1
|
López-Lastra M, Parissi V, Darlix JL. Simon Litvak (1942-2022). Retrovirology 2022; 19:8. [PMID: 35590338 PMCID: PMC9118854 DOI: 10.1186/s12977-022-00595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Marcelo López-Lastra
- Laboratorio de Virología Molecular, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| | - Vincent Parissi
- MFP UMR 5234 Université de Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Jean-Luc Darlix
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France.
| |
Collapse
|
2
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
3
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
4
|
2-hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs) as human immunodeficiency virus type 1 integrase inhibitors: Influence of the alkylcarboxamide substitution of position 4. Eur J Med Chem 2016; 117:256-68. [PMID: 27105029 DOI: 10.1016/j.ejmech.2016.03.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 11/22/2022]
Abstract
Herein, we report further insight into the biological activities displayed by the 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) scaffold. Previous studies have evidenced the marked fruitful effect of substitution of this two-metal binding pharmacophore at position 4 by phenyl and benzyl carboxamido chains. Strong human immunodeficiency virus type 1 integrase (HIV-1 IN) inhibitors in the low nanomolar range with micromolar (even down to low nanomolar) anti-HIV activities were obtained. Keeping this essential 4-carboxamido function, we investigated the influence of the replacement of phenyl and benzyl groups by various alkyl chains. This study shows that the recurrent halogenobenzyl pharmacophore found in the INSTIs can be efficiently replaced by an n-alkyl group. With an optimal length of six carbons, we observed a biological profile and a high barrier to resistance equivalent to those of a previously reported hit compound bearing a 4-fluorobenzyl group.
Collapse
|
5
|
Suchaud V, Bailly F, Lion C, Calmels C, Andréola ML, Christ F, Debyser Z, Cotelle P. Investigation of a novel series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones as human immunodeficiency virus type 1 integrase inhibitors. J Med Chem 2014; 57:4640-60. [PMID: 24793360 DOI: 10.1021/jm500109z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein further insight into the biological activities displayed by a series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs). Substitution of the N-hydroxyimide two-metal binding pharmacophore at position 4 by carboxamido side chains was previously shown by us to be fruitful for this scaffold, since strong human immunodeficiency virus type 1 integrase (HIV-1 IN) inhibitors in the low nanomolar range associated with low micromolar anti-HIV activities were obtained. We investigated the influence of substitution at position 7 on biological activity. Introduction of electron-withdrawing functional groups such as the nitro moiety at position 7 led to a noticeable improvement of antiviral activity, down to low nanomolar anti-HIV potencies, with advantageous therapeutic indexes going close to those of the clinically used raltegravir and retained potencies against a panel of IN mutants.
Collapse
|
6
|
White JD, Osborn MF, Moghaddam AD, Guzman LE, Haley MM, DeRose VJ. Picazoplatin, an azide-containing platinum(II) derivative for target analysis by click chemistry. J Am Chem Soc 2013; 135:11680-3. [PMID: 23879391 PMCID: PMC4130293 DOI: 10.1021/ja402453k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the broad use of platinum-based chemotherapeutics, identification of their full range of cellular targets remains a significant challenge. In order to identify, visualize, and isolate cellular targets of Pt(II) complexes, we have modified the chemotherapeutic drug picoplatin with an azide moiety for subsequent click reactivity. The new compound picazoplatin readily binds DNA and RNA oligonucleotides and undergoes facile post-labeling click reactions to alkyne-fluorophore conjugates. Pt-fluorophore click reactions in rRNA purified from drug-treated Saccharomyces cerevisiae demonstrate its potential for future in vivo efforts.
Collapse
Affiliation(s)
| | | | - Alan D. Moghaddam
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253 USA
| | - Lindsay E. Guzman
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253 USA
| | - Michael M. Haley
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253 USA
| | - Victoria J. DeRose
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253 USA
| |
Collapse
|
7
|
Billamboz M, Bailly F, Lion C, Touati N, Vezin H, Calmels C, Andréola ML, Christ F, Debyser Z, Cotelle P. Magnesium chelating 2-hydroxyisoquinoline-1,3(2H,4H)-diones, as inhibitors of HIV-1 integrase and/or the HIV-1 reverse transcriptase ribonuclease H domain: discovery of a novel selective inhibitor of the ribonuclease H function. J Med Chem 2011; 54:1812-24. [PMID: 21366258 DOI: 10.1021/jm1014692] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Hydroxyisoquinoline-1,3(2H,4H)-dione was recently discovered as a scaffold for the inhibition of HIV-1 integrase and the ribonuclease H function of HIV-1 reverse transcriptase. First, we investigate its interaction with Mg(2+) and Mn(2+) using different spectroscopic techniques and report that 2-hydroxyisoquinoline-1,3(2H,4H)-dione forms a 1:1 complex with Mg(2+) but a 1:2 complex with Mn(2+). The complex formation requires enolization of the ligand. ESR spectroscopy shows a redox reaction between the ligand and Mn(2+) producing superoxide anions. Second, 2-hydroxyisoquinoline-1,3(2H,4H)-dione, its magnesium complex, and its 4-methyl and 2-hydroxy-4-methoxycarbonylisoquinoline-1,3(2H,4H)-diones were tested as inhibitors of HIV-1 integrase, reverse transcriptase ribonuclease H, and DNA polymerase functions. Their antiviral activities were evaluated and 2-hydroxy-4-methoxycarbonyl-isoquinoline-1,3(2H,4H)-dione was found to inhibit the viral replication of HIV-1 in MT-4 cells. Cross-resistance was measured for this compound on three different viral strains. Experimental data suggest that the antiviral activity of 2-hydroxy-4-methoxycarbonylisoquinoline-1,3(2H,4H)-dione is probably due to the RNase H inhibition.
Collapse
|
8
|
Formation of the tRNALys packaging complex in HIV-1. FEBS Lett 2009; 584:359-65. [PMID: 19914238 DOI: 10.1016/j.febslet.2009.11.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/04/2009] [Accepted: 11/10/2009] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus 1 (HIV-1) uses a host cell tRNA(Lys,3) molecule to prime reverse transcription of the viral RNA genome into double-stranded DNA prior to integration into the host genome. All three human tRNA(Lys) isoacceptors along with human lysyl-tRNA synthetase (LysRS) are selectively packaged into HIV-1. Packaging of LysRS requires the viral Gag polyprotein and incorporation of tRNA(Lys) additionally requires the Gag-Pol precursor. A model that incorporates the known interactions between components of the putative packaging complex is presented. The molecular interactions that direct assembly of the tRNA(Lys)/LysRS packaging complex hold promise for the development of new anti-viral agents.
Collapse
|
9
|
Dubois V, Debreyer C, Quentin C, Parissi V. In vitro recombination catalyzed by bacterial class 1 integron integrase IntI1 involves cooperative binding and specific oligomeric intermediates. PLoS One 2009; 4:e5228. [PMID: 19381299 PMCID: PMC2668188 DOI: 10.1371/journal.pone.0005228] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/19/2009] [Indexed: 12/02/2022] Open
Abstract
Gene transfer via bacterial integrons is a major pathway for facilitating the spread of antibiotic resistance genes across bacteria. Recently the mechanism underlying the recombination catalyzed by class 1 integron recombinase (IntI1) between attC and attI1 was highlighted demonstrating the involvement of a single-stranded intermediary on the attC site. However, the process allowing the generation of this single-stranded substrate has not been determined, nor have the active IntI1•DNA complexes been identified. Using the in vitro strand transfer assay and a crosslink strategy we previously described we demonstrated that the single-stranded attC sequences could be generated in the absence of other bacterial proteins in addition to IntI. This suggests a possible role for this protein in stabilizing and/or generating this structure. The mechanism of folding of the active IntI•DNA complexes was further analyzed and we show here that it involves a cooperative binding of the protein to each recombination site and the emergence of different oligomeric species specific for each DNA substrate. These findings provide further insight into the recombination reaction catalyzed by IntI1.
Collapse
Affiliation(s)
- Véronique Dubois
- Laboratory of Cellular and Molecular Microbiology and Pathogenicity (MCMP), UMR 5097-CNRS, University Victor Segalen Bordeaux 2, Bordeaux, France
| | - Carole Debreyer
- Laboratory of Cellular and Molecular Microbiology and Pathogenicity (MCMP), UMR 5097-CNRS, University Victor Segalen Bordeaux 2, Bordeaux, France
| | - Claudine Quentin
- Laboratory of Cellular and Molecular Microbiology and Pathogenicity (MCMP), UMR 5097-CNRS, University Victor Segalen Bordeaux 2, Bordeaux, France
| | - Vincent Parissi
- Laboratory of Cellular and Molecular Microbiology and Pathogenicity (MCMP), UMR 5097-CNRS, University Victor Segalen Bordeaux 2, Bordeaux, France
- * E-mail:
| |
Collapse
|
10
|
Billamboz M, Bailly F, Barreca ML, De Luca L, Mouscadet JF, Calmels C, Andréola ML, Witvrouw M, Christ F, Debyser Z, Cotelle P. Design, synthesis, and biological evaluation of a series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain. J Med Chem 2009; 51:7717-30. [PMID: 19053754 DOI: 10.1021/jm8007085] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report herein the synthesis of a series of 19 2-hydroxyisoquinoline-1,3(2H,4H)-dione derivatives variously substituted at position 7 aimed at inhibiting selectively two-metal ion catalytic active sites. The compounds were tested against HIV-1 reverse transcriptase (RT) polymerase, HIV-1 RT ribonuclease H (RNase H), and HIV-1 integrase (IN). Most compounds displayed poor inhibition of RT polymerase even at 50 microM. The majority of the synthesized compounds inhibited RNase H and IN at micromolar concentrations, and some of them were weakly selective for IN. Surprisingly, two new hits were discovered, which displayed a high selectivity for IN with submicromolar IC50 values. These enzymatic inhibitory properties may be related to the metal binding abilities of the compounds. Physicochemical studies were consistent with a 1/1 stoichiometry of the magnesium complexes in solution, and the metal complexation was strictly dependent on the enolization abilities of the compounds. Unfortunately, all tested compounds exhibited high cellular cytotoxicity in cell culture which limits their applications as antiviral agents.
Collapse
Affiliation(s)
- Muriel Billamboz
- Laboratoire de Chimie Organique et Macromoléculaire, UMR CNRS 8009, Université de Lille 1, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Inability of human immunodeficiency virus type 1 produced in murine cells to selectively incorporate primer formula. J Virol 2008; 82:12049-59. [PMID: 18842718 DOI: 10.1128/jvi.01744-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attempts to use the mouse as a model system for studying AIDS are stymied by the multiple blocks to human immunodeficiency virus type 1 (HIV-1) replication that exist in mouse cells at the levels of viral entry, transcription, and Gag assembly and processing. In this report, we describe an additional block in the selective packaging of tRNA(3Lys) into HIV-1 produced in murine cells. HIV-1 and murine leukemia virus (MuLV) use tRNA(3Lys) and tRNA(Pro), respectively, as primers for reverse transcription. Selective packaging of tRNA(3Lys) into HIV-1 produced in human cells is much stronger than that for tRNA(Pro) incorporation into MuLV produced in murine cells, and different packaging mechanisms are used. Thus, both lysyl-tRNA synthetase and GagPol are required for tRNA(3Lys) packaging into HIV-1, but neither prolyl-tRNA synthetase nor GagPol is required for tRNA(Pro) packaging into MuLV. In this report, we show that when HIV-1 is produced in murine cells, the virus switches from an HIV-1-like incorporation of tRNA(3Lys) to an MuLV-like packaging of tRNA(Pro). The primer binding site in viral RNA remains complementary to tRNA(3Lys), resulting in a significant decrease in reverse transcription and infectivity. Reduction in tRNA(3Lys) incorporation occurs even though both murine lysyl-tRNA synthetase and HIV-1 GagPol are packaged into the HIV-1 produced in murine cells. Nevertheless, the murine cell is able to support the select incorporation of tRNA(3Lys) into another retrovirus that uses tRNA(3Lys) as a primer, the mouse mammary tumor virus.
Collapse
|
12
|
Saadatmand J, Guo F, Cen S, Niu M, Kleiman L. Interactions of reverse transcriptase sequences in Pol with Gag and LysRS in the HIV-1 tRNALys3 packaging/annealing complex. Virology 2008; 380:109-17. [PMID: 18708237 DOI: 10.1016/j.virol.2008.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/11/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
During HIV-1 assembly, tRNA(Lys3), the primer for reverse transcriptase (RT) in HIV-1, is selectively packaged into the virus due to a specific interaction between Gag and lysyl-tRNA synthetase (LysRS). However, while Gag alone will incorporate LysRS, tRNA(Lys3) packaging also requires the presence of RT thumb domain sequences in GagPol. The formation of a tRNA(Lys3) packaging/annealing complex involves an interaction between Gag/GagPol/viral RNA and LysRS/tRNA(Lys), and herein, we have investigated whether the transfer of tRNA(Lys3) from LysRS to RT sequences in Pol by a currently unknown mechanism is facilitated by an interaction between LysRS and Pol. We demonstrate that, in addition to its interaction with Gag, LysRS also interacts with sequences within the connection/RNaseH domains in RT. However, cytoplasmic Gag/Pol interactions, detected by either coimmunoprecipitation or incorporation of Pol into Gag viral-like particles, were found to be insensitive to the overexpression or underexpression of LysRS, indicating that a Gag/LysRS/RT interaction is not essential for Gag/Pol interactions. Based on this and previous work, including the observation that the RT connection domain is not required for tRNA(Lys3) packaging, but is required for tRNA(Lys3) annealing, a model is proposed for a tRNA(Lys3) packaging/annealing complex in which the interaction of Gag with Pol sequences during early viral assembly facilitates the retention in budding viruses of both tRNA(Lys3) and early Pol processing intermediates, with tRNA(Lys3) annealing to viral RNA further facilitated by the LysRS/RT interaction.
Collapse
Affiliation(s)
- Jenan Saadatmand
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
13
|
Inhibition of hepatitis C virus (HCV) RNA polymerase by DNA aptamers: mechanism of inhibition of in vitro RNA synthesis and effect on HCV-infected cells. Antimicrob Agents Chemother 2008; 52:2097-110. [PMID: 18347106 DOI: 10.1128/aac.01227-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We describe here the further characterization of two DNA aptamers that specifically bind to hepatitis C virus (HCV) RNA polymerase (NS5B) and inhibit its polymerase activity in vitro. Although they were obtained from the same selection procedure and contain an 11-nucleotide consensus sequence, our results indicate that aptamers 27v and 127v use different mechanisms to inhibit HCV polymerase. While aptamer 27v was able to compete with the RNA template for binding to the enzyme and blocked both the initiation and the elongation of RNA synthesis, aptamer 127v competed poorly and exclusively inhibited initiation and postinitiation events. These results illustrate the power of the selective evolution of ligands by exponential enrichment in vitro selection procedure approach to select specific short DNA aptamers able to inhibit HCV NS5B by different mechanisms. We also determined that, in addition to an in vitro inhibitory effect on RNA synthesis, aptamer 27v was able to interfere with the multiplication of HCV JFH1 in Huh7 cells. The efficient cellular entry of these short DNAs and the inhibitory effect observed on human cells infected with HCV indicate that aptamers are useful tools for the study of HCV RNA synthesis, and their use should become a very attractive and alternative approach to therapy for HCV infection.
Collapse
|
14
|
Abbink TEM, Berkhout B. HIV-1 reverse transcription initiation: a potential target for novel antivirals? Virus Res 2008; 134:4-18. [PMID: 18255184 DOI: 10.1016/j.virusres.2007.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/19/2022]
Abstract
Reverse transcription is an essential step in the retroviral life cycle, as it converts the genomic RNA into DNA. In this review, we describe recent developments concerning the initiation step of this complex, multi-step reaction. During initiation of reverse transcription, a cellular tRNA primer is placed onto a complementary sequence in the viral genome, called the primer binding site or PBS. The viral enzyme reverse transcriptase (RT) recognizes this RNA-RNA complex, and catalyzes the extension of the 3' end of the tRNA primer, with the viral RNA (vRNA) acting as template. The initiation step is highly specific and most retroviruses are restricted to the use of the cognate, self-tRNA primer. Human immunodeficiency virus type 1 (HIV-1) uses the cellular tRNA(Lys,3) molecule as primer for reverse transcription. No spontaneous switches in tRNA usage by HIV-1 or other retroviruses have been described and attempts to change the identity of the tRNA primer were unsuccessful in the past. These observations indicate that the virus strongly prefers the self-primer, suggesting that a very specific mechanism for primer selection must exist. Indeed, tRNA primers are selectively packaged into virus particles, are specifically recognized by RT and are placed onto the viral RNA genome via base pairing to the PBS and other sequence motifs, thus rendering a specific initiation complex. Analysis of this critical step in the viral life cycle may result in the discovery of novel antiviral drugs in the battle against HIV/AIDS.
Collapse
Affiliation(s)
- Truus E M Abbink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Abbink TEM, Berkhout B. HIV-1 reverse transcription: close encounters between the viral genome and a cellular tRNA. ADVANCES IN PHARMACOLOGY 2007; 55:99-135. [PMID: 17586313 DOI: 10.1016/s1054-3589(07)55003-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Affiliation(s)
- Truus E M Abbink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| | | |
Collapse
|
16
|
Abbink TEM, Beerens N, Berkhout B. Forced selection of a human immunodeficiency virus type 1 variant that uses a non-self tRNA primer for reverse transcription: involvement of viral RNA sequences and the reverse transcriptase enzyme. J Virol 2004; 78:10706-14. [PMID: 15367637 PMCID: PMC516392 DOI: 10.1128/jvi.78.19.10706-10714.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 uses the tRNA(3)(Lys) molecule as a selective primer for reverse transcription. This primer specificity is imposed by sequence complementarity between the tRNA primer and two motifs in the viral RNA genome: the primer-binding site (PBS) and the primer activation signal (PAS). In addition, there may be specific interactions between the tRNA primer and viral proteins, such as the reverse transcriptase (RT) enzyme. We constructed viruses with mutations in the PAS and PBS that were designed to employ the nonself primer tRNA(Pro) or tRNA(1,2)(Lys). These mutants exhibited a severe replication defect, indicating that additional adaptation of the mutant virus is required to accommodate the new tRNA primer. Multiple independent virus evolution experiments were performed to select for fast-replicating variants. Reversion to the wild-type PBS-lys3 sequence was the most frequent escape route. However, we identified one culture in which the virus gained replication capacity without reversion of the PBS. This revertant virus eventually optimized the PAS motif for interaction with the nonself primer. Interestingly, earlier evolution samples revealed a single amino acid change of an otherwise well-conserved residue in the RNase H domain of the RT enzyme, implicating this domain in selective primer usage. We demonstrate that both the PAS and RT mutations improve the replication capacity of the tRNA(1,2)(Lys)-using virus.
Collapse
MESH Headings
- Amino Acid Substitution
- Base Sequence
- Directed Molecular Evolution
- HIV Long Terminal Repeat
- HIV Reverse Transcriptase/genetics
- HIV Reverse Transcriptase/metabolism
- HIV-1/genetics
- HIV-1/growth & development
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- Mutation, Missense
- Nucleic Acid Conformation
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer, Lys/metabolism
- RNA, Transfer, Pro/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease H/genetics
- Ribonuclease H/physiology
- Selection, Genetic
- Transcription, Genetic
- Virus Replication
Collapse
Affiliation(s)
- Truus E M Abbink
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
17
|
Cen S, Niu M, Kleiman L. The connection domain in reverse transcriptase facilitates the in vivo annealing of tRNALys3 to HIV-1 genomic RNA. Retrovirology 2004; 1:33. [PMID: 15494076 PMCID: PMC524520 DOI: 10.1186/1742-4690-1-33] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 10/19/2004] [Indexed: 11/19/2022] Open
Abstract
The primer tRNA for reverse transcription in HIV-1, tRNALys3, is selectively packaged into the virus during its assembly, and annealed to the viral genomic RNA. The ribonucleoprotein complex that is involved in the packaging and annealing of tRNALys into HIV-1 consists of Gag, GagPol, tRNALys, lysyl-tRNA synthetase (LysRS), and viral genomic RNA. Gag targets tRNALys for viral packaging through Gag's interaction with LysRS, a tRNALys-binding protein, while reverse transcriptase (RT) sequences within GagPol (the thumb domain) bind to tRNALys. The further annealing of tRNALys3 to viral RNA requires nucleocapsid (NC) sequences in Gag, but not the NC sequences GagPol. In this report, we further show that while the RT connection domain in GagPol is not required for tRNALys3 packaging into the virus, it is required for tRNALys3 annealing to the viral RNA genome.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
| | - Meijuan Niu
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3T 1E2
| |
Collapse
|
18
|
Cen S, Niu M, Saadatmand J, Guo F, Huang Y, Nabel GJ, Kleiman L. Incorporation of pol into human immunodeficiency virus type 1 Gag virus-like particles occurs independently of the upstream Gag domain in Gag-pol. J Virol 2004; 78:1042-9. [PMID: 14694138 PMCID: PMC368740 DOI: 10.1128/jvi.78.2.1042-1049.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using particle-associated reverse transcriptase (RT) activity as an assay for Pol incorporation into human immunodeficiency virus type 1 (HIV-1) Gag virus-like particles (VLPs), it has been found that truncated, protease-negative, Gag-Pol missing cis Gag sequences is still incorporated into Gag VLPs, albeit at significantly reduced levels (10 to 20% of the level of wild-type Gag-Pol). In this work, we have directly measured the incorporation of truncated Gag-Pol species into Gag VLPs and have found that truncated Gag-Pol that is missing all sequences upstream of RT is still incorporated into Gag VLPs at levels approximating 70% of that achieved by wild-type Gag-Pol. Neither protease nor integrase regions in Pol are required for its incorporation, implying an interaction between Gag and RT sequences in the Pol protein. While the incorporation of Gag-Pol into Gag VLPs is reduced 12-fold by the replacement of the nucleocapsid within Gag with a leucine zipper motif, this mutation does not affect Pol incorporation. However, the deletion of p6 in Gag reduces Pol incorporation into Gag VLPs four- to fivefold. Pol shows the same ability as Gag-Pol to selectively package tRNA(Lys) into Gag VLPs, and primer tRNA(3)(Lys) is found annealed to the viral genomic RNA. These data suggest that after the initial separation of Gag from Pol during cleavage of Gag-Pol by viral protease, the Pol species still retains the capacity to bind to both Gag and tRNA(3)(Lys), which may be required for Pol and tRNA(3)(Lys) to be retained in the assembling virion until budding is completed.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
19
|
de Soultrait VR, Lozach PY, Altmeyer R, Tarrago-Litvak L, Litvak S, Andréola ML. DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents. J Mol Biol 2002; 324:195-203. [PMID: 12441099 DOI: 10.1016/s0022-2836(02)01064-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HIV-1 integrase, the retroviral-encoded enzyme involved in the integration of the retrotranscribed viral genome into the host nuclear DNA, is an attractive and still unexploited target. To date, very few inhibitors of this enzyme with a potential therapeutic value have been described. During the search for new HIV-1 targets, we recently described DNA oligodeoxynucleotide aptamers (ODN 93 and ODN 112) that are strong inhibitors of the RNase H activity associated with HIV-1 reverse transcriptase. The striking structural homology between RNase H and integrase led us to study the effect of the RNase H inhibitors on the integrase. Shorter DNA aptamers derived from ODNs 93 and 112 (ODNs 93del and 112del) were able to inhibit HIV-1 integrase in the nanomolar range. They had G-rich sequences able to form G-quartets stabilized by the presence of K(+). The presence of these ions increased the inhibitory efficiency of these agents dramatically. Inhibition of enzymatic activities by ODN 93del and ODN 112del was observed in a cell-free assay system using a recombinant integrase and HIV-1 replication was abolished in infected human cells. Moreover, cell fusion assays showed that these agents do not block viral cell entry at concentrations where viral replication is stopped.
Collapse
Affiliation(s)
- V R de Soultrait
- UMR 5097, CNRS-Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
20
|
Andreola ML, Pileur F, Calmels C, Ventura M, Tarrago-Litvak L, Toulmé JJ, Litvak S. DNA aptamers selected against the HIV-1 RNase H display in vitro antiviral activity. Biochemistry 2001; 40:10087-94. [PMID: 11513587 DOI: 10.1021/bi0108599] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA polymerase of the human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is a target widely used to inhibit HIV-1 replication. In contrast, very few inhibitors of the RNase H activity associated with RT have been described, despite the crucial role played by this activity in viral proliferation. DNA ligands with a high affinity for the RNase H domain of HIV-1 RT were isolated by systematic evolution of ligands by an exponential enrichment strategy (SELEX), using recombinant RTs with or without the RNase H domain. The selected oligonucleotides (ODNs) were able to inhibit in vitro the HIV-1 RNase H activity, while no effect was observed on cellular RNase H. We focused our interest on two G-rich inhibitory oligonucleotides. Model studies of the secondary structure of these ODNs strongly suggested that they were able to form G-quartets. In addition to the inhibition of HIV-1 RNase H observed in a cell free system, these ODNs were able to strongly diminish the infectivity of HIV-1 in human infected cells. Oligonucleotides described here may serve as leading compounds for the development of specific inhibitors of this key retroviral enzyme activity.
Collapse
Affiliation(s)
- M L Andreola
- UMR 5097 CNRS-Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hansen AC, Grunwald T, Lund AH, Schmitz A, Duch M, Uberla K, Pedersen FS. Transfer of primer binding site-mutated simian immunodeficiency virus vectors by genetically engineered artificial and hybrid tRNA-like primers. J Virol 2001; 75:4922-8. [PMID: 11312366 PMCID: PMC114249 DOI: 10.1128/jvi.75.10.4922-4928.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Simian immunodeficiency viruses (SIV) harbor primer binding sites (PBS) matching tRNA or tRNA. To study determinants of primer usage in SIV, a SIVmac239-based vector was impaired by mutating the PBS to a sequence (PBS-X2) with no match to any tRNA. By cotransfection of a synthetic gene encoding a tRNA(Pro)-like RNA with a match to PBS-X2, the activity of this vector could be restored to a transduction efficiency slightly lower than that of the wild-type vector. A vector with a PBS matching tRNA(Pro) was functional at a level slightly below that of the wild-type vector, but higher transduction efficiency could be obtained by cotransfection of a gene for an engineered tRNA(Pro)-tRNA hybrid with a match to PBS-Pro. The importance of tRNA backbone identity was further analyzed by complementing the PBS-X2 vector with a gene for a matching x2 primer with a tRNA backbone, which led to three- to fourfold-higher titers than those observed for the x2 primer with the tRNA(Pro) backbone. In summary, our results demonstrate flexibility in PBS and primer usage for SIVmac239, with PBS-primer complementarity being the major determinant, in analogy with previous findings for murine leukemia viruses and human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- A C Hansen
- Department of Molecular and Structural Biology, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
22
|
Khorchid A, Javanbakht H, Wise S, Halwani R, Parniak MA, Wainberg MA, Kleiman L. Sequences within Pr160gag-pol affecting the selective packaging of primer tRNA(Lys3) into HIV-1. J Mol Biol 2000; 299:17-26. [PMID: 10860720 DOI: 10.1006/jmbi.2000.3709] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The selective packaging of the primer tRNA(Lys3) into HIV-1 particles is dependent upon the viral incorporation of the Pr160gag-pol precursor protein. In order to map a tRNA(Lys3) binding site within this precursor, we have studied the effects of mutations in Pr160gag-pol upon the selective incorporation of tRNA(Lys3). Many of these mutations were placed in a protease-negative HIV-1 proviral DNA to prevent viral protease degradation of the mutant Gag-Pol protein. C-terminal deletions of protease-negative Gag-Pol that removed the entire integrase sequence and the RNase H and connection subdomains of reverse transcriptase did not inhibit the incorporation of either the truncated Gag-Pol or the tRNA(Lys3), indicating that these regions are not required for tRNA(Lys3) binding. On the other hand, larger C-terminal deletions, which also remove the thumb subdomain sequence, did prevent tRNA(Lys3) packaging, without inhibiting viral incorporation of the truncated Gag-Pol, indicating a possible interaction between thumb subdomain sequences and tRNA(Lys3). While point mutations K249E, K249Q, and R307E in the primer grip region of the thumb subdomain have been reported to inhibit the in vitro interaction of mature reverse transcriptase with the anticodon loop of tRNA(Lys3), we find that these mutations do not inhibit tRNA(Lys3) packaging into the virus, which supports other work indicating that the anticodon loop of tRNA(Lys3) is not involved in interactions with Pr160gag-pol during tRNA(Lys3) packaging.
Collapse
MESH Headings
- Amino Acid Sequence
- Anticodon/genetics
- Binding Sites
- Blotting, Western
- Electrophoresis, Gel, Two-Dimensional
- HIV Envelope Protein gp160/analysis
- HIV Envelope Protein gp160/chemistry
- HIV Envelope Protein gp160/genetics
- HIV Envelope Protein gp160/metabolism
- HIV Integrase/analysis
- HIV Integrase/chemistry
- HIV Integrase/genetics
- HIV Protease/analysis
- HIV Protease/chemistry
- HIV Protease/genetics
- HIV Reverse Transcriptase/analysis
- HIV Reverse Transcriptase/chemistry
- HIV Reverse Transcriptase/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Point Mutation/genetics
- Protein Precursors/analysis
- Protein Precursors/chemistry
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA/genetics
- RNA/metabolism
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease H/analysis
- Ribonuclease H/chemistry
- Ribonuclease H/genetics
- Sequence Deletion/genetics
- Substrate Specificity
- Virus Assembly
Collapse
Affiliation(s)
- A Khorchid
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Morris MC, Berducou C, Mery J, Heitz F, Divita G. The thumb domain of the P51-subunit is essential for activation of HIV reverse transcriptase. Biochemistry 1999; 38:15097-103. [PMID: 10563792 DOI: 10.1021/bi9914558] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biologically relevant and active form of human immunodeficiency virus reverse transcriptase is a heterodimer produced in a two-step dimerization process. Dimerization involves first the rapid association of the two subunits, followed by a slow conformational change yielding a fully active form. In the present study, we demonstrate that the interaction between the thumb domain of p51 and the RNase-H domain of p66 plays a major role in an essential conformational change required for proper folding of the primer/template and the tRNA-binding site, for maturation and for activation of heterodimeric reverse transcriptase. A synthetic peptide derived from the sequence within the thumb domain of p51, which forms the interface with the RNase-H domains of p66, binds heterodimeric reverse transcriptase with an apparent dissociation constant in the nanomolar range and selectively inhibits activation of heterodimeric reverse transcriptase with an inhibition constant of 1.2 microM. A detailed study of the mechanism of inhibition reveals that this peptide does not require dissociation of heterodimeric RT for efficient inhibition and does not affect subunit association, but interferes with the conformational change required for activation of heterodimeric reverse transcriptase, resulting in a decrease in the affinity of reverse transcriptase for the tRNA and an increase in the stability of the primer/template/reverse transcriptase complex. We have previously proposed that the dimeric nature of reverse transcriptase represents an interesting target for the design of antiviral agents. On the basis of this work, we propose that the conformational changes involved in the activation of reverse transcriptase similarly represent an important target for the design of novel antiviral compounds.
Collapse
Affiliation(s)
- M C Morris
- Centre de Recherches de Biochimie Macromoléculaire, CNRS-UPR1086, Montpellier, France
| | | | | | | | | |
Collapse
|