1
|
Mark E, Ramos PC, Kayser F, Höckendorff J, Dohmen RJ, Wendler P. Structural roles of Ump1 and β-subunit propeptides in proteasome biogenesis. Life Sci Alliance 2024; 7:e202402865. [PMID: 39260885 PMCID: PMC11391049 DOI: 10.26508/lsa.202402865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
The yeast pre1-1(β4-S142F) mutant accumulates late 20S proteasome core particle precursor complexes (late-PCs). We report a 2.1 Å cryo-EM structure of this intermediate with full-length Ump1 trapped inside, and Pba1-Pba2 attached to the α-ring surfaces. The structure discloses intimate interactions of Ump1 with β2- and β5-propeptides, which together fill most of the antechambers between the α- and β-rings. The β5-propeptide is unprocessed and separates Ump1 from β6 and β7. The β2-propeptide is disconnected from the subunit by autocatalytic processing and localizes between Ump1 and β3. A comparison of different proteasome maturation states reveals that maturation goes along with global conformational changes in the rings, initiated by structuring of the proteolytic sites and their autocatalytic activation. In the pre1-1 strain, β2 is activated first enabling processing of β1-, β6-, and β7-propeptides. Subsequent maturation of β5 and β1 precedes degradation of Ump1, tightening of the complex, and finally release of Pba1-Pba2.
Collapse
Affiliation(s)
- Eric Mark
- https://ror.org/03bnmw459 Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Potsdam-Golm, Germany
| | - Paula C Ramos
- https://ror.org/00rcxh774 Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Fleur Kayser
- https://ror.org/03bnmw459 Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Potsdam-Golm, Germany
| | - Jörg Höckendorff
- https://ror.org/00rcxh774 Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - R Jürgen Dohmen
- https://ror.org/00rcxh774 Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Petra Wendler
- https://ror.org/03bnmw459 Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Zhang H, Zhou C, Mohammad Z, Zhao J. Structural basis of human 20S proteasome biogenesis. Nat Commun 2024; 15:8184. [PMID: 39294158 PMCID: PMC11410832 DOI: 10.1038/s41467-024-52513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
New proteasomes are produced to accommodate increases in cellular catabolic demand and prevent the accumulation of cytotoxic proteins. Formation of the proteasomal 20S core complex relies on the function of the five chaperones PAC1-4 and POMP. Here, to understand how these chaperones facilitate proteasome assembly, we tagged the endogenous chaperones using CRISPR/Cas gene editing and examined the chaperone-bound complexes by cryo-EM. We observe an early α-ring intermediate subcomplex that is stabilized by PAC1-4, which transitions to β-ring assembly upon dissociation of PAC3/PAC4 and rearrangement of the PAC1 N-terminal tail. Completion of the β-ring and dimerization of half-proteasomes repositions critical lysine K33 to trigger cleavage of the β pro-peptides, leading to the concerted dissociation of POMP and PAC1/PAC2 to yield mature 20S proteasomes. This study reveals structural insights into critical points along the assembly pathway of the human proteasome and provides a molecular blueprint for 20S biogenesis.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Chenyu Zhou
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Zarith Mohammad
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Jianhua Zhao
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA.
| |
Collapse
|
3
|
Adolf F, Du J, Goodall EA, Walsh RM, Rawson S, von Gronau S, Harper JW, Hanna J, Schulman BA. Visualizing chaperone-mediated multistep assembly of the human 20S proteasome. Nat Struct Mol Biol 2024; 31:1176-1188. [PMID: 38600324 PMCID: PMC11327110 DOI: 10.1038/s41594-024-01268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
Dedicated assembly factors orchestrate the stepwise production of many molecular machines, including the 28-subunit proteasome core particle (CP) that mediates protein degradation. Here we report cryo-electron microscopy reconstructions of seven recombinant human subcomplexes that visualize all five chaperones and the three active site propeptides across a wide swath of the assembly pathway. Comparison of these chaperone-bound intermediates and a matching mature CP reveals molecular mechanisms determining the order of successive subunit additions, as well as how proteasome subcomplexes and assembly factors structurally adapt upon progressive subunit incorporation to stabilize intermediates, facilitate the formation of subsequent intermediates and ultimately rearrange to coordinate proteolytic activation with gated access to active sites. This work establishes a methodologic approach for structural analysis of multiprotein complex assembly intermediates, illuminates specific functions of assembly factors and reveals conceptual principles underlying human proteasome biogenesis, thus providing an explanation for many previous biochemical and genetic observations.
Collapse
Affiliation(s)
- Frank Adolf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Jiale Du
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ellen A Goodall
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Richard M Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Wade Harper
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Velez B, Walsh RM, Rawson S, Razi A, Adams L, Perez EF, Jiao F, Blickling M, Rajakumar T, Fung D, Huang L, Hanna J. Mechanism of autocatalytic activation during proteasome assembly. Nat Struct Mol Biol 2024; 31:1167-1175. [PMID: 38600323 DOI: 10.1038/s41594-024-01262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
Many large molecular machines are too elaborate to assemble spontaneously and are built through ordered pathways orchestrated by dedicated chaperones. During assembly of the core particle (CP) of the proteasome, where protein degradation occurs, its six active sites are simultaneously activated via cleavage of N-terminal propeptides. Such activation is autocatalytic and coupled to fusion of two half-CP intermediates, which protects cells by preventing activation until enclosure of the active sites within the CP interior. Here we uncover key mechanistic aspects of autocatalytic activation, which proceeds through alignment of the β5 and β2 catalytic triad residues, respectively, with these triads being misaligned before fusion. This mechanism contrasts with most other zymogens, in which catalytic centers are preformed. Our data also clarify the mechanism by which individual subunits can be added in a precise, temporally ordered manner. This work informs two decades-old mysteries in the proteasome field, with broader implications for protease biology and multisubunit complex assembly.
Collapse
Affiliation(s)
- Benjamin Velez
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Richard M Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aida Razi
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lea Adams
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Erignacio Fermin Perez
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Fenglong Jiao
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| | - Marie Blickling
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Tamayanthi Rajakumar
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Darlene Fung
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Sahoo MP, Lavy T, Cohen N, Sahu I, Kleifeld O. Activity-Guided Proteomic Profiling of Proteasomes Uncovers a Variety of Active (and Inactive) Proteasome Species. Mol Cell Proteomics 2024; 23:100728. [PMID: 38296025 PMCID: PMC10907802 DOI: 10.1016/j.mcpro.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasomes are multisubunit, multicatalytic protein complexes present in eukaryotic cells that degrade misfolded, damaged, or unstructured proteins. In this study, we used an activity-guided proteomic methodology based on a fluorogenic peptide substrate to characterize the composition of proteasome complexes in WT yeast and the changes these complexes undergo upon the deletion of Pre9 (Δα3) or of Sem1 (ΔSem1). A comparison of whole-cell proteomic analysis to activity-guided proteasome profiling indicates that the amounts of proteasomal proteins and proteasome interacting proteins in the assembled active proteasomes differ significantly from their total amounts in the cell as a whole. Using this activity-guided profiling approach, we characterized the changes in the abundance of subunits of various active proteasome species in different strains, quantified the relative abundance of active proteasomes across these strains, and charted the overall distribution of different proteasome species within each strain. The distributions obtained by our mass spectrometry-based quantification were markedly higher for some proteasome species than those obtained by activity-based quantification alone, suggesting that the activity of some of these species is impaired. The impaired activity appeared mostly among 20SBlm10 proteasome species which account for 20% of the active proteasomes in WT. To identify the factors behind this impaired activity, we mapped and quantified known proteasome-interacting proteins. Our results suggested that some of the reduced activity might be due to the association of the proteasome inhibitor Fub1. Additionally, we provide novel evidence for the presence of nonmature and therefore inactive proteasomal protease subunits β2 and β5 in the fully assembled proteasomes.
Collapse
Affiliation(s)
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Noam Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
6
|
Adolf F, Du J, Goodall EA, Walsh RM, Rawson S, von Gronau S, Harper JW, Hanna J, Schulman BA. Visualizing chaperone-mediated multistep assembly of the human 20S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577538. [PMID: 38328185 PMCID: PMC10849659 DOI: 10.1101/2024.01.27.577538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Dedicated assembly factors orchestrate stepwise production of many molecular machines, including the 28-subunit proteasome core particle (CP) that mediates protein degradation. Here, we report cryo-EM reconstructions of seven recombinant human subcomplexes that visualize all five chaperones and the three active site propeptides across a wide swath of the assembly pathway. Comparison of these chaperone-bound intermediates and a matching mature CP reveals molecular mechanisms determining the order of successive subunit additions, and how proteasome subcomplexes and assembly factors structurally adapt upon progressive subunit incorporation to stabilize intermediates, facilitate the formation of subsequent intermediates, and ultimately rearrange to coordinate proteolytic activation with gated access to active sites. The structural findings reported here explain many previous biochemical and genetic observations. This work establishes a methodologic approach for structural analysis of multiprotein complex assembly intermediates, illuminates specific functions of assembly factors, and reveals conceptual principles underlying human proteasome biogenesis.
Collapse
Affiliation(s)
- Frank Adolf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jiale Du
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ellen A. Goodall
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard M. Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J. Wade Harper
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
7
|
Velez B, Razi A, Hubbard RD, Walsh R, Rawson S, Tian G, Finley D, Hanna J. Rational design of proteasome inhibitors based on the structure of the endogenous inhibitor PI31/Fub1. Proc Natl Acad Sci U S A 2023; 120:e2308417120. [PMID: 38091293 PMCID: PMC10743371 DOI: 10.1073/pnas.2308417120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Proteasome inhibitors are widely used anticancer drugs. The three clinically approved agents are modified small peptides that preferentially target one of the proteasome's three active sites (β5) at physiologic concentrations. In addition to these drugs, there is also an endogenous proteasome inhibitor, PI31/Fub1, that enters the proteasome's interior to simultaneously yet specifically inhibit all three active sites. Here, we have used PI31's evolutionarily optimized inhibitory mechanisms to develop a suite of potent and specific β2 inhibitors. The lead compound strongly inhibited growth of multiple myeloma cells as a standalone agent, indicating the compound's cell permeability and establishing β2 as a potential therapeutic target in multiple myeloma. The lead compound also showed strong synergy with the existing β5 inhibitor bortezomib; such combination therapies might help with existing challenges of resistance and severe side effects. These results represent an effective method for rational structure-guided development of proteasome inhibitors.
Collapse
Affiliation(s)
- Benjamin Velez
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA02115
| | - Aida Razi
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA02115
| | | | - Richard Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology,Harvard Medical School,Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology,Harvard Medical School,Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA02115
| |
Collapse
|
8
|
Walsh RM, Rawson S, Schnell HM, Velez B, Rajakumar T, Hanna J. Structure of the preholoproteasome reveals late steps in proteasome core particle biogenesis. Nat Struct Mol Biol 2023; 30:1516-1524. [PMID: 37653242 PMCID: PMC10879985 DOI: 10.1038/s41594-023-01081-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
Assembly of the proteasome's core particle (CP), a barrel-shaped chamber of four stacked rings, requires five chaperones and five subunit propeptides. Fusion of two half-CP precursors yields a complete structure but remains immature until active site maturation. Here, using Saccharomyces cerevisiae, we report a high-resolution cryogenic electron microscopy structure of preholoproteasome, a post-fusion assembly intermediate. Our data reveal how CP midline-spanning interactions induce local changes in structure, facilitating maturation. Unexpectedly, we find that cleavage may not be sufficient for propeptide release, as residual interactions with chaperones such as Ump1 hold them in place. We evaluated previous models proposing that dynamic conformational changes in chaperones drive CP fusion and autocatalytic activation by comparing preholoproteasome to pre-fusion intermediates. Instead, the data suggest a scaffolding role for the chaperones Ump1 and Pba1/Pba2. Our data clarify key aspects of CP assembly, suggest that undiscovered mechanisms exist to explain CP fusion/activation, and have relevance for diseases of defective CP biogenesis.
Collapse
Affiliation(s)
- Richard M Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Helena M Schnell
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin Velez
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Tamayanthi Rajakumar
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Warnock JL, Jobin GW, Kumar S, Tomko RJ. Assembly chaperone Nas6 selectively destabilizes 26S proteasomes with defective regulatory particle-core particle interfaces. J Biol Chem 2023; 299:102894. [PMID: 36634850 PMCID: PMC9943895 DOI: 10.1016/j.jbc.2023.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The 26S proteasome is a 66-subunit-chambered protease present in all eukaryotes that maintains organismal health by degrading unneeded or defective proteins. Defects in proteasome function or assembly are known to contribute to the development of various cancers, neurodegeneration, and diabetes. During proteasome biogenesis, a family of evolutionarily conserved chaperones assembles a hexameric ring of AAA+ family ATPase subunits contained within the proteasomal regulatory particle (RP) and guide their docking onto the surface of the proteolytic core particle (CP). This RP-CP interaction couples the substrate capture and unfolding process to proteolysis. We previously reported a mutation in the proteasome that promoted dissociation of the RP and CP by one of these chaperones, Nas6. However, the nature of the signal for Nas6-dependent proteasome disassembly and the generality of this postassembly proteasome quality control function for Nas6 remain unknown. Here, we use structure-guided mutagenesis and in vitro proteasome disassembly assays to demonstrate that Nas6 more broadly destabilizes 26S proteasomes with a defective RP-CP interface. We show that Nas6 can promote dissociation of mature proteasomes into RP and CP in cells harboring defects on either side of the RP-CP interface. This function is unique to Nas6 and independent from other known RP assembly chaperones. Further biochemical experiments suggest that Nas6 may exploit a weakened RP-CP interface to dissociate the RP from the CP. We propose that this postassembly role of Nas6 may fulfill a quality control function in cells by promoting the recycling of functional subcomplexes contained within defective proteasomes.
Collapse
|
10
|
Schnell HM, Walsh RM, Rawson S, Hanna J. Chaperone-mediated assembly of the proteasome core particle - recent developments and structural insights. J Cell Sci 2022; 135:275096. [PMID: 35451017 PMCID: PMC9080555 DOI: 10.1242/jcs.259622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much of cellular activity is mediated by large multisubunit complexes. However, many of these complexes are too complicated to assemble spontaneously. Instead, their biogenesis is facilitated by dedicated chaperone proteins, which are themselves excluded from the final product. This is the case for the proteasome, a ubiquitous and highly conserved cellular regulator that mediates most selective intracellular protein degradation in eukaryotes. The proteasome consists of two subcomplexes: the core particle (CP), where proteolysis occurs, and the regulatory particle (RP), which controls substrate access to the CP. Ten chaperones function in proteasome biogenesis. Here, we review the pathway of CP biogenesis, which requires five of these chaperones and proceeds through a highly ordered multistep pathway. We focus on recent advances in our understanding of CP assembly, with an emphasis on structural insights. This pathway of CP biogenesis represents one of the most dramatic examples of chaperone-mediated assembly and provides a paradigm for understanding how large multisubunit complexes can be produced.
Collapse
Affiliation(s)
- Helena M Schnell
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Richard M Walsh
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.,Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
11
|
The Central Role of the Ubiquitin-Proteasome System in EBV-Mediated Oncogenesis. Cancers (Basel) 2022; 14:cancers14030611. [PMID: 35158879 PMCID: PMC8833352 DOI: 10.3390/cancers14030611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Epstein–Barr virus (EBV) is the first discovered human tumor virus, which contributes to the oncogenesis of many human cancers. The ubiquitin–proteasome system is a key player during EBV-mediated oncogenesis and has been developed as a crucial therapeutic target for treatment. In this review, we briefly describe how EBV antigens can modulate the ubiquitin–proteasome system for targeted protein degradation and how they are regulated in the EBV life cycle to mediate oncogenesis. Additionally, the developed proteasome inhibitors are discussed for the treatment of EBV-associated cancers. Abstract Deregulation of the ubiquitin–proteasome system (UPS) plays a critical role in the development of numerous human cancers. Epstein–Barr virus (EBV), the first known human tumor virus, has evolved distinct molecular mechanisms to manipulate the ubiquitin–proteasome system, facilitate its successful infection, and drive opportunistic cancers. The interactions of EBV antigens with the ubiquitin–proteasome system can lead to oncogenesis through the targeting of cellular factors involved in proliferation. Recent studies highlight the central role of the ubiquitin–proteasome system in EBV infection. This review will summarize the versatile strategies in EBV-mediated oncogenesis that contribute to the development of specific therapeutic approaches to treat EBV-associated malignancies.
Collapse
|
12
|
Schnell HM, Walsh RM, Rawson S, Kaur M, Bhanu MK, Tian G, Prado MA, Guerra-Moreno A, Paulo JA, Gygi SP, Roelofs J, Finley D, Hanna J. Structures of chaperone-associated assembly intermediates reveal coordinated mechanisms of proteasome biogenesis. Nat Struct Mol Biol 2021; 28:418-425. [PMID: 33846632 DOI: 10.1038/s41594-021-00583-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 11/09/2022]
Abstract
The proteasome mediates most selective protein degradation. Proteolysis occurs within the 20S core particle (CP), a barrel-shaped chamber with an α7β7β7α7 configuration. CP biogenesis proceeds through an ordered multistep pathway requiring five chaperones, Pba1-4 and Ump1. Using Saccharomyces cerevisiae, we report high-resolution structures of CP assembly intermediates by cryogenic-electron microscopy. The first structure corresponds to the 13S particle, which consists of a complete α-ring, partial β-ring (β2-4), Ump1 and Pba1/2. The second structure contains two additional subunits (β5-6) and represents a later pre-15S intermediate. These structures reveal the architecture and positions of Ump1 and β2/β5 propeptides, with important implications for their functions. Unexpectedly, Pba1's N terminus extends through an open CP pore, accessing the CP interior to contact Ump1 and the β5 propeptide. These results reveal how the coordinated activity of Ump1, Pba1 and the active site propeptides orchestrate key aspects of CP assembly.
Collapse
Affiliation(s)
- Helena M Schnell
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Richard M Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Mandeep Kaur
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Meera K Bhanu
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Angel Guerra-Moreno
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
13
|
Santos-Galdiano M, González-Rodríguez P, Font-Belmonte E, Ugidos IF, Anuncibay-Soto B, Pérez-Rodríguez D, Fernández-López A. Celecoxib-Dependent Neuroprotection in a Rat Model of Transient Middle Cerebral Artery Occlusion (tMCAO) Involves Modifications in Unfolded Protein Response (UPR) and Proteasome. Mol Neurobiol 2021; 58:1404-1417. [PMID: 33184783 DOI: 10.1007/s12035-020-02202-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Stroke is one of the main causes of death and disability worldwide. Ischemic stroke results in unfolded/misfolded protein accumulation in endoplasmic reticulum (ER), a condition known as ER stress. We hypothesized that previously reported neuroprotection of celecoxib, a selective inhibitor of cyclooxygenase-2, in transient middle cerebral artery occlusion (tMCAO) model, relies on the ER stress decrease. To probe this hypothesis, Sprague-Dawley rats were subjected to 1 h of tMCAO and treated with celecoxib or vehicle 1 and 24 h after ischemia. Protein and mRNA levels of the main hallmarks of ER stress, unfolded protein response (UPR) activation, UPR-induced cell death, and ubiquitin proteasome system (UPS) and autophagy, the main protein degradation pathways, were measured at 12 and 48 h of reperfusion. Celecoxib treatment decreased polyubiquitinated protein load and ER stress marker expression such as glucose-related protein 78 (GRP78), C/EBP (CCAAT/enhancer-binding protein) homologous protein (CHOP), and caspase 12 after 48 h of reperfusion. Regarding the UPR activation, celecoxib promoted inositol-requiring enzyme 1 (IRE1) pathway instead of double-stranded RNA-activated protein kinase-like ER kinase (PERK) pathway. Furthermore, celecoxib treatment increased proteasome catalytic subunits transcript levels and decreased p62 protein levels, while the microtubule-associated protein 1 light chain 3 (LC3B) II/I ratio remained unchanged. Thus, the ability of celecoxib treatment on reducing the ER stress correlates with the enhancement of IRE1-UPR pathway and UPS degradation. These data support the ability of anti-inflammatory therapy in modulating ER stress and reveal the IRE1 pathway as a promising therapeutic target in stroke therapy.Graphical abstract.
Collapse
Affiliation(s)
- María Santos-Galdiano
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Paloma González-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Enrique Font-Belmonte
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Irene F Ugidos
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Currently at AIV Institute, University of Eastern Finland, Kuopio, Finland
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Currently at Department of Life Sciences, Imperial College London (ICL), London, UK
| | - Diego Pérez-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
- Currently at Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| | - Arsenio Fernández-López
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
| |
Collapse
|
14
|
Pomatto LCD, Sisliyan C, Wong S, Cline M, Tower J, Davies KJA. The proteasome beta 5 subunit is essential for sexually divergent adaptive homeostatic responses to oxidative stress in D. melanogaster. Free Radic Biol Med 2020; 160:67-77. [PMID: 32758664 PMCID: PMC7704559 DOI: 10.1016/j.freeradbiomed.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022]
Abstract
Our studies center on the physiological phenomenon of adaptive homeostasis in which very low, signaling levels of an oxidant can induce transient expansion of the baseline homeostatic range of protective mechanisms, resulting in transient stress protection. The 20S proteasome is a major element of such inducible defense enzymes against oxidative stress but the relative importance of each of its three proteolytic subunits, β1, β2, and β5, is only poorly understood. We focused the present studies on determining the role of the β5 subunit in adaptation, survival, and lifespan. Decreased expression of the 20S proteasome β5 subunit (with RNAi) blocked the adaptive increase in the catalytic activities of the 20S proteasome response to signaling levels of H2O2 in female flies. Similarly, female-specific adaptive increases in survival following H2O2 pretreatment and subsequent toxic challenge was blocked. In contrast, direct overexpression of the 20S proteasome β5 subunit enabled an increased 20S proteasome proteolytic response, but prevented further adaptive homeostatic increases through H2O2 signaling, indicating there is a maximum 'ceiling' to the adaptive response. Males showed no adaptive change in proteasomal levels or activity whatsoever with H2O2 pretreatment and exhibited no significant impact upon the other 2 proteolytic subunits of the proteasome. However, chronic loss of the β5 subunit led to shortened lifespan in both sexes. Our exploration of the importance of the 20S proteasome β5 subunit in adaptive homeostasis highlights the interconnection between signal transduction pathways and regulated gene expression in sexually divergent responses to oxidative stimulation.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA, 00089-0191, USA; National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christina Sisliyan
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA, 00089-0191, USA
| | - Sarah Wong
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA, 00089-0191, USA
| | - Mayme Cline
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA, 00089-0191, USA
| | - John Tower
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA, 00089-0191, USA; Molecular & Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA, 00089-0191, USA; Molecular & Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA, 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
16
|
Waite KA, Burris A, Roelofs J. Tagging the proteasome active site β5 causes tag specific phenotypes in yeast. Sci Rep 2020; 10:18133. [PMID: 33093623 PMCID: PMC7582879 DOI: 10.1038/s41598-020-75126-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
The efficient and timely degradation of proteins is crucial for many cellular processes and to maintain general proteostasis. The proteasome, a complex multisubunit protease, plays a critical role in protein degradation. Therefore, it is important to understand the assembly, regulation, and localization of proteasome complexes in the cell under different conditions. Fluorescent tags are often utilized to study proteasomes. A GFP-tag on the β5 subunit, one of the core particle (CP) subunits with catalytic activity, has been shown to be incorporated into proteasomes and commonly used by the field. We report here that a tag on this subunit results in aberrant phenotypes that are not observed when several other CP subunits are tagged. These phenotypes appear in combination with other proteasome mutations and include poor growth, and, more significantly, altered 26S proteasome localization. In strains defective for autophagy, β5-GFP tagged proteasomes, unlike other CP tags, localize to granules upon nitrogen starvation. These granules are reflective of previously described proteasome storage granules but display unique properties. This suggests proteasomes with a β5-GFP tag are specifically recognized and sequestered depending on physiological conditions. In all, our data indicate the intricacy of tagging proteasomes, and possibly, large complexes in general.
Collapse
Affiliation(s)
- Kenrick A Waite
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA
| | - Alicia Burris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA.,Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS, 66506, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA.
| |
Collapse
|
17
|
Park CW, Bae JS, Ryu KY. Simultaneous Disruption of Both Polyubiquitin Genes Affects Proteasome Function and Decreases Cellular Proliferation. Cell Biochem Biophys 2020; 78:321-329. [PMID: 32705536 DOI: 10.1007/s12013-020-00933-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
The ubiquitin (Ub) proteasome system is important for maintaining protein homeostasis and has various roles in cell signaling, proliferation, and cell cycle regulation. In mammals, Ub is encoded by two monoubiquitin and two polyubiquitin genes. Although reduced levels of Ub due to the disruption of one polyubiquitin gene are known to decrease cell proliferation, the effect of disrupting both polyubiquitin genes remains elusive. Polyubiquitin gene Ubc knockout mice are embryonically lethal and polyubiquitin gene Ubb knockout mice are infertile. Thus, it is difficult to study the effects of double knockouts (DKOs). In the present study, the CRISPR/Cas9 system was used to simultaneously knockout both polyubiquitin genes, UBB and UBC, in HEK293T and HeLa cells. In DKO cells, growth decreased significantly compared to the control cells. We observed reduced proteasome function and reduced levels of free Ub in DKO cells. However, the levels of purified proteasome were not different between control and DKO cells, although the mRNA levels of proteasomal subunits were significantly increased in latter. We propose that the reduction of Ub levels, by disruption of both polyubiquitin genes, resulted in an altered proteasomal status, leading to the reduced proteasome activity, and decreased cellular proliferation.
Collapse
Affiliation(s)
- Chul-Woo Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Jin-Sil Bae
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
18
|
Majumder P, Baumeister W. Proteasomes: unfoldase-assisted protein degradation machines. Biol Chem 2020; 401:183-199. [PMID: 31665105 DOI: 10.1515/hsz-2019-0344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Proteasomes are the principal molecular machines for the regulated degradation of intracellular proteins. These self-compartmentalized macromolecular assemblies selectively degrade misfolded, mistranslated, damaged or otherwise unwanted proteins, and play a pivotal role in the maintenance of cellular proteostasis, in stress response, and numerous other processes of vital importance. Whereas the molecular architecture of the proteasome core particle (CP) is universally conserved, the unfoldase modules vary in overall structure, subunit complexity, and regulatory principles. Proteasomal unfoldases are AAA+ ATPases (ATPases associated with a variety of cellular activities) that unfold protein substrates, and translocate them into the CP for degradation. In this review, we summarize the current state of knowledge about proteasome - unfoldase systems in bacteria, archaea, and eukaryotes, the three domains of life.
Collapse
Affiliation(s)
- Parijat Majumder
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
19
|
Wysocka M, Romanowska A, Gruba N, Michalska M, Giełdoń A, Lesner A. A Peptidomimetic Fluorescent Probe to Detect the Trypsin β2 Subunit of the Human 20S Proteasome. Int J Mol Sci 2020; 21:ijms21072396. [PMID: 32244300 PMCID: PMC7177456 DOI: 10.3390/ijms21072396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 01/20/2023] Open
Abstract
This work describes the chemical synthesis, combinatorial selection, and enzymatic evaluation of peptidomimetic fluorescent substrates specific for the trypsin-like (β2) subunit of the 20S human proteasome. After deconvolution of a library comprising nearly 6000 compounds composed of peg substituted diaminopropionic acid DAPEG building blocks, the sequence ABZ–Dap(O2(Cbz))–Dap(GO1)–Dap(O2(Cbz))–Arg–ANB–NH2, where ABZ is 2-aminobenzoic acid, and ANB- 5 amino 2- nitro benzoic acid was selected. Its cleavage followed sigmoidal kinetics, characteristic for allosteric enzymes, with Km = 3.22 ± 0.02 μM, kcat = 245 s−1, and kcat/Km = 7.61 × 107 M−1 s−1. This process was practically halted when a selective inhibitor of the β2 subunit of the 20S human proteasome was supplemented to the reaction system. Titration of the substrate resulting in decreased amounts of proteasome 20S produced a linear signal up to 10−11 M. Using this substrate, we detected human proteasome 20S in human urine samples taken from the bladders of cancer patients. This observation could be useful for the noninvasive diagnosis of this severe disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Lesner
- Correspondence: ; Tel.: +48-585-235-095; Fax: +48-585-235-472
| |
Collapse
|
20
|
Abstract
Proteasomes are large, multicatalytic protein complexes that cleave cellular proteins into peptides. There are many distinct forms of proteasomes that differ in catalytically active subunits, regulatory subunits, and associated proteins. Proteasome inhibitors are an important class of drugs for the treatment of multiple myeloma and mantle cell lymphoma, and they are being investigated for other diseases. Bortezomib (Velcade) was the first proteasome inhibitor to be approved by the US Food and Drug Administration. Carfilzomib (Kyprolis) and ixazomib (Ninlaro) have recently been approved, and more drugs are in development. While the primary mechanism of action is inhibition of the proteasome, the downstream events that lead to selective cell death are not entirely clear. Proteasome inhibitors have been found to affect protein turnover but at concentrations that are much higher than those achieved clinically, raising the possibility that some of the effects of proteasome inhibitors are mediated by other mechanisms.
Collapse
Affiliation(s)
- Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
21
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Citation(s) in RCA: 691] [Impact Index Per Article: 138.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Spits M, Janssen LJ, Voortman LM, Kooij R, Neefjes ACM, Ovaa H, Neefjes J. Homeostasis of soluble proteins and the proteasome post nuclear envelope reformation in mitosis. J Cell Sci 2019; 132:jcs.225524. [DOI: 10.1242/jcs.225524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Upon Nuclear envelope (NE) fragmentation in the prometaphase the nuclear and cytosolic proteomes blend and must be redefined to reinstate homeostasis. Using a molecular GFP ladder, we show that in early mitosis, condensed chromatin excludes cytosolic proteins. When the NE reforms tightly around condensed chromatin in late mitosis, large GFP multimers are automatically excluded from the nucleus. This can be circumvented by limiting DNA condensation with Q15, a Condensin II inhibitor. Soluble small and other NLS-targeted proteins then swiftly enter the expanding nuclear space. We then examined the proteasome, located in cytoplasm and nucleus. A significant fraction of 20S proteasomes is imported by importin IPO5 within 20 minutes following reformation of the nucleus, after which import comes to an abrupt halt. This suggests that maintaining the nuclear-cytosol distribution after mitosis requires chromatin condensation to exclude cytosolic material from the nuclear space and specialized machineries for nuclear import of large protein complexes such as the proteasome.
Collapse
Affiliation(s)
- Menno Spits
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Lennert J. Janssen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Lenard M. Voortman
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Raymond Kooij
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Anna C. M. Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| |
Collapse
|
23
|
Korovila I, Hugo M, Castro JP, Weber D, Höhn A, Grune T, Jung T. Proteostasis, oxidative stress and aging. Redox Biol 2017; 13:550-567. [PMID: 28763764 PMCID: PMC5536880 DOI: 10.1016/j.redox.2017.07.008] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 12/21/2022] Open
Abstract
The production of reactive species is an inevitable by-product of metabolism and thus, life itself. Since reactive species are able to damage cellular structures, especially proteins, as the most abundant macromolecule of mammalian cells, systems are necessary which regulate and preserve a functional cellular protein pool, in a process termed “proteostasis”. Not only the mammalian protein pool is subject of a constant turnover, organelles are also degraded and rebuild. The most important systems for these removal processes are the “ubiquitin-proteasomal system” (UPS), the central proteolytic machinery of mammalian cells, mainly responsible for proteostasis, as well as the “autophagy-lysosomal system”, which mediates the turnover of organelles and large aggregates. Many age-related pathologies and the aging process itself are accompanied by a dysregulation of UPS, autophagy and the cross-talk between both systems. This review will describe the sources and effects of oxidative stress, preservation of cellular protein- and organelle-homeostasis and the effects of aging on proteostasis in mammalian cells.
Collapse
Affiliation(s)
- Ioanna Korovila
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Martín Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; Faculty of Medicine, Department of Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| |
Collapse
|
24
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Li P, Jin H, Koch BA, Abblett RL, Han X, Yates JR, Yu HG. Cleavage of the SUN-domain protein Mps3 at its N-terminus regulates centrosome disjunction in budding yeast meiosis. PLoS Genet 2017; 13:e1006830. [PMID: 28609436 PMCID: PMC5487077 DOI: 10.1371/journal.pgen.1006830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/27/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Centrosomes organize microtubules and are essential for spindle formation and chromosome segregation during cell division. Duplicated centrosomes are physically linked, but how this linkage is dissolved remains unclear. Yeast centrosomes are tethered by a nuclear-envelope-attached structure called the half-bridge, whose components have mammalian homologues. We report here that cleavage of the half-bridge protein Mps3 promotes accurate centrosome disjunction in budding yeast. Mps3 is a single-pass SUN-domain protein anchored at the inner nuclear membrane and concentrated at the nuclear side of the half-bridge. Using the unique feature in yeast meiosis that centrosomes are linked for hours before their separation, we have revealed that Mps3 is cleaved at its nucleus-localized N-terminal domain, the process of which is regulated by its phosphorylation at serine 70. Cleavage of Mps3 takes place at the yeast centrosome and requires proteasome activity. We show that noncleavable Mps3 (Mps3-nc) inhibits centrosome separation during yeast meiosis. In addition, overexpression of mps3-nc in vegetative yeast cells also inhibits centrosome separation and is lethal. Our findings provide a genetic mechanism for the regulation of SUN-domain protein-mediated activities, including centrosome separation, by irreversible protein cleavage at the nuclear periphery.
Collapse
Affiliation(s)
- Ping Li
- Department of Biological Science, the Florida State University, Tallahassee, FL, United States of America
- Zhejiang Gongshang University, Key Laboratory for Food Microbial Technology, Hangzhou, China
| | - Hui Jin
- Department of Biological Science, the Florida State University, Tallahassee, FL, United States of America
| | - Bailey A Koch
- Department of Biological Science, the Florida State University, Tallahassee, FL, United States of America
| | - Rebecca L Abblett
- Department of Biological Science, the Florida State University, Tallahassee, FL, United States of America
| | - Xuemei Han
- The Scripps Research Institute, LaJolla, CA, United States of America
| | - John R Yates
- The Scripps Research Institute, LaJolla, CA, United States of America
| | - Hong-Guo Yu
- Department of Biological Science, the Florida State University, Tallahassee, FL, United States of America
| |
Collapse
|
26
|
Chhabra S. Novel Proteasome Inhibitors and Histone Deacetylase Inhibitors: Progress in Myeloma Therapeutics. Pharmaceuticals (Basel) 2017; 10:E40. [PMID: 28398261 PMCID: PMC5490397 DOI: 10.3390/ph10020040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/01/2023] Open
Abstract
The unfolded protein response is responsible for the detection of misfolded proteins and the coordination of their disposal and is necessary to maintain the cellular homoeostasis. Multiple myeloma cells secrete large amounts of immunoglobulins, proteins that need to be correctly folded by the chaperone system. If this process fails, the misfolded proteins have to be eliminated by the two main garbage-disposal systems of the cell: proteasome and aggresome. The blockade of either of these systems will result in accumulation of immunoglobulins and other toxic proteins in the cytoplasm and cell death. The simultaneous inhibition of the proteasome, by proteasome inhibitors (PIs) and the aggresome, by histone deacetylase inhibitors (HDACi) results in a synergistic increase in cytotoxicity in myeloma cell lines. This review provides an overview of mechanisms of action of second-generation PIs and HDACi in multiple myeloma (MM), the clinical results currently observed with these agents and assesses the potential therapeutic impact of the different agents in the two classes. The second-generation PIs offer benefits in terms of increased efficacy, reduced neurotoxicity as off-target effect and may overcome resistance to bortezomib because of their different chemical structure, mechanism of action and biological properties. HDACi with anti-myeloma activity in clinical development discussed in this review include vorinostat, panobinostat and selective HDAC6 inhibitor, ricolinostat.
Collapse
Affiliation(s)
- Saurabh Chhabra
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, USA.
| |
Collapse
|
27
|
Howell LA, Tomko RJ, Kusmierczyk AR. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nat Commun 2016; 7:10900. [PMID: 26964885 PMCID: PMC4792962 DOI: 10.1038/ncomms10900] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/31/2016] [Indexed: 11/28/2022] Open
Abstract
Biogenesis of the 20S proteasome is tightly regulated. The N-terminal propeptides protecting the active-site threonines are autocatalytically released only on completion of assembly. However, the trigger for the self-activation and the reason for the strict conservation of threonine as the active site nucleophile remain enigmatic. Here we use mutagenesis, X-ray crystallography and biochemical assays to suggest that Lys33 initiates nucleophilic attack of the propeptide by deprotonating the Thr1 hydroxyl group and that both residues together with Asp17 are part of a catalytic triad. Substitution of Thr1 by Cys disrupts the interaction with Lys33 and inactivates the proteasome. Although a Thr1Ser mutant is active, it is less efficient compared with wild type because of the unfavourable orientation of Ser1 towards incoming substrates. This work provides insights into the basic mechanism of proteolysis and propeptide autolysis, as well as the evolutionary pressures that drove the proteasome to become a threonine protease. The proteasome, an essential molecular machine, is a threonine protease, but the evolution and the components of its proteolytic centre are unclear. Here, the authors use structural biology and biochemistry to investigate the role of proteasome active site residues on maturation and activity.
Collapse
|
29
|
Zhang H, Wang X. Priming the proteasome by protein kinase G: a novel cardioprotective mechanism of sildenafil. Future Cardiol 2015; 11:177-89. [PMID: 25760877 DOI: 10.2217/fca.15.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The proteasome mediates the degradation of most cellular proteins including misfolded proteins, pivotal to intracellular protein hemostasis. Proteasome functional insufficiency is implicated in a large subset of human failing hearts. Experimental studies have established proteasome functional insufficiency as a major pathogenic factor, rationalizing proteasome enhancement as a potentially new therapeutic strategy for congestive heart failure. Protein kinase G activation known to be cardioprotective was recently found to facilitate proteasomal degradation of misfolded proteins in cardiomyocytes; sildenafil was shown to activate myocardial protein kinase G, improve cardiac protein quality control and slow down the progression of cardiac proteinopathy in mice. This identifies the first clinically used drug that is capable of benign proteasome enhancement and unveils a potentially novel cardioprotective mechanism for sildenafil.
Collapse
Affiliation(s)
- Hanming Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
30
|
West DWD, Baehr LM, Marcotte GR, Chason CM, Tolento L, Gomes AV, Bodine SC, Baar K. Acute resistance exercise activates rapamycin-sensitive and -insensitive mechanisms that control translational activity and capacity in skeletal muscle. J Physiol 2015; 594:453-68. [PMID: 26548696 DOI: 10.1113/jp271365] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Ribosome biogenesis is the primary determinant of translational capacity, but its regulation in skeletal muscle following acute resistance exercise is poorly understood. Resistance exercise increases muscle protein synthesis acutely, and muscle mass with training, but the role of translational capacity in these processes is unclear. Here, we show that acute resistance exercise activated pathways controlling translational activity and capacity through both rapamycin-sensitive and -insensitive mechanisms. Transcription factor c-Myc and its downstream targets, which are known to regulate ribosome biogenesis in other cell types, were upregulated after resistance exercise in a rapamycin-independent manner and may play a role in determining translational capacity in skeletal muscle. Local inhibition of myostatin was also not affected by rapamycin and may contribute to the rapamycin-independent effects of resistance exercise. ABSTRACT This study aimed to determine (1) the effect of acute resistance exercise on mechanisms of ribosome biogenesis, and (2) the impact of mammalian target of rapamycin on ribosome biogenesis, and muscle protein synthesis (MPS) and degradation. Female F344BN rats underwent unilateral electrical stimulation of the sciatic nerve to mimic resistance exercise in the tibialis anterior (TA) muscle. TA muscles were collected at intervals over the 36 h of exercise recovery (REx); separate groups of animals were administered rapamycin pre-exercise (REx+Rapamycin). Resistance exercise led to a prolonged (6-36 h) elevation (30-50%) of MPS that was fully blocked by rapamycin at 6 h but only partially at 18 h. REx also altered pathways that regulate protein homeostasis and mRNA translation in a manner that was both rapamycin-sensitive (proteasome activity; phosphorylation of S6K1 and rpS6) and rapamycin-insensitive (phosphorylation of eEF2, ERK1/2 and UBF; gene expression of the myostatin target Mighty as well as c-Myc and its targets involved in ribosome biogenesis). The role of c-Myc was tested in vitro using the inhibitor 10058-F4, which, over time, decreased basal RNA and MPS in a dose-dependent manner (correlation of RNA and MPS, r(2) = 0.98), even though it had no effect on the acute stimulation of protein synthesis. In conclusion, acute resistance exercise stimulated rapamycin-sensitive and -insensitive mechanisms that regulate translation activity and capacity.
Collapse
Affiliation(s)
- Daniel W D West
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Leslie M Baehr
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - George R Marcotte
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Courtney M Chason
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | - Luis Tolento
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | - Aldrin V Gomes
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA.,Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | - Sue C Bodine
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA.,Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| | - Keith Baar
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA.,Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA.,VA Northern California Health Care System, Mather, CA, USA
| |
Collapse
|
31
|
Li X, Li Y, Arendt CS, Hochstrasser M. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly. J Biol Chem 2015; 291:1991-2003. [PMID: 26627836 DOI: 10.1074/jbc.m115.677047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Indexed: 01/02/2023] Open
Abstract
Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining.
Collapse
Affiliation(s)
- Xia Li
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Yanjie Li
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Cassandra S Arendt
- the Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Mark Hochstrasser
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and.
| |
Collapse
|
32
|
Gruba N, Wysocka M, Brzezińska M, Debowski D, Rolka K, Martin NI, Lesner A. Novel internally quenched substrate of the trypsin-like subunit of 20S eukaryotic proteasome. Anal Biochem 2015; 508:38-45. [PMID: 26314791 DOI: 10.1016/j.ab.2015.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/16/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022]
Abstract
This article describes the synthesis, using combinatorial chemistry, of internally quenched substrates of the trypsin-like subunit of human 20S proteasome. Such substrates were optimized in both the nonprime and prime regions of the peptide chain. Two were selected as the most susceptible for proteasomal proteolysis with excellent kinetic parameters: (i) ABZ-Val-Val-Ser-Arg-Ser-Leu-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 934,000 M(-1) s(-1)) and (ii) ABZ-Val-Val-Ser-GNF-Ala-Met-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 1,980,000 M(-1) s(-1)). Both compounds were efficiently hydrolyzed by the 20S proteasome at picomolar concentrations, demonstrating significant selectivity over other proteasome entities.
Collapse
Affiliation(s)
- Natalia Gruba
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | | | | | - Dawid Debowski
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Krzysztof Rolka
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Nathaniel I Martin
- Faculty of Science, Utrecht University, 3512 JE Utrecht, The Netherlands
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland.
| |
Collapse
|
33
|
The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 2015; 567:103-31. [PMID: 25987439 DOI: 10.1016/j.gene.2015.04.085] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
N-terminal acetylation (NTA) is one of the most abundant protein modifications known, and the N-terminal acetyltransferase (NAT) machinery is conserved throughout all Eukarya. Over the past 50 years, the function of NTA has begun to be slowly elucidated, and this includes the modulation of protein-protein interaction, protein-stability, protein function, and protein targeting to specific cellular compartments. Many of these functions have been studied in the context of Naa10/NatA; however, we are only starting to really understand the full complexity of this picture. Roughly, about 40% of all human proteins are substrates of Naa10 and the impact of this modification has only been studied for a few of them. Besides acting as a NAT in the NatA complex, recently other functions have been linked to Naa10, including post-translational NTA, lysine acetylation, and NAT/KAT-independent functions. Also, recent publications have linked mutations in Naa10 to various diseases, emphasizing the importance of Naa10 research in humans. The recent design and synthesis of the first bisubstrate inhibitors that potently and selectively inhibit the NatA/Naa10 complex, monomeric Naa10, and hNaa50 further increases the toolset to analyze Naa10 function.
Collapse
|
34
|
Sagawa M, Tabayashi T, Kimura Y, Tomikawa T, Nemoto-Anan T, Watanabe R, Tokuhira M, Ri M, Hashimoto Y, Iida S, Kizaki M. TM-233, a novel analog of 1'-acetoxychavicol acetate, induces cell death in myeloma cells by inhibiting both JAK/STAT and proteasome activities. Cancer Sci 2015; 106:438-46. [PMID: 25613668 PMCID: PMC4409888 DOI: 10.1111/cas.12616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/28/2022] Open
Abstract
Although the introduction of bortezomib and immunomodulatory drugs has led to improved outcomes in patients with multiple myeloma, the disease remains incurable. In an effort to identify more potent and well-tolerated agents for myeloma, we have previously reported that 1'-acetoxychavicol acetate (ACA), a natural condiment from South-East Asia, induces apoptotic cell death of myeloma cells in vitro and in vivo through inhibition of NF-κB-related functions. Searching for more potent NF-κB inhibitors, we developed several ACA analogs based on quantitative structure-activity relationship analysis. TM-233, one of these ACA analogs, inhibited cellular proliferation and induced cell death in various myeloma cell lines with a lower IC50 than ACA. Treatment with TM-233 inhibited constitutive activation of JAK2 and STAT3, and then downregulated the expression of anti-apoptotic Mcl-1 protein, but not Bcl-2 and Bcl-xL proteins. In addition, TM-233 rapidly decreased the nuclear expression of NF-κB and also decreased the accumulation of cytosolic NF-κB. We also examined the effects of TM-233 on bortezomib-resistant myeloma cells that we recently established, KMS-11/BTZ and OPM-2/BTZ. TM-233, but not bortezomib, inhibited cellular proliferation and induced cell death in KMS-11/BTZ and OPM-2/BTZ cells. Interestingly, the combination of TM-233 and bortezomib significantly induced cell death in these bortezomib-resistant myeloma cells through inhibition of NF-κB activity. These results indicate that TM-233 could overcome bortezomib resistance in myeloma cells mediated through different mechanisms, possibly inhibiting the JAK/STAT pathway. In conclusion, TM-233 might be a more potent NF-κB inhibitor than ACA, and could overcome bortezomib resistance in myeloma cells.
Collapse
Affiliation(s)
- Morihiko Sagawa
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
2-DE Mapping of the Blue Mussel Gill Proteome: The Usual Suspects Revisited. Proteomes 2015; 3:3-41. [PMID: 28248261 PMCID: PMC5302490 DOI: 10.3390/proteomes3010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/04/2014] [Indexed: 11/17/2022] Open
Abstract
The Blue Mussel (Mytilus edulis, L. 1758) is an ecologically important and commercially relevant bivalve. Because of its ability to bioconcentrate xenobiotics, it is also a widespread sentinel species for environmental pollution, which has been used in ecotoxicological studies for biomarker assessment. Consequently, numerous proteomics studies have been carried out in various research contexts using mussels of the genus Mytilus, which intended to improve our understanding of complex physiological processes related to reproduction, adaptation to physical stressors or shell formation and for biomarker discovery. Differential-display 2-DE proteomics relies on an extensive knowledge of the proteome with as many proteoforms identified as possible. To this end, extensive characterization of proteins was performed in order to increase our knowledge of the Mytilus gill proteome. On average, 700 spots were detected on 2-DE gels by colloidal blue staining, of which 122 different, non-redundant proteins comprising 203 proteoforms could be identified by tandem mass spectrometry. These proteins could be attributed to four major categories: (i) “metabolism”, including antioxidant defence and degradation of xenobiotics; (ii) “genetic information processing”, comprising transcription and translation as well as folding, sorting, repair and degradation; (iii) “cellular processes”, such as cell motility, transport and catabolism; (iv) “environmental information processing”, including signal transduction and signalling molecules and interaction. The role of cytoskeleton proteins, energetic metabolism, chaperones/stress proteins, protein trafficking and the proteasome are discussed in the light of the exigencies of the intertidal environment, leading to an enhanced stress response, as well as the structural and physiological particularities of the bivalve gill tissue.
Collapse
|
36
|
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71:4729-45. [PMID: 25107634 PMCID: PMC11113775 DOI: 10.1007/s00018-014-1699-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
37
|
Comparative proteomics of mitosis and meiosis in Saccharomyces cerevisiae. J Proteomics 2014; 109:1-15. [DOI: 10.1016/j.jprot.2014.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/21/2014] [Accepted: 06/08/2014] [Indexed: 12/18/2022]
|
38
|
Arellano-Garcia ME, Misuno K, Tran SD, Hu S. Interferon-γ induces immunoproteasomes and the presentation of MHC I-associated peptides on human salivary gland cells. PLoS One 2014; 9:e102878. [PMID: 25102056 PMCID: PMC4125149 DOI: 10.1371/journal.pone.0102878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022] Open
Abstract
A prominent histopathological feature of Sjögren's syndrome, an autoimmune disease, is the presence of lymphocytic infiltrates in the salivary and lachrymal glands. Such infiltrates are comprised of activated lymphocytes and macrophages, and known to produce multiple cytokines including interferon-gamma (IFN-γ). In this study, we have demonstrated that IFN-γ strongly induces the expression of immunoproteasome beta subunits (β1i, β2i and β5i) and immunoproteasome activity but conversely inhibits the expression of proteasome beta subunits (β1, β2 and β5) in human salivary gland (HSG) cells. Mass spectrometric analysis has revealed potential MHC I-associated peptides on the HSG cells, including a tryptic peptide derived from salivary amylase, due to IFN-γ stimulation. These results suggest that IFN-γ induces immunoproteasomes in HSG cells, leading to enhanced presentation of MHC I-associated peptides on cell surface. These peptide-presenting salivary gland cells may be recognized and targeted by auto-reactive T lymphocytes. We have also found that lactacystin, a proteasome inhibitor, inhibits the expression of β1 subunit in HSG cells and blocks the IFN-γ-induced expression of β1i and immunoproteasome activity. However, the expression of β2i and β5i in HSG cells is not affected by lactacystin. These results may add new insight into the mechanism regarding how lactacystin blocks the action of proteasomes or immunoproteasomes.
Collapse
Affiliation(s)
- Martha E. Arellano-Garcia
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kaori Misuno
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Simon D. Tran
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Shen Hu
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
39
|
Kubiczkova L, Pour L, Sedlarikova L, Hajek R, Sevcikova S. Proteasome inhibitors - molecular basis and current perspectives in multiple myeloma. J Cell Mol Med 2014; 18:947-61. [PMID: 24712303 PMCID: PMC4508135 DOI: 10.1111/jcmm.12279] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 02/13/2014] [Indexed: 01/08/2023] Open
Abstract
Inhibition of proteasome, a proteolytic complex responsible for the degradation of ubiquitinated proteins, has emerged as a powerful strategy for treatment of multiple myeloma (MM), a plasma cell malignancy. First-in-class agent, bortezomib, has demonstrated great positive therapeutic efficacy in MM, both in pre-clinical and in clinical studies. However, despite its high efficiency, a large proportion of patients do not achieve sufficient clinical response. Therefore, the development of a second-generation of proteasome inhibitors (PIs) with improved pharmacological properties was needed. Recently, several of these new agents have been introduced into clinics including carfilzomib, marizomib and ixazomib. Further, new orally administered second-generation PI oprozomib is being investigated. This review provides an overview of main mechanisms of action of PIs in MM, focusing on the ongoing development and progress of novel anti-proteasome therapeutics.
Collapse
Affiliation(s)
- Lenka Kubiczkova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
40
|
Ranek MJ, Terpstra EJM, Li J, Kass DA, Wang X. Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 2013; 128:365-76. [PMID: 23770744 DOI: 10.1161/circulationaha.113.001971] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Proteasome functional insufficiency is implicated in a large subset of cardiovascular diseases and may play an important role in their pathogenesis. The regulation of proteasome function is poorly understood, hindering the development of effective strategies to improve proteasome function. METHODS AND RESULTS Protein kinase G (PKG) was manipulated genetically and pharmacologically in cultured cardiomyocytes. Activation of PKG increased proteasome peptidase activities, facilitated proteasome-mediated degradation of surrogate (enhanced green fluorescence protein modified by carboxyl fusion of degron CL1) and bona fide (CryAB(R120G)) misfolded proteins, and attenuated CryAB(R120G) overexpression-induced accumulation of ubiquitinated proteins and cellular injury. PKG inhibition elicited the opposite responses. Differences in the abundance of the key 26S proteasome subunits Rpt6 and β5 between the PKG-manipulated and control groups were not statistically significant, but the isoelectric points were shifted by PKG activation. In transgenic mice expressing a surrogate substrate (GFPdgn), PKG activation by sildenafil increased myocardial proteasome activities and significantly decreased myocardial GFPdgn protein levels. Sildenafil treatment significantly increased myocardial PKG activity and significantly reduced myocardial accumulation of CryAB(R120G), ubiquitin conjugates, and aberrant protein aggregates in mice with CryAB(R120G)-based desmin-related cardiomyopathy. No discernible effect on bona fide native substrates of the ubiquitin-proteasome system was observed from PKG manipulation in vitro or in vivo. CONCLUSIONS PKG positively regulates proteasome activities and proteasome-mediated degradation of misfolded proteins, likely through posttranslational modifications to proteasome subunits. This may be a new mechanism underlying the benefit of PKG stimulation in treating cardiac diseases. Stimulation of PKG by measures such as sildenafil administration is potentially a new therapeutic strategy to treat cardiac proteinopathies.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Basic Biomedical Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, USA
| | | | | | | | | |
Collapse
|
41
|
Sun L, Ye Y, Sun H, Yu J, Zhang L, Sun Y, Zhang D, Ma L, Shen B, Zhu C. Identification of proteasome subunit beta type 6 (PSMB6) associated with deltamethrin resistance in mosquitoes by proteomic and bioassay analyses. PLoS One 2013; 8:e65859. [PMID: 23762443 PMCID: PMC3677870 DOI: 10.1371/journal.pone.0065859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 05/01/2013] [Indexed: 11/25/2022] Open
Abstract
Deltamethrin (DM) insecticides are currently being promoted worldwide for mosquito control, because of the high efficacy, low mammalian toxicity and less environmental impact. Widespread and improper use of insecticides induced resistance, which has become a major obstacle for the insect-borne disease management. Resistance development is a complex and dynamic process involving many genes. To better understand the possible molecular mechanisms involved in DM resistance, a proteomic approach was employed for screening of differentially expressed proteins in DM-susceptible and -resistant mosquito cells. Twenty-seven differentially expressed proteins were identified by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). Four members of the ubiquitin-proteasome system were significantly elevated in DM-resistant cells, suggesting that the ubiquitin-proteasome pathway may play an important role in DM resistance. Proteasome subunit beta type 6 (PSMB6) is a member of 20S proteasomal subunit family, which forms the proteolytic core of 26S proteasome. We used pharmaceutical inhibitor and molecular approaches to study the contributions of PSMB6 in DM resistance: the proteasome inhibitor MG-132 and bortezomib were used to suppress the proteasomal activity and siRNA was designed to block the function of PSMB6. The results revealed that both MG-132 and bortezomib increased the susceptibility in DM-resistant cells and resistance larvae. Moreover, PSMB6 knockdown decreased cellular viability under DM treatment. Taken together, our study indicated that PSMB6 is associated with DM resistance in mosquitoes and that proteasome inhibitors such as MG-132 or bortezomib are suitable for use as a DM synergist for vector control.
Collapse
Affiliation(s)
- Linchun Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Pediatric Research Center, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Yuting Ye
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Haibo Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jing Yu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Li Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, Jiangsu, P. R. China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
42
|
Kunjappu MJ, Hochstrasser M. Assembly of the 20S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:2-12. [PMID: 23507199 DOI: 10.1016/j.bbamcr.2013.03.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Mary J Kunjappu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue P.O. Box 208114, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
43
|
Abstract
Archaea contain, both a functional proteasome and an ubiquitin-like protein conjugation system (termed sampylation) that is related to the ubiquitin proteasome system (UPS) of eukaryotes. Archaeal proteasomes have served as excellent models for understanding how proteins are degraded by the central energy-dependent proteolytic machine of eukaryotes, the 26S proteasome. While sampylation has only recently been discovered, it is thought to be linked to proteasome-mediated degradation in archaea. Unlike eukaryotes, sampylation only requires an E1 enzyme homolog of the E1-E2-E3 ubiquitylation cascade to mediate protein conjugation. Furthermore, recent evidence suggests that archaeal and eurkaryotic E1 enzyme homologs can serve dual roles in mediating protein conjugation and activating sulfur for incorporation into biomolecules. The focus of this book chapter is the energy-dependent proteasome and sampylation systems of Archaea.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA,
| |
Collapse
|
44
|
|
45
|
Tian Z, Zheng H, Li J, Li Y, Su H, Wang X. Genetically induced moderate inhibition of the proteasome in cardiomyocytes exacerbates myocardial ischemia-reperfusion injury in mice. Circ Res 2012; 111:532-42. [PMID: 22740087 DOI: 10.1161/circresaha.112.270983] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RATIONALE Both cardiomyocyte-restricted proteasome functional enhancement and pharmacological proteasome inhibition (PSMI) were shown to attenuate myocardial ischemia/reperfusion (I/R) injury. The role of cardiac proteasome dysfunction during I/R and the perspective to diminish I/R injury by manipulating proteasome function remain unclear. OBJECTIVES We sought to determine proteasome adequacy in I/R hearts, create a mouse model of cardiomyocyte-restricted PSMI (CR-PSMI), and test CR-PSMI impact on I/R injury. METHODS AND RESULTS Myocardial I/R were modeled by ligation (30 minutes) and subsequent release of the left anterior descending artery in mice overexpressing GFPdgn, a validated surrogate proteasome substrate. At 24 hours of reperfusion, myocardial proteasome activities were significantly lower whereas total ubiquitin conjugates and GFPdgn protein levels were markedly higher in all regions of the I/R hearts than the sham controls, indicative of proteasome functional insufficiency. CR-PSMI in intact mice was achieved by transgenic (tg) overexpression of a peptidase-disabled mouse β5 subunit (T60A-β5) driven by an attenuated mouse mhc6 promoter. Overexpressed T60A-β5 can replace endogenous β5 and inhibits proteasome chymotrypsin-like activities in the heart. Mice with moderate CR-PSMI showed no abnormalities at the baseline but displayed markedly more pronounced structural and functional damage during I/R, compared with non-tg littermates. The exacerbation of I/R injury by moderate CR-PSMI was associated with significant increases in the protein level of PTEN and protein kinase Cδ (PKCδ), decreased Akt activation, and reduced PKCε. CONCLUSIONS Myocardial I/R causes proteasome functional insufficiency in cardiomyocytes and moderate CR-PSMI augments PTEN and PKCδ, suppresses Akt and PKCε, increases cardiomyocyte apoptosis, and aggravates I/R injury in mice.
Collapse
Affiliation(s)
- Zongwen Tian
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E Clark St, Lee Medical Bldg, Vermillion, SD 57069, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Yan C, Chen Z, Li H, Zhang G, Li F, Duerksen-Hughes PJ, Zhu X, Yang J. Nuclear proteome analysis of benzo(a)pyrene-treated HeLa cells. Mutat Res 2012; 731:75-84. [PMID: 22138005 DOI: 10.1016/j.mrfmmm.2011.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 11/03/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
Previously, we employed a proteomics-based 2-D gel electrophoresis assay to show that exposure to 10μM benzo(a)pyrene (BaP) during a 24 h frame can lead to changes in nuclear protein expression and alternative splicing. To further expand our knowledge about the DNA damage response (DDR) induced by BaP, we investigated the nuclear protein expression profiles in HeLa cells treated with different concentrations of BaP (0.1, 1, and 10μM) using this proteomics-based 2-D gel electrophoresis assay. We found 125 differentially expressed proteins in BaP-treated cells compared to control cells. Among them, 79 (63.2%) were down-regulated, 46 (36.8%) were up-regulated; 8 showed changes in the 1μM and 10μM BaP-treated groups, 2 in the 0.1μM and 10μM BaP-treated groups, 4 in the 0.1μM and 1μM BaP-treated groups, and only one showed changes in all three groups. Fifty protein spots were chosen for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, and of these, 39 were identified, including subunits of the 26S proteasome and Annexin A1. The functions of some identified proteins were further examined and the results showed that they might be involved in BaP-induced DDR. Taken together, these data indicate that proteomics is a valuable approach in the study of environmental chemical-host interactions, and the identified proteins could provide new leads for better understanding BaP-induced mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Chunlan Yan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The ubiquitin-proteasomal system is an essential element of the protein quality control machinery in cells. The central part of this system is the 20S proteasome. The proteasome is a barrel-shaped multienzyme complex, containing several active centers hidden at the inner surface of the hollow cylinder. So, the regulation of the substrate entry toward the inner proteasomal surface is a key control mechanism of the activity of this protease. This chapter outlines the knowledge on the structure of the subunits of the 20S proteasome, the binding and structure of some proteasomal regulators and inducible proteasomal subunits. Therefore, this chapter imparts the knowledge on proteasomal structure which is required for the understanding of the following chapters.
Collapse
|
48
|
Molecular mechanisms of bortezomib resistant adenocarcinoma cells. PLoS One 2011; 6:e27996. [PMID: 22216088 PMCID: PMC3245226 DOI: 10.1371/journal.pone.0027996] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/29/2011] [Indexed: 01/09/2023] Open
Abstract
Bortezomib (Velcade™) is a reversible proteasome inhibitor that is approved for the treatment of multiple myeloma (MM). Despite its demonstrated clinical success, some patients are deprived of treatment due to primary refractoriness or development of resistance during therapy. To investigate the role of the duration of proteasome inhibition in the anti-tumor response of bortezomib, we established clonal isolates of HT-29 adenocarcinoma cells adapted to continuous exposure of bortezomib. These cells were ∼30-fold resistant to bortezomib. Two novel and distinct mutations in the β5 subunit, Cys63Phe, located distal to the binding site in a helix critical for drug binding, and Arg24Cys, found in the propeptide region were found in all resistant clones. The latter mutation is a natural variant found to be elevated in frequency in patients with MM. Proteasome activity and levels of both the constitutive and immunoproteasome were increased in resistant cells, which correlated to an increase in subunit gene expression. These changes correlated with a more rapid recovery of proteasome activity following brief exposure to bortezomib. Increased recovery rate was not due to increased proteasome turnover as similar findings were seen in cells co-treated with cycloheximide. When we exposed resistant cells to the irreversible proteasome inhibitor carfilzomib we noted a slower rate of recovery of proteasome activity as compared to bortezomib in both parental and resistant cells. Importantly, carfilzomib maintained its cytotoxic potential in the bortezomib resistant cell lines. Therefore, resistance to bortezomib, can be overcome with irreversible inhibitors, suggesting prolonged proteasome inhibition induces a more potent anti-tumor response.
Collapse
|
49
|
Hwee DT, Gomes AV, Bodine SC. Cardiac proteasome activity in muscle ring finger-1 null mice at rest and following synthetic glucocorticoid treatment. Am J Physiol Endocrinol Metab 2011; 301:E967-77. [PMID: 21828340 PMCID: PMC3214003 DOI: 10.1152/ajpendo.00165.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Muscle ring finger-1 (MuRF1) is a muscle-specific E3 ubiquitin ligase that has been implicated in the regulation of cardiac mass through its control of the ubiquitin proteasome system. While it has been suggested that MuRF1 is required for cardiac atrophy, a resting cardiac phenotype has not been reported in mice with a null deletion [knockout (KO)] of MuRF1. Here, we report that MuRF1 KO mice have significantly larger hearts than age-matched wild-type (WT) littermates at ≥ 6 mo of age and that loss of cardiac mass can occur in the absence of MuRF1. The objective of this study was to determine whether changes in proteasome activity were responsible for the cardiac phenotypes observed in MuRF1 KO mice. Cardiac function, architecture, and proteasome activity were analyzed at rest and following 28 days of dexamethasone (Dex) treatment in 6-mo-old WT and MuRF1 KO mice. Echocardiography demonstrated normal cardiac function in the enlarged hearts in MURF1 KO mice. At rest, heart mass and cardiomyocyte diameter were significantly greater in MuRF1 KO than in WT mice. The increase in cardiac size in MuRF1 KO mice was related to a decrease in proteasome activity and an increase in Akt signaling relative to WT mice. Dex treatment induced a significant loss of cardiac mass in MuRF1 KO, but not WT, mice. Furthermore, Dex treatment resulted in an increase in proteasome activity in KO, but a decrease in WT, mice. In contrast, Akt/mammalian target of rapamycin signaling decreased in MuRF1 KO mice and increased in WT mice in response to Dex treatment. These findings demonstrate that MuRF1 plays an important role in regulating cardiac size through alterations in protein turnover and that MuRF1 is not required to induce cardiac atrophy.
Collapse
Affiliation(s)
- Darren T Hwee
- 2Molecular, Cellular, and Integrative Physiology Graduate Group, University of California, Davis, Davis, California, USA
| | | | | |
Collapse
|
50
|
Rawlings ND, Barrett AJ, Bateman A. Asparagine peptide lyases: a seventh catalytic type of proteolytic enzymes. J Biol Chem 2011; 286:38321-38328. [PMID: 21832066 PMCID: PMC3207474 DOI: 10.1074/jbc.m111.260026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The terms “proteolytic enzyme” and “peptidase” have been treated as synonymous, and all proteolytic enzymes have been considered to be hydrolases (EC 3.4). However, the recent discovery of proteins that cleave themselves at asparagine residues indicates that not all peptide bond cleavage occurs by hydrolysis. These self-cleaving proteins include the Tsh protein precursor of Escherichia coli, in which the large C-terminal propeptide acts as an autotransporter; certain viral coat proteins; and proteins containing inteins. Proteolysis is the action of an amidine lyase (EC 4.3.2). These proteolytic enzymes are also the first in which the nucleophile is an asparagine, defining the seventh proteolytic catalytic type and the first to be discovered since 2004. We have assembled ten families based on sequence similarity in which cleavage is thought to be catalyzed by an asparagine.
Collapse
Affiliation(s)
- Neil David Rawlings
- Wellcome Trust Genome Campus, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom.
| | - Alan John Barrett
- Wellcome Trust Genome Campus, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Alex Bateman
- Wellcome Trust Genome Campus, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| |
Collapse
|