1
|
Prats-Ejarque G, Lu L, Salazar VA, Moussaoui M, Boix E. Evolutionary Trends in RNA Base Selectivity Within the RNase A Superfamily. Front Pharmacol 2019; 10:1170. [PMID: 31649540 PMCID: PMC6794472 DOI: 10.3389/fphar.2019.01170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest in the pharmaceutical industry to design novel tailored drugs for RNA targeting. The vertebrate-specific RNase A superfamily is nowadays one of the best characterized family of enzymes and comprises proteins involved in host defense with specific cytotoxic and immune-modulatory properties. We observe within the family a structural variability at the substrate-binding site associated to a diversification of biological properties. In this work, we have analyzed the enzyme specificity at the secondary base binding site. Towards this end, we have performed a kinetic characterization of the canonical RNase types together with a molecular dynamic simulation of selected representative family members. The RNases' catalytic activity and binding interactions have been compared using UpA, UpG and UpI dinucleotides. Our results highlight an evolutionary trend from lower to higher order vertebrates towards an enhanced discrimination power of selectivity for adenine respect to guanine at the secondary base binding site (B2). Interestingly, the shift from guanine to adenine preference is achieved in all the studied family members by equivalent residues through distinct interaction modes. We can identify specific polar and charged side chains that selectively interact with donor or acceptor purine groups. Overall, we observe selective bidentate polar and electrostatic interactions: Asn to N1/N6 and N6/N7 adenine groups in mammals versus Glu/Asp and Arg to N1/N2, N1/O6 and O6/N7 guanine groups in non-mammals. In addition, kinetic and molecular dynamics comparative results on UpG versus UpI emphasize the main contribution of Glu/Asp interactions to N1/N2 group for guanine selectivity in lower order vertebrates. A close inspection at the B2 binding pocket also highlights the principal contribution of the protein ß6 and L4 loop regions. Significant differences in the orientation and extension of the L4 loop could explain how the same residues can participate in alternative binding modes. The analysis suggests that within the RNase A superfamily an evolution pressure has taken place at the B2 secondary binding site to provide novel substrate-recognition patterns. We are confident that a better knowledge of the enzymes' nucleotide recognition pattern would contribute to identify their physiological substrate and eventually design applied therapies to modulate their biological functions.
Collapse
Affiliation(s)
- Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Characterization of an RNase with two catalytic centers. Human RNase6 catalytic and phosphate-binding site arrangement favors the endonuclease cleavage of polymeric substrates. Biochim Biophys Acta Gen Subj 2018; 1863:105-117. [PMID: 30287244 DOI: 10.1016/j.bbagen.2018.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Human RNase6 is a small cationic antimicrobial protein that belongs to the vertebrate RNaseA superfamily. All members share a common catalytic mechanism, which involves a conserved catalytic triad, constituted by two histidines and a lysine (His15/His122/Lys38 in RNase6 corresponding to His12/His119/Lys41 in RNaseA). Recently, our first crystal structure of human RNase6 identified an additional His pair (His36/His39) and suggested the presence of a secondary active site. METHODS In this work we have explored RNase6 and RNaseA subsite architecture by X-ray crystallography, site-directed mutagenesis and kinetic characterization. RESULTS The analysis of two novel crystal structures of RNase6 in complex with phosphate anions at atomic resolution locates a total of nine binding sites and reveals the contribution of Lys87 to phosphate-binding at the secondary active center. Contribution of the second catalytic triad residues to the enzyme activity is confirmed by mutagenesis. RNase6 catalytic site architecture has been compared with an RNaseA engineered variant where a phosphate-binding subsite is converted into a secondary catalytic center (RNaseA-K7H/R10H). CONCLUSIONS We have identified the residues that participate in RNase6 second catalytic triad (His36/His39/Lys87) and secondary phosphate-binding sites. To note, residues His39 and Lys87 are unique within higher primates. The RNaseA/RNase6 side-by-side comparison correlates the presence of a dual active site in RNase6 with a favored endonuclease-type cleavage pattern. GENERAL SIGNIFICANCE An RNase dual catalytic and extended binding site arrangement facilitates the cleavage of polymeric substrates. This is the first report of the presence of two catalytic centers in a single monomer within the RNaseA superfamily.
Collapse
|
3
|
Vergara A, Caterino M, Merlino A. Raman-markers of X-ray radiation damage of proteins. Int J Biol Macromol 2018; 111:1194-1205. [PMID: 29374529 DOI: 10.1016/j.ijbiomac.2018.01.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 12/25/2022]
Abstract
Despite their high relevance, the mechanisms of X-ray radiation damage on protein structure yet have to be completely established. Here, we used Raman microspectrophotometry to follow X-ray-induced chemical modifications on the structure of the model protein bovine pancreatic ribonuclease (RNase A). The combination of dose-dependent Raman spectra and ultrahigh resolution (eight structures solved using data collected between 0.85 and 1.17 Å resolution on the same single crystal) allowed direct observation of several radiation damage events, including covalent bond breakages and formation of radicals. Our results are relevant for analytical photodamage detection and provide implications for a detailed understanding of the mechanisms of photoproduct formation.
Collapse
Affiliation(s)
- Alessandro Vergara
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia, Naples I-80126, Italy; CEINGE Biotecnologie Avanzate Scarl, Via G. Salvatore, Napoli, Italy
| | - Marco Caterino
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia, Naples I-80126, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia, Naples I-80126, Italy.
| |
Collapse
|
4
|
Kaplan AR, Brady MR, Maciejewski MW, Kammerer RA, Alexandrescu AT. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix. Biochemistry 2017; 56:1604-1619. [PMID: 28230348 DOI: 10.1021/acs.biochem.6b00634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cβ) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1H-15N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13C rotating frame T1 relaxation (T1ρ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.
Collapse
Affiliation(s)
- Anne R Kaplan
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3125, United States
| | - Megan R Brady
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3125, United States
| | - Mark W Maciejewski
- Department of Molecular Biology and Biophysics, UConn Health , Farmington, Connecticut 06030-3305, United States
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut , 5232 Villigen-PSI, Switzerland
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3125, United States
| |
Collapse
|
5
|
Kasireddy C, Ellis JM, Bann JG, Mitchell-Koch KR. Tautomeric stabilities of 4-fluorohistidine shed new light on mechanistic experiments with labeled ribonuclease A. Chem Phys Lett 2016; 666:58-61. [PMID: 28603294 DOI: 10.1016/j.cplett.2016.10.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ribonuclease A is the oldest model for studying enzymatic mechanisms, yet questions remain about proton transfer within the active site. Seminal work by Jackson et al. (Science, 1994) labeled Ribonuclease A with 4-fluorohistidine, concluding that active-site histidines act as general acids and bases. Calculations of 4-fluorohistidine indicate that the π-tautomer is predominant in all simulated environments (by ~17 kJ/mol), strongly suggesting that fluoro-labeled ribonuclease A functions with His119 in π-tautomer. The tautomeric form of His119 during proton transfer and tautomerism as a putative mechanistic step in wild-type RNase A remain open questions and should be considered in future mechanistic studies.
Collapse
Affiliation(s)
- Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| | - Jonathan M Ellis
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| | - James G Bann
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| |
Collapse
|
6
|
The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement. Biochem J 2016; 473:1523-36. [PMID: 27013146 PMCID: PMC4888456 DOI: 10.1042/bcj20160245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/24/2016] [Indexed: 12/29/2022]
Abstract
We describe the first human RNase 6 crystal structure in complex with sulfate anions. Kinetic analysis, site-directed mutagenesis and molecular dynamics simulations identified novel substrate recognition and cleavage sites. Human RNase 6 is a cationic secreted protein that belongs to the RNase A superfamily. Its expression is induced in neutrophils and monocytes upon bacterial infection, suggesting a role in host defence. We present here the crystal structure of RNase 6 obtained at 1.72 Å (1 Å=0.1 nm) resolution, which is the first report for the protein 3D structure and thereby setting the basis for functional studies. The structure shows an overall kidney-shaped globular fold shared with the other known family members. Three sulfate anions bound to RNase 6 were found, interacting with residues at the main active site (His15, His122 and Gln14) and cationic surface-exposed residues (His36, His39, Arg66 and His67). Kinetic characterization, together with prediction of protein–nucleotide complexes by molecular dynamics, was applied to analyse the RNase 6 substrate nitrogenous base and phosphate selectivity. Our results reveal that, although RNase 6 is a moderate catalyst in comparison with the pancreatic RNase type, its structure includes lineage-specific features that facilitate its activity towards polymeric nucleotide substrates. In particular, enzyme interactions at the substrate 5′ end can provide an endonuclease-type cleavage pattern. Interestingly, the RNase 6 crystal structure revealed a novel secondary active site conformed by the His36–His39 dyad that facilitates the polynucleotide substrate catalysis.
Collapse
|
7
|
Chatake T, Fujiwara S. A technique for determining the deuterium/hydrogen contrast map in neutron macromolecular crystallography. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:71-82. [DOI: 10.1107/s2059798315021269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 11/09/2015] [Indexed: 11/10/2022]
Abstract
A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.
Collapse
|
8
|
Hsu CH, Chang CF, Liao YD, Wu SH, Chen C. Solution structure and base specificity of cytotoxic RC-RNase 2 from Rana catesbeiana. Arch Biochem Biophys 2015; 584:70-8. [PMID: 26302448 DOI: 10.1016/j.abb.2015.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Cytotoxic ribonucleases found in the oocytes and early embryos of frogs with antitumor activity are well-documented. RC-RNase 2, a cytotoxic ribonuclease isolated from oocytes of bullfrog Rana catesbeiana, consists of 105 residues linked with 4 disulfide bridges and belongs to the bovine pancreatic ribonuclease (RNase A) superfamily. Among the RC-RNases, the base preference for RNase 2 is UpG but CpG for RC-RNase 4; while RC-RNase possesses the base specificity of both UpG and CpG. Interestingly, RC-RNase 2 or 4 has much lower catalytic activity but only three-fold less cytotoxicity than RC-RNase. Here, we report the NMR solution structure of rRC-RNase 2, comprising three alpha-helices and two sets of antiparallel beta-sheets. The differences of side-chain conformations of subsite residues among RNase A, RC-RNase, RC-RNase 4 and rRNase 2 are related to their distinct catalytic activities and base preferences. Furthermore, the substrate-related residues in the base specificity among native RC-RNases are derived using the chemical shift perturbation on ligand binding.
Collapse
Affiliation(s)
- Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, Center for Systems Biology, National Taiwan University, Taipei 10617, Taiwan.
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - You-Di Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
9
|
Malinska M, Dauter M, Kowiel M, Jaskolski M, Dauter Z. Protonation and geometry of histidine rings. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1444-54. [PMID: 26143916 PMCID: PMC4498602 DOI: 10.1107/s1399004715007816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 11/10/2022]
Abstract
The presence of H atoms connected to either or both of the two N atoms of the imidazole moiety in a histidine residue affects the geometry of the five-membered ring. Analysis of the imidazole moieties found in histidine residues of atomic resolution protein crystal structures in the Protein Data Bank (PDB), and in small-molecule structures retrieved from the Cambridge Structural Database (CSD), identified characteristic patterns of bond lengths and angles related to the protonation state of the imidazole moiety. Using discriminant analysis, two functions could be defined, corresponding to linear combinations of the four most sensitive stereochemical parameters, two bond lengths (ND1-CE1 and CE1-NE2) and two endocyclic angles (-ND1- and -NE2-), that uniquely identify the protonation states of all imidazole moieties in the CSD and can be used to predict which N atom(s) of the histidine side chains in protein structures are protonated. Updated geometrical restraint target values are proposed for differently protonated histidine side chains for use in macromolecular refinement.
Collapse
Affiliation(s)
- Maura Malinska
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miroslawa Dauter
- Leidos Biomedical Research Inc., Basic Science Program, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Marcin Kowiel
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
10
|
Pica A, Merlino A, Buell AK, Knowles TPJ, Pizzo E, D'Alessio G, Sica F, Mazzarella L. Three-dimensional domain swapping and supramolecular protein assembly: insights from the X-ray structure of a dimeric swapped variant of human pancreatic RNase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2116-23. [PMID: 24100329 DOI: 10.1107/s0907444913020507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022]
Abstract
The deletion of five residues in the loop connecting the N-terminal helix to the core of monomeric human pancreatic ribonuclease leads to the formation of an enzymatically active domain-swapped dimer (desHP). The crystal structure of desHP reveals the generation of an intriguing fibril-like aggregate of desHP molecules that extends along the c crystallographic axis. Dimers are formed by three-dimensional domain swapping. Tetramers are formed by the aggregation of swapped dimers with slightly different quaternary structures. The tetramers interact in such a way as to form an infinite rod-like structure that propagates throughout the crystal. The observed supramolecular assembly captured in the crystal predicts that desHP fibrils could form in solution; this has been confirmed by atomic force microscopy. These results provide new evidence that three-dimensional domain swapping can be a mechanism for the formation of elaborate large assemblies in which the protein, apart from the swapping, retains its original fold.
Collapse
Affiliation(s)
- Andrea Pica
- Department of Chemical Sciences, University of Naples `Federico II', Via Cintia, 80126 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gagné D, Doucet N. Structural and functional importance of local and global conformational fluctuations in the RNase A superfamily. FEBS J 2013; 280:5596-607. [PMID: 23763751 DOI: 10.1111/febs.12371] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 12/11/2022]
Abstract
Understanding the relationship between protein structure and flexibility is of utmost importance for deciphering the tremendous rates of reactions catalyzed by enzyme biocatalysts. It has been postulated that protein homologs have evolved similar dynamic fluctuations to promote catalytic function, a property that would presumably be encoded in their structural fold. Using one of the best-characterized enzyme systems of the past century, we explore this hypothesis by comparing the numerous and diverse flexibility reports available for a number of structural and functional homologs of the pancreatic-like RNase A superfamily. Using examples from the literature and from our own work, we cover recent and historical evidence pertaining to the highly dynamic nature of this important structural fold, as well as the presumed importance of local and global concerted motions on the ribonucleolytic function. This minireview does not pretend to cover the overwhelming RNase A literature in a comprehensive manner; rather, efforts have been made to focus on the characterization of multiple timescale motions observed in the free and/or ligand-bound structural homologs as they proceed along the reaction coordinates. Although each characterized enzyme of this architectural fold shows unique motional features on a local scale, accumulating evidence from X-ray crystallography, NMR spectroscopy and molecular dynamics simulations suggests that global dynamic fluctuations, such as the functionally relevant hinge-bending motion observed in the prototypical RNase A, are shared between homologs of the pancreatic-like RNase superfamily. These observations support the hypothesis that analogous dynamic residue clusters are evolutionarily conserved among structural and functional homologs catalyzing similar enzymatic reactions.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | | |
Collapse
|
12
|
Krauss IR, Merlino A, Vergara A, Sica F. An overview of biological macromolecule crystallization. Int J Mol Sci 2013; 14:11643-91. [PMID: 23727935 PMCID: PMC3709751 DOI: 10.3390/ijms140611643] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 12/11/2022] Open
Abstract
The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-81-674-479; Fax: +39-81-674-090
| |
Collapse
|
13
|
The sulfate-binding site structure of the human eosinophil cationic protein as revealed by a new crystal form. J Struct Biol 2012; 179:1-9. [DOI: 10.1016/j.jsb.2012.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 01/05/2023]
|
14
|
Fisher SJ, Blakeley MP, Cianci M, McSweeney S, Helliwell JR. Protonation-state determination in proteins using high-resolution X-ray crystallography: effects of resolution and completeness. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:800-9. [PMID: 22751665 DOI: 10.1107/s0907444912012589] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/22/2012] [Indexed: 11/11/2022]
Abstract
A bond-distance analysis has been undertaken to determine the protonation states of ionizable amino acids in trypsin, subtilisin and lysozyme. The diffraction resolutions were 1.2 Å for trypsin (97% complete, 12% H-atom visibility at 2.5σ), 1.26 Å for subtilisin (100% complete, 11% H-atom visibility at 2.5σ) and 0.65 Å for lysozyme (PDB entry 2vb1; 98% complete, 30% H-atom visibility at 3σ). These studies provide a wide diffraction resolution range for assessment. The bond-length e.s.d.s obtained are as small as 0.008 Å and thus provide an exceptional opportunity for bond-length analyses. The results indicate that useful information can be obtained from diffraction data at around 1.2-1.3 Å resolution and that minor increases in resolution can have significant effects on reducing the associated bond-length standard deviations. The protonation states in histidine residues were also considered; however, owing to the smaller differences between the protonated and deprotonated forms it is much more difficult to infer the protonation states of these residues. Not even the 0.65 Å resolution lysozyme structure provided the necessary accuracy to determine the protonation states of histidine.
Collapse
Affiliation(s)
- S J Fisher
- School of Chemistry, University of Manchester, Brunswick Street, Manchester M13 9PL, England.
| | | | | | | | | |
Collapse
|
15
|
Abaturov LV, Nosova NG. Hydrogen exchange and proteolytic degradation of ribonuclease A. The local splitting of the native structure and the conformation of loop segments. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Abstract
Access to detailed three-dimensional structural information on protein drug targets can streamline many aspects of drug discovery, from target selection and target product profile determination, to the discovery of novel molecular scaffolds that form the basis of potential drugs, to lead optimization. The information content of X-ray crystal structures, as well as the utility of structural methods in supporting the different phases of the drug discovery process, are described in this chapter.
Collapse
|
17
|
Ji CG, Zhang JZH. Understanding the molecular mechanism of enzyme dynamics of ribonuclease A through protonation/deprotonation of HIS48. J Am Chem Soc 2011; 133:17727-37. [PMID: 21942333 DOI: 10.1021/ja206212a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulation is carried out to investigate the enzyme dynamics of RNase A with the HIS48 in three different states (HIP48 (protonated), HID48 (deprotonated), and H48A mutant). Insights derived from the current theoretical study, combined with the available experimental observations, enabled us to provide a microscopic picture for the efficient enzyme dynamics. Specifically, in the "closed" state or HIP48, the N-terminal hinge loop is intact and the enzyme remains in a relatively stable conformation which is preferred for catalytic reaction. Deprotonation of HIS48 induces the denaturing of this hinge-loop into a 3(10)-helix, causing it to break the original interaction network around the loop-1 and drive the partial unfolding of the N-terminal. The enhanced dynamic motion of the N-terminal helix facilitates the release of the catalytic product (the rate limiting step) and speeds up the overall catalytic process. The current study established that HIS49 acts as a modulator for the transformation of conformational states through the perturbing of hydrogen bond networks across loop-1, the N-terminal helix, and other residues nearby. Our study suggests that HIS48 may also serve to transport loop-1's kinetic energy to the reaction center.
Collapse
Affiliation(s)
- Chang G Ji
- State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China.
| | | |
Collapse
|
18
|
De Simone A, Montalvao RW, Vendruscolo M. Determination of Conformational Equilibria in Proteins Using Residual Dipolar Couplings. J Chem Theory Comput 2011; 7:4189-4195. [PMID: 22180735 PMCID: PMC3236604 DOI: 10.1021/ct200361b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Indexed: 01/05/2023]
Abstract
In order to carry out their functions, proteins often undergo significant conformational fluctuations that enable them to interact with their partners. The accurate characterization of these motions is key in order to understand the mechanisms by which macromolecular recognition events take place. Nuclear magnetic resonance spectroscopy offers a variety of powerful methods to achieve this result. We discuss a method of using residual dipolar couplings as replica-averaged restraints in molecular dynamics simulations to determine large amplitude motions of proteins, including those involved in the conformational equilibria that are established through interconversions between different states. By applying this method to ribonuclease A, we show that it enables one to characterize the ample fluctuations in interdomain orientations expected to play an important functional role.
Collapse
|
19
|
Abstract
Recently, extracellular RNases of the RNase A superfamily, with the characteristic CKxxNTF sequence signature, have been identified in fish. This has led to the recognition that these RNases are present in the whole vertebrate subphylum. In fact, they comprise the only enzyme family unique to vertebrates. Four RNases from zebrafish (Danio rerio) have been previously reported and have a very low RNase activity; some of these are endowed, like human angiogenin, with powerful angiogenic and bactericidal activities. In the present paper, we report the three-dimensional structure, the thermodynamic behaviour and the biological properties of a novel zebrafish RNase, ZF-RNase-5. The investigation of its structural and functional properties, extended to all other subfamily members, provides an inclusive description of the whole zebrafish RNase subfamily.
Collapse
|
20
|
Doucet N, Jayasundera TB, Simonović M, Loria JP. The crystal structure of ribonuclease A in complex with thymidine-3'-monophosphate provides further insight into ligand binding. Proteins 2010; 78:2459-68. [PMID: 20602460 DOI: 10.1002/prot.22754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Thymidine-3'-monophosphate (3'-TMP) is a competitive inhibitor analogue of the 3'-CMP and 3'-UMP natural product inhibitors of bovine pancreatic ribonuclease A (RNase A). Isothermal titration calorimetry experiments show that 3'-TMP binds the enzyme with a dissociation constant (K(d)) of 15 microM making it one of the strongest binding members of the five natural bases found in nucleic acids (A, C, G, T, and U). To further investigate the molecular properties of this potent natural affinity, we have determined the crystal structure of bovine pancreatic RNase A in complex with 3'-TMP at 1.55 A resolution and we have performed NMR binding experiments with 3'-CMP and 3'-TMP. Our results show that binding of 3'-TMP is very similar to other natural and non-natural pyrimidine ligands, demonstrating that single nucleotide affinity is independent of the presence or absence of a 2'-hydroxyl on the ribose moiety of pyrimidines and suggesting that the pyrimidine binding subsite of RNase A is not a significant contributor of inhibitor discrimination. Accumulating evidence suggests that very subtle structural, chemical, and potentially motional variations contribute to ligand discrimination in this enzyme.
Collapse
Affiliation(s)
- Nicolas Doucet
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
21
|
Abstract
The binding states of the substrates and the environment have significant influence on protein motion. We present the analysis of such motion derived from anisotropic atomic displacement parameters (ADPs) in a set of atomic resolution protein structures. Local structural motion caused by ligand binding as well as functional loops showing cooperative patterns of motion could be inferred. The results are in line with proposed protonation states, hydrogen bonding patterns and the location of distinctly flexible regions: we could locate the mobile active site loop in a virus integrase, distinguish the subdomains in RNAse A and hydroxynitrile lyase, and reconstruct the molecular architecture in a xylanase. We demonstrate that the ADP-based motion analysis provides information at high level of detail and that the structural changes needed for substrate attachment or release may be derived from single X-ray structures.
Collapse
Affiliation(s)
- Andrea Schmidt
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | | |
Collapse
|
22
|
Merlino A, Russo Krauss I, Perillo M, Mattia CA, Ercole C, Picone D, Vergara A, Sica F. Toward an antitumor form of bovine pancreatic ribonuclease: the crystal structure of three noncovalent dimeric mutants. Biopolymers 2010; 91:1029-37. [PMID: 19280639 DOI: 10.1002/bip.21183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cytotoxic action of bovine seminal ribonuclease (BS-RNase) depends on its noncovalent swapped dimeric form (NCD-BS), which presents a compact structure that allows the molecule to escape ribonuclease inhibitor (RI). A key role in the acquisition of this structure has been attributed to the concomitant presence of a proline in position 19 and a leucine in position 28. The introduction of Leu28, Cys31, and Cys32 and, in addition, of Pro19 in the sequence of bovine pancreatic ribonuclease (RNase A) has produced two dimeric variants LCC and PLCC, which do exhibit a cytotoxic activity, though at a much lower level than BS-RNase. The crystal structure analysis of the noncovalent swapped form (NCD) of LCC and PLCC, complexed with the substrate analogue 2 '-deoxycytidylyl(3 ',5 ')-2 '-deoxyguanosine, has revealed that, differently from NCD-BS, the dimers adopt an opened quaternary structure, with the two Leu residues fully exposed to the solvent, that does not hinder the binding of RI. Similar results have been obtained for a third mutant of the pancreatic enzyme, engineered with the hinge peptide sequence of the seminal enzyme (residues 16-22) and the two cysteines in position 31 and 32, but lacking the hydrophobic Leu residue in position 28. The comparison of these three structures with those previously reported for other ribonuclease swapped dimers strongly suggests that, in addition to Pro19 and Leu28, the presence of a glycine at the N-terminal end of the hinge peptide is also important to push the swapped form of RNase A dimer into the compact quaternary organization observed for NCD-BS.
Collapse
Affiliation(s)
- Antonello Merlino
- Department of Chemistry, University of Naples, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sheftic SR, Croke RL, LaRochelle JR, Alexandrescu AT. Electrostatic contributions to the stabilities of native proteins and amyloid complexes. Methods Enzymol 2009; 466:233-58. [PMID: 21609864 DOI: 10.1016/s0076-6879(09)66010-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to predict electrostatic contributions to protein stability from structure has been a long-standing goal of experimentalists and theorists. With recent advances in NMR spectroscopy, it is possible to determine pK(a) values of all ionizable residues for at least small proteins, and to use the pK(a) shift between the folded and unfolded states to calculate the thermodynamic contribution from a change in charge to the change in free energy of unfolding. Results for globular proteins and for α-helical coiled coils show that electrostatic contributions to stability are typically small on an individual basis, particularly for surface-exposed residues. We discuss why NMR often suggests smaller electrostatic contributions to stability than X-ray crystallography or site-directed mutagenesis, and discuss the type of information needed to improve structure-based modeling of electrostatic forces. Large pK(a) shifts from random coil values are observed for proteins bound to negatively charged sodium dodecyl sulfate micelles. The results suggest that electrostatic interactions between proteins and charges on the surfaces of membrane lipid bilayers could be a major driving force in stabilizing the structures of peripheral membrane proteins. Finally, we discuss how changes in ionization states affect amyloid-β fibril formation and suggest that electrostatic repulsion may be a common destabilizing force in amyloid fibrils.
Collapse
Affiliation(s)
- Sarah R Sheftic
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | |
Collapse
|
24
|
Dechene M, Wink G, Smith M, Swartz P, Mattos C. Multiple solvent crystal structures of ribonuclease A: an assessment of the method. Proteins 2009; 76:861-81. [PMID: 19291738 DOI: 10.1002/prot.22393] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The multiple solvent crystal structures (MSCS) method uses organic solvents to map the surfaces of proteins. It identifies binding sites and allows for a more thorough examination of protein plasticity and hydration than could be achieved by a single structure. The crystal structures of bovine pancreatic ribonuclease A (RNAse A) soaked in the following organic solvents are presented: 50% dioxane, 50% dimethylformamide, 70% dimethylsulfoxide, 70% 1,6-hexanediol, 70% isopropanol, 50% R,S,R-bisfuran alcohol, 70% t-butanol, 50% trifluoroethanol, or 1.0M trimethylamine-N-oxide. This set of structures is compared with four sets of crystal structures of RNAse A from the protein data bank (PDB) and with the solution NMR structure to assess the validity of previously untested assumptions associated with MSCS analysis. Plasticity from MSCS is the same as from PDB structures obtained in the same crystal form and deviates only at crystal contacts when compared to structures from a diverse set of crystal environments. Furthermore, there is a good correlation between plasticity as observed by MSCS and the dynamic regions seen by NMR. Conserved water binding sites are identified by MSCS to be those that are conserved in the sets of structures taken from the PDB. Comparison of the MSCS structures with inhibitor-bound crystal structures of RNAse A reveals that the organic solvent molecules identify key interactions made by inhibitor molecules, highlighting ligand binding hot-spots in the active site. The present work firmly establishes the relevance of information obtained by MSCS.
Collapse
Affiliation(s)
- Michelle Dechene
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
25
|
Fisher SJ, Wilkinson J, Henchman RH, Helliwell JR. An evaluation review of the prediction of protonation states in proteinsversuscrystallographic experiment†. CRYSTALLOGR REV 2009. [DOI: 10.1080/08893110903213700] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Merlino A, Avella G, Di Gaetano S, Arciello A, Piccoli R, Mazzarella L, Sica F. Structural features for the mechanism of antitumor action of a dimeric human pancreatic ribonuclease variant. Protein Sci 2009; 18:50-7. [PMID: 19177350 DOI: 10.1002/pro.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A specialized class of RNases shows a high cytotoxicity toward tumor cell lines, which is critically dependent on their ability to reach the cytosol and to evade the action of the ribonuclease inhibitor (RI). The cytotoxicity and antitumor activity of bovine seminal ribonuclease (BSRNase), which exists in the native state as an equilibrium mixture of a swapped and an unswapped dimer, are peculiar properties of the swapped form. A dimeric variant (HHP2-RNase) of human pancreatic RNase, in which the enzyme has been engineered to reproduce the sequence of BSRNase helix-II (Gln28-->Leu, Arg31-->Cys, Arg32-->Cys, and Asn34-->Lys) and to eliminate a negative charge on the surface (Glu111-->Gly), is also extremely cytotoxic. Surprisingly, this activity is associated also to the unswapped form of the protein. The crystal structure reveals that on this molecule the hinge regions, which are highly disordered in the unswapped form of BSRNase, adopt a very well-defined conformation in both subunits. The results suggest that the two hinge peptides and the two Leu28 side chains may provide an anchorage to a transient noncovalent dimer, which maintains Cys31 and Cys32 of the two subunits in proximity, thus stabilizing a quaternary structure, similar to that found for the noncovalent swapped dimer of BSRNase, that allows the molecule to escape RI and/or to enhance the formation of the interchain disulfides.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cintia, Napoli 80126, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Pace CN, Grimsley GR, Scholtz JM. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J Biol Chem 2009; 284:13285-9. [PMID: 19164280 PMCID: PMC2679426 DOI: 10.1074/jbc.r800080200] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure, stability, solubility, and function of proteins depend on their net charge and on the ionization state of the individual residues. Consequently, biochemists are interested in the pK values of the ionizable groups in proteins and how these pK values depend on their environment. We review what has been learned about pK values of ionizable groups in proteins from experimental studies and discuss the important contributions they make to protein stability and solubility.
Collapse
Affiliation(s)
- C Nick Pace
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, USA.
| | | | | |
Collapse
|
28
|
Samanta A, Leonidas DD, Dasgupta S, Pathak T, Zographos SE, Oikonomakos NG. Morpholino, Piperidino, and Pyrrolidino Derivatives of Pyrimidine Nucleosides as Inhibitors of Ribonuclease A: Synthesis, Biochemical, and Crystallographic Evaluation,. J Med Chem 2009; 52:932-42. [DOI: 10.1021/jm800724t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anirban Samanta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Demetres D. Leonidas
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Spyros E. Zographos
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Nikos G. Oikonomakos
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
29
|
Kieseritzky G, Knapp EW. Optimizing pKa computation in proteins with pH adapted conformations. Proteins 2008; 71:1335-48. [PMID: 18058906 DOI: 10.1002/prot.21820] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
pK(A) in proteins are determined by electrostatic energy computations using a small number of optimized protein conformations derived from crystal structures. In these protein conformations hydrogen positions and geometries of salt bridges on the protein surface were determined self-consistently with the protonation pattern at three pHs (low, ambient, and high). Considering salt bridges at protein surfaces is most relevant, since they open at low and high pH. In the absence of these conformational changes, computed pK(A)(comp) of acidic (basic) groups in salt bridges underestimate (overestimate) experimental pK(A)(exp), dramatically. The pK(A)(comp) for 15 different proteins with 185 known pK(A)(exp) yield an RMSD of 1.12, comparable with two other methods. One of these methods is fully empirical with many adjustable parameters. The other is also based on electrostatic energy computations using many non-optimized side chain conformers but employs larger dielectric constants at short distances of charge pairs that diminish their electrostatic interactions. These empirical corrections that account implicitly for additional conformational flexibility were needed to describe the energetics of salt bridges appropriately. This is not needed in the present approach. The RMSD of the present approach improves if one considers only strongly shifted pK(A)(exp) in contrast to the other methods under these conditions. Our method allows interpreting pK(A)(comp) in terms of pH dependent hydrogen bonding pattern and salt bridge geometries. A web service is provided to perform pK(A) computations.
Collapse
Affiliation(s)
- Gernot Kieseritzky
- Fachbereich Biologie, Chemie, Pharmazie/Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | | |
Collapse
|
30
|
Merkley ED, Bernard B, Daggett V. Conformational changes below the Tm: molecular dynamics studies of the thermal pretransition of ribonuclease A. Biochemistry 2007; 47:880-92. [PMID: 18161991 DOI: 10.1021/bi701565b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent work suggests that some native conformations of proteins can vary with temperature. To obtain an atomic-level description of this structural and conformational variation, we have performed all-atom, explicit-solvent molecular dynamics simulations of bovine pancreatic ribonuclease A (RNase A) up to its melting temperature (Tm approximately 337 K). RNase A has a thermal pretransition near 320 K [Stelea, S. D., Pancoska, P., Benight, A. S., and Keiderling, T. A. (2001) Protein Sci. 10, 970-978]. Our simulations identify a conformational change that coincides with this pretransition. Between 310 and 320 K, there is a small but significant decrease in the number of native contacts, beta-sheet hydrogen bonding, and deviation of backbone conformation from the starting structure, and an increase in the number of nonnative contacts. Native contacts are lost in beta-sheet regions and in alpha1, partially due to movement of alpha1 away from the beta-sheet core. At 330 and 340 K, a nonnative helical segment of residues 15-20 forms, corresponding to a helix observed in the N-terminal domain-swapped dimer [Liu, Y. S., Hart, P. J., Schulnegger, M. P., and Eisenberg, D. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 3437-3432]. The conformations observed at the higher temperatures possess nativelike topology and overall conformation, with many native contacts, but they have a disrupted active site. We propose that these conformations may represent the native state at elevated temperature, or the N' state. These simulations show that subtle, functionally important changes in protein conformation can occur below the Tm.
Collapse
Affiliation(s)
- Eric D Merkley
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-5061, USA
| | | | | |
Collapse
|
31
|
Matousek WM, Ciani B, Fitch CA, Garcia-Moreno B, Kammerer RA, Alexandrescu AT. Electrostatic contributions to the stability of the GCN4 leucine zipper structure. J Mol Biol 2007; 374:206-19. [PMID: 17920624 DOI: 10.1016/j.jmb.2007.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/02/2007] [Accepted: 09/05/2007] [Indexed: 11/28/2022]
Abstract
Ion pairs are ubiquitous in X-ray structures of coiled coils, and mutagenesis of charged residues can result in large stability losses. By contrast, pK(a) values determined by NMR in solution often predict only small contributions to stability from charge interactions. To help reconcile these results we used triple-resonance NMR to determine pK(a) values for all groups that ionize between pH 1 and 13 in the 33 residue leucine zipper fragment, GCN4p. In addition to the native state we also determined comprehensive pK(a) values for two models of the GCN4p denatured state: the protein in 6 M urea, and unfolded peptide fragments of the protein in water. Only residues that form ion pairs in multiple X-ray structures of GCN4p gave large pK(a) differences between the native and denatured states. Moreover, electrostatic contributions to stability were not equivalent for oppositely charged partners in ion pairs, suggesting that the interactions between a charge and its environment are as important as those within the ion pair. The pH dependence of protein stability calculated from NMR-derived pK(a) values agreed with the stability profile measured from equilibrium urea-unfolding experiments as a function of pH. The stability profile was also reproduced with structure-based continuum electrostatic calculations, although contributions to stability were overestimated at the extremes of pH. We consider potential sources of errors in the calculations, and how pK(a) predictions could be improved. Our results show that although hydrophobic packing and hydrogen bonding have dominant roles, electrostatic interactions also make significant contributions to the stability of the coiled coil.
Collapse
Affiliation(s)
- William M Matousek
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | | | | | | | |
Collapse
|
32
|
Du-Cuny L, Huwyler J, Fischer H, Kansy M. A potentiometric titration method for the crystallization of drug-like organic molecules. Int J Pharm 2007; 342:161-7. [PMID: 17587517 DOI: 10.1016/j.ijpharm.2007.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 04/05/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
It is generally accepted, that crystalline solids representing a low energy polymorph should be selected for development of oral dosage forms. As a consequence, efficient and robust procedures are needed at an early stage during drug discovery to prepare crystals from drug-like organic molecules. In contrast to the use of supersaturated solutions, we present a potentiometric crystallization procedure where saturated solutions are prepared in a controlled manner by pH-titration. Crystallization is carried out under defined conditions using the sample concentration and experimental pK(a) values as input parameters. Crystals of high quality were obtained for 11 drugs selected to demonstrate the efficiency and applicability of the new method. Technical improvements are suggested to overcome practical limitations and to enhance the possibility of obtaining crystals from molecules in their uncharged form.
Collapse
Affiliation(s)
- Lei Du-Cuny
- F. Hoffmann-La Roche Ltd., Discovery Chemistry, Molecular Properties & Structure Property Correlation, Grenzacherstrasse, CH-4070 Basel, Switzerland
| | | | | | | |
Collapse
|
33
|
Leonidas DD, Maiti TK, Samanta A, Dasgupta S, Pathak T, Zographos SE, Oikonomakos NG. The binding of 3′-N-piperidine-4-carboxyl-3′-deoxy-ara-uridine to ribonuclease A in the crystal. Bioorg Med Chem 2006; 14:6055-64. [PMID: 16730994 DOI: 10.1016/j.bmc.2006.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/28/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
The binding of a moderate inhibitor, 3'-N-piperidine-4-carboxyl-3'-deoxy-ara-uridine, to ribonuclease A has been studied by X-ray crystallography at 1.7A resolution. Two inhibitor molecules are bound in the central RNA binding cavity of RNase A exploiting interactions with residues from peripheral binding sites rather than from the active site of the enzyme. The uracyl moiety of the first inhibitor molecule occupies the purine-preferring site of RNase A, while the rest of the molecule projects to the solvent. The second inhibitor molecule binds with the carboxyl group at the pyrimidine recognition site and the uridine moiety exploits interactions with RNase A residues Lys66, His119 and Asp121. Comparative structural analysis of the 3'-N-piperidine-4-carboxyl-3'-deoxy-ara-uridine complex with other RNase A-ligand complexes provides a structural explanation of its potency. The crystal structure of the RNase A-3'-N-piperidine-4-carboxyl-3'-deoxy-ara-uridine complex provides evidence of a novel ligand-binding pattern in RNase A for 3'-N-aminonucleosides that was not anticipated by modelling studies, while it also suggests ways to improve the efficiency and selectivity of such compounds to develop pharmaceuticals against pathologies associated with RNase A homologues.
Collapse
Affiliation(s)
- Demetres D Leonidas
- Institute of Organic and Pharmaceutical Chemistry, The National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
34
|
Mazzarella L, Vergara A, Vitagliano L, Merlino A, Bonomi G, Scala S, Verde C, di Prisco G. High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the root effect. Proteins 2006; 65:490-8. [PMID: 16909420 DOI: 10.1002/prot.21114] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Root effect is a widespread property in fish hemoglobins (Hbs) that produces a drastic reduction of cooperativity and oxygen-binding ability at acidic pH. Here, we report the high-resolution structure of the deoxy form of Hb isolated from the Antarctic fish Trematomus bernacchii (HbTb) crystallized at pH 6.2 and 8.4. The structure at acidic pH has been previously determined at a moderate resolution (Ito et al., J Mol Biol 1995;250:648-658). Our results provide a clear picture of the events occurring upon the pH increase from 6.2 to 8.4, observed within a practically unchanged crystal environment. In particular, at pH 8.4, the interaspartic hydrogen bond at the alpha(1)beta(2) interface is partially broken, suggesting a pK(a) close to 8.4 for Asp95alpha. In addition, a detailed survey of the histidine modifications, caused by the change in pH, also indicates that at least three hot regions of the molecule are modified (Ebeta helix, Cbeta-tail, CDalpha corner) and can be considered to be involved at various levels in the release of the Root protons. Most importantly, at the CDalpha corner, the break of the salt bridge Asp48alpha-His55alpha allows us to describe a detailed mechanism that transmits the modification from the CDalpha corner far to the alpha heme. More generally, the results shed light on the role played by the histidine residues in modulating the strength of the Root effect and also support the emerging idea that the structural determinants, at least for a part of the Root effect, are specific of each Hb endowed with this property.
Collapse
Affiliation(s)
- Lelio Mazzarella
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia, I-80126 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lyubimov AY, Lario PI, Moustafa I, Vrielink A. Atomic resolution crystallography reveals how changes in pH shape the protein microenvironment. Nat Chem Biol 2006; 2:259-64. [PMID: 16604066 DOI: 10.1038/nchembio784] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 03/16/2006] [Indexed: 11/09/2022]
Abstract
Hydrogen atoms are a vital component of enzyme structure and function. In recent years, atomic resolution crystallography (>or=1.2 A) has been successfully used to investigate the role of the hydrogen atom in enzymatic catalysis. Here, atomic resolution crystallography was used to study the effect of pH on cholesterol oxidase from Streptomyces sp., a flavoenzyme oxidoreductase. Crystallographic observations of the anionic oxidized flavin cofactor at basic pH are consistent with the UV-visible absorption profile of the enzyme and readily explain the reversible pH-dependent loss of oxidation activity. Furthermore, a hydrogen atom, positioned at an unusually short distance from the main chain carbonyl oxygen of Met122 at high pH, was observed, suggesting a previously unknown mechanism of cofactor stabilization. This study shows how a redox active site responds to changes in the enzyme's environment and how these changes are able to influence the mechanism of enzymatic catalysis.
Collapse
Affiliation(s)
- Artem Y Lyubimov
- Department of Molecular, Cell and Developmental Biology, 1156 High Street, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
36
|
Abstract
The binding of inosine 5' phosphate (IMP) to ribonuclease A has been studied by kinetic and X-ray crystallographic experiments at high (1.5 A) resolution. IMP is a competitive inhibitor of the enzyme with respect to C>p and binds to the catalytic cleft by anchoring three IMP molecules in a novel binding mode. The three IMP molecules are connected to each other by hydrogen bond and van der Waals interactions and collectively occupy the B1R1P1B2P0P(-1) region of the ribonucleolytic active site. One of the IMP molecules binds with its nucleobase in the outskirts of the B2 subsite and interacts with Glu111 while its phosphoryl group binds in P1. Another IMP molecule binds by following the retro-binding mode previously observed only for guanosines with its nucleobase at B1 and the phosphoryl group in P(-1). The third IMP molecule binds in a novel mode towards the C-terminus. The RNase A-IMP complex provides structural evidence for the functional components of subsite P(-1) while it further supports the role inferred by other studies to Asn71 as the primary structural determinant for the adenine specificity of the B2 subsite. Comparative structural analysis of the IMP and AMP complexes highlights key aspects of the specificity of the base binding subsites of RNase A and provides a structural explanation for their potencies. The binding of IMP suggests ways to develop more potent inhibitors of the pancreatic RNase superfamily using this nucleotide as the starting point.
Collapse
Affiliation(s)
- George N Hatzopoulos
- Institute of Organic & Pharmaceutical Chemistry, The National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | |
Collapse
|
37
|
Merlino A, Mazzarella L, Carannante A, Di Fiore A, Di Donato A, Notomista E, Sica F. The Importance of Dynamic Effects on the Enzyme Activity. J Biol Chem 2005; 280:17953-60. [PMID: 15728177 DOI: 10.1074/jbc.m501339200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Onconase (ONC), a member of the RNase A superfamily extracted from oocytes of Rana pipiens, is an effective cancer killer. It is currently used in treatment of various forms of cancer. ONC antitumor properties depend on its ribonucleolytic activity that is low in comparison with other members of the superfamily. The most damaging side effect from Onconase treatment is renal toxicity, which seems to be caused by the unusual stability of the enzyme. Therefore, mutants with reduced thermal stability and/or increased catalytic activity may have significant implications for human cancer chemotherapy. In this context, we have determined the crystal structures of two Onconase mutants (M23L-ONC and C87S,des103-104-ONC) and performed molecular dynamic simulations of ONC and C87S,des103-104-ONC with the aim of explaining on structural grounds the modifications of the activity and thermal stability of the mutants. The results also provide the molecular bases to explain the lower catalytic activity of Onconase compared with RNase A and the unusually high thermal stability of the amphibian enzyme.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli "Federico II," Via Cynthia, 80126 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The current article describes a new two-dimensional lambda-dynamics method to include proton tautomerism in continuous constant pH molecular dynamics (CPHMD) simulations. The two-dimensional lambda-dynamics framework is used to devise a tautomeric state titration model for the CPHMD simulations involving carboxyl and histidine residues. Combined with the GBSW implicit solvent model, the new method is tested on titration simulations of blocked histidine and aspartic acid as well as two benchmark proteins, turkey ovomucoid third domain (OMTKY3) and ribonuclease A (RNase A). A detailed analysis of the errors inherent to the CPHMD methodology as well as those due to the underlying solvation model is given. The average absolute error for the computed pKa values in OMTKY3 is 1.0 pK unit. In RNase A the average absolute errors for the carboxyl and histidine residues are 1.6 and 0.6 pK units, respectively. In contrast to the previous work, the new model predicts the correct sign for all the pKa shifts, but one, in the benchmark proteins. The predictions of the tautomeric states of His12 and His48 and the conformational states of His48 and His119 are in agreement with experiment. Based on the simulations of OMTKY3 and RNase A, the current work has demonstrated the capability of the CPHMD technique in revealing pH-coupled conformational dynamics of protein side chains.
Collapse
Affiliation(s)
- Jana Khandogin
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA.
| | | |
Collapse
|
39
|
Merlino A, Vitagliano L, Ceruso MA, Mazzarella L. Dynamic properties of the N-terminal swapped dimer of ribonuclease A. Biophys J 2004; 86:2383-91. [PMID: 15041676 PMCID: PMC1304087 DOI: 10.1016/s0006-3495(04)74295-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine pancreatic ribonuclease (RNase A) forms two 3-dimensional domain-swapped dimers with different quaternary structures. One dimer is characterized by the swapping of the C-terminal region (C-Dimer) and presents a rather loose structure. The other dimer (N-Dimer) exhibits a very compact structure with exchange of the N-terminal helix. Here we report the results of a molecular dynamics/essential dynamics (MD/ED) study carried out on the N-Dimer. This investigation, which represents the first MD/ED analysis on a three-dimensional domain-swapped enzyme, provides information on the dynamic properties of the active site residues as well as on the global motions of the dimer subunits. In particular, the analysis of the flexibility of the active site residues agrees well with recent crystallographic and site-directed mutagenesis studies on monomeric RNase A, thus indicating that domain swapping does not affect the dynamics of the active sites. A slight but significant rearrangement of N-Dimer quaternary structure, favored by the formation of additional hydrogen bonds at subunit interface, has been observed during the MD simulation. The analysis of collective movements reveals that each subunit of the dimer retains the functional breathing motion observed for RNase A. Interestingly, the breathing motion of the two subunits is dynamically coupled, as they open and close in phase. These correlated motions indicate the presence of active site intercommunications in this dimer. On these bases, we propose a speculative mechanism that may explain negative cooperativity in systems preserving structural symmetry during the allosteric transitions.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Fisciano, Italy
| | | | | | | |
Collapse
|
40
|
Vrielink A, Sampson N. Sub-Angstrom resolution enzyme X-ray structures: is seeing believing? Curr Opin Struct Biol 2004; 13:709-15. [PMID: 14675549 DOI: 10.1016/j.sbi.2003.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent technical advances in crystallographic analysis, particularly highly focused and high brilliance synchrotron beam lines, have significantly improved the resolutions that are attainable for many macromolecular crystal structures. The Protein Data Bank (http://www.rcsb.org/pdb/) contains an increasing number of atomic resolution structures, which are providing a wealth of structural information that was not previously visible in lower resolution electron density maps. Here, we review the importance of visualizing hydrogen atoms and multiple sidechain conformations or anisotropy, as well as substrate strain, at sub-Angstrom resolution. The additional structural features that are visible in the electron density maps as a result of atomic resolution data provide a better understanding of the catalytic mechanisms of cholesterol oxidase, ribonuclease A, beta-lactamase, serine proteases, triosephosphate isomerase and endoglucanase.
Collapse
Affiliation(s)
- Alice Vrielink
- Department of Molecular, Cellular and Developmental Biology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
41
|
Affiliation(s)
- Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Brookhaven National Laboratory, Building 725 A X9, Upton, New York 11973, USA
| |
Collapse
|
42
|
Merlino A, Vitagliano L, Sica F, Zagari A, Mazzarella L. Population shift vs induced fit: The case of bovine seminal ribonuclease swapping dimer. Biopolymers 2004; 73:689-95. [PMID: 15048772 DOI: 10.1002/bip.20016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine seminal ribonuclease (BS-RNase) is a unique member of the pancreatic-like ribonuclease superfamily. This enzyme exists as two conformational isomers with distinctive biological properties. The structure of the major isomer is characterized by the swapping of the N-terminal segment (MxM BS-RNase). In this article, the crystal structures of the ligand-free MxM BS-RNase and its complex with 2'-deoxycitidylyl(3',5')-2'-deoxyadenosine derived from isomorphous crystals have been refined. Interestingly, the comparison between this novel ligand-free form and the previously published sulfate-bound structure reveals significant differences. In particular, the ligand-free MxM BS-RNase is closer to the structure of MxM BS-RNase productive complexes than to the sulfate-bound form. These results reveal that MxM BS-RNase presents a remarkable flexibility, despite the structural constraints of the interchain disulfide bridges and the swapping of the N-terminal helices. These findings have important implications to the ligand binding mechanism of MxM BS-RNase. Indeed, a population shift rather than a substrate-induced conformational transition may occur in the MxM BS-RNase ligand binding process.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cynthia, 80126 Napoli, Italy
| | | | | | | | | |
Collapse
|
43
|
Berisio R, Sica F, De Lorenzo C, Di Fiore A, Piccoli R, Zagari A, Mazzarella L. Crystal structure of the dimeric unswapped form of bovine seminal ribonuclease. FEBS Lett 2003; 554:105-10. [PMID: 14596923 DOI: 10.1016/s0014-5793(03)01114-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bovine seminal ribonuclease is a unique case of protein dimorphism, since it exists in two dimeric forms, with different biological and kinetic behavior, which interconvert into one another through three-dimensional swapping. Here we report the crystal structure, at 2.2 A resolution, of the unswapped form of bovine seminal ribonuclease. Besides completing the structural definition of bovine seminal ribonuclease conformational dimorphism, this study provides the structural basis to explain the dependence of the enzyme cooperative effects on its swapping state.
Collapse
Affiliation(s)
- R Berisio
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 6, 80134 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Leonidas DD, Chavali GB, Oikonomakos NG, Chrysina ED, Kosmopoulou MN, Vlassi M, Frankling C, Acharya KR. High-resolution crystal structures of ribonuclease A complexed with adenylic and uridylic nucleotide inhibitors. Implications for structure-based design of ribonucleolytic inhibitors. Protein Sci 2003; 12:2559-74. [PMID: 14573867 PMCID: PMC2366950 DOI: 10.1110/ps.03196603] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The crystal structures of bovine pancreatic ribonuclease A (RNase A) in complex with 3',5'-ADP, 2',5'-ADP, 5'-ADP, U-2'-p and U-3'-p have been determined at high resolution. The structures reveal that each inhibitor binds differently in the RNase A active site by anchoring a phosphate group in subsite P1. The most potent inhibitor of all five, 5'-ADP (Ki = 1.2 microM), adopts a syn conformation (in contrast to 3',5'-ADP and 2',5'-ADP, which adopt an anti), and it is the beta- rather than the alpha-phosphate group that binds to P1. 3',5'-ADP binds with the 5'-phosphate group in P1 and the adenosine in the B2 pocket. Two different binding modes are observed in the two RNase A molecules of the asymmetric unit for 2',5'-ADP. This inhibitor binds with either the 3' or the 5' phosphate groups in subsite P1, and in each case, the adenosine binds in two different positions within the B2 subsite. The two uridilyl inhibitors bind similarly with the uridine moiety in the B1 subsite but the placement of a different phosphate group in P1 (2' versus 3') has significant implications on their potency against RNase A. Comparative structural analysis of the RNase A, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), and human angiogenin (Ang) complexes with these and other phosphonucleotide inhibitors provides a wealth of information for structure-based design of inhibitors specific for each RNase. These inhibitors could be developed to therapeutic agents that could control the biological activities of EDN, ECP, and ANG, which play key roles in human pathologies.
Collapse
Affiliation(s)
- Demetres D Leonidas
- Institute of Organic and Pharmaceutical Chemistry, The National Hellenic Research Foundation, 11635 Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Merlino A, Vitagliano L, Ceruso MA, Mazzarella L. Subtle functional collective motions in pancreatic-like ribonucleases: from ribonuclease A to angiogenin. Proteins 2003; 53:101-10. [PMID: 12945053 DOI: 10.1002/prot.10466] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The analysis of the dynamic behavior of enzymes is fundamental to structural biology. A direct relationship between protein flexibility and biological function has been shown for bovine pancreatic ribonuclease (RNase A) (Rasmussen et al., Nature 1992;357:423-424). More recently, crystallographic studies have shown that functional motions in RNase A involve the enzyme beta-sheet regions that move concertedly on substrate binding and release (Vitagliano et al., Proteins 2002;46:97-104). These motions have been shown to correspond to intrinsic dynamic properties of the native enzyme by molecular dynamics (MD) simulations. To unveil the occurrence of these collective motions in other members of pancreatic-like superfamily, we carried out MD simulations on human angiogenin (Ang). Essential dynamics (ED) analyses performed on the trajectories reveal that Ang exhibits collective motions similar to RNase A, despite the limited sequence identity (33%) of the two proteins. Furthermore, we show that these collective motions are also present in ensembles of experimentally determined structures of both Ang and RNase A. Finally, these subtle concerted beta-sheet motions were also observed for other two members of the pancreatic-like superfamily by comparing the ligand-bound and ligand-free structures of these enzymes. Taken together, these findings suggest that pancreatic-like ribonucleases share an evolutionary conserved dynamic behavior consisting of subtle beta-sheet motions, which are essential for substrate binding and release.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | |
Collapse
|
46
|
Engler N, Ostermann A, Niimura N, Parak FG. Hydrogen atoms in proteins: positions and dynamics. Proc Natl Acad Sci U S A 2003; 100:10243-8. [PMID: 12937341 PMCID: PMC193546 DOI: 10.1073/pnas.1834279100] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2002] [Indexed: 11/18/2022] Open
Abstract
Hydrogen atoms constitute about half of the atoms in proteins. Thus they contribute to the complex energy landscape of proteins [Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. (1991) Science 254, 1598-1603]. Neutron crystal structure analysis was used to study the positions and mean-square displacements of hydrogen in myoglobin. A test of the reliability of calculated hydrogen atom coordinates by a comparison with our experimental results has been carried out. The result shows that >70% of the coordinates for hydrogen atoms that have a degree of freedom is predicted worse than 0.2 A. It is shown that the mean-square displacements of the hydrogen atoms obtained from the Debye-Waller factor can be divided into three classes. A comparison with the dynamic mean-square displacements calculated from the elastic intensities obtained from incoherent neutron scattering [Doster, W., Cusack, S. & Petry, W. (1989) Nature 337, 754-756] shows that mainly the side-chain hydrogen atoms contribute to dynamic displacements on a time scale faster than 100 ps.
Collapse
Affiliation(s)
- Niklas Engler
- Physik Department E17, Technische Universität Munich, James-Franck-Strasse, 85748 Garching, Germany
| | | | | | | |
Collapse
|
47
|
Sica F, Di Fiore A, Zagari A, Mazzarella L. The unswapped chain of bovine seminal ribonuclease: Crystal structure of the free and liganded monomeric derivative. Proteins 2003; 52:263-71. [PMID: 12833549 DOI: 10.1002/prot.10407] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine seminal ribonuclease, a homodimeric enzyme joined covalently by two interchain disulphide bonds, is an equilibrium mixture of two conformational isomers, MxM and M=M. The major form, MxM, whose crystal structure has been previously determined at 1.9 A resolution, presents the swapping of the N-terminal segments (residues 1-15) and composite active sites formed by residues of different chains. The three-dimensional domain swapping does not occur in the M=M form. The different fold of each N-terminal tail is directed by the hinge loop (residue 16-22) connecting the swapping domain to the body of the protein. Reduction and alkylation of interchain disulphide bridges produce a monomeric derivative and a noncovalent swapped dimer, which are both active. The free and nucleotide-bound forms of the monomer have been crystallized at an alkaline pH and refined at 1.45 and 1.65 A resolution, respectively. In both cases, the N-terminal fragment is folded on the main body of the protein to produce an intact active site and a chain architecture very similar to that of bovine pancreatic ribonuclease. In this new fold of the seminal chain, the hinge loop is disordered. Despite the difference between the tertiary structure of the monomer and that of the chains in the MxM form, the active sites of the two enzymes are virtually indistinguishable. Furthermore, the structure of the liganded enzyme represents the first example of a ribonuclease complex studied at an alkaline pH and provides new information on the binding of a nucleotide when the catalytic histidines are deprotonated.
Collapse
Affiliation(s)
- Filomena Sica
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | |
Collapse
|
48
|
Sibrian-Vazquez M, Spivak DA. Enhanced Enantioselectivity of Molecularly Imprinted Polymers Formulated with Novel Cross-Linking Monomers. Macromolecules 2003. [DOI: 10.1021/ma025710z] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Hsu CH, Liao YD, Pan YR, Chen LW, Wu SH, Leu YJ, Chen C. Solution structure of the cytotoxic RNase 4 from oocytes of bullfrog Rana catesbeiana. J Mol Biol 2003; 326:1189-201. [PMID: 12589762 DOI: 10.1016/s0022-2836(02)01472-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytotoxic ribonucleases with antitumor activity are mainly found in the oocytes and early embryos of frogs. Native RC-RNase 4 (RNase 4), consisting of 106 residues linked with four disulfide bridges, is a cytotoxic ribonuclease isolated from oocytes of bullfrog Rana catesbeiana. RNase 4 belongs to the bovine pancreatic ribonuclease (RNase A) superfamily. Recombinant RC-RNase 4 (rRNase 4), which contains an additional Met residue and glutamine instead of pyroglutamate at the N terminus, was found to possess less catalytic and cytotoxic activities than RNase 4. Equilibrium thermal and guanidine-HCl denaturation CD measurements revealed that RNase 4 is more thermally and chemically stable than rRNase 4. However, CD and NMR data showed that there is no gross conformational change between native and recombinant RNase 4. The NMR solution structure of rRNase 4 was determined to comprise three alpha-helices and two sets of antiparallel beta-sheets. Superimposition of each structure with the mean structure yielded an average root mean square deviation (RMSD) of 0.72(+/-0.14)A for the backbone atoms, and 1.42(+/-0.19)A for the heavy atoms in residues 3-105. A comparison of the 3D structure of rRNase 4 with the structurally and functionally related cytotoxic ribonuclease, onconase (ONC), showed that the two H-bonds in the N-terminal pyroglutamate of ONC were not present at the corresponding glutamine residue of rRNase 4. We suggest that the loss of these two H-bonds is one of the key factors responsible for the reductions of the conformational stability, catalytic and cytotoxic activities in rRNase 4. Furthermore, the differences of side-chain conformations of subsite residues among RNase A, ONC and rRNase 4 are related to their distinct catalytic activities and base preferences.
Collapse
Affiliation(s)
- Chun-Hua Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
50
|
Merlino A, Vitagliano L, Ceruso MA, Di Nola A, Mazzarella L. Global and local motions in ribonuclease A: a molecular dynamics study. Biopolymers 2002; 65:274-83. [PMID: 12382288 DOI: 10.1002/bip.10225] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The understanding of protein dynamics is one of the major goals of structural biology. A direct link between protein dynamics and function has been provided by x-ray studies performed on ribonuclease A (RNase A) (B. F. Rasmussen et al., Nature, 1992, Vol. 357, pp. 423-424; L. Vitagliano et al., Proteins: Structure, Function, and Genetics, 2002, Vol. 46, pp. 97-104). Here we report a 3 ns molecular dynamics simulation of RNase A in water aimed at characterizing the dynamical behavior of the enzyme. The analysis of local and global motions provides interesting insight on the dynamics/function relationship of RNase A. In agreement with previous crystallographic reports, the present study confirms that the RNase A active site is constituted by rigid (His12, Asn44, Thr45) and flexible (Lys41, Asp83, His119, Asp121) residues. The analysis of the global motions, performed using essential dynamics, shows that the two beta-sheet regions of RNase A move coherently in opposite directions, thus modifying solvent accessibility of the active site, and that the mixed alpha/3(10)-helix (residues 50-60) behaves as a mechanical hinge during the breathing motion of the protein. These data demonstrate that this motion, essential for RNase A substrate binding and release, is an intrinsic dynamical property of the ligand-free enzyme.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cinthia, 80125 Napoli, Italy
| | | | | | | | | |
Collapse
|