1
|
Issar U, Arora R, Kakkar R. In silico studies of the interaction of the minor groove binder Hoechst 33258 with B-DNA. J Biomol Struct Dyn 2024; 42:4537-4552. [PMID: 37301606 DOI: 10.1080/07391102.2023.2220807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Interaction of the minor groove binder, Hoechst 33258, with the Dickerson-Drew DNA dodecamer sequence has been investigated using docking, MM/QM, MM/GBSA and molecular dynamics computations to study the modes of binding and the interactions responsible for the binding. Besides the original Hoechst 33258 ligand (HT), a total of 12 ionization and stereochemical states for the ligand are obtained at the physiological pH and have been docked into B-DNA. These states have one or the other or both benzimidazole rings in protonated states, apart from the piperazine nitrogen, which has a quaternary nitrogen in all the states. Most of these states are found to exhibit good docking scores and free energy of binding with B-DNA. The best docked state has been taken further for molecular dynamics simulations and compared with the original HT. This state is protonated at both benzimidazole rings besides the piperazine ring and hence has very highly negative coulombic interaction energy. In both cases, there are strong coulombic interactions, but these are offset by the almost equally unfavorable solvation energies. Thus, the nonpolar forces, particularly van der Waals contacts, dominate the interaction, and the polar interactions highlight subtle changes in the binding energies, leading to more highly protonated states having more negative binding energies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Upasana Issar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Kalindi College, University of Delhi, Delhi, India
| | - Richa Arora
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Shivaji College, University of Delhi, Delhi, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Yatsunyk LA, Neidle S. On Water Arrangements in Right- and Left-Handed DNA Structures. Molecules 2024; 29:505. [PMID: 38276583 PMCID: PMC10820154 DOI: 10.3390/molecules29020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
DNA requires hydration to maintain its structural integrity. Crystallographic analyses have enabled patterns of water arrangements to be visualized. We survey these water motifs in this review, focusing on left- and right-handed duplex and quadruplex DNAs, together with the i-motif. Common patterns of linear spines of water organization in grooves have been identified and are widely prevalent in right-handed duplexes and quadruplexes. By contrast, a left-handed quadruplex has a distinctive wheel of hydration populating the almost completely circular single groove in this structure.
Collapse
Affiliation(s)
- Liliya A. Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA;
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
3
|
Sodnikar K, Kaegi R, Christl I, Schroth MH, Sander M. Transport of double-stranded ribonucleic acids (dsRNA) and deoxyribonucleic acids (DNA) in sand and iron oxide-coated sand columns under varying solution chemistries. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2067-2080. [PMID: 37870439 DOI: 10.1039/d3em00294b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Assessing ecological risks associated with the use of genetically modified RNA interference crops demands an understanding of the fate of crop-released insecticidal double-stranded RNA (dsRNA) molecules in soils. We studied the adsorption of one dsRNA and two double-stranded DNA as model nucleic acids (NAs) during transport through sand- and iron oxide-coated sand (IOCS)-filled columns over a range of solution pH and ionic compositions. Consistent with NA-sand electrostatic repulsion, we observed only slight retention of NAs in sand columns. Conversely, pronounced NA retention in IOCS columns is consistent with strong and irreversible NA adsorption involving electrostatic attraction to and inner-sphere complex formation of NAs with iron oxide coatings. Adsorption of NAs to iron oxides revealed a fast and a slow kinetic adsorption regime, possibly caused by the excluded-area effect. Adsorption of NAs to sand and IOCS increased in the presence of dissolved Mg2+ and with increasing ionic strength, reflecting cation-bridging and screening of repulsive electrostatics, respectively. The co-solute phosphate and a pre-adsorbed dissolved organic matter isolate competitively suppressed dsRNA adsorption to IOCS. Similar adsorption characteristics of dsRNA and similarly sized DNA suggest that existing information on DNA adsorption to soil particles helps in predicting adsorption and fate of dsRNA molecules in soils.
Collapse
Affiliation(s)
- Katharina Sodnikar
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Iso Christl
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Martin Herbert Schroth
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
4
|
Pallan PS, Lybrand TP, Rozners E, Abramov M, Schepers G, Eremeeva E, Herdewijn P, Egli M. Conformational Morphing by a DNA Analogue Featuring 7-Deazapurines and 5-Halogenpyrimidines and the Origins of Adenine-Tract Geometry. Biochemistry 2023; 62:2854-2867. [PMID: 37694722 PMCID: PMC11062489 DOI: 10.1021/acs.biochem.3c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Several efforts are currently directed at the creation and cellular implementation of alternative genetic systems composed of pairing components that are orthogonal to the natural dA/dT and dG/dC base pairs. In an alternative approach, Watson-Crick-type pairing is conserved, but one or all of the four letters of the A, C, G, and T alphabet are substituted by modified components. Thus, all four nucleobases were altered to create halogenated deazanucleic acid (DZA): dA was replaced by 7-deaza-2'-deoxyadenosine (dzA), dG by 7-deaza-2'-deoxyguanosine (dzG), dC by 5-fluoro-2'-deoxycytidine (FdC), and dT by 5-chloro-2'-deoxyuridine (CldU). This base-pairing system was previously shown to retain function in Escherichia coli. Here, we analyze the stability, hydration, structure, and dynamics of a DZA Dickerson-Drew Dodecamer (DDD) of sequence 5'-FdC-dzG-FdC-dzG-dzA-dzA-CldU-CldU-FdC-dzG-FdC-dzG-3'. Contrary to similar stabilities of DDD and DZA-DDD, osmotic stressing revealed a dramatic loss of hydration for the DZA-DDD relative to that for the DDD. The parent DDD 5'-d(CGCGAATTCGCG)-3' features an A-tract, a run of adenosines uninterrupted by a TpA step, and exhibits a hallmark narrow minor groove. Crystal structures─in the presence of RNase H─and MD simulations show increased conformational plasticity ("morphing") of DZA-DDD relative to that of the DDD. The narrow dzA-tract minor groove in one structure widens to resemble that in canonical B-DNA in a second structure. These changes reflect an indirect consequence of altered DZA major groove electrostatics (less negatively polarized compared to that in DNA) and hydration (reduced compared to that in DNA). Therefore, chemical modifications outside the minor groove that lead to collapse of major groove electrostatics and hydration can modulate A-tract geometry.
Collapse
Affiliation(s)
- Pradeep S Pallan
- School of Medicine, Department of Biochemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Terry P Lybrand
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Mikhail Abramov
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Guy Schepers
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Elena Eremeeva
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Martin Egli
- School of Medicine, Department of Biochemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Pundir M, De Rosa MC, Lobanova L, Abdulmawjood S, Chen X, Papagerakis S, Papagerakis P. Structural properties and binding mechanism of DNA aptamers sensing saliva melatonin for diagnosis and monitoring of circadian clock and sleep disorders. Anal Chim Acta 2023; 1251:340971. [PMID: 36925277 DOI: 10.1016/j.aca.2023.340971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Circadian desynchrony with the external light-dark cycle influences the rhythmic secretion of melatonin which is among the first signs of circadian rhythm sleep disorders. An accurate dim light melatonin onset (established indicator of circadian rhythm sleep disorders) measurement requires lengthy assays, and antibody affinities alterations, especially in patients with circadian rhythm disorders whose melatonin salivary levels vary significantly, making antibodies detection mostly inadequate. In contrast, aptamers with their numerous advantages (e.g., target selectivity, structural flexibility in tuning binding affinities, small size, etc.) can become preferable biorecognition molecules for salivary melatonin detection with high sensitivity and specificity. This study thoroughly characterizes the structural property and binding mechanism of a single-stranded DNA aptamer full sequence (MLT-C-1) and its truncated versions (MLT-A-2, MLT-A-4) to decipher its optimal characteristics for saliva melatonin detection. We use circular dichroism spectroscopy to determine aptamers' conformational changes under different ionic strengths and showed that aptamers display a hairpin loop structure where few base pairs in the stem play a significant role in melatonin binding and formation of aptamer stabilized structure. Through microscale thermophoresis, aptamers demonstrated a high binding affinity in saliva samples (MLT-C-1F Kd = 12.5 ± 1.7 nM; MLT-A-4F Kd = 11.2 ± 1.6 nM; MLT-A-2F Kd = 2.4 ± 2.8 nM; limit-of-detection achieved in pM, highest sensitivity attained for MLT-A-2F aptamer with the lowest detection limit of 1.35 pM). Our data suggest that aptamers are promising as biorecognition molecules and provide the baseline parameters for the development of an aptamer-based point-of-care diagnostic system for melatonin detection and accurate profiling of its fluctuations in saliva.
Collapse
Affiliation(s)
- Meenakshi Pundir
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada; Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada
| | - Maria C De Rosa
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada
| | - Shahad Abdulmawjood
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada; Department of Mechanical Engineering, School of Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada.
| | - Silvana Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, United States.
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada.
| |
Collapse
|
6
|
Bubon T, Zdorevskyi O, Perepelytsya S. Molecular dynamics study of collective water vibrations in a DNA hydration shell. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:69-79. [PMID: 36920489 DOI: 10.1007/s00249-023-01638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/16/2023]
Abstract
The structure of DNA double helix is stabilized by water molecules and metal counterions that form the ion-hydration shell around the macromolecule. Understanding the role of the ion-hydration shell in the physical mechanisms of the biological functioning of DNA requires detailed studies of its structure and dynamics at the atomistic level. In the present work, the study of collective vibrations of water molecules around the DNA double helix was performed within the framework of classical all-atom molecular dynamics methods. Calculating the vibrational density of states, the vibrations of water molecules in the low-frequency spectra ranged from [Formula: see text]30 to [Formula: see text]300 [Formula: see text] were analyzed for the case of different regions of the DNA double helix (minor groove, major groove, and phosphate groups). The analysis revealed significant differences in the collective vibrations behavior of water molecules in the DNA hydration shell, compared to the vibrations of bulk water. All low-frequency modes of the DNA ion-hydration shell are shifted by about 15-20 [Formula: see text] towards higher frequencies, which is more significant for water molecules in the minor groove region of the double helix. The interactions of water molecules with the atoms of the macromolecule induce intensity decrease of the mode of hydrogen-bond symmetrical stretching near 150 [Formula: see text], leading to the disappearance of this mode in the DNA spectra. The obtained results can provide an interpretation of the experimental data for DNA low-frequency spectra and may be important for the understanding of the processes of indirect protein-nucleic recognition.
Collapse
Affiliation(s)
- Tetiana Bubon
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b, Metrolohichna Str., Kyiv, 03143, Ukraine.
- Condensed Matter and Statistical Physics, Abdus Salam International Centre for Theoretical Physics, Strada Costiera, 11, Trieste, 34151, Italy.
| | - Oleksii Zdorevskyi
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, 00014, Finland
| | - Sergiy Perepelytsya
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b, Metrolohichna Str., Kyiv, 03143, Ukraine
| |
Collapse
|
7
|
Kellum AH, Pallan PS, Nilforoushan A, Sturla SJ, Stone MP, Egli M. Conformation and Pairing Properties of an O6-Methyl-2'-deoxyguanosine-Directed Benzimidazole Nucleoside Analog in Duplex DNA. Chem Res Toxicol 2022; 35:1903-1913. [PMID: 35973057 PMCID: PMC9988402 DOI: 10.1021/acs.chemrestox.2c00165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
O6-Methyl-2'-deoxyguanosine (O6-MeG) is one of the most common DNA lesions and arises as a consequence of both xenobiotic carcinogens and endogenous methylation by S-adenosylmethionine. O6-MeG frequently causes G-to-A mutations during DNA replication due to the misincorporation of dTTP and continued DNA synthesis. Efforts to detect DNA adducts such as O6-MeG, and to understand their impacts on DNA structure and function, have motivated the creation of nucleoside analogs with altered base moieties to afford a more favorable interaction with the adduct as compared to the unmodified nucleotide. Such analogs directed at O6-MeG include benzimidazolinone and benzimidazole nucleotides, as well as their extended π surface analogs naphthimidazolinone and napthimidazole derivatives. These analogs form a more stable pair with O6-MeG than with G, most likely due to a combination of H-bonding and stacking. While extending the π surface of the analogs enhances their performance as adduct-directed probes, the precise origins of the increased affinity between the synthetic analogs and O6-MeG remain unclear. To better understand relevant conformational and pairing properties, we used X-ray crystallography and analyzed the structures of the DNA duplexes with naphthimidazolinone inserted opposite G or O6-MeG. The structures reveal a complex interaction of the analog found either in an anti orientation and stacked inside the duplex, either above or below G or O6-MeG, or in a syn orientation and paired opposite G with formation of a single H-bond. The experimental structural data are consistent with the stabilizing effect of the synthetic analog observed in UV melting experiments and calculations and moreover reveal that the origin of these observations appears to be superior stacking between O6-MeG and the extended π system of the synthetic probe.
Collapse
Affiliation(s)
- Andrew H Kellum
- Department of Chemistry, Vanderbilt University, College of Arts and Science, Nashville, Tennessee 37235, United States
| | - Pradeep S Pallan
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Arman Nilforoushan
- Department of Health Sciences and Technology, ETH Zürich, Zurich 8092, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zurich 8092, Switzerland
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, College of Arts and Science, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
8
|
Mauvisseau Q, Harper LR, Sander M, Hanner RH, Kleyer H, Deiner K. The Multiple States of Environmental DNA and What Is Known about Their Persistence in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5322-5333. [PMID: 35435663 PMCID: PMC9069692 DOI: 10.1021/acs.est.1c07638] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Increased use of environmental DNA (eDNA) analysis for indirect species detection has spurred the need to understand eDNA persistence in the environment. Understanding the persistence of eDNA is complex because it exists in a mixture of different states (e.g., dissolved, particle adsorbed, intracellular, and intraorganellar), and each state is expected to have a specific decay rate that depends on environmental parameters. Thus, improving knowledge about eDNA conversion rates between states and the reactions that degrade eDNA in different states is needed. Here, we focus on eukaryotic extraorganismal eDNA, outline how water chemistry and suspended mineral particles likely affect conversion among each eDNA state, and indicate how environmental parameters affect persistence of states in the water column. On the basis of deducing these controlling parameters, we synthesized the eDNA literature to assess whether we could already derive a general understanding of eDNA states persisting in the environment. However, we found that these parameters are often not being measured or reported when measured, and in many cases very few experimental data exist from which to draw conclusions. Therefore, further study of how environmental parameters affect eDNA state conversion and eDNA decay in aquatic environments is needed. We recommend analytic controls that can be used during the processing of water to assess potential losses of different eDNA states if all were present in a water sample, and we outline future experimental work that would help determine the dominant eDNA states in water.
Collapse
Affiliation(s)
- Quentin Mauvisseau
- Natural
History Museum, University of Oslo, Sars’ gate 1, 0562 Oslo, Norway
| | - Lynsey R. Harper
- Nature
Metrics Ltd, CABI Site, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom
| | - Michael Sander
- Department
of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Robert H. Hanner
- Department
of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hannah Kleyer
- Department
of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Kristy Deiner
- Department
of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| |
Collapse
|
9
|
Danesi AL, Athanasiadou D, Aderinto AO, Rasie P, Chou LYT, Carneiro KMM. Peptide-Decorated DNA Nanostructures Promote Site-Specific Hydroxyapatite Growth. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1692-1698. [PMID: 34957820 DOI: 10.1021/acsami.1c19271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The guiding principle for mineralized tissue formation is that mineral growth occurs through the interaction of Ca2+ and phosphate ions with extracellular matrix (ECM) proteins. Recently, nanoengineered DNA structures have been proposed as mimics to ECM scaffolds. However, these principles have not been applied to mineralized tissues. Here, we describe DNA nanostructures, namely, a DNA nanotube and a DNA origami rectangle that are site specifically functionalized with a mineral-promoting "SSEE" peptide derived from ECM proteins present in mineralized tissues. In the presence of Ca2+ and phosphate ions (mineralizing conditions), site-specific calcium phosphate formation occurred on the DNA nanostructures. Amorphous calcium phosphate or hydroxyapatite was formed depending on the incubation time, shape of the DNA nanostructure, and amount of Ca2+ and phosphate ions present. The ability to design and control the growth of hydroxyapatite through nanoengineered scaffolds provides insights into the mechanisms that may occur during crystal nucleation and growth of mineralized tissues and can inspire mineralized tissue regeneration strategies.
Collapse
Affiliation(s)
- Alexander L Danesi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | - Abdulmateen O Aderinto
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Prakash Rasie
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Karina M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
10
|
Cruz-León S, Grotz KK, Schwierz N. Extended magnesium and calcium force field parameters for accurate ion-nucleic acid interactions in biomolecular simulations. J Chem Phys 2021; 154:171102. [PMID: 34241062 DOI: 10.1063/5.0048113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Magnesium and calcium play an essential role in the folding and function of nucleic acids. To correctly describe their interactions with DNA and RNA in biomolecular simulations, an accurate parameterization is crucial. In most cases, the ion parameters are optimized based on a set of experimental solution properties such as solvation free energies, radial distribution functions, water exchange rates, and activity coefficient derivatives. However, the transferability of such bulk-optimized ion parameters to quantitatively describe biomolecular systems is limited. Here, we extend the applicability of our previous bulk-optimized parameters by including experimental binding affinities toward the phosphate oxygen on nucleic acids. In particular, we systematically adjust the combination rules that are an integral part of the pairwise interaction potentials of classical force fields. This allows us to quantitatively describe specific ion binding to nucleic acids without changing the solution properties in the most simple and efficient way. We show the advancement of the optimized Lorentz combination rule for two representative nucleic acid systems. For double-stranded DNA, the optimized combination rule for Ca2+ significantly improves the agreement with experiments, while the standard combination rule leads to unrealistically distorted DNA structures. For the add A-riboswitch, the optimized combination rule for Mg2+ improves the structure of two specifically bound Mg2+ ions as judged by the experimental distance to the binding site. Including experimental binding affinities toward specific ion binding sites on biomolecules, therefore, provides a promising perspective to develop a more accurate description of metal cations for biomolecular simulations.
Collapse
Affiliation(s)
- Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Kara K Grotz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Nadine Schwierz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Sodnikar K, Parker KM, Stump SR, ThomasArrigo LK, Sander M. Adsorption of double-stranded ribonucleic acids (dsRNA) to iron (oxyhydr-)oxide surfaces: comparative analysis of model dsRNA molecules and deoxyribonucleic acids (DNA). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:605-620. [PMID: 33723564 DOI: 10.1039/d1em00010a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Double-stranded ribonucleic acid (dsRNA) molecules are novel plant-incorporated protectants expressed in genetically modified RNA interference (RNAi) crops. Ecological risk assessment (ERA) of RNAi crops requires a heretofore-missing detailed understanding of dsRNA adsorption in soils, a key fate process. Herein, we systematically study the adsorption of a model dsRNA molecule and of two double-stranded deoxyribonucleic acid (DNA) molecules of varying lengths to three soil iron (oxyhydr-)oxides - goethite, lepidocrocite, and hematite - over a range of solution pH (4.5-10), ionic strength (I = 10-100 mM NaCl) and composition (0.5, 1, and 3 mM MgCl2) and in the absence and presence of phosphate (0.05-5 mM) as co-adsorbate. We hypothesized comparable adsorption characteristics of dsRNA and DNA based on their structural similarities. Consistently, the three nucleic acids (NAs) showed high adsorption affinities to the iron (oxyhydr-)oxides with decreasing adsorption in the order goethite, lepidocrocite, and hematite, likely reflecting a decrease in the hydroxyl group density and positive charges of the oxide surfaces in the same order. NA adsorption also decreased with increasing solution pH, consistent with weakening of NA electrostatic attraction to and inner-sphere complex formation with the iron (oxyhydr-)oxides surfaces as pH increased. Adsorbed NA concentrations increased with increasing I and in the presence of Mg2+, consistent with adsorbed NA molecules adopting more compact conformations. Strong NA-phosphate adsorption competition demonstrates that co-adsorbates need consideration in assessing dsRNA fate in soils. Comparable adsorption characteristics of dsRNA and DNA molecules to iron (oxyhydr-)oxides imply that information on DNA adsorption to soil particle surfaces can inform dsRNA ERA.
Collapse
Affiliation(s)
- Katharina Sodnikar
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Simona R Stump
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| | - Laurel K ThomasArrigo
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| |
Collapse
|
12
|
Jhan CR, Satange R, Wang SC, Zeng JY, Horng YC, Jin P, Neidle S, Hou MH. Targeting the ALS/FTD-associated A-DNA kink with anthracene-based metal complex causes DNA backbone straightening and groove contraction. Nucleic Acids Res 2021; 49:9526-9538. [PMID: 33836081 PMCID: PMC8450080 DOI: 10.1093/nar/gkab227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA–DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA–DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a ‘hot-spot’ for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA.
Collapse
Affiliation(s)
- Cyong-Ru Jhan
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Roshan Satange
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.,Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Shun-Ching Wang
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Jing-Yi Zeng
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen Neidle
- The School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Ming-Hon Hou
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.,Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
13
|
Li K, Yatsunyk L, Neidle S. Water spines and networks in G-quadruplex structures. Nucleic Acids Res 2021; 49:519-528. [PMID: 33290519 PMCID: PMC7797044 DOI: 10.1093/nar/gkaa1177] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Quadruplex DNAs can fold into a variety of distinct topologies, depending in part on loop types and orientations of individual strands, as shown by high-resolution crystal and NMR structures. Crystal structures also show associated water molecules. We report here on an analysis of the hydration arrangements around selected folded quadruplex DNAs, which has revealed several prominent features that re-occur in related structures. Many of the primary-sphere water molecules are found in the grooves and loop regions of these structures. At least one groove in anti-parallel and hybrid quadruplex structures is long and narrow and contains an extensive spine of linked primary-sphere water molecules. This spine is analogous to but fundamentally distinct from the well-characterized spine observed in the minor groove of A/T-rich duplex DNA, in that every water molecule in the continuous quadruplex spines makes a direct hydrogen bond contact with groove atoms, principally phosphate oxygen atoms lining groove walls and guanine base nitrogen atoms on the groove floor. By contrast, parallel quadruplexes do not have extended grooves, but primary-sphere water molecules still cluster in them and are especially associated with the loops, helping to stabilize loop conformations.
Collapse
Affiliation(s)
- Kevin Li
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| | - Liliya Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
14
|
Athanasiadou D, Carneiro KMM. DNA nanostructures as templates for biomineralization. Nat Rev Chem 2021; 5:93-108. [PMID: 37117611 DOI: 10.1038/s41570-020-00242-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
Nature uses extracellular matrix scaffolds to organize biominerals into hierarchical structures over various length scales. This has inspired the design of biomimetic mineralization scaffolds, with DNA nanostructures being among the most promising. DNA nanotechnology makes use of molecular recognition to controllably give 1D, 2D and 3D nanostructures. The control we have over these structures makes them attractive templates for the synthesis of mineralized tissues, such as bones and teeth. In this Review, we first summarize recent work on the crystallization processes and structural features of biominerals on the nanoscale. We then describe self-assembled DNA nanostructures and come to the intersection of these two themes: recent applications of DNA templates in nanoscale biomineralization, a crucial process to regenerate mineralized tissues.
Collapse
|
15
|
Acosta-Reyes FJ, Pagan M, Fonfría-Subirós E, Saperas N, Subirana JA, Campos JL. The influence of Ni 2+ and other ions on the trigonal structure of DNA. Biopolymers 2020; 112:e23397. [PMID: 32898299 DOI: 10.1002/bip.23397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
We present a new structure of a DNA dodecamer obtained in the presence of Ni2+ ions. The DNA forms Ni-guanine cross-links between neighboring molecules. Our results show that an adequate dosage of Ni2+ may help to form well-defined DNA nanostructures. We also compare our structure with other dodecamers which present unique features and also crystallize in trigonal unit cells, strongly influenced by the counterions associated with DNA. In all cases, the DNA duplexes form parallel pseudo-helical columns in the crystal, similar to DNA-protamine and native DNA fibers.
Collapse
Affiliation(s)
| | - Mireia Pagan
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Elsa Fonfría-Subirós
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Núria Saperas
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Juan A Subirana
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - J Lourdes Campos
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
16
|
Kim F, Chen T, Burgess T, Rasie P, Selinger TL, Greschner A, Rizis G, Carneiro K. Functionalized DNA nanostructures as scaffolds for guided mineralization. Chem Sci 2019; 10:10537-10542. [PMID: 32055376 PMCID: PMC6988742 DOI: 10.1039/c9sc02811k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/26/2019] [Indexed: 11/21/2022] Open
Abstract
The field of DNA nanotechnology uses synthetic DNA strands as building blocks for designing complex shapes in one-, two- and three-dimensions. Here, we investigate whether DNA nanostructures are feasible platforms for the precise organization of polyaspartic acid (pAsp), a known mineral carrier, with a goal towards biomimetic mineralization for enamel regeneration. We describe the preparation of DNA-pAsp conjugates and their subsequent assembly into ordered nanostructures. Covalent attachment of pAsp to DNA was noted to hinder DNA nanostructure formation past a certain threshold (50% pAsp) when tested on a previously published DNA system. However, a simplified double stranded DNA system (3sDH system) was more robust and efficient in its pAsp incorporation. In addition, the 3sDH system was successful in organizing mineral inducing groups in one dimension at repeating intervals of 28.7 ± 4.0 nm, as determined by atomic force microscopy. Our results demonstrate that DNA nanostructures can be functionalized with pAsp and act as a platform to investigate guided mineralization.
Collapse
Affiliation(s)
- Francesca Kim
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Tong Chen
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Trevor Burgess
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Prakash Rasie
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Tim Luca Selinger
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Andrea Greschner
- Institut National de la Recherche Scientifique (INRS) , EMT Research Center , Varennes , QC J3X 1S2 , Canada
| | - Georgios Rizis
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| | - Karina Carneiro
- Faculty of Dentistry , University of Toronto , Toronto , ON M5G 1G6 , Canada .
| |
Collapse
|
17
|
|
18
|
Molecular Dynamics Simulation of Homo-DNA: The Role of Crystal Packing in Duplex Conformation. CRYSTALS 2019. [DOI: 10.3390/cryst9100532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The (4′→6′)-linked DNA homolog 2′,3′-dideoxy-β-D-glucopyranosyl nucleic acid (dideoxy-glucose nucleic acid or homo-DNA) exhibits stable self-pairing of the Watson–Crick and reverse-Hoogsteen types, but does not cross-pair with DNA. Molecular modeling and NMR solution studies of homo-DNA duplexes pointed to a conformation that was nearly devoid of a twist and a stacking distance in excess of 4.5 Å. By contrast, the crystal structure of the homo-DNA octamer dd(CGAATTCG) revealed a right-handed duplex with average values for helical twist and rise of ca. 15° and 3.8 Å, respectively. Other key features of the structure were strongly inclined base-pair and backbone axes in the duplex with concomitant base-pair slide and cross-strand stacking, and the formation of a dimer across a crystallographic dyad with inter-duplex base swapping. To investigate the conformational flexibility of the homo-DNA duplex and a potential influence of lattice interactions on its geometry, we used molecular dynamics (MD) simulations of the crystallographically observed dimer of duplexes and an isolated duplex in the solution state. The dimer of duplexes showed limited conformational flexibility, and key parameters such as helical rise, twist, and base-pair slide exhibited only minor fluctuations. The single duplex was clearly more flexible by comparison and underwent partial unwinding, albeit without significant lengthening. Thus, base stacking was preserved in the isolated duplex and two adenosines extruded from the stack in the dimer of duplexes were reinserted into the duplex and pair with Ts in a Hoogsteen mode. Our results confirmed that efficient stacking in homo-DNA seen in the crystal structure of a dimer of duplexes was maintained in the separate duplex. Therefore, lattice interactions did not account for the different geometries of the homo-DNA duplex in the crystal and earlier models that resembled inclined ladders with large base-pair separations that precluded efficient stacking.
Collapse
|
19
|
Sharawy M, Consta S. Effect of the chemical environment of the DNA guanine quadruplex on the free energy of binding of Na and K ions. J Chem Phys 2019; 149:225102. [PMID: 30553268 DOI: 10.1063/1.5050534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Guanine quadruplex (G-quadruplex) structures play a vital role in stabilizing the DNA genome and in protecting healthy cells from transforming into cancer cells. The structural stability of G-quadruplexes is greatly enhanced by the binding of monovalent cations such as Na+ or K+ into the interior axial channel. We computationally study the free energy of binding of Na+ and K+ ions to two intramolecular G-quadruplexes that differ considerably in their degree of rigidity and the presence or absence of terminal nucleotides. The goal of our study is two-fold. On the one hand, we study the free energy of binding every ion, which complements the experimental findings that report the average free energy for replacing Na+ with K+ ions. On the other hand, we examine the role of the G-quadruplex structure in the binding free energy. In the study, we employ all-atom molecular dynamics simulations and the alchemical transformation method for the computation of the free energies. To compare the cation-dependent contribution to the structural stability of G-quadruplexes, we use a two-step approach to calculate the individual free energy difference ΔG of binding two Na+ and two K+ to two G-quadruplexes: the unimolecular DNA d[T2GT2(G3T)3] (Protein Data Bank ID 2M4P) and the human telomeric DNA d[AGGG(TTAGGG)3] (PDB ID 1KF1). In contrast to the experimental studies that estimate the average free energy of binding, we find a varying difference of approximately 2-9 kcal/mol between the free energy contribution of binding the first and second cation, Na+ or K+. Furthermore, we found that the free energy of binding K+ is not affected by the chemical nature of the two quadruplexes. By contrast, Na+ showed dependency on the G-quadruplex structure; the relatively small size allows Na+ to explore larger configurational space than K+. Numerical results presented here may offer reference values for future design of cationic drug-like ligands that replace the metal ions in G-quadruplexes.
Collapse
Affiliation(s)
- Mahmoud Sharawy
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
20
|
Peters JP, Kowal EA, Pallan PS, Egli M, Maher LJ. Comparative analysis of inosine-substituted duplex DNA by circular dichroism and X-ray crystallography. J Biomol Struct Dyn 2018; 36:2753-2772. [PMID: 28818035 PMCID: PMC6251417 DOI: 10.1080/07391102.2017.1369164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leveraging structural biology tools, we report the results of experiments seeking to determine if the different mechanical properties of DNA polymers with base analog substitutions can be attributed, at least in part, to induced changes from classical B-form DNA. The underlying hypothesis is that different inherent bending and twisting flexibilities may characterize non-canonical B-DNA, so that it is inappropriate to interpret mechanical changes caused by base analog substitution as resulting simply from 'electrostatic' or 'base stacking' influences without considering the larger context of altered helical geometry. Circular dichroism spectra of inosine-substituted oligonucleotides and longer base-substituted DNAs in solution indicated non-canonical helical conformations, with the degree of deviation from a standard B-form geometry depending on the number of I⋅C pairs. X-ray diffraction of a highly inosine-substituted DNA decamer crystal (eight I⋅C and two A⋅T pairs) revealed an A-tract-like conformation with a uniformly narrow minor groove, reduced helical rise, and the majority of sugars adopting a C1'-exo (southeastern) conformation. This contrasts with the standard B-DNA geometry with C2'-endo sugar puckers (south conformation). In contrast, the crystal structure of a decamer with only four I⋅C pairs has a geometry similar to that of the reference duplex with eight G⋅C and two A⋅T pairs. The unique crystal geometry of the inosine-rich duplex is noteworthy given its unusual CD signature in solution and the altered mechanical properties of some inosine-containing DNAs.
Collapse
Affiliation(s)
- Justin P. Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Ewa A. Kowal
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA
| | - Pradeep S. Pallan
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA,To whom correspondence should be addressed at
| |
Collapse
|
21
|
Hydration of counterions interacting with DNA double helix: a molecular dynamics study. J Mol Model 2018; 24:171. [DOI: 10.1007/s00894-018-3704-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
|
22
|
Brach K, Hatakeyama A, Nogues C, Olesiak-Banska J, Buckle M, Matczyszyn K. Photochemical analysis of structural transitions in DNA liquid crystals reveals differences in spatial structure of DNA molecules organized in liquid crystalline form. Sci Rep 2018. [PMID: 29540820 PMCID: PMC5852169 DOI: 10.1038/s41598-018-22863-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anisotropic shape of DNA molecules allows them to form lyotropic liquid crystals (LCs) at high concentrations. This liquid crystalline arrangement is also found in vivo (e.g., in bacteriophage capsids, bacteria or human sperm nuclei). However, the role of DNA liquid crystalline organization in living organisms still remains an open question. Here we show that in vitro, the DNA spatial structure is significantly changed in mesophases compared to non-organized DNA molecules. DNA LCs were prepared from pBluescript SK (pBSK) plasmid DNA and investigated by photochemical analysis of structural transitions (PhAST). We reveal significant differences in the probability of UV-induced pyrimidine dimer photoproduct formation at multiple loci on the DNA indicative of changes in major groove architecture.
Collapse
Affiliation(s)
- Katarzyna Brach
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wroclaw, 50370, Poland
| | - Akiko Hatakeyama
- LBPA, IDA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, F-94235, France
| | - Claude Nogues
- LBPA, IDA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, F-94235, France
| | - Joanna Olesiak-Banska
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wroclaw, 50370, Poland
| | - Malcolm Buckle
- LBPA, IDA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, F-94235, France.
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wroclaw, 50370, Poland.
| |
Collapse
|
23
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
24
|
Jain P, Chakma B, Singh N, Patra S, Goswami P. Metal-DNA Interactions Improve signal in High-Resolution Melting of DNA for Species Differentiation of Plasmodium Parasite. Mol Biotechnol 2017; 59:179-191. [PMID: 28421327 DOI: 10.1007/s12033-017-0004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The success of high-resolution melting (HRM) analysis for distinguishing similar DNAs with minor base mismatch differences is limited. Here, metal-mediated structural change in DNA has been exploited to amplify HRM signals leading to differentiation of target DNAs in an orthologous gene corresponding to four Plasmodium species. Conserved 26-mer ssDNAs from ldh gene of the four Plasmodium species were employed as targets. A capture probe (CP) that is fully complementary to the Plasmodium falciparum target (FT) and has two base mismatches each, with the targets of Plasmodium vivax (VT), Plasmodium malariae, (MT), and Plasmodium ovale (OT), was considered. The DNA duplexes were treated with metal ions for structural perturbation and analyzed by HRM. Distinct resolution of melting fluorescence signal in otherwise identical HRM profiles for each of the DNA duplexes was achieved by using Ca+2 or Mg+2 ions, where, Ca+2 conferred higher resolution. The increase in resolution for CP-FT versus CP-OT, CP-FT versus CP-VT, CP-FT versus CP-MT, CP-VT versus CP-OT, and CP-MT versus CP-OT with Ca-DNA as compared to control was 67.3-, 20.4-, 22.0-, 10.9-, and 8.3-fold, respectively. The signal resolution was the highest at pH 8. The method could detect 0.25 pmol/µl of the target DNA. Structural analysis showed that Ca+2 and Mg+2 ions perturbed the structure of DNA. This perturbation helped to improve HRM signal resolution among DNA targets corresponding to the orthologous gene of four Plasmodium species. This novel approach has potential application not only for Plasmodium species-specific diagnosis but also for differentiation of DNAs with minor sequence variation.
Collapse
Affiliation(s)
- Priyamvada Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Babina Chakma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Naveen Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
25
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Phosphorus SAD Phasing for Nucleic Acid Structures: Limitations and Potential. CRYSTALS 2016. [DOI: 10.3390/cryst6100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Nakano M, Tateishi-Karimata H, Tanaka S, Tama F, Miyashita O, Nakano SI, Sugimoto N. Local thermodynamics of the water molecules around single- and double-stranded DNA studied by grid inhomogeneous solvation theory. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Deiana M, Pokladek Z, Olesiak-Banska J, Młynarz P, Samoc M, Matczyszyn K. Photochromic switching of the DNA helicity induced by azobenzene derivatives. Sci Rep 2016; 6:28605. [PMID: 27339811 PMCID: PMC4919647 DOI: 10.1038/srep28605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023] Open
Abstract
The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.
Collapse
Affiliation(s)
- Marco Deiana
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Ziemowit Pokladek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Joanna Olesiak-Banska
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Młynarz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marek Samoc
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
29
|
Mukherjee S, Kailasam S, Bansal M, Bhattacharyya D. Stacking interactions in RNA and DNA: Roll-slide energy hyperspace for ten unique dinucleotide steps. Biopolymers 2016; 103:134-47. [PMID: 25257334 DOI: 10.1002/bip.22566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 12/15/2022]
Abstract
Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT-D by ωB97X-D/6-31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B-DNA, whereas, smaller twist values correspond to higher stability to RNA and A-DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B-DNA or A-DNA conformations. Conformational preference of BII sub-state in B-DNA is preferentially displayed mainly by pyrimidine-purine steps and partly by purine-purine steps. The purine-pyrimidine steps show largest effect of 5-methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality.
Collapse
Affiliation(s)
- Sanchita Mukherjee
- Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, 700064, West Bengal, India
| | | | | | | |
Collapse
|
30
|
Generating Crystallographic Models of DNA Dodecamers from Structures of RNase H:DNA Complexes. Methods Mol Biol 2016; 1320:111-26. [PMID: 26227040 DOI: 10.1007/978-1-4939-2763-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The DNA dodecamer 5'-d(CGCGAATTCGCG)-3' is arguably the best studied oligonucleotide and crystal structures of duplexes with this sequence account for a considerable portion of the total number of oligo-2'-deoxynucleotide structures determined over the last 30 years. The dodecamer has commonly served as a template to analyze the effects of sequence on DNA conformation, the conformational properties of chemically modified nucleotides, DNA-ligand interactions as well as water structure and DNA-cation binding. Although molecular replacement is the phasing method of choice given the large number of available models of the dodecamer, this strategy often fails as a result of conformational changes caused by chemical modification, mismatch pairs, or differing packing modes. Here, we describe an alternative approach to determine crystal structures of the dodecamer in cases where molecular replacement does not produce a solution or when crystals of the DNA alone cannot be grown. It is based on the discovery that many dodecamers of the above sequence can be readily co-crystallized with Bacillus halodurans RNase H, whereby the enzyme is unable to cleave the DNA. Determination of the structure of the complex using the protein portion as the search model yields a structural model of the DNA. Provided crystals of the DNA alone are also available, the DNA model from the complex then enables phasing their structures by molecular replacement.
Collapse
|
31
|
Kozlyuk N, Sengupta S, Lupták A, Martin RW. In situ NMR measurement of macromolecule-bound metal ion concentrations. JOURNAL OF BIOMOLECULAR NMR 2016; 64:269-273. [PMID: 27108020 DOI: 10.1007/s10858-016-0031-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Many nucleic acids and proteins require divalent metal ions such as Mg(2+) and Ca(2+) for folding and function. The lipophilic alignment media frequently used as membrane mimetics also bind these divalent metals. Here we demonstrate the use of (31)P NMR spectrum of a metal ion chelator (deoxycytidine diphosphate) to measure the bound [Mg(2+)] and [Ca(2+)] in situ for several biological model systems at relatively high divalent ion concentrations (1-10 mM). This method represents a general approach to measuring divalent metal ion binding in NMR samples where the amount and type of metal ion added to the system is known.
Collapse
Affiliation(s)
- Natalia Kozlyuk
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Suvrajit Sengupta
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Andrej Lupták
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
32
|
Imeddourene AB, Xu X, Zargarian L, Oguey C, Foloppe N, Mauffret O, Hartmann B. The intrinsic mechanics of B-DNA in solution characterized by NMR. Nucleic Acids Res 2016; 44:3432-47. [PMID: 26883628 PMCID: PMC4838374 DOI: 10.1093/nar/gkw084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022] Open
Abstract
Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8, C3′-H3′ and C4′-H4′ vectors are correlated to the 31P chemical shifts (δP), which reflect the populations of the BI and BII backbone states. The δPs are also correlated to the internucleotide distances (Dinter) involving H6/8, H2′ and H2″ protons. Calculations of NMR quantities on high resolution X-ray structures and controlled models of DNA enable to interpret these couplings: the studied ΔRDCs depend mostly on roll, while Dinter are mainly sensitive to twist or slide. Overall, these relations demonstrate how δP measurements inform on key inter base parameters, in addition to probe the BI↔BII backbone equilibrium, and shed new light into coordinated motions of phosphate groups and bases in free B-DNA in solution. Inspection of the 5′ and 3′ ends of the dodecamers also supplies new information on the fraying events, otherwise neglected.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| | - Xiaoqian Xu
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France Department of Life Sciences, East China Normal University, 200062 Shanghai, People's Republic of China
| | - Loussiné Zargarian
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Christophe Oguey
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Olivier Mauffret
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Brigitte Hartmann
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| |
Collapse
|
33
|
Portella G, Terrazas M, Villegas N, González C, Orozco M. Can A Denaturant Stabilize DNA? Pyridine Reverses DNA Denaturation in Acidic pH. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Murata A, Ito Y, Kashima R, Kanbayashi S, Nanatani K, Igarashi C, Okumura M, Inaba K, Tokino T, Takahashi S, Kamagata K. One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca2+ or Mg2+ at Millimolar Concentrations. J Mol Biol 2015; 427:2663-78. [DOI: 10.1016/j.jmb.2015.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023]
|
35
|
Portella G, Terrazas M, Villegas N, González C, Orozco M. Can A Denaturant Stabilize DNA? Pyridine Reverses DNA Denaturation in Acidic pH. Angew Chem Int Ed Engl 2015. [PMID: 26224143 DOI: 10.1002/anie.201503770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The stability of DNA is highly dependent on the properties of the surrounding solvent, such as ionic strength, pH, and the presence of denaturants and osmolytes. Addition of pyridine is known to unfold DNA by replacing π-π stacking interactions between bases, stabilizing conformations in which the nucleotides are solvent exposed. We show here experimental and theoretical evidences that pyridine can change its role and in fact stabilize the DNA under acidic conditions. NMR spectroscopy and MD simulations demonstrate that the reversal in the denaturing role of pyridine is specific, and is related to its character as pseudo groove binder. The present study sheds light on the nature of DNA stability and on the relationship between DNA and solvent, with clear biotechnological implications.
Collapse
Affiliation(s)
- Guillem Portella
- Institute for Research in Biomedicine (IRB Barcelona), Joint BSC-IRB Research Program in Computational Biology, Barcelona (Spain).,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW (UK)
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona), Joint BSC-IRB Research Program in Computational Biology, Barcelona (Spain)
| | - Núria Villegas
- Institute for Research in Biomedicine (IRB Barcelona), Joint BSC-IRB Research Program in Computational Biology, Barcelona (Spain).,Barcelona Supercomputing Center, Barcelona (Spain)
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC, Madrid (Spain)
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Joint BSC-IRB Research Program in Computational Biology, Barcelona (Spain). .,Department of Biochemistry and Molecular Biology, University of Barcelona (Spain).
| |
Collapse
|
36
|
Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep 2015; 35:e00225. [PMID: 26182432 PMCID: PMC4613712 DOI: 10.1042/bsr20150089] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/18/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022] Open
Abstract
Over the past couple of decades, antibody-drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics.
Collapse
Affiliation(s)
- Christina Peters
- School of Life Sciences, Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, U.K
| | - Stuart Brown
- School of Life Sciences, Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, U.K.
| |
Collapse
|
37
|
Luo Z, Dauter Z. Flexibility of Terminal Cytidines in Ca
2+
Form B‐DNA. FASEB J 2015. [DOI: 10.1096/fasebj.29.1_supplement.710.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhipu Luo
- Macromolecular Crystallography Laboratory National Cancer Institute, NIHUnited States
| | - Zbigniew Dauter
- Macromolecular Crystallography Laboratory National Cancer Institute, NIHUnited States
| |
Collapse
|
38
|
Bergonzo C, Galindo-Murillo R, Cheatham TE. Molecular modeling of nucleic Acid structure: electrostatics and solvation. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2014; 55:7.9.1-27. [PMID: 25631536 DOI: 10.1002/0471142700.nc0709s55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit.
Collapse
Affiliation(s)
- Christina Bergonzo
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah
| | | | | |
Collapse
|
39
|
Bertran O, Valle LJD, Revilla-López G, Rivas M, Chaves G, Casas MT, Casanovas J, Turon P, Puiggalí J, Alemán C. Synergistic Approach to Elucidate the Incorporation of Magnesium Ions into Hydroxyapatite. Chemistry 2014; 21:2537-46. [DOI: 10.1002/chem.201405428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 12/31/2022]
|
40
|
Whelan DR, Hiscox TJ, Rood JI, Bambery KR, McNaughton D, Wood BR. Detection of an en masse and reversible B- to A-DNA conformational transition in prokaryotes in response to desiccation. J R Soc Interface 2014; 11:20140454. [PMID: 24898023 PMCID: PMC4208382 DOI: 10.1098/rsif.2014.0454] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/12/2014] [Indexed: 02/02/2023] Open
Abstract
The role that DNA conformation plays in the biochemistry of cells has been the subject of intensive research since DNA polymorphism was discovered. B-DNA has long been considered the native form of DNA in cells although alternative conformations of DNA are thought to occur transiently and along short tracts. Here, we report the first direct observation of a fully reversible en masse conformational transition between B- and A-DNA within live bacterial cells using Fourier transform infrared (FTIR) spectroscopy. This biospectroscopic technique allows for non-invasive and reagent-free examination of the holistic biochemistry of samples. For this reason, we have been able to observe the previously unknown conformational transition in all four species of bacteria investigated. Detection of this transition is evidence of a previously unexplored biological significance for A-DNA and highlights the need for new research into the role that A-DNA plays as a cellular defence mechanism and in stabilizing the DNA conformation. Such studies are pivotal in understanding the role of A-DNA in the evolutionary pathway of nucleic acids. Furthermore, this discovery demonstrates the exquisite capabilities of FTIR spectroscopy and opens the door for further investigations of cell biochemistry with this under-used technique.
Collapse
Affiliation(s)
- Donna R Whelan
- Centre for Biospectroscopy, School of Chemistry, Monash University, Victoria 3800, Australia
| | - Thomas J Hiscox
- Department of Microbiology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Julian I Rood
- Department of Microbiology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Keith R Bambery
- Centre for Biospectroscopy, School of Chemistry, Monash University, Victoria 3800, Australia Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Don McNaughton
- Centre for Biospectroscopy, School of Chemistry, Monash University, Victoria 3800, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Victoria 3800, Australia
| |
Collapse
|
41
|
Wen J, Shen X, Shen H, Zhang FS. Hofmeister series and ionic effects of alkali metal ions on DNA conformation transition in normal and less polarised water solvent. Mol Phys 2014. [DOI: 10.1080/00268976.2014.906674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Son I, Shek YL, Dubins DN, Chalikian TV. Hydration Changes Accompanying Helix-to-Coil DNA Transitions. J Am Chem Soc 2014; 136:4040-7. [DOI: 10.1021/ja5004137] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ikbae Son
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Yuen Lai Shek
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N. Dubins
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
43
|
Xiao S, Zhu H, Wang L, Liang H. DNA conformational flexibility study using phosphate backbone neutralization model. SOFT MATTER 2014; 10:1045-1055. [PMID: 24983118 DOI: 10.1039/c3sm52345d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Due to the critical role of DNA in the processes of the cell cycle, the structural and physicochemical properties of DNA have long been of concern. In the present work, the effect of interplay between the DNA duplex and metal ions in solution on the DNA structure and conformational flexibility is studied by comparing the structure and dynamic conformational behavior of a duplex in a normal form and its “null isomer” using molecular dynamics methods. It was found that the phosphate neutralization changes the cation atmosphere around the DNA duplex greatly, increases the major groove width, decreases the minor groove width, and reduces the global bending direction preference. We also noted that the probability of BI phosphate linkages increases significantly because of the charge reduction in the backbone phosphate groups. More importantly, we found that the electrostatic effect on the DNA conformational flexibility is dependent on the sequence; that is, the phosphate backbone neutralization induces the global dynamic bending to be less flexible for GC-rich sequences but more flexible for AT-rich sequences.
Collapse
|
44
|
Mukherjee S, Bhattacharyya D. Influence of divalent magnesium ion on DNA: molecular dynamics simulation studies. J Biomol Struct Dyn 2013; 31:896-912. [DOI: 10.1080/07391102.2012.713780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Wei D, Wilson WD, Neidle S. Small-molecule binding to the DNA minor groove is mediated by a conserved water cluster. J Am Chem Soc 2013; 135:1369-77. [PMID: 23276263 DOI: 10.1021/ja308952y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-resolution crystal structures of the DNA duplex sequence d(CGCGAATTCGCG)(2) complexed with three minor-groove ligands are reported. A highly conserved cluster of 11 linked water molecules has been found in the native and all 3 ligand-bound structures, positioned at the boundary of the A/T and G/C regions where the minor groove widens. This cluster appears to play a key structural role in stabilizing noncovalently binding small molecules in the AT region of the B-DNA minor groove. The cluster extends from the backbone phosphate groups along the mouth of the groove and links to DNA and ligands by a network of hydrogen bonds that help to maintain the ligands in position. This arrangement of water molecules is distinct from, but linked by, hydrogen bonding to the well-established spine of hydration, which is displaced by bound ligands. Features of the water cluster and observed differences in binding modes help to explain the measured binding affinities and thermodynamic characteristics of these ligands on binding to AT sites in DNA.
Collapse
Affiliation(s)
- DengGuo Wei
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | | |
Collapse
|
46
|
Mandal PK, Venkadesh S, Gautham N. Interactions of Mn2+ with a non-self-complementary Z-type DNA duplex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1420-6. [PMID: 23192018 PMCID: PMC3509959 DOI: 10.1107/s1744309112041759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 10/05/2012] [Indexed: 11/10/2022]
Abstract
Crystal structures of the hexanucleotide d(CACGCG)·d(CGCGTG) were determined in two crystal lattices when different concentrations of the counterion Mn2+ were used in crystallization. The availability of Mn2+ during the crystallization process appears to play an important role in inducing different crystal packings that lead to crystals belonging to the two space groups P2(1) and P6(5). Analysis of the molecular interactions of Mn2+ with the Z-form duplexes shows direct coordination to the purine residues G and A.
Collapse
Affiliation(s)
- P. K. Mandal
- CAS in Crystallography and Biophysics, University of Madras, Guindy, Chennai 600 025, India
| | - S. Venkadesh
- CAS in Crystallography and Biophysics, University of Madras, Guindy, Chennai 600 025, India
| | - N. Gautham
- CAS in Crystallography and Biophysics, University of Madras, Guindy, Chennai 600 025, India
| |
Collapse
|
47
|
Robbins TJ, Wang Y. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations. J Biomol Struct Dyn 2012; 31:1311-23. [PMID: 23153112 DOI: 10.1080/07391102.2012.732344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.
Collapse
Affiliation(s)
- Timothy J Robbins
- a Department of Chemistry , University of Memphis , Memphis , TN , 38152 , USA
| | | |
Collapse
|
48
|
Dršata T, Pérez A, Orozco M, Morozov AV, Sponer J, Lankaš F. Structure, Stiffness and Substates of the Dickerson-Drew Dodecamer. J Chem Theory Comput 2012; 9:707-721. [PMID: 23976886 DOI: 10.1021/ct300671y] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Dickerson-Drew dodecamer (DD) d-[CGCGAATTCGCG]2 is a prototypic B-DNA molecule whose sequence-specific structure and dynamics have been investigated by many experimental and computational studies. Here, we present an analysis of DD properties based on extensive atomistic molecular dynamics (MD) simulations using different ionic conditions and water models. The 0.6-2.4-µs-long MD trajectories are compared to modern crystallographic and NMR data. In the simulations, the duplex ends can adopt an alternative base-pairing, which influences the oligomer structure. A clear relationship between the BI/BII backbone substates and the basepair step conformation has been identified, extending previous findings and exposing an interesting structural polymorphism in the helix. For a given end pairing, distributions of the basepair step coordinates can be decomposed into Gaussian-like components associated with the BI/BII backbone states. The nonlocal stiffness matrices for a rigid-base mechanical model of DD are reported for the first time, suggesting salient stiffness features of the central A-tract. The Riemann distance and Kullback-Leibler divergence are used for stiffness matrix comparison. The basic structural parameters converge very well within 300 ns, convergence of the BI/BII populations and stiffness matrices is less sharp. Our work presents new findings about the DD structural dynamics, mechanical properties, and the coupling between basepair and backbone configurations, including their statistical reliability. The results may also be useful for optimizing future force fields for DNA.
Collapse
Affiliation(s)
- Tomáš Dršata
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic ; Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
49
|
Bitar A, Ahmad NM, Fessi H, Elaissari A. Silica-based nanoparticles for biomedical applications. Drug Discov Today 2012; 17:1147-54. [DOI: 10.1016/j.drudis.2012.06.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 05/25/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|
50
|
Guéroult M, Boittin O, Mauffret O, Etchebest C, Hartmann B. Mg2+ in the major groove modulates B-DNA structure and dynamics. PLoS One 2012; 7:e41704. [PMID: 22844516 PMCID: PMC3402463 DOI: 10.1371/journal.pone.0041704] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/25/2012] [Indexed: 12/12/2022] Open
Abstract
This study investigates the effect of Mg(2+) bound to the DNA major groove on DNA structure and dynamics. The analysis of a comprehensive dataset of B-DNA crystallographic structures shows that divalent cations are preferentially located in the DNA major groove where they interact with successive bases of (A/G)pG and the phosphate group of 5'-CpA or TpG. Based on this knowledge, molecular dynamics simulations were carried out on a DNA oligomer without or with Mg(2+) close to an ApG step. These simulations showed that the hydrated Mg(2+) forms a stable intra-strand cross-link between the two purines in solution. ApG generates an electrostatic potential in the major groove that is particularly attractive for cations; its intrinsic conformation is well-adapted to the formation of water-mediated hydrogen bonds with Mg(2+). The binding of Mg(2+) modulates the behavior of the 5'-neighboring step by increasing the BII (ε-ζ>0°) population of its phosphate group. Additional electrostatic interactions between the 5'-phosphate group and Mg(2+) strengthen both the DNA-cation binding and the BII character of the 5'-step. Cation binding in the major groove may therefore locally influence the DNA conformational landscape, suggesting a possible avenue for better understanding how strong DNA distortions can be stabilized in protein-DNA complexes.
Collapse
Affiliation(s)
- Marc Guéroult
- Dynamique des Structures et Interactions des Macromolécules Biologiques, UMR 665 INSERM-Université Paris Diderot, Sorbonne Paris Cité, Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique, Paris, France
| | - Olivier Boittin
- Dynamique des Structures et Interactions des Macromolécules Biologiques, UMR 665 INSERM-Université Paris Diderot, Sorbonne Paris Cité, Institut National de la Transfusion Sanguine, Paris, France
| | - Oliver Mauffret
- Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 CNRS-ENS de Cachan, Cachan, France
| | - Catherine Etchebest
- Dynamique des Structures et Interactions des Macromolécules Biologiques, UMR 665 INSERM-Université Paris Diderot, Sorbonne Paris Cité, Institut National de la Transfusion Sanguine, Paris, France
| | - Brigitte Hartmann
- Dynamique des Structures et Interactions des Macromolécules Biologiques, UMR 665 INSERM-Université Paris Diderot, Sorbonne Paris Cité, Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire de Biologie et Pharmacologie Appliquée, UMR 8113 CNRS-ENS de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|