1
|
Mejias-Gomez O, Braghetto M, Sørensen MKD, Madsen AV, Guiu LS, Kristensen P, Pedersen LE, Goletz S. Deep mining of antibody phage-display selections using Oxford Nanopore Technologies and Dual Unique Molecular Identifiers. N Biotechnol 2024; 80:56-68. [PMID: 38354946 DOI: 10.1016/j.nbt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Antibody phage-display technology identifies antibody-antigen interactions through multiple panning rounds, but traditional screening gives no information on enrichment or diversity throughout the process. This results in the loss of valuable binders. Next Generation Sequencing can overcome this problem. We introduce a high accuracy long-read sequencing method based on the recent Oxford Nanopore Technologies (ONT) Q20 + chemistry in combination with dual unique molecular identifiers (UMIs) and an optimized bioinformatic analysis pipeline to monitor the selections. We identified binders from two single-domain antibody libraries selected against a model protein. Traditional colony-picking was compared with our ONT-UMI method. ONT-UMI enabled monitoring of diversity and enrichment before and after each selection round. By combining phage antibody selections with ONT-UMIs, deep mining of output selections is possible. The approach provides an alternative to traditional screening, enabling diversity quantification after each selection round and rare binder recovery, even when the dominating binder was > 99% abundant. Moreover, it can give insights on binding motifs for further affinity maturation and specificity optimizations. Our results demonstrate a platform for future data guided selection strategies.
Collapse
Affiliation(s)
- Oscar Mejias-Gomez
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marta Braghetto
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten Kielsgaard Dziegiel Sørensen
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas Visbech Madsen
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura Salse Guiu
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Section for Bioscience and Engineering, Aalborg University, Aalborg, Denmark
| | - Lasse Ebdrup Pedersen
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Song BPC, Ch'ng ACW, Lim TS. Review of phage display: A jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol 2024; 256:128455. [PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
3
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Abstract
Bacteriophages are viruses whose ubiquity in nature and remarkable specificity to their host bacteria enable an impressive and growing field of tunable biotechnologies in agriculture and public health. Bacteriophage capsids, which house and protect their nucleic acids, have been modified with a range of functionalities (e.g., fluorophores, nanoparticles, antigens, drugs) to suit their final application. Functional groups naturally present on bacteriophage capsids can be used for electrostatic adsorption or bioconjugation, but their impermanence and poor specificity can lead to inconsistencies in coverage and function. To overcome these limitations, researchers have explored both genetic and chemical modifications to enable strong, specific bonds between phage capsids and their target conjugates. Genetic modification methods involve introducing genes for alternative amino acids, peptides, or protein sequences into either the bacteriophage genomes or capsid genes on host plasmids to facilitate recombinant phage generation. Chemical modification methods rely on reacting functional groups present on the capsid with activated conjugates under the appropriate solution pH and salt conditions. This review surveys the current state-of-the-art in both genetic and chemical bacteriophage capsid modification methodologies, identifies major strengths and weaknesses of methods, and discusses areas of research needed to propel bacteriophage technology in development of biosensors, vaccines, therapeutics, and nanocarriers.
Collapse
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Abstract
Subtiligase-catalyzed peptide ligation is a powerful approach for site-specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes. Finally, we provide a perspective on future applications and challenges and how they may be addressed.
Collapse
Affiliation(s)
- Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
6
|
Brödel AK, Jaramillo A, Isalan M. Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication. Nat Protoc 2017; 12:1830-1843. [PMID: 28796233 DOI: 10.1038/nprot.2017.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Directed evolution is a powerful tool to improve the characteristics of biomolecules. Here we present a protocol for the intracellular evolution of proteins with distinct differences and advantages in comparison with established techniques. These include the ability to select for a particular function from a library of protein variants inside cells, minimizing undesired coevolution and propagation of nonfunctional library members, as well as allowing positive and negative selection logics using basally active promoters. A typical evolution experiment comprises the following stages: (i) preparation of a combinatorial M13 phagemid (PM) library expressing variants of the gene of interest (GOI) and preparation of the Escherichia coli host cells; (ii) multiple rounds of an intracellular selection process toward a desired activity; and (iii) the characterization of the evolved target proteins. The system has been developed for the selection of new orthogonal transcription factors (TFs) but is capable of evolving any gene-or gene circuit function-that can be linked to conditional M13 phage replication. Here we demonstrate our approach using as an example the directed evolution of the bacteriophage λ cI TF against two synthetic bidirectional promoters. The evolved TF variants enable simultaneous activation and repression against their engineered promoters and do not cross-react with the wild-type promoter, thus ensuring orthogonality. This protocol requires no special equipment, allowing synthetic biologists and general users to evolve improved biomolecules within ∼7 weeks.
Collapse
Affiliation(s)
- Andreas K Brödel
- Department of Life Sciences, Imperial College London, London, UK
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, UK.,Laboratoire iSSB, UMR 8030, Université Paris-Saclay, Université d'Évry-Val d'Essonne, CNRS, CEA, IG/Genoscope, CEA DRF, Évry, France.,Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
7
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Maeda Y, Makhlynets OV, Matsui H, Korendovych IV. Design of Catalytic Peptides and Proteins Through Rational and Combinatorial Approaches. Annu Rev Biomed Eng 2016; 18:311-28. [PMID: 27022702 PMCID: PMC6345664 DOI: 10.1146/annurev-bioeng-111215-024421] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review focuses on recent progress in noncomputational methods to introduce catalytic function into proteins, peptides, and peptide assemblies. We discuss various approaches to creating catalytic activity and classification of noncomputational methods into rational and combinatorial classes. The section on rational design covers recent progress in the development of short peptides and oligomeric peptide assemblies for various natural and unnatural reactions. The section on combinatorial design describes recent advances in the discovery of catalytic peptides. We present the future prospects of these and other new approaches in a broader context, including implications for functional material design.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Department of Chemistry, City University of New York-Hunter College, New York, New York 10065;
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, Syracuse, New York 13244;
| | - Hiroshi Matsui
- Department of Chemistry, City University of New York-Hunter College, New York, New York 10065;
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021
| | | |
Collapse
|
9
|
Delespaul W, Peeters Y, Herdewijn P, Robben J. A novel helper phage for HaloTag-mediated co-display of enzyme and substrate on phage. Biochem Biophys Res Commun 2015; 460:245-9. [PMID: 25772618 DOI: 10.1016/j.bbrc.2015.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Phage display is an established technique for the molecular evolution of peptides and proteins. For the selection of enzymes based on catalytic activity however, simultaneous coupling of an enzyme and its substrate to the phage surface is required. To facilitate this process of co-display, we developed a new helper phage displaying HaloTag, a modified haloalkane dehalogenase that binds specifically and covalently to functionalized haloalkane ligands. The display of functional HaloTag was demonstrated by capture on streptavidin-coated magnetic beads, after coupling a biotinylated haloalkane ligand, or after on-phage extension of a DNA oligonucleotide primer with a biotinylated nucleotide by phi29 DNA polymerase. We also achieved co-display of HaloTag and phi29 DNA polymerase, thereby opening perspectives for the molecular evolution of this enzyme (and others) towards new substrate specificities.
Collapse
Affiliation(s)
- Wouter Delespaul
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium.
| | - Yves Peeters
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medicinal Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Johan Robben
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium.
| |
Collapse
|
10
|
Ciric M, Moon CD, Leahy SC, Creevey CJ, Altermann E, Attwood GT, Rakonjac J, Gagic D. Metasecretome-selective phage display approach for mining the functional potential of a rumen microbial community. BMC Genomics 2014; 15:356. [PMID: 24886150 PMCID: PMC4035507 DOI: 10.1186/1471-2164-15-356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/29/2014] [Indexed: 11/22/2022] Open
Abstract
Background In silico, secretome proteins can be predicted from completely sequenced genomes using various available algorithms that identify membrane-targeting sequences. For metasecretome (collection of surface, secreted and transmembrane proteins from environmental microbial communities) this approach is impractical, considering that the metasecretome open reading frames (ORFs) comprise only 10% to 30% of total metagenome, and are poorly represented in the dataset due to overall low coverage of metagenomic gene pool, even in large-scale projects. Results By combining secretome-selective phage display and next-generation sequencing, we focused the sequence analysis of complex rumen microbial community on the metasecretome component of the metagenome. This approach achieved high enrichment (29 fold) of secreted fibrolytic enzymes from the plant-adherent microbial community of the bovine rumen. In particular, we identified hundreds of heretofore rare modules belonging to cellulosomes, cell-surface complexes specialised for recognition and degradation of the plant fibre. Conclusions As a method, metasecretome phage display combined with next-generation sequencing has a power to sample the diversity of low-abundance surface and secreted proteins that would otherwise require exceptionally large metagenomic sequencing projects. As a resource, metasecretome display library backed by the dataset obtained by next-generation sequencing is ready for i) affinity selection by standard phage display methodology and ii) easy purification of displayed proteins as part of the virion for individual functional analysis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-356) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jasna Rakonjac
- Animal Nutrition and Health, AgResearch Ltd, Palmerston North 4442, New Zealand.
| | | |
Collapse
|
11
|
Sunbul M, Emerson N, Yin J. Enzyme-catalyzed substrate attachment to phage surfaces for the selection of catalytic activities. Chembiochem 2011; 12:380-6. [PMID: 21290537 DOI: 10.1002/cbic.201000475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 11/10/2022]
Affiliation(s)
- Murat Sunbul
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, GCIS E505, Chicago, IL 60637, USA
| | | | | |
Collapse
|
12
|
Characterisation of a DNA Polymerase Highly Mutated Along the Template Binding Interface. Mol Biotechnol 2010; 46:58-62. [DOI: 10.1007/s12033-010-9275-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Granieri L, Baret JC, Griffiths AD, Merten CA. High-throughput screening of enzymes by retroviral display using droplet-based microfluidics. ACTA ACUST UNITED AC 2010; 17:229-35. [PMID: 20338514 DOI: 10.1016/j.chembiol.2010.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/19/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
During the last 25 years, display techniques such as phage display have become very powerful tools for protein engineering, especially for the selection of monoclonal antibodies. However, while this method is extremely efficient for affinity-based selections, its use for the selection and directed evolution of enzymes is still very restricted. Furthermore, phage display is not suited for the engineering of mammalian proteins that require posttranslational modifications such as glycosylation or membrane anchoring. To circumvent these limitations, we have developed a system in which structurally complex mammalian enzymes are displayed on the surface of retroviruses and encapsulated into droplets of a water-in-oil emulsion. These droplets are made and manipulated using microfluidic devices and each droplet serves as an independent reaction vessel. Compartmentalization of single retroviral particles in droplets allows efficient coupling of genotype and phenotype. Using tissue plasminogen activator (tPA) as a model enzyme, we show that, by monitoring the enzymatic reaction in each droplet (by fluorescence), quantitative measurement of tPA activity in the presence of different concentrations of the endogenous inhibitor PAI-1 can be made on-chip. On-chip fluorescence-activated droplet sorting allowed the processing of 500 samples per second and the specific collection of retroviruses displaying active wild-type tPA from a model library with a 1000-fold excess of retroviruses displaying a non-active control enzyme. During a single selection cycle, a more than 1300-fold enrichment of the active wild-type enzyme was demonstrated.
Collapse
Affiliation(s)
- Lucia Granieri
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67083 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
14
|
Kurtovic S, Mannervik B. Identification of Emerging Quasi-Species in Directed Enzyme Evolution. Biochemistry 2009; 48:9330-9. [DOI: 10.1021/bi901168q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sanela Kurtovic
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-75123 Uppsala, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-75123 Uppsala, Sweden
| |
Collapse
|
15
|
Ventura E, Sassi F, Fossati S, Parodi A, Blalock W, Balza E, Castellani P, Borsi L, Carnemolla B, Zardi L. Use of uteroglobin for the engineering of polyvalent, polyspecific fusion proteins. J Biol Chem 2009; 284:26646-54. [PMID: 19632988 DOI: 10.1074/jbc.m109.025924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report a novel strategy to engineer and express stable and soluble human recombinant polyvalent/polyspecific fusion proteins. The procedure is based on the use of a central skeleton of uteroglobin, a small and very soluble covalently linked homodimeric protein that is very resistant to proteolytic enzymes and to pH variations. Using a human recombinant antibody (scFv) specific for the angiogenesis marker domain B of fibronectin, interleukin 2, and an scFv able to neutralize tumor necrosis factor-alpha, we expressed various biologically active uteroglobin fusion proteins. The results demonstrate the possibility to generate monospecific divalent and tetravalent antibodies, immunocytokines, and dual specificity tetravalent antibodies. Furthermore, compared with similar fusion proteins in which uteroglobin was not used, the use of uteroglobin improved properties of solubility and stability. Indeed, in the reported cases it was possible to vacuum dry and reconstitute the proteins without any aggregation or loss in protein and biological activity.
Collapse
Affiliation(s)
- Elisa Ventura
- Laboratory of Recombinant Therapeutic Proteins, Advanced Biotechnology Centre, Istituto G Gaslini, Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Monti D, Riva S. Natural and Artificial Microenzymes: Is It Possible to have Small and Efficient Biocatalysts? BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420109003643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Sunbul M, Marshall NJ, Zou Y, Zhang K, Yin J. Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase. J Mol Biol 2009; 387:883-98. [PMID: 19340948 DOI: 10.1016/j.jmb.2009.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a high-throughput phage selection method to identify mutants of Sfp phosphopantetheinyl transferase with altered substrate specificities from a large library of the Sfp enzyme. In this method, Sfp and its peptide substrates are co-displayed on the M13 phage surface as fusions to the phage capsid protein pIII. Phage-displayed Sfp mutants that are active with biotin-conjugated coenzyme A (CoA) analogues would covalently transfer biotin to the peptide substrates anchored on the same phage particle. Affinity selection for biotin-labeled phages would enrich Sfp mutants that recognize CoA analogues for carrier protein modification. We used this method to successfully change the substrate specificity of Sfp and identified mutant enzymes with more than 300-fold increase in catalytic efficiency with 3'-dephospho CoA as the substrate. The method we developed in this study provides a useful platform to display enzymes and their peptide substrates on the phage surface and directly couples phage selection with enzyme catalysis. We envision this method to be applied to engineering the catalytic activities of other protein posttranslational modification enzymes.
Collapse
Affiliation(s)
- Murat Sunbul
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
19
|
Lee CMY, Iorno N, Sierro F, Christ D. Selection of human antibody fragments by phage display. Nat Protoc 2007; 2:3001-8. [DOI: 10.1038/nprot.2007.448] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Yen M, Yin J. High-throughput profiling of posttranslational modification enzymes by phage display. Biotechniques 2007; 43:31, 33, 35 passim. [PMID: 17695643 DOI: 10.2144/000112502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Phage display has been used as a high-throughput platform for identifying proteins or peptides with desired binding or catalytic activities from a complex proteome. Recently, phage display has been applied to profile the catalytic activities of posttranslational modification (PTM) enzymes. Here, we highlight recent work elucidating the downstream targets of PTM enzymes by phage display, including the genome-wide profiling of biosynthetic enzymes subject to phosphopantetheinyl transferase (PPTase) modification.
Collapse
Affiliation(s)
- Michelle Yen
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
21
|
Chiarabelli C, Vrijbloed JW, Thomas RM, Luisi PL. Investigation of de novo totally random biosequences, Part I: A general method for in vitro selection of folded domains from a random polypeptide library displayed on phage. Chem Biodivers 2007; 3:827-39. [PMID: 17193316 DOI: 10.1002/cbdv.200690087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper reports the initial phase of a research aimed at investigating the folding frequency within a large library of polypeptides generated with a totally random sequence by phage-display technique. Resistance to proteolytic digestion has been used as a first, rudimentary folding criterion. The present paper describes, in particular, the development of a phage-display vector which has a selectable N-terminal affinity tag so that, after controlled proteolysis, the tag is cleaved from the phage. This enables the positive selection of phages that carry proteolytically resistant proteins. To test this system, avian pancreatic polypeptide (APP), one of the smallest proteins with a known structure, was chosen as a model, and its gene was inserted in a plasmid that was then used for phage display. A sequence of three amino acids, corresponding to a substrate for thrombin, was introduced at different locations within the APP sequence without significantly modifying the tertiary structure, as determined by circular dichroism (CD) analysis. These sequences were then used to show that the target tripeptide sequence was protected against proteolysis by the overall folding of the chain. Thus, these results show that the method permits the discrimination between folded and unfolded protein domains displayed on phage. The application of this protocol to a large library of totally random polypeptide chains is discussed as a preliminary to successive work, dealing with the production of totally random polypeptide sequences.
Collapse
|
22
|
Paschke M. Phage display systems and their applications. Appl Microbiol Biotechnol 2005; 70:2-11. [PMID: 16365766 DOI: 10.1007/s00253-005-0270-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/17/2005] [Accepted: 11/17/2005] [Indexed: 11/26/2022]
Abstract
Screening phage display libraries of proteins and peptides has, for almost two decades, proven to be a powerful technology for selecting polypeptides with desired biological and physicochemical properties from huge molecular libraries. The scope of phage display applications continues to expand. Recent applications and technical improvements driving further developments in the field of phage display are discussed.
Collapse
Affiliation(s)
- Matthias Paschke
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Monbijoustrasse 2A, 10117 Berlin, Germany.
| |
Collapse
|
23
|
Dröge MJ, Boersma YL, van Pouderoyen G, Vrenken TE, Rüggeberg CJ, Reetz MT, Dijkstra BW, Quax WJ. Directed Evolution of Bacillus subtilis Lipase A by Use of Enantiomeric Phosphonate Inhibitors: Crystal Structures and Phage Display Selection. Chembiochem 2005; 7:149-57. [PMID: 16342303 DOI: 10.1002/cbic.200500308] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phage display can be used as a protein-engineering tool for the selection of proteins with desirable binding properties from a library of mutants. Here we describe the application of this method for the directed evolution of Bacillus subtilis lipase A, an enzyme that has important properties for the preparation of the pharmaceutically relevant chiral compound 1,2-O-isopropylidene-sn-glycerol (IPG). PCR mutagenesis with spiked oligonucleotides was employed for saturation mutagenesis of a stretch of amino acids near the active site. After expression of these mutants on bacteriophages, dual selection with (S)-(+)- and (R)-(-)-IPG stereoisomers covalently coupled to enantiomeric phosphonate suicide inhibitors (SIRAN Sc and Rc inhibitors, respectively) was used for the isolation of variants with inverted enantioselectivity. The mutants were further characterised by determination of their Michaelis-Menten parameters. The 3D structures of the Sc and Rc inhibitor-lipase complexes were determined and provided structural insight into the mechanism of enantioselectivity of the enzyme. In conclusion, we have used phage display as a fast and reproducible method for the selection of Bacillus lipase A mutant enzymes with inverted enantioselectivity.
Collapse
Affiliation(s)
- Melloney J Dröge
- Dept. of Pharmaceutical Biology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hibbert EG, Dalby PA. Directed evolution strategies for improved enzymatic performance. Microb Cell Fact 2005; 4:29. [PMID: 16212665 PMCID: PMC1262762 DOI: 10.1186/1475-2859-4-29] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 10/07/2005] [Indexed: 11/10/2022] Open
Abstract
The engineering of enzymes with altered activity, specificity and stability, using directed evolution techniques that mimic evolution on a laboratory timescale, is now well established. However, the general acceptance of these methods as a route to new biocatalysts for organic synthesis requires further improvement of the methods for both ease-of-use and also for obtaining more significant changes in enzyme properties than is currently possible. Recent advances in library design, and methods of random mutagenesis, combined with new screening and selection tools, continue to push forward the potential of directed evolution. For example, protein engineers are now beginning to apply the vast body of knowledge and understanding of protein structure and function, to the design of focussed directed evolution libraries, with striking results compared to the previously favoured random mutagenesis and recombination of entire genes. Significant progress in computational design techniques which mimic the experimental process of library screening is also now enabling searches of much greater regions of sequence-space for those catalytic reactions that are broadly understood and, therefore, possible to model. Biocatalysis for organic synthesis frequently makes use of whole-cells, in addition to isolated enzymes, either for a single reaction or for transformations via entire metabolic pathways. As many new whole-cell biocatalysts are being developed by metabolic engineering, the potential of directed evolution to improve these initial designs is also beginning to be realised.
Collapse
Affiliation(s)
- Edward G Hibbert
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Paul A Dalby
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
25
|
Aharoni A, Griffiths AD, Tawfik DS. High-throughput screens and selections of enzyme-encoding genes. Curr Opin Chem Biol 2005; 9:210-6. [PMID: 15811807 DOI: 10.1016/j.cbpa.2005.02.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The availability of vast gene repertoires from both natural sources (genomic and cDNA libraries) and artificial sources (gene libraries) demands the development and application of novel technologies that enable the screening or selection of large libraries for a variety of enzymatic activities. We describe recent developments in the selection of enzyme-coding genes for directed evolution and functional genomics. We focus on HTS approaches that enable selection from large libraries (>10(6) gene variants) with relatively humble means (i.e. non-robotic systems), and on in vitro compartmentalization in particular.
Collapse
Affiliation(s)
- Amir Aharoni
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
26
|
Fujita S, Taki T, Taira K. Selection of an Active Enzyme by Phage Display on the Basis of the Enzyme's Catalytic Activity in vivo. Chembiochem 2005; 6:315-21. [PMID: 15678423 DOI: 10.1002/cbic.200400215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have developed a novel phage display method based on catalytic activity for the in vivo selection of an enzyme. To confirm the validity of our method and to demonstrate its potential utility, we used biotin protein ligase (BPL) from Escherichia coli as a model enzyme. We were able to demonstrate the potential value of our method by selective enrichment for the birA gene, which encodes BPL, in a mixed library. The presented method for in vivo selection should allow selection of various enzymes that catalyze modification of peptides or proteins, such as protein ligase, acetylase, kinase, phosphatase, ubiquitinase, and protease (including caspase). The method should be useful in efforts to analyze mechanisms of signal transduction, to find unidentified enzymes encoded by cDNA libraries, and to exploit artificial enzymes.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
27
|
Jestin JL, Kaminski PA. Directed enzyme evolution and selections for catalysis based on product formation. J Biotechnol 2004; 113:85-103. [PMID: 15380650 DOI: 10.1016/j.jbiotec.2004.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 03/03/2004] [Indexed: 10/26/2022]
Abstract
Enzyme engineering by molecular modelling and site-directed mutagenesis can be remarkably efficient. Directed enzyme evolution appears as a more general strategy for the isolation of catalysts as it can be applied to most chemical reactions in aqueous solutions. Selections, as opposed to screening, allow the simultaneous analysis of protein properties for sets of up to about 10(14) different proteins. These approaches for the parallel processing of molecular information 'Is the protein a catalyst?' are reviewed here in the case of selections based on the formation of a specific reaction product. Several questions are addressed about in vivo and in vitro selections for catalysis reported in the literature. Can the selection system be extended to other types of enzymes? Does the selection control regio- and stereo-selectivity? Does the selection allow the isolation of enzymes with an efficient turnover? How should substrates be substituted or mimicked for the design of efficient selections while minimising the number of chemical synthesis steps? Engineering sections provide also some clues to design selections or to circumvent selection biases. A special emphasis is put on the comparison of in vivo and in vitro selections for catalysis.
Collapse
Affiliation(s)
- Jean-Luc Jestin
- Département de Biologie Structurale et Chimie, Unité de Chimie Organique URA 2128 CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France.
| | | |
Collapse
|
28
|
Held HA, Sidhu SS. Comprehensive Mutational Analysis of the M13 Major Coat Protein: Improved Scaffolds for C-terminal Phage Display. J Mol Biol 2004; 340:587-97. [PMID: 15210356 DOI: 10.1016/j.jmb.2004.04.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/23/2004] [Accepted: 04/26/2004] [Indexed: 11/29/2022]
Abstract
A peptide was fused to the C terminus of the M13 bacteriophage major coat protein (P8), and libraries of P8 mutants were screened to select for variants that displayed the peptide with high efficiency. Over 600 variants were sequenced to compile a comprehensive database of P8 sequence diversity compatible with assembly into the wild-type phage coat. The database reveals that, while the alpha-helical P8 molecule was highly tolerant to mutations, certain functional epitopes were required for efficient incorporation. Three hydrophobic epitopes were located approximately equidistantly along the length of the alpha-helix. In addition, a positively charged epitope was required directly opposite the most C-terminal hydrophobic epitope and on the same side as the other two epitopes. Both ends of the protein were highly tolerant to mutations, consistent with the use of P8 as a scaffold for both N and C-terminal phage display. Further rounds of selection were used to enrich for P8 variants that supported higher levels of C-terminal peptide display. The largest improvements in display resulted from mutations around the junction between P8 and the C-terminal linker, and additional mutations in the N-terminal region were selected for further improvements in display. The best P8 variants improved C-terminal display more than 100-fold relative to the wild-type, and these variants could support the simultaneous display of N and C-terminal fusions. These finding provide information on the requirements for filamentous phage coat assembly, and provide improved scaffolds for phage display technology.
Collapse
Affiliation(s)
- Heike A Held
- Department of Protein Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | |
Collapse
|
29
|
Rosenblatt MM, Wang J, Suslick KS. De novo designed cyclic-peptide heme complexes. Proc Natl Acad Sci U S A 2003; 100:13140-5. [PMID: 14595023 PMCID: PMC263730 DOI: 10.1073/pnas.2231273100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2002] [Accepted: 09/02/2003] [Indexed: 11/18/2022] Open
Abstract
The structural characterization of de novo designed metalloproteins together with determination of chemical reactivity can provide a detailed understanding of the relationship between protein structure and functional properties. Toward this goal, we have prepared a series of cyclic peptides that bind to water-soluble metalloporphyrins (FeIII and CoIII). Neutral and positively charged histidine-containing peptides bind with a high affinity, whereas anionic peptides bind only weakly to the negatively charged metalloporphyrin. Additionally, it was found that the peptide becomes helical only in the presence of the metalloporphyrin. CD experiments confirm that the metalloporphyrin binds specific cyclic peptides with high affinity and with isodichroic behavior. Thermal unfolding experiments show that the complex has "native-like" properties. Finally, NMR spectroscopy produced well dispersed spectra and experimental restraints that provide a high-resolution solution structure of the complexed peptide.
Collapse
Affiliation(s)
- Michael M Rosenblatt
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
30
|
Strobel H, Ladant D, Jestin JL. In vitro selection for enzymatic activity: a model study using adenylate cyclase. J Mol Biol 2003; 332:1-7. [PMID: 12946341 DOI: 10.1016/s0022-2836(03)00920-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An in vitro enzyme selection that can, in principle, be generalised to most chemical reactions, is described. It makes use of filamentous phage display and of a tailor-made antibody fragment directed against the reaction product. The conversion of ATP into 3',5'-cyclic AMP catalysed by Bordetella pertussis adenylate cyclase is taken as an example.
Collapse
Affiliation(s)
- Heike Strobel
- Unité de Chimie Organique, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris 15, France
| | | | | |
Collapse
|
31
|
Fernandez-Gacio A, Uguen M, Fastrez J. Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol 2003; 21:408-14. [PMID: 12948674 DOI: 10.1016/s0167-7799(03)00194-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Since its introduction in 1985, phage display has had a tremendous impact on the discovery of peptides that bind to a variety of receptors, the generation of binding sites within predefined scaffolds, and the creation of high-affinity antibodies without immunization. Its application to enzymology has required the development of techniques that couple enzymatic activity to selection protocols based on affinity chromatography. Here, we describe both indirect methods, using transition-state analogues and suicide substrates, and direct methods, using the ability of active phage-enzymes to transform substrate into product. The methods have been applied to large libraries for mechanistic-based studies and to generate variants with new or improved properties. In addition, such techniques have been successfully used to select catalytic antibodies and improve their catalytic efficiency.
Collapse
Affiliation(s)
- Ana Fernandez-Gacio
- Laboratoire de Biochimie Physique et des Biopolymères, Institut des Sciences de la Vie, Université Catholique de Louvain, Place L. Pasteur, 1, B1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
32
|
Lorentsen RH, Møller CH, Etzerodt M, Thøgersen HC, Holtet TL. Substrate turnover and inhibitor binding as selection parameters in directed evolution of blood coagulation factor Xa. Org Biomol Chem 2003; 1:1657-63. [PMID: 12926352 DOI: 10.1039/b210149a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A library of blood coagulation factor Xa (FXa)-trypsin hybrid proteases was generated and displayed on phage for selection of derivatives with the domain "architecture" of trypsin and the specificity of FXa. Selection based on binding to soybean trypsin inhibitor only provided enzymatically inactive derivatives, due to a specific mutation of serine 195 of the catalytic triad to a glycine, revealing a significant selection pressure for proteolytic inactive derivatives. By including a FXa peptide substrate in the selection mixture, the majority of the clones had retained serine at position 195 and were enzymatically active after selection. Further, with the inclusion of bovine pancreatic trypsin inhibitor, in addition to the peptide substrate, the selected clones also retained FXa specificity after selection. This demonstrates that affinity selection combined with appropriate deselection provides a simple strategy for selection of enzyme derivatives that catalyse a specific reaction.
Collapse
Affiliation(s)
- Rikke H Lorentsen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
33
|
Edalat M, Persson MAA, Mannervik B. Selective recognition of peptide sequences by glutathione transferases: a possible mechanism for modulation of cellular stress-induced signaling pathways. Biol Chem 2003; 384:645-51. [PMID: 12751793 DOI: 10.1515/bc.2003.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Exogenous and endogenous agents including products generated by oxidative stress, chemotherapeutics and bacterial lipids, activate multiple cellular signaling pathways, resulting either in mitogenesis or in apoptosis. Glutathione transferases (GSTs) appear not only to be prominent catalysts of detoxication reactions, but also to play a pivotal role in signaling by interacting with multiple proteins in pathways induced by cellular stress. Using two peptide libraries (a 9-mer and a 15-mer) displayed on phage, novel GST-peptide interactions were identified using human GST A1-1, GST P1-1 and GST M2-2 as targets. The isolated peptides have high sequence similarity with proteins such as TRAF4-associated factor 1, G protein-coupled receptor MRGX3, tumor necrosis factor superfamily (member 9), and c-Jun N-terminal kinase 3.
Collapse
Affiliation(s)
- Maryam Edalat
- Department of Biochemistry, Uppsala University, Biomedical Center, Box 576, S-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
34
|
|
35
|
Soltes G, Barker H, Marmai K, Pun E, Yuen A, Wiersma EJ. A new helper phage and phagemid vector system improves viral display of antibody Fab fragments and avoids propagation of insert-less virions. J Immunol Methods 2003; 274:233-44. [PMID: 12609549 DOI: 10.1016/s0022-1759(02)00294-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phage display technology (PDT) is a powerful method for isolating functional gene products such as antigen-specific monoclonal antibodies (mAbs). To improve the effectiveness of PDT, we sought to optimize display of Fab-g3p (antibody fragment fused with viral gene 3 protein) on phagemid virions and to optimize the yield of such phage. To do so, we constructed a novel helper phage, Phaberge, having a conditional deficiency in g3p production. Unlike most other published g3p-deficient helper phage, Phaberge is produced at high levels, 10(11) PFU/ml. As compared to g3p-sufficient helper phage, Phaberge caused a 5-20-fold increase in display level. Another novel feature is that Phaberge only packages insert-containing, not insert-less, phagemid into infectious virions. This should prove useful in preserving quality of phagemid libraries during propagation. In addition, other parameters were also found to affect production of phagemid virions. In particular, the choice of bacterial host cell, phagemid construct and growth temperature had a substantial impact on display levels, but generally no effect on number of phagemid virions produced. In short, we have established a set of parameters that improve production and quality of phagemid virions which we expect to facilitate the isolation of mAbs or other gene products by PDT.
Collapse
Affiliation(s)
- Glenn Soltes
- Cangene Corporation, 3403 American Drive, L4V 1T4, Mississauga, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Dröge MJ, Rüggeberg CJ, van der Sloot AM, Schimmel J, Dijkstra DS, Verhaert RMD, Reetz MT, Quax WJ. Binding of phage displayed Bacillus subtilis lipase A to a phosphonate suicide inhibitor. J Biotechnol 2003; 101:19-28. [PMID: 12523966 DOI: 10.1016/s0168-1656(02)00289-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phage display can be used as a protein engineering tool to select proteins with desirable binding properties from a library of randomly constructed mutants. Here, we describe the development of this method for the directed evolution of Bacillus subtilis lipase A, an enzyme that has marked properties for the preparation of pharmaceutically relevant chiral compounds. The lipase gene was cloned upstream of the phage g3p encoding sequence and downstream of a modified g3p signal sequence. Consequently, the enzyme was displayed at the surface of bacteriophage fd as a fusion to its minor coat protein g3p. The phage-bound lipase was correctly folded and fully enzymatically active as determined from the hydrolysis of p-nitrophenylcaprylate with K(m)-values of 0.38 and 0.33 mM for the phage displayed and soluble lipase, respectively. Both soluble lipase and lipase expressed on bacteriophages reacted covalently with a phosphonate suicide inhibitor. The phage does not hamper lipase binding, since both soluble and phage-bound lipase have a similar half-life of inactivation of approximately 5 min. Therefore, we conclude that the Bacillus lipase can be functionally expressed on bacteriophages as a fusion to the phage coat protein g3p. The specific interaction with the suicide inhibitor offers a fast and reproducible method for the future selection of mutant enzymes with an enantioselectivity towards new substrates.
Collapse
Affiliation(s)
- Melloney J Dröge
- Department of Pharmaceutical Biology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Melkko S, Halin C, Borsi L, Zardi L, Neri D. An antibody-calmodulin fusion protein reveals a functional dependence between macromolecular isoelectric point and tumor targeting performance. Int J Radiat Oncol Biol Phys 2002; 54:1485-90. [PMID: 12459375 DOI: 10.1016/s0360-3016(02)03927-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Human monoclonal antibodies are promising agents for the development of improved anticancer therapeutics, because, unlike low-molecular-weight chemotherapeutic agents, they can selectively localize to solid tumors. In particular, the scFv(L19) antibody fragment, specific for the EDB domain of fibronectin, a marker of angiogenesis, has demonstrated an impressive tumor targeting performance in a variety of tumor-bearing animals and in patients with cancer. The purpose of this study was to develop a tumor pretargeting strategy, based on a novel anti-EDB fusion protein. METHODS AND MATERIALS We have fused the scFv(L19) to calmodulin, a small acidic protein for which specific binding peptides with a dissociation constant in the picomolar range are available. The resulting fusion protein has been expressed in mammalian cells and purified to homogeneity, before being characterized by quantitative biodistribution analysis in mice bearing the F9 murine teratocarcinoma. RESULTS Surprisingly, we have found that the fusion of scFv(L19) to calmodulin completely abrogated the tumor targeting ability of the antibody in vivo, although both scFv(L19) and calmodulin moieties within the fusion protein retained unaltered binding affinities toward their respective ligand. Furthermore, a systematic analysis of 13 derivatives of scFv(L19) recently produced in our laboratories showed that the 10 derivatives that retain the tumor targeting ability of the parental antibody have isoelectric points (pI) between 5.0 and 9.0, whereas scFv(L19)-calmodulin (pI = 4.49) and two other derivatives of scFv(L19) with pI >9.0 were unable to target tumors in vivo. CONCLUSIONS Because the EDB domain of fibronectin is a component of the modified extracellular matrix, predominantly located at the abluminal side of tumor blood vessels, our data suggest that extreme pI values of antibody-based pharmaceuticals may inhibit protein extravasation, perhaps by virtue of electrostatic interactions with endothelial cells and/or components of the extracellular matrix.
Collapse
Affiliation(s)
- Samu Melkko
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Frank Bordusa
- Max-Planck Society, Research Unit Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle/Saale, Germany.
| |
Collapse
|
39
|
Reetz MT, Rüggeberg CJ, Dröge MJ, Quax WJ. Immobilization of chiral enzyme inhibitors on solid supports by amide-forming coupling and olefin metathesis. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)01052-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Verhaert RMD, Beekwilder J, Olsthoorn R, van Duin J, Quax WJ. Phage display selects for amylases with improved low pH starch-binding. J Biotechnol 2002; 96:103-18. [PMID: 12142147 DOI: 10.1016/s0168-1656(02)00041-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Directed evolution of secreted industrial enzymes is hampered by the lack of powerful selection techniques. We have explored surface display to select for enzyme variants with improved binding performance on complex polymeric substrates. By a combination of saturation mutagenesis and phage display we selected alpha-amylase variants, which have the ability to bind starch substrate at industrially preferred low pH conditions. First we displayed active alpha-amylase on the surface of phage fd. Secondly we developed a selection system that is based on the ability of alpha-amylase displaying phages to bind to cross-linked starch. This system was used to probe the involvement of specific beta-strands in substrate interaction. Finally, a saturated library of alpha-amylase mutants with one or more amino acid residues changed in their Cbeta4 starch-binding domain was subjected to phage display selection. Mutant molecules with good starch-binding and hydrolytic capacity could be isolated from the phage library by repeated binding and elution of phage particles at lowered pH value. Apart from the wild type alpha-amylase a specific subset of variants, with only changes in three out of the seven possible positions, was selected. All selected variants could hydrolyse starch and heptamaltose at low pH. Interestingly, variants were found with a starch hydrolysis ratio at pH 4.5/7.5 that is improved relative to the wild type alpha-amylase. These data demonstrate that useful alpha-amylase mutants can be selected via surface display on the basis of their binding properties to starch at lowered pH values.
Collapse
Affiliation(s)
- Raymond M D Verhaert
- Pharmaceutical Biology, University Centre for Pharmacy, A. Deusinglaan 1, 9713, AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Brunet E, Chauvin C, Choumet V, Jestin JL. A novel strategy for the functional cloning of enzymes using filamentous phage display: the case of nucleotidyl transferases. Nucleic Acids Res 2002; 30:e40. [PMID: 11972355 PMCID: PMC113863 DOI: 10.1093/nar/30.9.e40] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In vitro selections for catalytic activity have been designed for the isolation of genes encoding enzymes from libraries of proteins displayed on filamentous phages. The proteins are generally expressed as C-terminal fusions with the N-terminus of the minor coat protein p3 for display on phages. As full-length cDNAs generally contain several stop codons near their 3' end, this approach cannot be used for their expression on the surface of phages. Here we show that in vitro selection for catalytic activity is compatible with a system for expression of proteins as N-terminal fusions on the surface of bacteriophages. It is highlighted for the Stoffel fragment of Taq DNA polymerase I and makes use of (p3-Jun/Fos-Stoffel fragment) fusions. The efficiency of the selection is measured by an enrichment factor found to be about 55 for a phage polymerase versus a phage not expressing a polymerase. This approach could provide a method for the functional cloning of nucleotidyl transferases from cDNA libraries using filamentous phage display.
Collapse
Affiliation(s)
- Erika Brunet
- Unité de Chimie Organique, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris 15, France
| | | | | | | |
Collapse
|
42
|
Abstract
The challenging field of de novo enzyme design is beginning to produce exciting results. The application of powerful computational methods to functional protein design has recently succeeded at engineering target activities. In addition, efforts in directed evolution continue to expand the transformations that can be accomplished by existing enzymes. The engineering of completely novel catalytic activity requires traversing inactive sequence space in a fitness landscape, a feat that is better suited to computational design. Optimizing activity, which can include subtle alterations in backbone conformation and protein motion, is better suited to directed evolution, which is highly effective at scaling fitness landscapes towards maxima. Improved rational design efforts coupled with directed evolution should dramatically improve the scope of de novo enzyme design.
Collapse
Affiliation(s)
- Daniel N Bolon
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, mail code 147-75, Pasadena, California 91125, USA
| | | | | |
Collapse
|
43
|
Takahashi F, Ebihara T, Mie M, Yanagida Y, Endo Y, Kobatake E, Aizawa M. Ribosome display for selection of active dihydrofolate reductase mutants using immobilized methotrexate on agarose beads. FEBS Lett 2002; 514:106-10. [PMID: 11904191 DOI: 10.1016/s0014-5793(02)02334-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ribosome display was applied to the selection of an enzyme. As a model, we selected and amplified the dihydrofolate reductase (DHFR) gene by ribosome display utilizing a wheat germ cell-free protein synthesis system based on binding affinity to its substrate analog, methotrexate, immobilized on agarose beads. After three rounds of selection, the DHFR gene could be effectively selected and preferentially amplified from a small proportion in a mixture also containing competitive genes. Active enzymes were expressed and amplified and by sequence analysis, four mutants of DHFR were identified. These mutants showed as much activity as the wild-type enzyme.
Collapse
Affiliation(s)
- Fumio Takahashi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, 226-8501, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Heinis C, Melkko S, Demartis S, Neri D. Two general methods for the isolation of enzyme activities by colony filter screening. CHEMISTRY & BIOLOGY 2002; 9:383-90. [PMID: 11927264 DOI: 10.1016/s1074-5521(02)00113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We describe two general methodologies, based on filter-sandwich assays, for isolating enzymatic activities from a large repertoire of protein variants expressed in the cytoplasm of E. coli cells. The enzymes are released by the freezing and thawing of bacterial colonies grown on a porous master filter and diffuse to a second "reaction" filter that closely contacts the master filter. Reaction substrates can be immobilized either on the filter or on the enzyme itself (which is then, in turn, captured on the reaction filter). The resulting products are detected with suitable affinity reagents. We used biotin ligase as a model enzyme to assess the performance of the two methodologies. Active enzymes were released by the bacteria, locally biotinylated the immobilized target substrate peptide, and allowed the sensitive and specific detection of individual catalytically active colonies.
Collapse
Affiliation(s)
- Christian Heinis
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
45
|
Goletz S, Christensen PA, Kristensen P, Blohm D, Tomlinson I, Winter G, Karsten U. Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 2002; 315:1087-97. [PMID: 11827478 DOI: 10.1006/jmbi.2001.5314] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antiidiotypic antibodies (Ab2) are needed as tools for a better understanding of molecular mimicry and the immunological network, and for many potential applications in the biomedical and pharmaceutical field. Antiidiotypic antibodies mimicking carbohydrate or conformational epitopes (Ab2beta) are of considerable interest as surrogate immunogens for cancer vaccination. However, it has so far been difficult and tedious to produce Ab2s to a given antigen. Here we describe a fast and reliable technique for generating large diversities of antiidiotypic single chain antibody fragments from non-immunized phagemid libraries using phage display. Key elements are a specific elution with the original antigen followed by trypsin treatment of the eluted phages in combination with the protease sensitive helperphage KM13. This novel method was compared with various conventional selection and elution methods, including, specific elution with or without trypsin treatment, elution with glycine at pH 2.2 with or without trypsin treatment, and elution by trypsin treatment only. The results clearly show that specific elution in combination with trypsin treatment of the eluted phages is by far superior to the other conventional methods, enabling for the first time the generation of a large variety of Ab2s after only two to three rounds of selection, thereby maintaining maximum diversity. We obtained 28 to 88 antiidiotypes out of 96 tested clones after two to three rounds of selection with a diversity of 55-90 %. This was achieved for two carbohydrate (di-, and tetrasaccharides) and one conformational protein epitope using two large naïve libraries and their corresponding monoclonal Ab1. The antiidiotypic nature of the selected scFv-phages was verified by ELISA and immunocytochemistry inhibition experiments.
Collapse
Affiliation(s)
- Steffen Goletz
- NEMOD GmbH, Robert-Rössle-Str. 10, Berlin-Buch, D-13125, FRG.
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- S Brakmann
- Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany.
| |
Collapse
|
47
|
Heinis C, Huber A, Demartis S, Bertschinger J, Melkko S, Lozzi L, Neri P, Neri D. Selection of catalytically active biotin ligase and trypsin mutants by phage display. Protein Eng Des Sel 2001; 14:1043-52. [PMID: 11809935 DOI: 10.1093/protein/14.12.1043] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phage display has been shown to facilitate greatly the selection of polypeptides with desired properties by establishing a direct link between the polypeptide and the gene that encodes it. However, selection for catalytic activities displayed on phage remains a challenge, since reaction products diffuse away from the enzyme and make it difficult to recover catalytically active phage-enzymes. We have recently described a selection methodology in which the reaction substrate (and eventually the reaction product) is anchored on calmodulin-tagged phage-enzymes by means of a calmodulin binding peptide. Phage displaying a catalytic activity are physically isolated by means of affinity reagents specific for the product of reaction. In this study, we investigated the efficiency of selection for catalysis by phage display, using a ligase (the Escherichia coli biotin ligase BirA) and an endopeptidase (the rat trypsin His57--> Ala mutant) as model enzymes. These enzymes could be displayed on phage as fusion proteins with calmodulin and the minor coat protein pIII. Both the display of functional enzyme and the efficiency of selection for catalysis were significantly improved by using phage vectors, rather than phagemid vectors. In model selection experiments, phage displaying BirA were consistently enriched (between 4-fold and 800-fold) per round of panning, relative to negative controls. Phage displaying the trypsin His57-->Ala mutant, a relatively inefficient endopeptidase which cleaves a specific dipeptide sequence, were enriched (between 15-fold and 2000-fold), relative to negative controls. In order to improve the catalytic properties of the trypsin His57-->Ala mutant, we constructed a combinatorial phage display library of trypsin mutants. Selection of catalytically active phage-enzymes was evidentiated by increasing phage titres at the different rounds of panning relative to negative control selections, but mutants with catalytic properties superior to those of trypsin His57-->Ala mutant could not be isolated. The results obtained provide evidence that catalytic activities can be recovered using phage display technology, but stress the importance of both library design and stringent biopanning conditions for the recovery of novel enzymes.
Collapse
Affiliation(s)
- C Heinis
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Schmidt-Dannert C. Directed evolution of single proteins, metabolic pathways, and viruses. Biochemistry 2001; 40:13125-36. [PMID: 11683620 DOI: 10.1021/bi011310c] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- C Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55126, USA.
| |
Collapse
|
49
|
Affiliation(s)
- R H Hoess
- Dupont Pharmaceuticals Company, Experimental Station E336/205, Wilmington, Delaware 19880, USA.
| |
Collapse
|
50
|
Abstract
Natural enzymes have arisen over millions of years by the gradual process of Darwinian evolution. The fundamental steps of evolution-mutation, selection, and amplification-can also be exploited in the laboratory to create and characterize protein catalysts on a human timescale. In vivo genetic selection strategies enable the exhaustive analysis of protein libraries with 10(10) different members, and even larger ensembles can be studied with in vitro methods. Evolutionary approaches can consequently yield statistically meaningful insight into the complex and often subtle interactions that influence protein folding, structure, and catalytic mechanism. Such methods are also being used increasingly as an adjunct to design, thus providing access to novel proteins with tailored catalytic activities and selectivities.
Collapse
Affiliation(s)
- Sean V. Taylor
- Laboratorium für Organische Chemie ETH Zürich 8093 Zurich (Switzerland)
| | | | | |
Collapse
|