four-stranded G-quadruplex structures. Characteristic glycosidic conformational patterns along the G-strands, such as the 5'-syn-anti-syn-anti pattern observed with the Oxytricha nova telomeric G-quadruplexes, have been well documented. However, an explanation for these featured glycosidic patterns has not emerged. This work presents MD simulation and free energetic analyses for simplified two-quartet [d(GG)](4) models and suggests that the four base pair step patterns show quite different relative stabilities: syn-anti > anti-anti > anti-syn > syn-syn. This suggests the following rule: when folding, anti-parallel G-quadruplexes tend to maximize the number of syn-anti steps and avoid the unfavorable anti-syn and syn-syn steps. This rule is consistent with most of the anti-parallel G-quadruplex structures in the Protein Databank (PDB). Structural polymorphisms of G-quadruplexes relate to these glycosidic conformational patterns and the lengths of the G-tracts. The folding topologies of G2- and G4-tracts are not very polymorphic because each strand tends to populate the stable syn-anti repeat. G3-tracts, on the other hand, cannot present this repeating pattern on each G-tract. This leads to smaller energy differences between different geometries and helps explain the extreme structural polymorphism of the human telomeric G-quadruplexes.
Collapse
Affiliation(s)
- Xiaohui Cang
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, Brno, Czech Republic and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Jiří Šponer
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, Brno, Czech Republic and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, Brno, Czech Republic and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
31
|
Zavasnik J, Podbevsek P, Plavec J. Observation of water molecules within the bimolecular d(G₃CT₄G₃C)₂G-quadruplex. Biochemistry 2011; 50:4155-61. [PMID: 21491853 DOI: 10.1021/bi200201n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-Rich oligonucleotides with cytosine residues in their sequences can form G-quadruplexes where G-quartets are flanked by G·C Watson-Crick base pairs. In an attempt to probe the role of cations in stabilization of a structural element with two G·C base pairs stacked on a G-quartet, we utilized solution state nuclear magnetic resonance to study the folding of the d(G(3)CT(4)G(3)C) oligonucleotide into a G-quadruplex upon addition of (15)NH(4)(+) ions. Its bimolecular structure exhibits antiparallel strands with edge-type loops. Two G-quartets in the core of the structure are flanked by a couple of Watson-Crick G·C base pairs in a sheared arrangement. The topology is equivalent to the solution state structure of the same oligonucleotide in the presence of Na(+) and K(+) ions [Kettani, A., et al. (1998) J. Mol. Biol.282, 619, and Bouaziz, S., et al. (1998) J. Mol. Biol.282, 637). A single ammonium ion binding site was identified between adjacent G-quartets, but three sites were expected. The remaining potential cation binding sites between G-quartets and G·C base pairs are occupied by water molecules. This is the first observation of long-lived water molecules within a G-quadruplex structure. The flanking G·C base pairs adopt a coplanar arrangement and apparently do not require cations to neutralize unfavorable electrostatic interactions among proximal carbonyl groups. A relatively fast movement of ammonium ions from the inner binding site to bulk with the rate constants of 21 s(-1) was attributed to the lack of hydrogen bonds between adjacent G·C base pairs and the flexibility of the T(4) loops.
Collapse
Affiliation(s)
- Jaka Zavasnik
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
32
|
Lim KW, Alberti P, Guédin A, Lacroix L, Riou JF, Royle NJ, Mergny JL, Phan AT. Sequence variant (CTAGGG)n in the human telomere favors a G-quadruplex structure containing a G.C.G.C tetrad. Nucleic Acids Res 2009; 37:6239-48. [PMID: 19692585 PMCID: PMC2764449 DOI: 10.1093/nar/gkp630] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Short contiguous arrays of variant CTAGGG repeats in the human telomere are unstable in the male germline and somatic cells, suggesting formation of unusual structures by this repeat type. Here, we report on the structure of an intramolecular G-quadruplex formed by DNA sequences containing four human telomeric variant CTAGGG repeats in potassium solution. Our results reveal a new robust antiparallel G-quadruplex fold involving two G-tetrads sandwiched between a G.C base pair and a G.C.G.C tetrad, which could represent a new platform for drug design targeted to human telomeric DNA.
Collapse
Affiliation(s)
- Kah Wai Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fadrná E, Špačková N, Sarzyñska J, Koča J, Orozco M, Cheatham TE, Kulinski T, Šponer J. Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields. J Chem Theory Comput 2009; 5:2514-30. [DOI: 10.1021/ct900200k] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Eva Fadrná
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Nad’a Špačková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Joanna Sarzyñska
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Jaroslav Koča
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Modesto Orozco
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Thomas E. Cheatham
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Tadeusz Kulinski
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Jiří Šponer
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| |
Collapse
|
34
|
Lambert D, Leipply D, Shiman R, Draper DE. The influence of monovalent cation size on the stability of RNA tertiary structures. J Mol Biol 2009; 390:791-804. [PMID: 19427322 PMCID: PMC2712228 DOI: 10.1016/j.jmb.2009.04.083] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 01/03/2023]
Abstract
Many RNA tertiary structures are stable in the presence of monovalent ions alone. To evaluate the degree to which ions at or near the surfaces of such RNAs contribute to stability, the salt-dependent stability of a variety of RNA structures was measured with each of the five group I cations. The stability of hairpin secondary structures and a pseudoknot tertiary structure are insensitive to the ion identity, but the tertiary structures of two other RNAs, an adenine riboswitch and a kissing loop complex, become more stable by 2-3 kcal/mol as ion size decreases. This "default" trend is attributed to the ability of smaller ions to approach the RNA surface more closely. The degree of cation accumulation around the kissing loop complex was also inversely proportional to ion radius, perhaps because of the presence of sterically restricted pockets that can be accessed only by smaller ions. An RNA containing the tetraloop-receptor motif shows a strong (up to approximately 3 kcal/mol) preference for Na(+) or K(+) over other group I ions, consistent with the chelation of K(+) by this motif in some crystal structures. This RNA reverts to the default dependence on ion size when a base forming part of the chelation site is mutated. Lastly, an RNA aptamer for cobinamide, which was originally selected in the presence of high concentrations of LiCl, binds ligand more strongly in the presence of Li(+) than other monovalent ions. On the basis of these trends in RNA stability with group I ion size, it is argued that two features of RNA tertiary structures may promote strong interactions with ions at or near the RNA surface: negative charge densities that are higher than that in secondary structures, and the occasional presence of chelation sites, which are electronegative pockets that selectively bind ions of an optimum size.
Collapse
Affiliation(s)
- Dominic Lambert
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
35
|
Viladoms J, Escaja N, Frieden M, Gómez-Pinto I, Pedroso E, González C. Self-association of short DNA loops through minor groove C:G:G:C tetrads. Nucleic Acids Res 2009; 37:3264-75. [PMID: 19321501 PMCID: PMC2691830 DOI: 10.1093/nar/gkp191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In addition to the better known guanine-quadruplex, four-stranded nucleic acid structures can be formed by tetrads resulting from the association of Watson-Crick base pairs. When such association occurs through the minor groove side of the base pairs, the resulting structure presents distinctive features, clearly different from quadruplex structures containing planar G-tetrads. Although we have found this unusual DNA motif in a number of cyclic oligonucleotides, this is the first time that this DNA motif is found in linear oligonucleotides in solution, demonstrating that cyclization is not required to stabilize minor groove tetrads in solution. In this article, we have determined the solution structure of two linear octamers of sequence d(TGCTTCGT) and d(TCGTTGCT), and their cyclic analogue d<pCGCTCCGT>, utilizing 2D NMR spectroscopy and restrained molecular dynamics. These three molecules self-associate forming symmetric dimers stabilized by a novel kind of minor groove C:G:G:C tetrad, in which the pattern of hydrogen bonds differs from previously reported ones. We hypothesize that these quadruplex structures can be formed by many different DNA sequences, but its observation in linear oligonucleotides is usually hampered by competing Watson-Crick duplexes.
Collapse
Affiliation(s)
- Júlia Viladoms
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, C/. Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Lipay JM, Mihailescu MR. NMR spectroscopy and kinetic studies of the quadruplex forming RNA r(UGGAGGU). MOLECULAR BIOSYSTEMS 2009; 5:1347-55. [DOI: 10.1039/b911555b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Folding topology of a bimolecular DNA quadruplex containing a stable mini-hairpin motif within the diagonal loop. J Mol Biol 2008; 385:1600-15. [PMID: 19070621 DOI: 10.1016/j.jmb.2008.11.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/12/2008] [Accepted: 11/20/2008] [Indexed: 11/24/2022]
Abstract
We describe the NMR structural characterisation of a bimolecular anti-parallel DNA quadruplex d(G(3)ACGTAGTG(3))(2) containing an autonomously stable mini-hairpin motif inserted within the diagonal loop. A folding topology is identified that is different from that observed for the analogous d(G(3)T(4)G(3))(2) dimer with the two structures differing in the relative orientation of the diagonal loops. This appears to reflect specific base stacking interactions at the quadruplex-duplex interface that are not present in the structure with the T(4)-loop sequence. A truncated version of the bimolecular quadruplex d(G(2)ACGTAGTG(2))(2), with only two core G-tetrads, is less stable and forms a heterogeneous mixture of three 2-fold symmetric quadruplexes with different loop arrangements. We demonstrate that the nature of the loop sequence, its ability to form autonomously stable structure, the relative stabilities of the hairpin loop and core quadruplex, and the ability to form favourable stacking interactions between these two motifs are important factors in controlling DNA G-quadruplex topology.
Collapse
|
38
|
|
39
|
Webba da Silva M. NMR methods for studying quadruplex nucleic acids. Methods 2008; 43:264-77. [PMID: 17967697 DOI: 10.1016/j.ymeth.2007.05.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy has traditionally played a central role in examining quadruplex structure, dynamics, and interactions. Here, an overview is given of the methods currently applied to structural, dynamics, thermodynamics, and kinetics studies of nucleic acid quadruplexes and associated cations.
Collapse
Affiliation(s)
- Mateus Webba da Silva
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, UK.
| |
Collapse
|
40
|
Sponer J, Spacková N. Molecular dynamics simulations and their application to four-stranded DNA. Methods 2007; 43:278-90. [PMID: 17967698 PMCID: PMC2431124 DOI: 10.1016/j.ymeth.2007.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 02/14/2007] [Indexed: 11/30/2022] Open
Abstract
This review provides a critical assessment of the advantages and limitations of modeling methods available for guanine quadruplex (G-DNA) molecules. We characterize the relations of simulations to the experimental techniques and explain the actual meaning and significance of the results. The following aspects are discussed: pair-additive approximation of the empirical force fields, sampling limitations stemming from the simulation time and accuracy of description of base stacking, H-bonding, sugar-phosphate backbone and ions by force fields. Several methodological approaches complementing the classical explicit solvent molecular dynamics simulations are commented on, including enhanced sampling methods, continuum solvent methods, free energy calculations and gas phase simulations. The successes and pitfalls of recent simulation studies of G-DNA are demonstrated on selected results, including studies of cation interactions and dynamics of G-DNA stems, studies of base substitutions (inosine, thioguanine and mixed tetrads), analysis of possible kinetic intermediates in folding pathway of a G-DNA stem and analysis of loop regions of G-DNA molecules.
Collapse
Affiliation(s)
- Jirí Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | | |
Collapse
|
41
|
Patel DJ, Phan AT, Kuryavyi V. Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res 2007; 35:7429-55. [PMID: 17913750 PMCID: PMC2190718 DOI: 10.1093/nar/gkm711] [Citation(s) in RCA: 734] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Guanine-rich DNA sequences can form G-quadruplexes stabilized by stacked G–G–G–G tetrads in monovalent cation-containing solution. The length and number of individual G-tracts and the length and sequence context of linker residues define the diverse topologies adopted by G-quadruplexes. The review highlights recent solution NMR-based G-quadruplex structures formed by the four-repeat human telomere in K+ solution and the guanine-rich strands of c-myc, c-kit and variant bcl-2 oncogenic promoters, as well as a bimolecular G-quadruplex that targets HIV-1 integrase. Such structure determinations have helped to identify unanticipated scaffolds such as interlocked G-quadruplexes, as well as novel topologies represented by double-chain-reversal and V-shaped loops, triads, mixed tetrads, adenine-mediated pentads and hexads and snap-back G-tetrad alignments. The review also highlights the recent identification of guanine-rich sequences positioned adjacent to translation start sites in 5′-untranslated regions (5′-UTRs) of RNA oncogenic sequences. The activity of the enzyme telomerase, which maintains telomere length, can be negatively regulated through G-quadruplex formation at telomeric ends. The review evaluates progress related to ongoing efforts to identify small molecule drugs that bind and stabilize distinct G-quadruplex scaffolds associated with telomeric and oncogenic sequences, and outlines progress towards identifying recognition principles based on several X-ray-based structures of ligand–G-quadruplex complexes.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | |
Collapse
|
42
|
Escaja N, Gómez-Pinto I, Viladoms J, Rico M, Pedroso E, González C. Induced-fit recognition of DNA by small circular oligonucleotides. Chemistry 2007; 12:4035-42. [PMID: 16607659 DOI: 10.1002/chem.200600050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have investigated the molecular interaction between cyclic and linear oligonucleotides. We have found that short cyclic oligonucleotides can induce hairpinlike structures in linear DNA fragments. By using NMR and CD spectroscopy we have studied the interaction of the cyclic oligonucleotide d<pCCTTCGGT> with d<pCAGTCCCT>, as well as with its two linear analogs d(GTCCCTCA) and d(CTCAGTCC). Here we report the NMR structural study of these complexes. Recognition between these oligonucleotides occurs through formation of four intermolecular Watson-Crick base pairs. The three-dimensional structure is stabilized by two tetrads, formed by facing the minor-groove side of the Watson-Crick base pairs. Overall, the structure is similar to those observed previously in other quadruplexes formed by minor-groove alignment of Watson-Crick base pairs. However, in this case the complexes are heterodimeric and are formed by two different tetrads (G:C:A:T and G:C:G:C). These complexes represent a new model of DNA recognition by small cyclic oligonucleotides, increasing the number of potential applications of these interesting molecules.
Collapse
Affiliation(s)
- Núria Escaja
- Departament de Química Orgànica, Universitat de Barcelona, Martí I Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Escaja N, Gómez-Pinto I, Pedroso E, Gonzalez C. Four-Stranded DNA Structures Can Be Stabilized by Two Different Types of Minor Groove G:C:G:C Tetrads. J Am Chem Soc 2007; 129:2004-14. [PMID: 17260988 DOI: 10.1021/ja066172z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four-stranded nucleic acid structures are central to many processes in biology and in supramolecular chemistry. It has been shown recently that four-stranded DNA structures are not only limited to the classical guanine quadruplex but also can be formed by tetrads resulting from the association of Watson-Crick base pairs. Such an association may occur through the minor or the major groove side of the base pairs. Structures stabilized by minor groove tetrads present distinctive features, clearly different from the canonical guanine quadruplex, making these quadruplexes a unique structural motif. Within our efforts to study the sequence requirements for the formation of this unusual DNA motif, we have determined the solution structure of the cyclic oligonucleotide dpCCGTCCGT by two-dimensional NMR spectroscopy and restrained molecular dynamics. This molecule self-associates, forming a symmetric dimer stabilized by two G:C:G:C tetrads with intermolecular G-C base pairs. Interestingly, although the overall three-dimensional structure is similar to that found in other cyclic and linear oligonucleotides of related sequences, the tetrads that stabilize the structure of dpCCGTCCGT are different to other minor groove G:C:G:C tetrads found earlier. Whereas in previous cases the G-C base pairs aligned directly, in this new tetrad the relative position of the two base pairs is slipped along the axis defined by the base pairs. This is the first time that a quadruplex structure entirely stabilized by slipped minor groove G:C:G:C tetrads is observed in solution or in the solid state. However, an analogous arrangement of G-C base pairs occurs between the terminal residues of contiguous duplexes in some DNA crystals. This structural polymorphism between minor groove GC tetrads may be important in stabilization of higher order DNA structures.
Collapse
Affiliation(s)
- Núria Escaja
- Instituto de Química Física "Rocasolano", CSIC, C/, Serrano 119, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
44
|
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 2006; 34:5402-15. [PMID: 17012276 PMCID: PMC1636468 DOI: 10.1093/nar/gkl655] [Citation(s) in RCA: 1825] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
G-quadruplexes are higher-order DNA and RNA structures formed from G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential quadruplex sequences have been identified in G-rich eukaryotic telomeres, and more recently in non-telomeric genomic DNA, e.g. in nuclease-hypersensitive promoter regions. The natural role and biological validation of these structures is starting to be explored, and there is particular interest in them as targets for therapeutic intervention. This survey focuses on the folding and structural features on quadruplexes formed from telomeric and non-telomeric DNA sequences, and examines fundamental aspects of topology and the emerging relationships with sequence. Emphasis is placed on information from the high-resolution methods of X-ray crystallography and NMR, and their scope and current limitations are discussed. Such information, together with biological insights, will be important for the discovery of drugs targeting quadruplexes from particular genes.
Collapse
Affiliation(s)
| | | | | | | | - Stephen Neidle
- To whom correspondence should be addressed. Tel: +44 207 753 5969; Fax: +44 207 753 5970;
| |
Collapse
|
45
|
Šket P, Črnugelj M, Plavec J. Identification of mixed di-cation forms of G-quadruplex in solution. Nucleic Acids Res 2005; 33:3691-7. [PMID: 15985684 PMCID: PMC1164438 DOI: 10.1093/nar/gki690] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multinuclear NMR study has demonstrated that G-quadruplex adopted by d(G3T4G4) exhibits two cation binding sites between three of its G-quartets. Titration of tighter binding K+ ions into the solution of d(G3T4G4)2 folded in the presence of NH4+15 ions uncovered a mixed mono-K+-mono-NH4+15 form that represents intermediate in the conversion of di-NH4+15 into di-K+ form. Analogously, NH4+15 ions were found to replace Na+ ions inside d(G3T4G4)2 quadruplex. The preference of NH4+15 over Na+ ions for the two binding sites is considerably smaller than the preference of K+ over NH4+15 ions. The two cation binding sites within the G-quadruplex core differ to such a degree that NH4+15 ions bound to the site, which is closer to the edge-type loop, are always replaced first during titration by K+ ions. The second binding site is not taken up by K+ ion until K+ ion already resides at the first binding site. Quantitative analysis of concentrations of the three di-cation forms, which are in slow exchange on the NMR time scale, at 12 K+ ion concentrations afforded equilibrium binding constants. K+ ion binding to sites U and L within d(G3T4G4)2 is more favorable with respect to NH4+15 ions by Gibbs free energies of approximately −24 and −18 kJ mol−1 which includes differences in cation dehydration energies, respectively.
Collapse
Affiliation(s)
| | | | - Janez Plavec
- To whom correspondence should be addressed. Tel: +386 1 47 60 353; Fax: +386 1 47 60 300;
| |
Collapse
|
46
|
Kato Y, Ohyama T, Mita H, Yamamoto Y. Dynamics and Thermodynamics of Dimerization of Parallel G-Quadruplexed DNA Formed from d(TTAGn) (n = 3−5). J Am Chem Soc 2005; 127:9980-1. [PMID: 16011344 DOI: 10.1021/ja050191b] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parallel G-quadruplexes formed from oligonucleotide sequences, d(TTAGn), where n = 3-5, have been shown to form a dimer through end-to-end stacking of 3'-terminal G-tetrads. The monomers and dimers of the G-quadruplexes are in dynamic equilibrium with an exchange rate of approximately 1 s-1. A thermodynamic study demonstrated that the dimerization of the G-quadruplexes is largely enthalpic in origin.
Collapse
Affiliation(s)
- Yoshitake Kato
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | | | |
Collapse
|
47
|
Jang MY, Yarborough OH, Conyers GB, McPhie P, Owens RA. Stable secondary structure near the nicking site for adeno-associated virus type 2 Rep proteins on human chromosome 19. J Virol 2005; 79:3544-56. [PMID: 15731249 PMCID: PMC1075745 DOI: 10.1128/jvi.79.6.3544-3556.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus serotype 2 (AAV-2) can preferentially integrate its DNA into a 4-kb region of human chromosome 19, designated AAVS1. The nicking activity of AAV-2's Rep68 or Rep78 proteins is essential for preferential integration. These proteins nick at the viral origin of DNA replication and at a similar site within AAVS1. The current nicking model suggests that the strand containing the nicking site is separated from its complementary strand prior to nicking. In AAV serotypes 1 through 6, the nicking site is flanked by a sequence that is predicted to form a stem-loop with standard Watson-Crick base pairing. The region flanking the nicking site in AAVS1 (5'-GGCGGCGGT/TGGGGCTCG-3' [the slash indicates the nicking site]) lacks extensive potential for Watson-Crick base pairing. We therefore performed an empirical search for a stable secondary structure. By comparing the migration of radiolabeled oligonucleotides containing wild-type or mutated sequences from the AAVS1 nicking site to appropriate standards, on native and denaturing polyacrylamide gels, we have found evidence that this region forms a stable secondary structure. Further confirmation was provided by circular dichroism analyses. We identified six bases that appear to be important in forming this putative secondary structure. Mutation of five of these bases, within the context of a double-stranded nicking substrate, reduces the ability of the substrate to be nicked by Rep78 in vitro. Four of these five bases are outside the previously recognized GTTGG nicking site motif and include parts of the CTC motif that has been demonstrated to be important for integration targeting.
Collapse
Affiliation(s)
- Ming Y Jang
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8, Rm. 310, National Institutes of Health, Department of Health and Human Services, 8 Center Dr. MSC 0840, Bethesda, MD 20892-0840, USA
| | | | | | | | | |
Collapse
|
48
|
Sket P, Crnugelj M, Plavec J. d(G3T4G4) forms unusual dimeric G-quadruplex structure with the same general fold in the presence of K+, Na+ or NH4+ ions. Bioorg Med Chem 2005; 12:5735-44. [PMID: 15498650 DOI: 10.1016/j.bmc.2004.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
We have recently communicated that DNA oligonucleotide d(G(3)T(4)G(4)) forms a dimeric G-quadruplex in the presence of K(+) ions [J. Am. Chem. Soc.2003, 125, 7866-7871]. The high-resolution NMR structure of d(G(3)T(4)G(4))(2) G-quadruplex exhibits G-quadruplex core consisting of three stacked G-quartets. The two overhanging G3 and G11 residues are located at the opposite sides of the end G-quartets and are not involved in G-quartet formation. d(G(3)T(4)G(4))(2) G-quadruplex represents the first bimolecular G-quadruplex where end G-quartets are spanned by diagonal (T4-T7) as well as edge-type loops (T15-T18). Three of the G-rich strands are parallel while one is anti-parallel. The G12-G22 strand demonstrates a sharp reversal in strand direction between residues G19 and G20 that is accommodated with the leap over the middle G-quartet. The reversal in strand direction is achieved without any extra intervening residues. Here we furthermore examined the influence of different monovalent cations on the folding of d(G(3)T(4)G(4)). The resolved imino and aromatic proton resonances as well as (sequential) NOE connectivity patterns showed only minor differences in key intra- and interquartet NOE intensities in the presence of K(+), Na(+) and NH(4)(+) ions, which were consistent with subtle structural differences while retaining the same folding topology of d(G(3)T(4)G(4))(2) G-quadruplex.
Collapse
Affiliation(s)
- Primoz Sket
- NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
49
|
Pan B, Shi K, Sundaralingam M. Synthesis, Purification and Crystallization of Guanine-rich RNA Oligonucleotides. Biol Proced Online 2004; 6:257-262. [PMID: 15562298 PMCID: PMC531606 DOI: 10.1251/bpo96] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 10/22/2004] [Accepted: 11/02/2004] [Indexed: 11/23/2022] Open
Abstract
Guanine-rich RNA oligonucleotides display many novel structural motifs in recent crystal structures. Here we describe the procedures of the chemical synthesis and the purification of such RNA molecules that are suitable for X-ray crystallographic studies. Modifications of the previous purification methods allow us to obtain better yields in shorter time. We also provide 24 screening conditions that are very effective in crystallization of the guanine-rich RNA oligonucleotides. Optimal crystallization conditions are usually achieved by adjustment of the concentration of the metal ions and pH of the buffer. Crystals obtained by this method usually diffract to high resolution.
Collapse
Affiliation(s)
- Baocheng Pan
- Departments of Chemistry and Biochemistry, The Ohio State University. 200 Johnston Laboratory, Columbus, OH 43210. USA
| | - Ke Shi
- Departments of Chemistry and Biochemistry, The Ohio State University. 200 Johnston Laboratory, Columbus, OH 43210. USA
| | - Muttaiya Sundaralingam
- Departments of Chemistry and Biochemistry, The Ohio State University. 200 Johnston Laboratory, Columbus, OH 43210. USA
| |
Collapse
|
50
|
Gu J, Wang J, Leszczynski J. H−Bonding Patterns in the Platinated Guanine−Cytosine Base Pair and Guanine−Cytosine−Guanine−Cytosine Base Tetrad: an Electron Density Deformation Analysis and AIM Study. J Am Chem Soc 2004; 126:12651-60. [PMID: 15453799 DOI: 10.1021/ja0492337] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The atoms in molecule theory (AIM) and electronic structure analysis are applied together to investigate H-bonding patterns in metalated nucleobase complexes. The influence of Pt on the intra GC base pair H-bonding has been found to reduce intra base pair H-bonding of N4(C)...O6(G) in the platinated GC pair and GCGC tetrad. The relaxation of geometry constrains in metalated nucleobases is found to be decisively important in the formation of novel molecular architectures from nucleobases and metal entities. The incorporation of the platinum in the GCGC tetrad benefits the formation of the unique CH...N (H5(C)...N1(G)) hydrogen bond pattern in the tetrad by offering improved geometric constraints rather than through changing the electronic properties around the H5(C) and N1(G) sites. Platination at the N7 of guanine reduces the deprotonation energy considerably.
Collapse
Affiliation(s)
- Jiande Gu
- Drug Design & Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, PR China.
| | | | | |
Collapse
|