1
|
Islam MR, Akash S, Jony MH, Alam MN, Nowrin FT, Rahman MM, Rauf A, Thiruvengadam M. Exploring the potential function of trace elements in human health: a therapeutic perspective. Mol Cell Biochem 2023; 478:2141-2171. [PMID: 36637616 DOI: 10.1007/s11010-022-04638-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
A trace element, known as a minor element, is a chemical element whose concentration is very low. They are divided into essential and non-essential classes. Numerous physiological and metabolic processes in both plants and animals require essential trace elements. These essential trace elements are so directly related to the metabolic and physiologic processes of the organism that either their excess or deficiency can result in severe bodily malfunction or, in the worst situations, death. Elements can be found in nature in various forms and are essential for the body to carry out its varied functions. Trace elements are crucial for biological, chemical, and molecular cell activity. Nutritional deficits can lead to weakened immunity, increased susceptibility to oral and systemic infections, delayed physical and mental development, and lower productivity. Trace element enzymes are involved in many biological and chemical processes. These compounds act as co-factors for a number of enzymes and serve as centers for stabilizing the structures of proteins and enzymes, allowing them to mediate crucial biological processes. Some trace elements control vital biological processes by attaching to molecules on the cell membrane's receptor site or altering the structure of the membrane to prevent specific molecules from entering the cell. Some trace elements are engaged in redox reactions. Trace elements have two purposes. They are required for the regular stability of cellular structures, but when lacking, they might activate alternate routes and induce disorders. Therefore, thoroughly understanding these trace elements is essential for maintaining optimal health and preventing disease.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Noor Alam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Feana Tasmim Nowrin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea.
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022; 11:pathogens11050522. [PMID: 35631043 PMCID: PMC9145062 DOI: 10.3390/pathogens11050522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.
Collapse
|
3
|
Saraswat S, Chaudhary M, Sehgal D. Hepatitis E Virus Cysteine Protease Has Papain Like Properties Validated by in silico Modeling and Cell-Free Inhibition Assays. Front Cell Infect Microbiol 2020; 9:478. [PMID: 32039053 PMCID: PMC6989534 DOI: 10.3389/fcimb.2019.00478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis E virus (HEV) has emerged as a global health concern during the last decade. In spite of a high mortality rate in pregnant women with fulminant hepatitis, no antiviral drugs or licensed vaccine is available in India. HEV-protease is a pivotal enzyme responsible for ORF1 polyprotein processing leading to cleavage of the non-structural enzymes involved in virus replication. HEV-protease region encoding 432–592 amino acids of Genotype-1 was amplified, expressed in Sf21 cells and purified in its native form. The recombinant enzyme was biochemically characterized using SDS-PAGE, Western blotting and Immunofluorescence. The enzyme activity and the inhibition studies were conducted using Zymography, FTC-casein based protease assay and ORF1 polyprotein digestion. To conduct ORF1 digestion assay, the polyprotein, natural substrate of HEV-protease, was expressed in E. coli and purified. Cleavage of 186 kDa ORF1 polyprotein by the recombinant HEV-protease lead to appearance of non-structural proteins viz. Methyltransferase, Protease, Helicase and RNA dependent RNA polymerase which were confirmed through immunoblotting using antibodies generated against specific epitopes of the enzymes. FTC-casein substrate was used for kinetic studies to determine Km and Vmax of the enzyme and also the effect of different metal ions and other protease inhibitors. A 95% inhibition was observed with E-64 which was validated through in silico analysis. The correlation coefficient between inhibition and docking score of Inhibitors was found to have a significant value of r2 = 0.75. The predicted 3D model showed two domain architecture structures similar to Papain like cysteine protease though they differed in arrangements of alpha helices and beta sheets. Hence, we propose that HEV-protease has characteristics of “Papain-like cysteine protease,” as determined through structural homology, active site residues and class-specific inhibition. However, conclusive nature of the enzyme remains to be established.
Collapse
Affiliation(s)
- Shweta Saraswat
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Meenakshi Chaudhary
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Deepak Sehgal
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
4
|
Liverton NJ. Evolution of HCV NS3/4a Protease Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1007/7355_2018_39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Chen WN, Otting G. Using tert-Butyl Groups in a Ligand To Identify Its Binding Site on a Protein. ACS Med Chem Lett 2018; 9:109-113. [PMID: 29456797 DOI: 10.1021/acsmedchemlett.7b00464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/12/2018] [Indexed: 01/16/2023] Open
Abstract
Few methods allow determining the binding site of tightly binding ligands. We show that ligands containing a tert-butyl (e.g., Boc) group produce easily observable nuclear Overhauser effects (NOE) with the target protein even when the tert-butyl group is not highly solvent exposed. NOEs with methyl groups of the target protein are readily assigned by selectively isotope labeling, presenting a practical and quick way to pinpoint the location of the ligand without any prior specific nuclear magnetic resonance assignments of the protein. The approach works for nonexchanging ligands as well as for weakly binding ligands.
Collapse
Affiliation(s)
- Wan-Na Chen
- Research
School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- College
of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gottfried Otting
- Research
School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Ganesan A, Barakat K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin Drug Discov 2017; 12:407-425. [PMID: 28164720 DOI: 10.1080/17460441.2017.1291628] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Hepatitis C virus (HCV) is a global health problem that causes several chronic life-threatening liver diseases. The numbers of people affected by HCV are rising annually. Since 2011, the FDA has approved several anti-HCV drugs; while many other promising HCV drugs are currently in late clinical trials. Areas covered: This review discusses the applications of different computational approaches in HCV drug design. Expert opinion: Molecular docking and virtual screening approaches have emerged as a low-cost tool to screen large databases and identify potential small-molecule hits against HCV targets. Ligand-based approaches are useful for filtering-out compounds with rich physicochemical properties to inhibit HCV targets. Molecular dynamics (MD) remains a useful tool in optimizing the ligand-protein complexes and understand the ligand binding modes and drug resistance mechanisms in HCV. Despite their varied roles, the application of in-silico approaches in HCV drug design is still in its infancy. A more mature application should aim at modelling the whole HCV replicon in its active form and help to identify new effective druggable sites within the replicon system. With more technological advancements, the roles of computer-aided methods are only going to increase several folds in the development of next-generation HCV drugs.
Collapse
Affiliation(s)
- Aravindhan Ganesan
- a Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Canada
| | - Khaled Barakat
- a Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Canada
| |
Collapse
|
7
|
Hamad HA, Thurston J, Teague T, Ackad E, Yousef MS. The NS4A Cofactor Dependent Enhancement of HCV NS3 Protease Activity Correlates with a 4D Geometrical Measure of the Catalytic Triad Region. PLoS One 2016; 11:e0168002. [PMID: 27936126 PMCID: PMC5148068 DOI: 10.1371/journal.pone.0168002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
We are developing a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active site of HCV NS3 proteases, in relation to their catalytic activity. In our previous work, the 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) yielded divergent, gradual and genotype-dependent, 4D conformational instability measures, which strongly correlate with the known disparate catalytic activities among genotypes. Here, the correlation of our 4D geometrical measure is extended to intra-genotypic alterations in NS3 protease activity, due to sequence variations in the NS4A activating cofactor. The correlation between the 4D measure and the enzymatic activity is qualitatively evident, which further validates our methodology, leading to the development of an accurate quantitative metric to predict protease activity in silico. The results suggest plausible “communication” pathways for conformational propagation from the activation subunit (the NS4A cofactor binding site) to the catalytic subunit (the catalytic triad). The results also strongly suggest that the well-sampled (via convergence quantification) structural dynamics are more connected to the divergent catalytic activity observed in HCV NS3 proteases than to rigid structures. The method could also be applicable to predict patients’ responses to interferon therapy and better understand the innate interferon activation pathway.
Collapse
Affiliation(s)
- Hamzah A. Hamad
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Illinois, United States of America
| | - Jeremy Thurston
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Illinois, United States of America
| | - Thomas Teague
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Illinois, United States of America
| | - Edward Ackad
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Illinois, United States of America
| | - Mohammad S. Yousef
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Illinois, United States of America
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- * E-mail:
| |
Collapse
|
8
|
Parsy C, Alexandre FR, Brandt G, Caillet C, Cappelle S, Chaves D, Convard T, Derock M, Gloux D, Griffon Y, Lallos L, Leroy F, Liuzzi M, Loi AG, Moulat L, Musiu C, Rahali H, Roques V, Seifer M, Standring D, Surleraux D. Structure-based design of a novel series of azetidine inhibitors of the hepatitis C virus NS3/4A serine protease. Bioorg Med Chem Lett 2014; 24:4444-4449. [DOI: 10.1016/j.bmcl.2014.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
|
9
|
Kramer M, Halleran D, Rahman M, Iqbal M, Anwar MI, Sabet S, Ackad E, Yousef M. Comparative molecular dynamics simulation of Hepatitis C Virus NS3/4A protease (Genotypes 1b, 3a and 4b) predicts conformational instability of the catalytic triad in drug resistant strains. PLoS One 2014; 9:e104425. [PMID: 25111232 PMCID: PMC4128671 DOI: 10.1371/journal.pone.0104425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
The protease domain of the Hepatitis C Virus (HCV) nonstructural protein 3 (NS3) has been targeted for inhibition by several direct-acting antiviral drugs. This approach has had marked success to treat infections caused by HCV genotype 1 predominant in the USA, Europe, and Japan. However, genotypes 3 and 4, dominant in developing countries, are resistant to a number of these drugs and little progress has been made towards understanding the structural basis of their drug resistivity. We have previously developed a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active sites of the NS3 proteases of HCV-1b and 4a in relation to their catalytic activity and drug susceptibility. Here, we improved the methodology, extended the analysis to include genotype 3a (predominant in South Asia including Pakistan), and compared the results of the three genotypes (1b, 3a and 4a). The 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-3a and 4a compared to that of HCV-1b NS3 protease. The divergence is gradual and genotype-dependent, with HCV-1b being the most stable, HCV-4a being the most unstable and HCV-3a representing an intermediate state. These results suggest that the structural dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug susceptibility seen in NS3 proteases of HCV-3a and 4a.
Collapse
Affiliation(s)
- Mitchell Kramer
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Daniel Halleran
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Moazur Rahman
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Ikram Anwar
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Edward Ackad
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Mohammad Yousef
- Department of Physics, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- * E-mail:
| |
Collapse
|
10
|
Parvez MK, Khan AA. Molecular modeling and analysis of hepatitis E virus (HEV) papain-like cysteine protease. Virus Res 2013; 179:220-4. [PMID: 24321124 PMCID: PMC7114377 DOI: 10.1016/j.virusres.2013.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 12/14/2022]
Abstract
The biochemical or biophysical characterization of a papain-like cysteine protease in HEV ORF1-encoded polyprotein still remains elusive. Very recently, we have demonstrated the indispensability of ORF1 protease-domain cysteines and histidines in HEV replication, ex vivo (Parvez, 2013). In this report, the polyprotein partial sequences of HEV strains and genetically-related RNA viruses were analyzed, in silico. Employing the consensus-prediction results of RUBV-p150 protease as structural-template, a 3D model of HEV-protease was deduced. Similar to RUBV-p150, a ‘papain-like β-barrel fold’ structurally confirmed the classification of HEV-protease. Further, we recognized a catalytic ‘Cys434-His443’ dyad homologue of RUBV-p150 (Cys1152-His1273) and FMDV-Lpro (Cys51-His148) in line with our previous mutational analysis that showed essentiality of ‘His443’ but not ‘His590’ in HEV viability. Moreover, a RUBV ‘Zn2+ binding motif’ (Cys1167-Cys1175-Cys1178-Cys1225-Cys1227) equivalent of HEV was identified as ‘Cys457-His458-Cys459 and Cys481-Cys483’ residues within the ‘β-barrel fold’. Notably, unlike RUBV, ‘His458’ also clustered therein, that was in conformity with the consensus cysteine protease ‘Zn2+-binding motif’. By homology, we also proposed an overlapping ‘Ca2+-binding site’ ‘D-X-[DNS]-[ILVFYW]-[DEN]-G-[GP]-XX-DE’ signature, and a ‘proline-rich motif’ interacting ‘tryptophan (W437-W472)’ module in the modeled structure. Our analysis of the predicted model therefore, warrants critical roles of the ‘catalytic dyad’ and ‘divalent metal-binding motifs’ in HEV protease structural-integrity, ORF1 self-processing, and RNA replication. This however, needs further experimental validations.
Collapse
Affiliation(s)
- Mohammad Khalid Parvez
- Department of Pharmacognosy, King Saud University College of Pharmacy, Riyadh 11451, Saudi Arabia.
| | - Azmat Ali Khan
- Department of Pharmaceutical Chemistry, King Saud University College of Pharmacy, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Vega S, Neira JL, Marcuello C, Lostao A, Abian O, Velazquez-Campoy A. NS3 protease from hepatitis C virus: biophysical studies on an intrinsically disordered protein domain. Int J Mol Sci 2013; 14:13282-306. [PMID: 23803659 PMCID: PMC3742187 DOI: 10.3390/ijms140713282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/04/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022] Open
Abstract
The nonstructural protein 3 (NS3) from the hepatitis C virus (HCV) is responsible for processing the non-structural region of the viral precursor polyprotein in infected hepatic cells. NS3 protease activity, located at the N-terminal domain, is a zinc-dependent serine protease. A zinc ion, required for the hydrolytic activity, has been considered as a structural metal ion essential for the structural integrity of the protein. In addition, NS3 interacts with another cofactor, NS4A, an accessory viral protein that induces a conformational change enhancing the hydrolytic activity. Biophysical studies on the isolated protease domain, whose behavior is similar to that of the full-length protein (e.g., catalytic activity, allosteric mechanism and susceptibility to inhibitors), suggest that a considerable global conformational change in the protein is coupled to zinc binding. Zinc binding to NS3 protease can be considered as a folding event, an extreme case of induced-fit binding. Therefore, NS3 protease is an intrinsically (partially) disordered protein with a complex conformational landscape due to its inherent plasticity and to the interaction with its different effectors. Here we summarize the results from a detailed biophysical characterization of this enzyme and present new experimental data.
Collapse
Affiliation(s)
- Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
| | - Jose L. Neira
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
- Institute of Molecular and Cell Biology, Miguel Hernandez University, Elche (Alicante) 03202, Spain
| | - Carlos Marcuello
- Advanced Microscopy Laboratory (LMA), Institute of Nanoscience of Aragon (INA), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (C.M.); (A.L.)
| | - Anabel Lostao
- Advanced Microscopy Laboratory (LMA), Institute of Nanoscience of Aragon (INA), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (C.M.); (A.L.)
- ARAID Foundation, Government of Aragon, Zaragoza 50018, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
- IIS Aragon–Aragon Health Science Institute (I+CS), Zaragoza 50009, Spain
- Network Biomedical Research Center on Hepatic and Digestive Diseases (CIBERehd), Barcelona 08036, Spain
- Authors to whom correspondence should be addressed; E-Mails: (O.A.); (A.V.-C.); Tel.: +34-976-761-000 (ext. 5417) (O.A.); +34-976-762-996 (A.V.-C.); Fax: +34-976-762-990 (O.A. & A.V.-C.)
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
- ARAID Foundation, Government of Aragon, Zaragoza 50018, Spain
- Department of Biochemistry and Cellular and Molecular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza 50009, Spain
- Authors to whom correspondence should be addressed; E-Mails: (O.A.); (A.V.-C.); Tel.: +34-976-761-000 (ext. 5417) (O.A.); +34-976-762-996 (A.V.-C.); Fax: +34-976-762-990 (O.A. & A.V.-C.)
| |
Collapse
|
12
|
Rimmert B, Sabet S, Ackad E, Yousef MS. A 3D structural model and dynamics of hepatitis C virus NS3/4A protease (genotype 4a, strain ED43) suggest conformational instability of the catalytic triad: implications in catalysis and drug resistivity. J Biomol Struct Dyn 2013; 32:950-8. [PMID: 23768174 PMCID: PMC3956140 DOI: 10.1080/07391102.2013.800001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Egypt has the highest prevalence of hepatitis C virus (HCV) infection worldwide with a frequency of 15%. More than 90% of these infections are due to genotype 4, and the subtype 4a (HCV-4a) predominates. Moreover, due to the increased mobility of people, HCV-4a has recently spread to several European countries. The protease domain of the HCV nonstructural protein 3 (NS3) has been targeted for inhibition by several drugs. This approach has had marked success in inhibiting genotype 1 (HCV-1), the predominant genotype in the USA, Europe, and Japan. However, HCV-4a was found to resist inhibition by a number of these drugs, and little progress has been made to understand the structural basis of its drug resistivity. As a step forward, we sequenced the NS3 HCV-4a protease gene (strain ED43) and subsequently built a 3D structural model threaded through a template crystal structure of HCV-1b NS3 protease. The model protease, HCV-4a, shares 83% sequence identity with the template protease, HCV-1b, and has nearly identical rigid structural features. Molecular dynamics simulations predict similar overall dynamics of the two proteases. However, local dynamics and 4D analysis of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-4a NS3 protease. These results suggest that the divergent dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug resistivity seen in HCV-4a.
Collapse
Affiliation(s)
- Bradley Rimmert
- a Department of Physics , College of Arts and Sciences, Southern Illinois University Edwardsville , Edwardsville , IL , 62026-1654 , USA
| | | | | | | |
Collapse
|
13
|
Shiryaev SA, Cheltsov AV, Strongin AY. Probing of exosites leads to novel inhibitor scaffolds of HCV NS3/4A proteinase. PLoS One 2012; 7:e40029. [PMID: 22768327 PMCID: PMC3388044 DOI: 10.1371/journal.pone.0040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/01/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors. METHODOLOGY/PRINCIPAL FINDINGS To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified. CONCLUSIONS/SIGNIFICANCE Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Anton V. Cheltsov
- R&D Department, Q-MOL L.L.C., San Diego, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| | - Alex Y. Strongin
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| |
Collapse
|
14
|
Shiryaev SA, Thomsen ER, Cieplak P, Chudin E, Cheltsov AV, Chee MS, Kozlov IA, Strongin AY. New details of HCV NS3/4A proteinase functionality revealed by a high-throughput cleavage assay. PLoS One 2012; 7:e35759. [PMID: 22558217 PMCID: PMC3338790 DOI: 10.1371/journal.pone.0035759] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/20/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The hepatitis C virus (HCV) genome encodes a long polyprotein, which is processed by host cell and viral proteases to the individual structural and non-structural (NS) proteins. HCV NS3/4A serine proteinase (NS3/4A) is a non-covalent heterodimer of the N-terminal, ∼180-residue portion of the 631-residue NS3 protein with the NS4A co-factor. NS3/4A cleaves the polyprotein sequence at four specific regions. NS3/4A is essential for viral replication and has been considered an attractive drug target. METHODOLOGY/PRINCIPAL FINDINGS Using a novel multiplex cleavage assay and over 2,660 peptide sequences derived from the polyprotein and from introducing mutations into the known NS3/4A cleavage sites, we obtained the first detailed fingerprint of NS3/4A cleavage preferences. Our data identified structural requirements illuminating the importance of both the short-range (P1-P1') and long-range (P6-P5) interactions in defining the NS3/4A substrate cleavage specificity. A newly observed feature of NS3/4A was a high frequency of either Asp or Glu at both P5 and P6 positions in a subset of the most efficient NS3/4A substrates. In turn, aberrations of this negatively charged sequence such as an insertion of a positively charged or hydrophobic residue between the negatively charged residues resulted in inefficient substrates. Because NS5B misincorporates bases at a high rate, HCV constantly mutates as it replicates. Our analysis revealed that mutations do not interfere with polyprotein processing in over 5,000 HCV isolates indicating a pivotal role of NS3/4A proteolysis in the virus life cycle. CONCLUSIONS/SIGNIFICANCE Our multiplex assay technology in light of the growing appreciation of the role of proteolytic processes in human health and disease will likely have widespread applications in the proteolysis research field and provide new therapeutic opportunities.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Elliot R. Thomsen
- R&D Department, Prognosys Biosciences Inc., La Jolla, California, United States of America
| | - Piotr Cieplak
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Eugene Chudin
- R&D Department, Prognosys Biosciences Inc., La Jolla, California, United States of America
| | - Anton V. Cheltsov
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Mark S. Chee
- R&D Department, Prognosys Biosciences Inc., La Jolla, California, United States of America
| | - Igor A. Kozlov
- R&D Department, Prognosys Biosciences Inc., La Jolla, California, United States of America
| | - Alex Y. Strongin
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| |
Collapse
|
15
|
Vallet S, Viron F, Henquell C, Le Guillou-Guillemette H, Lagathu G, Abravanel F, Trimoulet P, Soussan P, Schvoerer E, Rosenberg A, Gouriou S, Colson P, Izopet J, Payan C. NS3 protease polymorphism and natural resistance to protease inhibitors in French patients infected with HCV genotypes 1-5. Antivir Ther 2012; 16:1093-102. [PMID: 22024525 DOI: 10.3851/imp1900] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Resistant HCV populations may pre-exist in patients before NS3 protease inhibitor therapy and would likely be selected under specific antiviral pressure. The higher prevalence and lower rate of response to treatment associated with HCV genotype 1 infections has led to drug discovery efforts being focused primarily on enzymes produced by this genotype. Protease inhibitors may also be useful for non-genotype-1-infected patients, notably for non-responders. METHODS We investigated the prevalence of dominant resistance mutations and polymorphism in 298 HCV protease-inhibitor-naive patients infected with HCV genotypes 1, 2, 3, 4 or 5. Genotype-specific NS3 primers were designed to amplify and sequence the NS3 protease gene. RESULTS None of the 233 analysed sequences contained major telaprevir (TVR) or boceprevir (BOC) resistance mutations (R155K/T/M, A156S/V/T and V170A). Some substitutions (V36L, T54S, Q80K/R, D168Q and V170T) linked to low or moderate decreases in HCV sensitivity to protease inhibitors were prevalent according to genotype (between 2% and 100%). Other than genotype signature mutations at positions 36, 80 and 168, the most frequent substitution was T54S (4 genotype 1 and 2 genotype 4 sequences). All genotype 2-5 sequences had the non-genotype-1 signature V36L mutation known to confer low-level resistance to both TVR and BOC. CONCLUSIONS We have developed an HCV protease NS3 inhibitor resistance genotyping tool suitable for use with HCV genotypes 1-5. Polymorphism data is valuable for interpreting genotypic resistance profiles in cases of failure of anti-HCV NS3 protease treatment.
Collapse
Affiliation(s)
- Sophie Vallet
- Université de Brest, UFR Médecine et des Sciences de la Santé, LUBEM, EA3882, Brest, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Takaya D, Yamashita A, Kamijo K, Gomi J, Ito M, Maekawa S, Enomoto N, Sakamoto N, Watanabe Y, Arai R, Umeyama H, Honma T, Matsumoto T, Yokoyama S. A new method for induced fit docking (GENIUS) and its application to virtual screening of novel HCV NS3-4A protease inhibitors. Bioorg Med Chem 2011; 19:6892-905. [PMID: 21992802 DOI: 10.1016/j.bmc.2011.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 01/09/2023]
Abstract
Hepatitis C virus (HCV) is an etiologic agent of chronic liver disease, and approximately 170 million people worldwide are infected with the virus. HCV NS3-4A serine protease is essential for the replication of this virus, and thus has been investigated as an attractive target for anti-HCV drugs. In this study, we developed our new induced-fit docking program (genius), and applied it to the discovery of a new class of NS3-4A protease inhibitors (IC(50)=1-10 μM including high selectivity index). The new inhibitors thus identified were modified, based on the docking models, and revealed preliminary structure-activity relationships. Moreover, the genius in silico screening performance was validated by using an enrichment factor. We believe our designed scaffold could contribute to the improvement of HCV chemotherapy.
Collapse
Affiliation(s)
- Daisuke Takaya
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fatima K, Tahir M, Qadri I. Development of robust in vitro serine protease assay based on recombinant Pakistani HCV NS3-4A protease. Virus Res 2011; 160:230-7. [PMID: 21756947 DOI: 10.1016/j.virusres.2011.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 11/17/2022]
Abstract
Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 3 (predominant genotype in Pakistan) and they are poorly tolerated, highlighting the requirement of new therapeutics. HCV non-structural protein-3 (NS3) protease and helicase domains are essential for viral replication; they are highly conserved among various HCV strains. In the current study, we enrolled 56 HCV infected patients from various regions of Pakistan and determined their genotypes, ALT level and virus titer. We have cloned and sequenced NS3/NS4A from 4 of the HCV Serum samples. Nucleotide sequence alignment showed high level of identities among 3a genotypes. One of the samples (NCVI 01) showed unique amino acids substitutions, including R9Q, L332P, L354I, I605V and S622C. Three dimensional structures were determined and analyzed effect of substitutions on amino acids interactions. We further established fluorescence resonance energy transfer (FRET) based assays for detecting proteolytic activity of (NS3-4A) serine protease, using AnaSpec peptide, for high throughput screening (HTS) inhibitors against HCV. In future, this study could be of great interest in the development of HCV NS3 cell-based HTS FRET assay for genotype 3a and subsequent antiviral testing of drugs.
Collapse
Affiliation(s)
- Kaneez Fatima
- NUST Center of Virology and Immunology, National University of Sciences and Technology, Sector H-12, Islamabad, Pakistan
| | | | | |
Collapse
|
18
|
Interplay between NS3 protease and human La protein regulates translation-replication switch of Hepatitis C virus. Sci Rep 2011; 1:1. [PMID: 22355520 PMCID: PMC3210691 DOI: 10.1038/srep00001] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/01/2011] [Indexed: 02/02/2023] Open
Abstract
HCV NS3 protein plays a central role in viral polyprotein processing and RNA replication. We demonstrate that the NS3 protease (NS3pro) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding. More importantly, NS3pro binding to the SLIV hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, resulting in inhibition of HCV-IRES activity. Although overexpression of both NS3pro as well as the full length NS3 protein decreased the level of HCV IRES mediated translation, replication of HCV replicon RNA was enhanced significantly. These observations suggest that the NS3pro binding to HCV IRES reduces translation in favor of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might regulate the molecular switch from translation to replication of HCV.
Collapse
|
19
|
Zhu H, Briggs JM. Mechanistic role of NS4A and substrate in the activation of HCV NS3 protease. Proteins 2011; 79:2428-43. [DOI: 10.1002/prot.23064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/01/2011] [Accepted: 04/19/2011] [Indexed: 11/11/2022]
|
20
|
Lemke CT, Goudreau N, Zhao S, Hucke O, Thibeault D, Llinàs-Brunet M, White PW. Combined X-ray, NMR, and kinetic analyses reveal uncommon binding characteristics of the hepatitis C virus NS3-NS4A protease inhibitor BI 201335. J Biol Chem 2011; 286:11434-43. [PMID: 21270126 PMCID: PMC3064199 DOI: 10.1074/jbc.m110.211417] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/17/2011] [Indexed: 11/06/2022] Open
Abstract
Hepatitis C virus infection, a major cause of liver disease worldwide, is curable, but currently approved therapies have suboptimal efficacy. Supplementing these therapies with direct-acting antiviral agents has the potential to considerably improve treatment prospects for hepatitis C virus-infected patients. The critical role played by the viral NS3 protease makes it an attractive target, and despite its shallow, solvent-exposed active site, several potent NS3 protease inhibitors are currently in the clinic. BI 201335, which is progressing through Phase IIb trials, contains a unique C-terminal carboxylic acid that binds noncovalently to the active site and a bromo-quinoline substitution on its proline residue that provides significant potency. In this work we have used stopped flow kinetics, x-ray crystallography, and NMR to characterize these distinctive features. Key findings include: slow association and dissociation rates within a single-step binding mechanism; the critical involvement of water molecules in acid binding; and protein side chain rearrangements, a bromine-oxygen halogen bond, and profound pK(a) changes within the catalytic triad associated with binding of the bromo-quinoline moiety.
Collapse
Affiliation(s)
- Christopher T Lemke
- Boehringer Ingelheim (Canada) Ltd., Research and Development, Laval, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
21
|
Gallo M, Bottomley MJ, Pennestri M, Eliseo T, Paci M, Koch U, Bazzo R, Summa V, Carfì A, Cicero DO. Structural characterization of the Hepatitis C Virus NS3 protease from genotype 3a: The basis of the genotype 1b vs. 3a inhibitor potency shift. Virology 2010; 405:424-38. [DOI: 10.1016/j.virol.2010.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/30/2010] [Accepted: 05/26/2010] [Indexed: 11/25/2022]
|
22
|
Benureau Y, Warter L, Malcolm BA, Martin A. A comparative analysis of the substrate permissiveness of HCV and GBV-B NS3/4A proteases reveals genetic evidence for an interaction with NS4B protein during genome replication. Virology 2010; 406:228-40. [PMID: 20701941 DOI: 10.1016/j.virol.2010.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/04/2010] [Accepted: 07/11/2010] [Indexed: 01/09/2023]
Abstract
The hepatitis C virus (HCV) serine protease (NS3/4A) processes the NS3-NS5B segment of the viral polyprotein and also cleaves host proteins involved in interferon signaling, making it an important target for antiviral drug discovery and suggesting a wide breadth of substrate specificity. We compared substrate specificities of the HCV protease with that of the GB virus B (GBV-B), a distantly related nonhuman primate hepacivirus, by exchanging amino acid sequences at the NS4B/5A and/or NS5A/5B cleavage junctions between these viruses within the backbone of subgenomic replicons. This mutagenesis study demonstrated that the GBV-B protease had a broader substrate tolerance, a feature corroborated by structural homology modeling. However, despite efficient polyprotein processing, GBV-B RNAs containing HCV sequences at the C-terminus of NS4B had a pseudo-lethal replication phenotype. Replication-competent revertants contained second-site substitutions within the NS3 protease or NS4B N-terminus, providing genetic evidence for an essential interaction between NS3 and NS4B during genome replication.
Collapse
Affiliation(s)
- Yann Benureau
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Department of Virology, F-75015 Paris, France
| | | | | | | |
Collapse
|
23
|
Geitmann M, Dahl G, Danielson UH. Mechanistic and kinetic characterization of hepatitis C virus NS3 protein interactions with NS4A and protease inhibitors. J Mol Recognit 2010; 24:60-70. [DOI: 10.1002/jmr.1023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Mutations in hepatitis C virus NS3 protease domain associated with resistance to specific protease inhibitors in antiviral therapy naïve patients. Arch Virol 2010; 155:807-11. [PMID: 20405151 DOI: 10.1007/s00705-010-0642-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/28/2010] [Indexed: 12/17/2022]
Abstract
The prevalence of naturally occurring mutations in hepatitis C virus associated with resistance to protease inhibitors in chronically infected patients has not been reported in Brazil. The NS3 serine protease domain was sequenced in 114 therapy-naïve patients infected with subtype 1a (n = 48), 1b (n = 53), or 3a (n = 13). A V36L mutation was observed in 5.6% patients infected with subtype 1b and in all isolates of the 3a subtype, and a T54S mutation was detected in 4.1% of isolates of subtype 1a. In conclusion, the presence of variants carrying mutations associated with resistance to protease inhibitors in therapy-naïve patients may be important for future therapeutic strategies.
Collapse
|
25
|
Abian O, Neira JL, Velazquez-Campoy A. Thermodynamics of zinc binding to hepatitis C virus NS3 protease: a folding by binding event. Proteins 2010; 77:624-36. [PMID: 19536779 DOI: 10.1002/prot.22475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hepatitis C virus (HCV) nonstructural protein 3 (NS3) protease is responsible for the processing of the non-structural region of the viral precursor polyprotein in infected hepatic cells. HCV NS3 is a zinc-dependent serine protease. The zinc ion, which is bound far away from the active site and considered to have a structural role, is essential for the structural integrity of the protein; furthermore, the ion is required for the hydrolytic activity. Consequently, the NS3 zinc binding site has been considered for a long time as a possible target for drug discovery. As a first step towards this goal, the energetics of the NS3-zinc interaction and its effect on the NS3 conformation must be established and discussed. The thermodynamic characterization of zinc binding to NS3 protease by isothermal titration calorimetry and spectroscopy is presented here. Spectroscopic and calorimetric results suggest that a considerable conformational change in the protein is coupled to zinc binding. The energetics of the conformational change is comparable to that of the folding of a protein of similar size. Therefore, zinc binding to NS3 protease can be considered as a "folding by binding" event.
Collapse
Affiliation(s)
- Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza 50009, Spain
| | | | | |
Collapse
|
26
|
Dahl G, Arenas OG, Danielson UH. Hepatitis C Virus NS3 Protease Is Activated by Low Concentrations of Protease Inhibitors. Biochemistry 2009; 48:11592-602. [DOI: 10.1021/bi9016928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Göran Dahl
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - Omar Gutiérrez Arenas
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - U. Helena Danielson
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
27
|
Characterization of NS3 protease from an Egyptian HCV genotype 4a isolate. Arch Virol 2009; 154:1649-57. [PMID: 19763775 DOI: 10.1007/s00705-009-0500-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
The role of the NS3 protease in HCV replication was demonstrated by the ability of a protease inhibitor cocktail (10 microg/ml) to abolish the induced cytopathic effect in RAW macrophages upon infection with Egyptian sera. The HCV protease gene was amplified from Egyptian sera by nested PCR and cloned downstream of the CMV promotor in a mammalian expression plasmid, which was then used to transform bacteria. Colonies carrying the gene in the correct orientation were subjected to large-scale plasmid purification followed by sequencing. Phylogenetic comparison of the sequence obtained with published sequences from different genotypes confirmed that our sequence belongs to genotype 4a. Of the other genotypes, the most closely related ones were from genotype 1. Multiple alignments of protease peptides showed that the catalytic triads and binding residues for substrate, Zn2+ and the NS4 cofactor are conserved among different isolates, including ours, and confirmed the closer homology between NS3 of genotypes 4 and 1. The HCV-protease-encoding construct was successfully transcribed in both mammalian cells and mice. Mouse antibodies produced against the protease-encoding-construct detected the 18-kDa enzyme in lysates of cells transfected with the construct by Western blotting, and in the media of infected cells by ELISA.
Collapse
|
28
|
A cysteine-rich metal-binding domain from rubella virus non-structural protein is essential for viral protease activity and virus replication. Biochem J 2009; 417:477-83. [PMID: 18795894 DOI: 10.1042/bj20081468] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The protease domain within the RUBV (rubella virus) NS (non-structural) replicase proteins functions in the self-cleavage of the polyprotein precursor into the two mature proteins which form the replication complex. This domain has previously been shown to require both zinc and calcium ions for optimal activity. In the present study we carried out metal-binding and conformational experiments on a purified cysteine-rich minidomain of the RUBV NS protease containing the putative Zn(2+)-binding ligands. This minidomain bound to Zn(2+) with a stoichiometry of approximately 0.7 and an apparent dissociation constant of <500 nM. Fluorescence quenching and 8-anilinonaphthalene-1-sulfonic acid fluorescence methods revealed that Zn(2+) binding resulted in conformational changes characterized by shielding of hydrophobic regions from the solvent. Mutational analyses using the minidomain identified residues Cys(1175), Cys(1178), Cys(1225) and Cys(1227) were required for the binding of Zn(2+). Corresponding mutational analyses using a RUBV replicon confirmed that these residues were necessary for both proteolytic activity of the NS protease and viability. The present study demonstrates that the CXXC(X)(48)CXC Zn(2+)-binding motif in the RUBV NS protease is critical for maintaining the structural integrity of the protease domain and essential for proteolysis and virus replication.
Collapse
|
29
|
Gallo M, Pennestri M, Bottomley MJ, Barbato G, Eliseo T, Paci M, Narjes F, De Francesco R, Summa V, Koch U, Bazzo R, Cicero DO. Binding of a Noncovalent Inhibitor Exploiting the S′ region Stabilizes the Hepatitis C virus NS3 Protease Conformation in the Absence of Cofactor. J Mol Biol 2009; 385:1142-55. [DOI: 10.1016/j.jmb.2008.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/17/2008] [Accepted: 11/12/2008] [Indexed: 12/09/2022]
|
30
|
Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex. Proc Natl Acad Sci U S A 2008; 105:14545-50. [PMID: 18799730 DOI: 10.1073/pnas.0807298105] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane alpha-helix that may be involved in intramembrane protein-protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix alpha(0), formed by NS3 residues 12-23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design.
Collapse
|
31
|
Selection of replicon variants resistant to ACH-806, a novel hepatitis C virus inhibitor with no cross-resistance to NS3 protease and NS5B polymerase inhibitors. Antimicrob Agents Chemother 2008; 52:2043-52. [PMID: 18411324 DOI: 10.1128/aac.01548-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have discovered a novel class of compounds active against hepatitis C virus (HCV), using a surrogate cellular system, HCV replicon cells. The leading compound in the series, ACH-806 (GS-9132), is a potent and specific inhibitor of HCV. The selection of resistance replicon variants against ACH-806 was performed to map the mutations conferring resistance to ACH-806 and to determine cross-resistance profiles with other classes of HCV inhibitors. Several clones emerged after the addition of ACH-806 to HCV replicon cells at frequencies and durations similar to that observed with NS3 protease inhibitors and NS5B polymerase inhibitors. Phenotypic analyses of these clones revealed that they are resistant to ACH-806 but remain sensitive to other classes of HCV inhibitors. Moreover, no significant change in the susceptibility to ACH-806 was found when the replicon cellular clones resistant to NS3 protease inhibitors and NS5B polymerase inhibitors were examined. Sequencing of the entire coding region of ACH-806-resistant replicon variants yielded several consensus mutations. Reverse genetics identified two single mutations in NS3, a cysteine-to-serine mutation at amino acid 16 and an alanine-to-valine mutation at amino acid 39, that are responsible for the resistance of the replicon variants to ACH-806. Both mutations are located at the N terminus of NS3 where extensive interactions with the central hydrophobic region of NS4A exist. These data provide evidence that ACH-806 inhibits HCV replication by a novel mechanism.
Collapse
|
32
|
Welsch C, Domingues FS, Susser S, Antes I, Hartmann C, Mayr G, Schlicker A, Sarrazin C, Albrecht M, Zeuzem S, Lengauer T. Molecular basis of telaprevir resistance due to V36 and T54 mutations in the NS3-4A protease of the hepatitis C virus. Genome Biol 2008; 9:R16. [PMID: 18215275 PMCID: PMC2395260 DOI: 10.1186/gb-2008-9-1-r16] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/17/2007] [Accepted: 01/23/2008] [Indexed: 01/06/2023] Open
Abstract
Structural analysis of the inhibitor Telaprevir (VX-950) of the hepatitis C virus (HCV) protease NS3-4A shows that mutations at V36 and/or T54 result in impaired interaction with VX-950, explaining the development of viral breakthrough variants. Background The inhibitor telaprevir (VX-950) of the hepatitis C virus (HCV) protease NS3-4A has been tested in a recent phase 1b clinical trial in patients infected with HCV genotype 1. This trial revealed residue mutations that confer varying degrees of drug resistance. In particular, two protease positions with the mutations V36A/G/L/M and T54A/S were associated with low to medium levels of drug resistance during viral breakthrough, together with only an intermediate reduction of viral replication fitness. These mutations are located in the protein interior and far away from the ligand binding pocket. Results Based on the available experimental structures of NS3-4A, we analyze the binding mode of different ligands. We also investigate the binding mode of VX-950 by protein-ligand docking. A network of non-covalent interactions between amino acids of the protease structure and the interacting ligands is analyzed to discover possible mechanisms of drug resistance. We describe the potential impact of V36 and T54 mutants on the side chain and backbone conformations and on the non-covalent residue interactions. We propose possible explanations for their effects on the antiviral efficacy of drugs and viral fitness. Molecular dynamics simulations of T54A/S mutants and rotamer analysis of V36A/G/L/M side chains support our interpretations. Experimental data using an HCV V36G replicon assay corroborate our findings. Conclusion T54 mutants are expected to interfere with the catalytic triad and with the ligand binding site of the protease. Thus, the T54 mutants are assumed to affect the viral replication efficacy to a larger degree than V36 mutants. Mutations at V36 and/or T54 result in impaired interaction of the protease residues with the VX-950 cyclopropyl group, which explains the development of viral breakthrough variants.
Collapse
Affiliation(s)
- Christoph Welsch
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
De Francesco R, Carfí A. Advances in the development of new therapeutic agents targeting the NS3-4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Adv Drug Deliv Rev 2007; 59:1242-62. [PMID: 17869377 DOI: 10.1016/j.addr.2007.04.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 01/28/2023]
Abstract
The HCV NS3 protease and NS5B polymerase play essential roles in the replication of the hepatitis C virus (HCV). Following the successful paradigm established for HIV protease and reverse transcriptase inhibitors, these enzymes have been elected as targets for the development of small molecule HCV inhibitors. By combining the power of high-throughput screening with rational, knowledge-based drug discovery, a number of competitive inhibitors of the NS3 protease as well as nucleoside and non-nucleoside inhibitors of the NS5B polymerase have been identified and some have now entered clinical trials. In this article we review recent progress in the discovery and development of small molecule inhibitors of these two essential viral enzymes as they are advancing in the clinic.
Collapse
Affiliation(s)
- Raffaele De Francesco
- Istituto di Ricerche di Biologia Molecolare, P. Angeletti, Via Pontina Km 30,600, 00040 Pomezia (Rome), Italy.
| | | |
Collapse
|
34
|
Suzuki T, Aizaki H, Murakami K, Shoji I, Wakita T. Molecular biology of hepatitis C virus. J Gastroenterol 2007; 42:411-23. [PMID: 17671755 DOI: 10.1007/s00535-007-2030-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 02/10/2007] [Indexed: 02/04/2023]
Abstract
Infection with hepatitis C virus (HCV), which is distributed worldwide, often becomes persistent, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. For many years, the characterization of the HCV genome and its products has been done by heterologous expression systems because of the lack of a productive cell culture system. The development of the HCV replicon system is a highlight of HCV research and has allowed examination of the viral RNA replication in cell culture. Recently, a robust system for production of recombinant infectious HCV has been established, and classical virological techniques are now able to be applied to HCV. This development of reverse genetics-based experimental tools in HCV research can bring a greater understanding of the viral life cycle and pathogenesis of HCV-induced diseases. This review summarizes the current knowledge of cell culture systems for HCV research and recent advances in the investigation of the molecular virology of HCV.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Abstract
Transmitted by the Aedes aegypti mosquito, the dengue virus is the etiological agent of dengue fever, dengue hemorrhagic fever and dengue shock syndrome, and, as such, is a significant factor in the high death rate found in most tropical and subtropical areas of the world. Dengue diseases are not only a health burden to developing countries, but pose an emerging problem worldwide. The immunopathological mechanisms appear to include a complex series of immune responses. A rapid increase in the levels of cytokines and chemical mediators during dengue disease plays a key role in inducing plasma leakage, shock and hemorrhagic manifestations. Currently, there are no vaccines available against dengue virus, although several tetravalent live-attenuated dengue vaccines are in clinical phases I or II, and prevention through vaccination has become a major priority on the agendas of the World Health Organization and of national ministries of health and military organizations. An alternative to vaccines is found in therapeutic-based approaches. Understanding the molecular mechanisms of viral replication has led to the development of potential drugs, and new molecular viral targets for therapy are emerging. The NS3 protease domain of the NS3 protein is responsible for processing the viral polyprotein and its inhibition is one of the principal aims of pharmacological therapy. This review is an overview of the progress made against dengue virus; in particular, it examines the unique properties--structural and functional--of the NS3 protease for the treatment of dengue virus infections by the inhibition of viral polyprotein processing.
Collapse
Affiliation(s)
- Sonia Melino
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy.
| | | |
Collapse
|
36
|
Prongay AJ, Guo Z, Yao N, Pichardo J, Fischmann T, Strickland C, Myers J, Weber PC, Beyer BM, Ingram R, Hong Z, Prosise WW, Ramanathan L, Taremi SS, Yarosh-Tomaine T, Zhang R, Senior M, Yang RS, Malcolm B, Arasappan A, Bennett F, Bogen SL, Chen K, Jao E, Liu YT, Lovey RG, Saksena AK, Venkatraman S, Girijavallabhan V, Njoroge FG, Madison V. Discovery of the HCV NS3/4A Protease Inhibitor (1R,5S)-N-[3-Amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3- [2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (Sch 503034) II. Key Steps in Structure-Based Optimization. J Med Chem 2007; 50:2310-8. [PMID: 17444623 DOI: 10.1021/jm060173k] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structures of both the native holo-HCV NS3/4A protease domain and the protease domain with a serine 139 to alanine (S139A) mutation were solved to high resolution. Subsequently, structures were determined for a series of ketoamide inhibitors in complex with the protease. The changes in the inhibitor potency were correlated with changes in the buried surface area upon binding the inhibitor to the active site. The largest contribution to the binding energy arises from the hydrophobic interactions of the P1 and P2 groups as they bind to the S1 and S2 pockets [the numbering of the subsites is as defined in Berger, A.; Schechter, I. Philos. Trans. R. Soc. London, Ser. B 1970, 257, 249-264]. This correlation of the changes in potency with increased buried surface area contributed directly to the design of a potent tripeptide inhibitor of the HCV NS3/4A protease that is currently in clinical trials.
Collapse
Affiliation(s)
- Andrew J Prongay
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oliva C, Rodríguez A, González M, Yang W. A quantum mechanics/molecular mechanics study of the reaction mechanism of the hepatitis C virus NS3 protease with the NS5A/5B substrate. Proteins 2007; 66:444-55. [PMID: 17094110 DOI: 10.1002/prot.21190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Combined quantum mechanics and molecular mechanics (QM/MM) calculations were carried out to characterize the reaction mechanism of the NS3 protease with its preferred substrate (NS5A/5B). The main purpose of this study was to locate the barrier states and intermediates along the distinguished coordinate path (DCP) involved in this process. These structures, and in particular the one corresponding to the first barrier state and intermediate (B1 and I1), could be a starting point for the synthesis of inhibitors of this protease, which could be used to treat hepatitis C. The two first steps of the reaction mechanism were studied, i.e., the acylation step and the breaking of the peptide bond. The first step takes place through a tetracoordinated intermediate, as suggested from previous works on other Serine proteases. The importance of the different amino acid residues was also considered (perturbation study where the MM charges of each residue were set to zero independently). The residues of the oxyanion hole were confirmed as the most important for the electrostatic stabilization of the tetracoordinate intermediate. Moreover, the role of other residues, e.g., Arg-155 and Asp-79, was also explained.
Collapse
Affiliation(s)
- Carolina Oliva
- Departament de Química Física i Centre de Recerca en Química Teòrica, Universitat de Barcelona i Parc Científic de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
38
|
Tedbury PR, Harris M. Characterisation of the role of zinc in the hepatitis C virus NS2/3 auto-cleavage and NS3 protease activities. J Mol Biol 2006; 366:1652-60. [PMID: 17239391 DOI: 10.1016/j.jmb.2006.12.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/14/2006] [Accepted: 12/19/2006] [Indexed: 11/20/2022]
Abstract
Cleavage of the hepatitis C virus polyprotein between the non-structural NS2 and NS3 proteins is mediated by a poorly characterised auto-proteolytic activity that maps to the C terminus of NS2 and the N terminus of NS3, but is distinct from the NS3 protease activity responsible for downstream cleavages in the polyprotein. We have exploited the fact that the minimal precursor (residues 904-1206 of the HCV polyprotein) can be expressed as an insoluble protein in Escherichia coli and subsequently refolded into a form active for both auto-cleavage and NS3 protease activity, to further characterise the NS2/3 auto-cleavage activity. We show that both activities are zinc-dependent and show an absolute requirement for cysteine residues 1123, 1125 and 1171 within NS3. In contrast cysteine 922 (within NS2) is only required for NS2/3 auto-cleavage activity and histidine 1175 is only required for NS3 activity. Although the complete NS3 protease domain (including the C-terminal alpha-helix) is required for NS2/3 auto-cleavage, the activity of the NS3 protease is not essential. Lastly we show that the NS2/3 auto-cleavage activity is more sensitive to zinc chelation by 1,10-phenanthroline than the NS3 protease activity. This observation is consistent with different conformations of the precursor competent for either NS2/3 auto-cleavage or NS3 protease activity; these two conformations can be distinguished by their relative strength and geometry of zinc coordination.
Collapse
Affiliation(s)
- Philip R Tedbury
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
39
|
Zhou H, Singh NJ, Kim KS. Homology modeling and molecular dynamics study of West Nile virus NS3 protease: A molecular basis for the catalytic activity increased by the NS2B cofactor. Proteins 2006; 65:692-701. [PMID: 16972281 DOI: 10.1002/prot.21129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The West Nile virus (WNV) NS3 serine protease, which plays an important role in assembly of infective virion, is an attractive target for anti-WNV drug development. Cofactors NS2B and NS4A increase the catalytic activity of NS3 in dengue virus and Hepatitis C virus, respectively. Recent studies on the WNV-NS3 characterize the catalytically active form of NS3 by tethering the 40-residue cofactor NS2B. It is suggested that NS2B is essential for the NS3 activity in WNV, while there is no information of the WNV-NS3-related crystal structure. To understand the role of NS2B/substrate in the NS3 catalytic activity, we built a series of models: WNV-NS3 and WNV-NS3-NS2B and WNV-NS3-NS2B-substrate using homology modeling and molecular modeling techniques. Molecular dynamics (MD) simulations were performed for 2.75 ns on each model, to investigate the structural stabilization and catalytic triad motion of the WNV NS3 protease with and without NS2B/substrate. The simulations show that the NS3 rearrangement occurs upon the NS2B binding, resulting in the stable D75-OD1...H51-NH hydrogen bonding. After the substrate binds to the NS3-NS2B active site, the NS3 protease becomes more stable, and the catalytic triad is formed. These results provide a structural basis for the activation and stabilization of the enzyme by its cofactor and substrate.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Namgu, Pohang 790-784, Korea
| | | | | |
Collapse
|
40
|
Exploiting Ligand and Receptor Adaptability in Rational Drug Design Using Dynamics and Structure-Based Strategies. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_2006_087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
41
|
Melino S, Fucito S, Campagna A, Wrubl F, Gamarnik A, Cicero DO, Paci M. The active essential CFNS3d protein complex. FEBS J 2006; 273:3650-62. [PMID: 16911516 DOI: 10.1111/j.1742-4658.2006.05369.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The NS2B-NS3 protease complex is essential for the replication of dengue virus, which is the etiologic agent of dengue and hemorrhagic fevers, diseases that are a burden for the tropical and subtropical areas of the world. The active form of the NS3 protease linked to the 40 residues of the NS2B cofactor shows highly flexible and disordered region(s) that are responsible for its high propensity to aggregate at the concentrations necessary for NMR spectroscopy studies or for crystallization. Limited proteolysis of this active form of the protease enabled us to obtain a folded and new essential form of the NS2B-NS3 protease complex. We found that the region from residues D50 to E80 of NS2B interacts directly and strongly with the NS3 protease domain. The proteolytic activity of the noncovalently binding complex was determined by a rapid and continuous fluorescence resonance energy transfer activity assay using a depsipeptide substrate. The new protein-cofactor complex obtained, encompassing the NS2B fragment (D50-E80) and the NS3 protease, shows proteolytic activity. The (1)H-(15)N-heteronuclear single quantum coherence spectrum of the isotopically enriched protein complex shows good cross-peak dispersion; this is indicative of a stable folded state. Our results significantly complement the X-ray structure of the NS2B-NS3pro complex published recently. Moreover, these results open the way to performing direct structural and interaction studies in solution on a new active NS2B-NS3pro complex with libraries of substrates and inhibitors in order to identify new drugs that prevent viral polyprotein processing.
Collapse
Affiliation(s)
- Sonia Melino
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Niyomrattanakit P, Yahorava S, Mutule I, Mutulis F, Petrovska R, Prusis P, Katzenmeier G, Wikberg J. Probing the substrate specificity of the dengue virus type 2 NS3 serine protease by using internally quenched fluorescent peptides. Biochem J 2006; 397:203-11. [PMID: 16489931 PMCID: PMC1479750 DOI: 10.1042/bj20051767] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NS3 (dengue virus non-structural protein 3) serine protease of dengue virus is an essential component for virus maturation, thus representing an attractive target for the development of antiviral drugs directed at the inhibition of polyprotein processing. In the present study, we have investigated determinants of substrate specificity of the dengue virus NS3 protease by using internally quenched fluorogenic peptides containing Abz (o-aminobenzoic acid; synonymous to anthranilic acid) and 3-nitrotyrosine (nY) representing both native and chimaeric polyprotein cleavage site sequences. By using this combinatorial approach, we were able to describe the substrate preferences and determinants of specificity for the dengue virus NS2B(H)-NS3pro protease. Kinetic parameters (kcat/K(m)) for the hydrolysis of peptide substrates with systematic truncations at the prime and non-prime side revealed a length preference for peptides spanning the P4-P3' residues, and the peptide Abz-RRRRSAGnY-amide based on the dengue virus capsid protein processing site was discovered as a novel and efficient substrate of the NS3 protease (kcat/K(m)=11087 M(-1) x s(-1)). Thus, while having confirmed the exclusive preference of the NS3 protease for basic residues at the P1 and P2 positions, we have also shown that the presence of basic amino acids at the P3 and P4 positions is a major specificity-determining feature of the dengue virus NS3 protease. Investigation of the substrate peptide Abz-KKQRAGVLnY-amide based on the NS2B/NS3 polyprotein cleavage site demonstrated an unexpected high degree of cleavage efficiency. Chimaeric peptides with combinations of prime and non-prime sequences spanning the P4-P4' positions of all five native polyprotein cleavage sites revealed a preponderant effect of non-prime side residues on the K(m) values, whereas variations at the prime side sequences had higher impact on kcat.
Collapse
Affiliation(s)
- Pornwaratt Niyomrattanakit
- *Laboratory of Molecular Virology, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd., Nakornpathom 73170, Thailand
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Sviatlana Yahorava
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Ilze Mutule
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Felikss Mutulis
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Ramona Petrovska
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Peteris Prusis
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Gerd Katzenmeier
- *Laboratory of Molecular Virology, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd., Nakornpathom 73170, Thailand
| | - Jarl E. S. Wikberg
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Baxter NJ, Roetzer A, Liebig HD, Sedelnikova SE, Hounslow AM, Skern T, Waltho JP. Structure and dynamics of coxsackievirus B4 2A proteinase, an enyzme involved in the etiology of heart disease. J Virol 2006; 80:1451-62. [PMID: 16415022 PMCID: PMC1346940 DOI: 10.1128/jvi.80.3.1451-1462.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2A proteinases (2A(pro)) from the picornavirus family are multifunctional cysteine proteinases that perform essential roles during viral replication, involving viral polyprotein self-processing and shutting down host cell protein synthesis through cleavage of the eukaryotic initiation factor 4G (eIF4G) proteins. Coxsackievirus B4 (CVB4) 2A(pro) also cleaves heart muscle dystrophin, leading to cytoskeletal dysfunction and the symptoms of human acquired dilated cardiomyopathy. We have determined the solution structure of CVB4 2A(pro) (extending in an N-terminal direction to include the C-terminal eight residues of CVB4 VP1, which completes the VP1-2A(pro) substrate region). In terms of overall fold, it is similar to the crystal structure of the mature human rhinovirus serotype 2 (HRV2) 2A(pro), but the relatively low level (40%) of sequence identity leads to a substantially different surface. We show that differences in the cI-to-eI2 loop between HRV2 and CVB4 2A(pro) translate to differences in the mechanism of eIF4GI recognition. Additionally, the nuclear magnetic resonance relaxation properties of CVB4 2A(pro), particularly of residues G1 to S7, F64 to S67, and P107 to G111, reveal that the substrate region is exchanging in and out of a conformation in which it occupies the active site with association and dissociation rates in the range of 100 to 1,000 s(-1). This exchange influences the conformation of the active site and points to a mechanism for how self-processing can occur efficiently while product inhibition is avoided.
Collapse
Affiliation(s)
- Nicola J Baxter
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Chaturvedi UC, Shrivastava R. Interaction of viral proteins with metal ions: role in maintaining the structure and functions of viruses. ACTA ACUST UNITED AC 2005; 43:105-14. [PMID: 15681139 PMCID: PMC7110337 DOI: 10.1016/j.femsim.2004.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/17/2004] [Indexed: 01/29/2023]
Abstract
Metal ions are integral part of some viral proteins and play an important role in their survival and pathogenesis. Zinc, magnesium and copper are the commonest metal ion that binds with viral proteins. Metal ions participate in maturation of genomic RNA, activation and catalytic mechanisms, reverse transcription, initial integration process and protection of newly synthesized DNA, inhibition of proton translocation (M2 protein), minus‐ and plus‐strand transfer, enhance nucleic acid annealing, activation of transcription, integration of viral DNA into specific sites and act as a chaperone of nucleic acid. Metal ions are also required for nucleocapsid protein‐transactivation response (TAR)–RNA interactions. In certain situations more than one metal ion is required e.g. RNA cleavage by RNase H. This review underscores the importance of metal ions in the survival and pathogenesis of a large group of viruses and studies on structural basis for metal binding should prove useful in the early design and development of viral inhibitors.
Collapse
Affiliation(s)
- Umesh C Chaturvedi
- Biomembrane Division, Industrial Toxicology Research Centre, Mahatma Gandhi Marg, Lucknow 226001, India.
| | | |
Collapse
|
45
|
Chanprapaph S, Saparpakorn P, Sangma C, Niyomrattanakit P, Hannongbua S, Angsuthanasombat C, Katzenmeier G. Competitive inhibition of the dengue virus NS3 serine protease by synthetic peptides representing polyprotein cleavage sites. Biochem Biophys Res Commun 2005; 330:1237-46. [PMID: 15823576 DOI: 10.1016/j.bbrc.2005.03.107] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Indexed: 12/22/2022]
Abstract
The NS3 serine protease of dengue virus is required for the maturation of the viral polyprotein and consequently represents a promising target for the development of antiviral inhibitors. However, the substrate specificity of this enzyme has been characterized only to a limited extent. In this study, we have investigated product inhibition of the NS3 protease by synthetic peptides derived from the P6-P1 and the P1'-P5' regions of the natural polyprotein substrate. N-terminal cleavage site peptides corresponding to the P6-P1 region of the polyprotein were found to act as competitive inhibitors of the enzyme with K(i) values ranging from 67 to 12 microM. The lowest K(i) value was found for the peptide representing the NS2A/NS2B cleavage site, RTSKKR. Inhibition by this cleavage site sequence was analyzed by using shorter peptides, SKKR, KKR, KR, AGRR, and GKR. With the exception of the peptide AGRR which did not inhibit the protease at a concentration of 1mM, all other peptides displayed K(i) values in the range from 188 to 22 microM. Peptides corresponding to the P1'-P5' region of the polyprotein cleavage sites had no effect on enzymatic activity at a concentration of 1mM. Molecular docking data of peptide inhibitors to a homology-based model of the dengue virus type 2 NS2B(H)-NS3p co-complex indicate that binding of the non-prime site product inhibitors is similar to ground-state binding of the corresponding substrates.
Collapse
Affiliation(s)
- Santad Chanprapaph
- Laboratory of Molecular Virology, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Phutthamonthon 4 Road, Nakornpathom 73170, Thailand
| | | | | | | | | | | | | |
Collapse
|
46
|
Gal-Tanamy M, Zemel R, Berdichevsky Y, Bachmatov L, Tur-Kaspa R, Benhar I. HCV NS3 serine protease-neutralizing single-chain antibodies isolated by a novel genetic screen. J Mol Biol 2005; 347:991-1003. [PMID: 15784258 DOI: 10.1016/j.jmb.2005.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/02/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
Hepatitis C virus (HCV) infection is a major world-wide health problem causing chronic hepatitis, liver cirrhosis and primary liver cancer. The high frequency of treatment failure points to the need for more specific, less toxic and more active antiviral therapies for HCV. The HCV NS3 is currently regarded as a prime target for anti-viral drugs, thus specific inhibitors of its activity are of utmost importance. Here, we report the development of a novel bacterial genetic screen for inhibitors of NS3 catalysis and its application for the isolation of single-chain antibody-inhibitors. Our screen is based on the concerted co-expression of a reporter gene, of recombinant NS3 protease and of fusion-stabilized single-chain antibodies (scFvs) in Escherichia coli. The reporter system had been constructed by inserting a short peptide corresponding to the NS5A/B cleavage site of NS3 into a permissive site of the enzyme beta-galactosidase. The resulting engineered lacZ gene, coding for an NS3-cleavable beta-galactosidase, is carried on a low copy plasmid that also carried the NS3 protease-coding sequence. The resultant beta-galactosidase enzyme is active, conferring a Lac+ phenotype (blue colonies on indicator 5-bromo-4-chloro-3-indolyl beta-D-galactoside (X-gal) plates), while induction of NS3 expression results in loss of beta-galactosidase activity (transparent colonies on X-gal plates). The identification of inhibitors, as shown here by isolating NS3-inhibiting single-chain antibodies, expressed from a compatible high copy number plasmid, is based on the appearance of blue colonies (NS3 inhibited) on the background of colorless colonies (NS3 active). Our source of inhibitory scFvs was an scFv library that we prepared from spleens of NS3-immunized mice and subjected to limited affinity selection. Once isolated, the inhibitors were validated as genuine and specific NS3 binders by an enzyme-linked immunosorbent assay and as bone fide NS3 serine protease inhibitors by an in vitro catalysis assay. We further show that upon expression as cytoplasmic intracellular antibodies (intrabodies) in NS3-expressing mammalian cells, three of the scFvs inhibit NS3-mediated cell proliferation. Although applied here for the isolation of antibody-based inhibitors, our genetic screen should be applicable for the identification of candidate inhibitors from other sources.
Collapse
Affiliation(s)
- Meital Gal-Tanamy
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Green Building, Room 202, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Abstract
Hepatitis C virus (HCV) has infected millions of people worldwide and has emerged as a global health crisis. The currently available therapy is interferon (IFN) either alone or in combination with ribavirin. However, the disappointing efficacy of IFN has led to the considerable need for improved treatments and a number of new therapies are under evaluation in clinical trials. These include pegylated IFNs, which have altered physiochemical characteristics allowing once-weekly dosing. Combination of pegylated IFN with ribavirin should further improve sustained response rates. However, not all patients are successfully treated with IFNs, particularly those infected with genotype 1 of the virus, and it is likely that potent, specific drugs will be required. The majority of new approaches currently trying to combat this viral disease are aimed at inhibition of viral targets. Most effort has been directed towards inhibition of the NS3 serine protease, and potent inhibitors have now been described. However, a clinical candidate is yet to emerge against this difficult target. Considerable work by leading researchers has provided crystal structures of the key replicative enzymes, NS3 protease, NS3 helicase, NS5B polymerase and full-length NS3 protease-helicase, and there is much hope that such structural information will bear fruit. More recently, inhibition of host targets, particularly inosine monophosphate dehydrogenase (IMPDH), has become of interest and there are on-going clinical trials with such inhibitors. Research aimed at novel treatments for HCV disease is gathering pace and very recent developments in cell-based assay systems can only hasten the discovery of improved therapies.
Collapse
Affiliation(s)
- B W Dymock
- Roche Discovery Welwyn, Broadwater Road, Welwyn Garden City, Herts, AL7 3AY, UK.
| |
Collapse
|
49
|
Bartenschlager R, Frese M, Pietschmann T. Novel insights into hepatitis C virus replication and persistence. Adv Virus Res 2005; 63:71-180. [PMID: 15530561 DOI: 10.1016/s0065-3527(04)63002-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) is a small enveloped RNA virus that belongs to the family Flaviviridae. A hallmark of HCV is its high propensity to establish a persistent infection that in many cases leads to chronic liver disease. Molecular studies of the virus became possible with the first successful cloning of its genome in 1989. Since then, the genomic organization has been delineated, and viral proteins have been studied in some detail. In 1999, an efficient cell culture system became available that recapitulates the intracellular part of the HCV life cycle, thereby allowing detailed molecular studies of various aspects of viral RNA replication and persistence. This chapter attempts to summarize the current state of knowledge in these most actively worked on fields of HCV research.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
50
|
Niyomrattanakit P, Winoyanuwattikun P, Chanprapaph S, Angsuthanasombat C, Panyim S, Katzenmeier G. Identification of residues in the dengue virus type 2 NS2B cofactor that are critical for NS3 protease activation. J Virol 2004; 78:13708-16. [PMID: 15564480 PMCID: PMC533897 DOI: 10.1128/jvi.78.24.13708-13716.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteolytic processing of the dengue virus polyprotein is mediated by host cell proteases and the virus-encoded NS2B-NS3 two-component protease. The NS3 protease represents an attractive target for the development of antiviral inhibitors. The three-dimensional structure of the NS3 protease domain has been determined, but the structural determinants necessary for activation of the enzyme by the NS2B cofactor have been characterized only to a limited extent. To test a possible functional role of the recently proposed Phix(3)Phi motif in NS3 protease activation, we targeted six residues within the NS2B cofactor by site-specific mutagenesis. Residues Trp62, Ser71, Leu75, Ile77, Thr78, and Ile79 in NS2B were replaced with alanine, and in addition, an L75A/I79A double mutant was generated. The effects of these mutations on the activity of the NS2B(H)-NS3pro protease were analyzed in vitro by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of autoproteolytic cleavage at the NS2B/NS3 site and by assay of the enzyme with the fluorogenic peptide substrate GRR-AMC. Compared to the wild type, the L75A, I77A, and I79A mutants demonstrated inefficient autoproteolysis, whereas in the W62A and the L75A/I79A mutants self-cleavage appeared to be almost completely abolished. With exception of the S71A mutant, which had a k(cat)/K(m) value for the GRR-AMC peptide similar to that of the wild type, all other mutants exhibited drastically reduced k(cat) values. These results indicate a pivotal function of conserved residues Trp62, Leu75, and Ile79 in the NS2B cofactor in the structural activation of the dengue virus NS3 serine protease.
Collapse
Affiliation(s)
- Pornwaratt Niyomrattanakit
- Laboratory of Molecular Virology, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd., Nakornpathom 73170, Thailand
| | | | | | | | | | | |
Collapse
|