1
|
Jain A, Das R, Giri M, Mane P, Shard A. Carbohydrate kinase inhibition: a promising strategy in cancer treatment. Drug Discov Today 2025:104308. [PMID: 39912130 DOI: 10.1016/j.drudis.2025.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Carbohydrate kinases (CKs) are pivotal in various biological processes, including energy consumption, cell signaling, and biosynthesis. They are a group of enzymes that facilitate the phosphorylation of carbohydrates, playing a crucial role in cellular metabolism. These enzymes facilitate the transfer of a phosphate group from a high-energy donor like ATP to a specified location on a carbohydrate substrate. Dysregulated kinase activity drives tumor growth and progression. Inhibitors targeting these enzymes have been developed and used in cancer therapy. The CK family encompasses three major types: hexokinases, ribokinases, and phosphatidylinositol kinases, with inhibitors of paramount importance in cancer treatment. This review explores the role of CKs in cancer and its inhibitors, providing insights into improving existing inhibitors and designing new ones.
Collapse
Affiliation(s)
- Archit Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar Gujarat-382355 India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar Gujarat-382355 India
| | - Muskan Giri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar Gujarat-382355 India
| | - Pranita Mane
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar Gujarat-382355 India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar Gujarat-382355 India.
| |
Collapse
|
2
|
Ferreira JC, Villanueva AJ, Fadl S, Al Adem K, Cinviz ZN, Nedyalkova L, Cardoso THS, Andrade ME, Saksena NK, Sensoy O, Rabeh WM. Residues in the fructose-binding pocket are required for ketohexokinase-A activity. J Biol Chem 2024; 300:107538. [PMID: 38971308 PMCID: PMC11332825 DOI: 10.1016/j.jbc.2024.107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Excessive fructose consumption is a primary contributor to the global surges in obesity, cancer, and metabolic syndrome. Fructolysis is not robustly regulated and is initiated by ketohexokinase (KHK). In this study, we determined the crystal structure of KHK-A, one of two human isozymes of KHK, in the apo-state at 1.85 Å resolution, and we investigated the roles of residues in the fructose-binding pocket by mutational analysis. Introducing alanine at D15, N42, or N45 inactivated KHK-A, whereas mutating R141 or K174 reduced activity and thermodynamic stability. Kinetic studies revealed that the R141A and K174A mutations reduced fructose affinity by 2- to 4-fold compared to WT KHK-A, without affecting ATP affinity. Molecular dynamics simulations provided mechanistic insights into the potential roles of the mutated residues in ligand coordination and the maintenance of an open state in one monomer and a closed state in the other. Protein-protein interactome analysis indicated distinct expression patterns and downregulation of partner proteins in different tumor tissues, warranting a reevaluation of KHK's role in cancer development and progression. The connections between different cancer genes and the KHK signaling pathway suggest that KHK is a potential target for preventing cancer metastasis. This study enhances our understanding of KHK-A's structure and function and offers valuable insights into potential targets for developing treatments for obesity, cancer, and metabolic syndrome.
Collapse
Affiliation(s)
- Juliana C Ferreira
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adrian J Villanueva
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kenana Al Adem
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Zeynep Nur Cinviz
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Lyudmila Nedyalkova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Mario Edson Andrade
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Nitin K Saksena
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Ozge Sensoy
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Daley SR, Gallanosa PM, Sparling R. Kinetic characterization of annotated glycolytic enzymes present in cellulose-fermenting Clostridium thermocellum suggests different metabolic roles. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:112. [PMID: 37438781 DOI: 10.1186/s13068-023-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND The efficient production of sustainable biofuels is important for the reduction of greenhouse gas emissions. Clostridium thermocellum ATCC 27405 is a candidate for ethanol production from lignocellulosic biomass using consolidated bioprocessing. Fermentation of cellulosic biomass goes through an atypical glycolytic pathway in this thermophilic bacterium, with various glycolytic enzymes capable of utilizing different phosphate donors, including GTP and inorganic pyrophosphate (PPi), in addition to or in place of the usual ATP. C. thermocellum contains three annotated phosphofructokinases (PFK) genes, the expression of which have all been detected through proteomics and transcriptomics. Pfp (Cthe_0347) was previously characterized as pyrophosphate dependent with fructose-6-phosphate (F6P) as its substrate. RESULTS We now demonstrate that this enzyme can also phosphorylate sedoheptulose-7-phosphate (an intermediate in the pentose phosphate pathway), with the Vmax and Km of F6P being approximately 15 folds higher and 43 folds lower, respectively, in comparison to sedoheptulose-7-phosphate. Purified PfkA shows preference for GTP as the phosphate donor as opposed to ATP with a 12.5-fold difference in Km values while phosphorylating F6P. Allosteric regulation is a factor at play in PfkA activity, with F6P exhibiting positive cooperativity, and an apparent requirement for ammonium ions to attain maximal activity. Phosphoenolpyruvate and PPi were the only inhibitors for PfkA determined from the study, which corroborates what is known about enzymes from this subfamily. The activation or inhibition by these ligands lends support to the argument that glycolysis is regulated by metabolites such as PPi and NH4+ in the organism. PfkB, showed no activity with F6P, but had significant activity with fructose, while utilizing either ATP or GTP, making it a fructokinase. Rounding out the upper glycolysis pathway, the identity of the fructose-1,6-bisphosphate aldolase in the genome was verified and reported to have substantial activity with fructose-1,6-bisphosphate, in the presence of the divalent ion, Zn2+. CONCLUSION These findings along with previous proteomic data suggest that Pfp, plays a role in both glycolysis and the pentose phosphate pathway, while PfkA and PfkB may phosphorylate sugars in glycolysis but is responsible for sugar metabolism elsewhere under conditions outside of growth on sufficient cellobiose.
Collapse
Affiliation(s)
- Steve R Daley
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Patricia Mae Gallanosa
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
4
|
Timofeev VI, Abramchik YA, Muravyova TI, Zhukhlistova NE, Esipov RS, Kuranova IP. Three-Dimensional Structure of Recombinant Thermophilic Ribokinase from Thermus speсies 2.9 in Complex with Adenosine Diphosphate. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Wang B, Grant RA, Laub MT. ppGpp Coordinates Nucleotide and Amino-Acid Synthesis in E. coli During Starvation. Mol Cell 2020; 80:29-42.e10. [PMID: 32857952 DOI: 10.1016/j.molcel.2020.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
(p)ppGpp is a nucleotide messenger universally produced in bacteria following nutrient starvation. In E. coli, ppGpp inhibits purine nucleotide synthesis by targeting several different enzymes, but the physiological significance of their inhibition is unknown. Here, we report the structural basis of inhibition for one target, Gsk, the inosine-guanosine kinase. Gsk creates an unprecedented, allosteric binding pocket for ppGpp by restructuring terminal sequences, which restrains conformational dynamics necessary for catalysis. Guided by this structure, we generated a chromosomal mutation that abolishes Gsk regulation by ppGpp. This mutant strain accumulates abnormally high levels of purine nucleotides following amino-acid starvation, compromising cellular fitness. We demonstrate that this unrestricted increase in purine nucleotides is detrimental because it severely depletes pRpp and essential, pRpp-derived metabolites, including UTP, histidine, and tryptophan. Thus, our results reveal the significance of ppGpp's regulation of purine nucleotide synthesis and a critical mechanism by which E. coli coordinates biosynthetic processes during starvation.
Collapse
Affiliation(s)
- Boyuan Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Grillo IB, Urquiza-Carvalho GA, Bachega JFR, Rocha GB. Elucidating Enzymatic Catalysis Using Fast Quantum Chemical Descriptors. J Chem Inf Model 2020; 60:578-591. [PMID: 31895567 DOI: 10.1021/acs.jcim.9b00860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In general, computational simulations of enzymatic catalysis processes are thermodynamic and structural surveys to complement experimental studies, requiring high level computational methods to match accurate energy values. In the present work, we propose the usage of reactivity descriptors, theoretical quantities calculated from the electronic structure, to characterize enzymatic catalysis outlining its reaction profile using low-level computational methods, such as semiempirical Hamiltonians. We simulate three enzymatic reactions paths, one containing two reaction coordinates and without prior computational study performed, and calculate the reactivity descriptors for all obtained structures. We observed that the active site local hardness does not change substantially, even more so for the amino-acid residues that are said to stabilize the reaction structures. This corroborates with the theory that activation energy lowering is caused by the electrostatic environment of the active sites. Also, for the quantities describing the atom electrophilicity and nucleophilicity, we observed abrupt changes along the reaction coordinates, which also shows the enzyme participation as a reactant in the catalyzed reaction. We expect that such electronic structure analysis allows the expedient proposition and/or prediction of new mechanisms, providing chemical characterization of the enzyme active sites, thus hastening the process of transforming the resolved protein three-dimensional structures in catalytic information.
Collapse
Affiliation(s)
- Igor Barden Grillo
- Department of Chemistry , Federal University of Paraíba , Cidade Universitária, João Pessoa , Paraíba 58051-085 , Brazil
| | - Gabriel A Urquiza-Carvalho
- Department of Fundamental Chemistry , Federal University of Pernambuco , Cidade Universitária, Recife , Pernambuco 50670-901 , Brazil
| | - José Fernando Ruggiero Bachega
- Department of Pharmacosciences , Federal University of Health Sciences of Porto Alegre , Centro Histórico, Porto Alegre , Rio Grande do Sul 90050-170 , Brazil
| | - Gerd Bruno Rocha
- Department of Chemistry , Federal University of Paraíba , Cidade Universitária, João Pessoa , Paraíba 58051-085 , Brazil
| |
Collapse
|
7
|
Song K, Li Y, He H, Liu L, Zhao P, Xia Q, Wang Y. A Novel Adenosine Kinase from Bombyx mori: Enzymatic Activity, Structure, and Biological Function. Int J Mol Sci 2019; 20:ijms20153732. [PMID: 31370143 PMCID: PMC6695918 DOI: 10.3390/ijms20153732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 02/04/2023] Open
Abstract
Adenosine kinase (ADK) is the first enzyme in the adenosine remediation pathway that catalyzes adenosine phosphorylation into adenosine monophosphate, thus regulating adenosine homeostasis in cells. To obtain new insights into ADK from Bombyx mori (BmADK), we obtained recombinant BmADK, and analyzed its activity, structure, and function. Gel-filtration showed BmADK was a monomer with molecular weight of approximately 38 kDa. Circular dichroism spectra indicated BmADK had 36.8% α-helix and 29.9% β-strand structures, respectively. The structure of BmADK was stable in pH 5.0–11.0, and not affected under 30 °C. The melting temperature and the enthalpy and entropy changes in the thermal transition of BmADK were 46.51 ± 0.50 °C, 253.43 ± 0.20 KJ/mol, and 0.79 ± 0.01 KJ/(mol·K), respectively. Site-directed mutagenesis demonstrated G68, S201, E229, and D303 were key amino acids for BmADK structure and activity. In particular, S201A mutation significantly increased the α-helix content of BmADK and its activity. BmADK was located in the cytoplasm and highly expressed in the silk gland during the pre-pupal stage. RNA interference revealed the downregulation of BmADK decreased ATG-8, Caspase-9, Ec-R, E74A, and Br-C expression, indicating it was likely involved in 20E signaling, apoptosis, and autophagy to regulate silk gland degeneration and silkworm metamorphosis. Our study greatly expanded the knowledge on the activity, structure, and role of ADK.
Collapse
Affiliation(s)
- Kai Song
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| | - Lina Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China
| | - Yejing Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
8
|
A Phosphofructokinase Homolog from Pyrobaculum calidifontis Displays Kinase Activity towards Pyrimidine Nucleosides and Ribose 1-Phosphate. J Bacteriol 2018; 200:JB.00284-18. [PMID: 29866806 DOI: 10.1128/jb.00284-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 05/17/2018] [Indexed: 01/22/2023] Open
Abstract
The genome of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0041, annotated as encoding a PfkB family ribokinase, consisting of phosphofructokinase and pyrimidine kinase domains. Among the biochemically characterized enzymes, the Pcal_0041 protein was 37% identical to the phosphofructokinase (Ape_0012) from Aeropyrum pernix, which displayed kinase activity toward a broad spectrum of substrates, including sugars, sugar phosphates, and nucleosides, and 36% identical to a phosphofructokinase from Desulfurococcus amylolyticus To examine the biochemical function of the Pcal_0041 protein, we cloned and expressed the gene and purified the recombinant protein. Although the Pcal_0041 protein contained a putative phosphofructokinase domain, it exhibited only low levels of phosphofructokinase activity. The recombinant enzyme catalyzed the phosphorylation of nucleosides and, to a lower extent, sugars and sugar phosphates. Surprisingly, among the substrates tested, the highest activity was detected with ribose 1-phosphate (R1P), followed by cytidine and uridine. The catalytic efficiency (k cat/Km ) toward R1P was 11.5 mM-1 · s-1 ATP was the most preferred phosphate donor, followed by GTP. Activity measurements with cell extracts of P. calidifontis indicated the presence of nucleoside phosphorylase activity, which would provide the means to generate R1P from nucleosides. The study suggests that, in addition to the recently identified ADP-dependent ribose 1-phosphate kinase (R1P kinase) in Thermococcus kodakarensis that functions in the pentose bisphosphate pathway, R1P kinase is also present in members of the Crenarchaeota.IMPORTANCE The discovery of the pentose bisphosphate pathway in Thermococcus kodakarensis has clarified how this archaeon can degrade nucleosides. Homologs of the enzymes of this pathway are present in many members of the Thermococcales, suggesting that this metabolism occurs in these organisms. However, this is not the case in other archaea, and degradation mechanisms for nucleosides or ribose 1-phosphate are still unknown. This study reveals an important first step in understanding nucleoside metabolism in Crenarchaeota and identifies an ATP-dependent ribose 1-phosphate kinase in Pyrobaculum calidifontis The enzyme is structurally distinct from previously characterized archaeal members of the ribokinase family and represents a group of proteins found in many crenarchaea.
Collapse
|
9
|
Abramchik YA, Timofeev VI, Muravieva TI, Esipov RS, Kuranova IP. Crystallization and preliminary X-ray diffraction study of recombinant ribokinase from Thermus Species 2.9. CRYSTALLOGR REP+ 2016. [DOI: 10.1134/s106377451606002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Cyclophilin-mediated reactivation pathway of inactive adenosine kinase aggregates. Arch Biochem Biophys 2013; 537:82-90. [PMID: 23831509 DOI: 10.1016/j.abb.2013.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/10/2013] [Accepted: 06/21/2013] [Indexed: 11/20/2022]
Abstract
Monomeric adenosine kinase (AdK), a pivotal salvage enzyme of the purine auxotrophic parasite, Leishmania donovani, tends to aggregate naturally or selectively in presence of ADP, leading to inactivation. A cyclophilin (LdCyP) from the parasite reactivated the enzyme by disaggregating it. We studied the aggregation pathway of AdK with or without ADP. Transmission electron microscopy revealed that ADP-induced aggregates, as opposed to annular or torus-shaped natural aggregates, were mostly amorphous with protofibril-like structures. Interestingly, only the natural aggregates bound thioflavin T with a KD of 3.33 μM, indicating cross β-sheet structure. Dynamic light scattering experiments indicated that monomers formed aggregates either upon prolonged storage or ADP exposure. ADP-aggregates were disaggregated by LdCyP with concomitant reactivation of the enzyme. The activity revived with decrease in the aggregate size. Displacement of ADP from the ADP-aggregated enzyme by LdCyP resulted in reactivation. CD-spectral studies suggested that, like the natural aggregates, ADP induced formation of β-sheet structure in the ADP-aggregates. However, unlike the natural aggregate, it could be reconverted to α-helical conformation upon addition of LdCyP. Based on the results, a regulatory mechanism through interplay of ADP and/or LdCyP interaction with the enzyme is envisaged and a pathway of AdK reactivation by LdCyP-chaperone is proposed.
Collapse
|
11
|
Rivas-Pardo JA, Herrera-Morande A, Castro-Fernandez V, Fernandez FJ, Vega MC, Guixé V. Crystal structure, SAXS and kinetic mechanism of hyperthermophilic ADP-dependent glucokinase from Thermococcus litoralis reveal a conserved mechanism for catalysis. PLoS One 2013; 8:e66687. [PMID: 23818958 PMCID: PMC3688580 DOI: 10.1371/journal.pone.0066687] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/10/2013] [Indexed: 11/18/2022] Open
Abstract
ADP-dependent glucokinases represent a unique family of kinases that belong to the ribokinase superfamily, being present mainly in hyperthermophilic archaea. For these enzymes there is no agreement about the magnitude of the structural transitions associated with ligand binding and whether they are meaningful to the function of the enzyme. We used the ADP-dependent glucokinase from Thermococcus litoralis as a model to investigate the conformational changes observed in X-ray crystallographic structures upon substrate binding and to compare them with those determined in solution in order to understand their interplay with the glucokinase function. Initial velocity studies indicate that catalysis follows a sequential ordered mechanism that correlates with the structural transitions experienced by the enzyme in solution and in the crystal state. The combined data allowed us to resolve the open-closed conformational transition that accounts for the complete reaction cycle and to identify the corresponding clusters of aminoacids residues responsible for it. These results provide molecular bases for a general mechanism conserved across the ADP-dependent kinase family.
Collapse
Affiliation(s)
| | - Alejandra Herrera-Morande
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, España
| | | | | | | | - Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Phong WY, Lin W, Rao SPS, Dick T, Alonso S, Pethe K. Characterization of phosphofructokinase activity in Mycobacterium tuberculosis reveals that a functional glycolytic carbon flow is necessary to limit the accumulation of toxic metabolic intermediates under hypoxia. PLoS One 2013; 8:e56037. [PMID: 23409118 PMCID: PMC3567006 DOI: 10.1371/journal.pone.0056037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
Metabolic versatility has been increasingly recognized as a major virulence mechanism that enables Mycobacterium tuberculosis to persist in many microenvironments encountered in its host. Glucose is one of the most abundant carbon sources that is exploited by many pathogenic bacteria in the human host. M. tuberculosis has an intact glycolytic pathway that is highly conserved in all clinical isolates sequenced to date suggesting that glucose may represent a non-negligible source of carbon and energy for this pathogen in vivo. Fructose-6-phosphate phosphorylation represents the key-committing step in glycolysis and is catalyzed by a phosphofructokinase (PFK) activity. Two genes, pfkA and pfkB have been annotated to encode putative PFK in M. tuberculosis. Here, we show that PFKA is the sole PFK enzyme in M. tuberculosis with no functional redundancy with PFKB. PFKA is required for growth on glucose as sole carbon source. In co-metabolism experiments, we report that disruption of the glycolytic pathway at the PFK step results in intracellular accumulation of sugar-phosphates that correlated with significant impairment of the cell viability. Concomitantly, we found that the presence of glucose is highly toxic for the long-term survival of hypoxic non-replicating mycobacteria, suggesting that accumulation of glucose-derived toxic metabolites does occur in the absence of sustained aerobic respiration. The culture medium traditionally used to study the physiology of hypoxic mycobacteria is supplemented with glucose. In this medium, M. tuberculosis can survive for only 7-10 days in a true non-replicating state before death is observed. By omitting glucose in the medium this period could be extended for up to at least 40 days without significant viability loss. Therefore, our study suggests that glycolysis leads to accumulation of glucose-derived toxic metabolites that limits long-term survival of hypoxic mycobacteria. Such toxic effect is exacerbated when the glycolytic pathway is disrupted at the PKF step.
Collapse
Affiliation(s)
- Wai Yee Phong
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wenwei Lin
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Singapore-Massachusetts Institute of Technology Alliance for Research and Technology (SMART), CREATE NUS Campus, Singapore, Singapore
| | | | - Thomas Dick
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Singapore-Massachusetts Institute of Technology Alliance for Research and Technology (SMART), CREATE NUS Campus, Singapore, Singapore
| | - Kevin Pethe
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| |
Collapse
|
13
|
di Salvo ML, Contestabile R, Safo MK. Vitamin B6 salvage enzymes: Mechanism, structure and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1597-608. [DOI: 10.1016/j.bbapap.2010.12.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
|
14
|
Physical and functional interaction between d-ribokinase and topoisomerase I has opposite effects on their respective activity in Mycobacterium smegmatis and Mycobacterium tuberculosis. Arch Biochem Biophys 2011; 512:135-42. [DOI: 10.1016/j.abb.2011.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/23/2022]
|
15
|
Cassera MB, Ho MC, Merino EF, Burgos ES, Rinaldo-Matthis A, Almo SC, Schramm VL. A high-affinity adenosine kinase from Anopheles gambiae. Biochemistry 2011; 50:1885-93. [PMID: 21247194 DOI: 10.1021/bi101921w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K(m) = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap(4)A (2.0 Å resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg(2+) ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer α/β/α sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.
Collapse
Affiliation(s)
- María B Cassera
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Cabrera R, Babul J, Guixé V. Ribokinase family evolution and the role of conserved residues at the active site of the PfkB subfamily representative, Pfk-2 from Escherichia coli. Arch Biochem Biophys 2010; 502:23-30. [DOI: 10.1016/j.abb.2010.06.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/18/2010] [Accepted: 06/20/2010] [Indexed: 11/25/2022]
|
17
|
Bhutoria S, Ghoshal N. Deciphering ligand dependent degree of binding site closure and its implication in inhibitor design: A modeling study on human adenosine kinase. J Mol Graph Model 2009; 28:577-91. [PMID: 20089430 DOI: 10.1016/j.jmgm.2009.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/04/2009] [Accepted: 12/08/2009] [Indexed: 11/26/2022]
Abstract
Protein flexibility plays a significant role in drug research due to its effect on accurate prediction of ligand binding mode and activity. Adenosine kinase (AK) represents a highly flexible binding site and is known to exhibit large conformational changes as a result of substrate or inhibitor binding. Here we propose a semi-open conformation for ligand binding in human AK, in addition to the known closed and open forms. The modeling study illustrates the necessity of thorough understanding of the conformational states of protein for docking and binding mode prediction. It has been shown that predicting activity in the context of correct binding mode can improve the insight into conserved interactions and mechanism of action for inhibition of AK. Integrating the knowledge about the binding modes of ligands in different conformational states of the protein, separate pharmacophore models were generated and used for virtual screening to explore potential novel hits. In addition, 2D descriptor based clustering was done to differentiate the ligands, binding to closed, semi-open and open conformations of human AK. The results indicated that binding of all AK inhibitors cannot be described by same rules, instead, they represent a rule based preference for inhibition. This inference about tubercidins binding to semi-open conformation of human AK may facilitate in finding much extensive space for AK inhibitors.
Collapse
Affiliation(s)
- Savita Bhutoria
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology (A unit of CSIR), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | |
Collapse
|
18
|
Park J, Singh B, Gupta RS. Mycobacterial adenosine kinase is not a typical adenosine kinase. FEBS Lett 2009; 583:2231-6. [DOI: 10.1016/j.febslet.2009.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/19/2009] [Accepted: 06/02/2009] [Indexed: 11/16/2022]
|
19
|
Trinh CH, Asipu A, Bonthron DT, Phillips SEV. Structures of alternatively spliced isoforms of human ketohexokinase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:201-11. [PMID: 19237742 PMCID: PMC2651755 DOI: 10.1107/s0907444908041115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 12/05/2008] [Indexed: 11/10/2022]
Abstract
A molecular understanding of the unique aspects of dietary fructose metabolism may be the key to understanding and controlling the current epidemic of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism is initiated by its phosphorylation to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Here, the crystal structures of the two alternatively spliced isoforms of human ketohexokinase, hepatic KHK-C and the peripheral isoform KHK-A, and of the ternary complex of KHK-A with the substrate fructose and AMP-PNP are reported. The structure of the KHK-A ternary complex revealed an active site with both the substrate fructose and the ATP analogue in positions ready for phosphorylation following a reaction mechanism similar to that of the pfkB family of carbohydrate kinases. Hepatic KHK deficiency causes the benign disorder essential fructosuria. The effects of the disease-causing mutations (Gly40Arg and Ala43Thr) have been modelled in the context of the KHK structure.
Collapse
Affiliation(s)
- Chi H Trinh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, England
| | | | | | | |
Collapse
|
20
|
Cabrera R, Ambrosio ALB, Garratt RC, Guixé V, Babul J. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition. J Mol Biol 2008; 383:588-602. [PMID: 18762190 DOI: 10.1016/j.jmb.2008.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 08/10/2008] [Accepted: 08/14/2008] [Indexed: 11/19/2022]
Abstract
Phosphofructokinase-1 and -2 (Pfk-1 and Pfk-2, respectively) from Escherichia coli belong to different homologous superfamilies. However, in spite of the lack of a common ancestor, they share the ability to catalyze the same reaction and are inhibited by the substrate MgATP. Pfk-2, an ATP-dependent 6-phosphofructokinase member of the ribokinase-like superfamily, is a homodimer of 66 kDa subunits whose oligomerization state is necessary for catalysis and stability. The presence of MgATP favors the tetrameric form of the enzyme. In this work, we describe the structure of Pfk-2 in its inhibited tetrameric form, with each subunit bound to two ATP molecules and two Mg ions. The present structure indicates that substrate inhibition occurs due to the sequential binding of two MgATP molecules per subunit, the first at the usual site occupied by the nucleotide in homologous enzymes and the second at the allosteric site, making a number of direct and Mg-mediated interactions with the first. Two configurations are observed for the second MgATP, one of which involves interactions with Tyr23 from the adjacent subunit in the dimer and the other making an unusual non-Watson-Crick base pairing with the adenine in the substrate ATP. The oligomeric state observed in the crystal is tetrameric, and some of the structural elements involved in the binding of the substrate and allosteric ATPs are also participating in the dimer-dimer interface. This structure also provides the grounds to compare analogous features of the nonhomologous phosphofructokinases from E. coli.
Collapse
Affiliation(s)
- Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | |
Collapse
|
21
|
Reddy MCM, Palaninathan SK, Shetty ND, Owen JL, Watson MD, Sacchettini JC. High resolution crystal structures of Mycobacterium tuberculosis adenosine kinase: insights into the mechanism and specificity of this novel prokaryotic enzyme. J Biol Chem 2007; 282:27334-27342. [PMID: 17597075 DOI: 10.1074/jbc.m703290200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosine kinase (ADK) catalyzes the phosphorylation of adenosine (Ado) to adenosine monophosphate (AMP). It is part of the purine salvage pathway that has been identified only in eukaryotes, with the single exception of Mycobacterium spp. Whereas it is not clear if Mycobacterium tuberculosis (Mtb) ADK is essential, it has been shown that the enzyme can selectively phosphorylate nucleoside analogs to produce products toxic to the cell. We have determined the crystal structure of Mtb ADK unliganded as well as ligand (Ado) bound at 1.5- and 1.9-A resolution, respectively. The structure of the binary complexes with the inhibitor 2-fluoroadenosine (F-Ado) bound and with the adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP) (non-hydrolyzable ATP analog) bound were also solved at 1.9-A resolution. These four structures indicate that Mtb ADK is a dimer formed by an extended beta sheet. The active site of the unliganded ADK is in an open conformation, and upon Ado binding a lid domain of the protein undergoes a large conformation change to close the active site. In the closed conformation, the lid forms direct interactions with the substrate and residues of the active site. Interestingly, AMP-PCP binding alone was not sufficient to produce the closed state of the enzyme. The binding mode of F-Ado was characterized to illustrate the role of additional non-bonding interactions in Mtb ADK compared with human ADK.
Collapse
Affiliation(s)
- Manchi C M Reddy
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843
| | | | - Nishant D Shetty
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843
| | - Joshua L Owen
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843
| | - Misty D Watson
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843
| | - James C Sacchettini
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
22
|
Matulenko MA, Paight ES, Frey RR, Gomtsyan A, DiDomenico S, Jiang M, Lee CH, Stewart AO, Yu H, Kohlhaas KL, Alexander KM, McGaraughty S, Mikusa J, Marsh KC, Muchmore SW, Jakob CL, Kowaluk EA, Jarvis MF, Bhagwat SS. 4-amino-5-aryl-6-arylethynylpyrimidines: structure-activity relationships of non-nucleoside adenosine kinase inhibitors. Bioorg Med Chem 2006; 15:1586-605. [PMID: 17197188 DOI: 10.1016/j.bmc.2006.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 12/15/2006] [Indexed: 11/25/2022]
Abstract
A series of non-nucleoside adenosine kinase (AK) inhibitors is reported. These inhibitors originated from the modification of 5-(3-bromophenyl)-7-(6-morpholin-4-ylpyridin-3-yl)pyrido[2,3-d]pyrimidin-4-ylamine (ABT-702). The identification of a linker that would approximate the spatial arrangement found between the pyrimidine ring and the aryl group at C(7) in ABT-702 was a key element in this modification. A search of potential linkers led to the discovery of an acetylene moiety as a suitable scaffold. It was hypothesized that the aryl acetylenes, ABT-702, and adenosine bound to the active site of AK (closed form) in a similar manner with respect to the orientation of the heterocyclic base. Although potent acetylene analogs were discovered based on this assumption, an X-ray crystal structure of 5-(4-dimethylaminophenyl)-6-(6-morpholin-4-ylpyridin-3-ylethynyl)pyrimidin-4-ylamine (16a) revealed a binding orientation contrary to adenosine. In addition, this compound bound tightly to a unique open conformation of AK. The structure-activity relationships and unique ligand orientation and protein conformation are discussed.
Collapse
Affiliation(s)
- Mark A Matulenko
- Neuroscience Research, Global Pharmaceutical Research Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Muchmore SW, Smith RA, Stewart AO, Cowart MD, Gomtsyan A, Matulenko MA, Yu H, Severin JM, Bhagwat SS, Lee CH, Kowaluk EA, Jarvis MF, Jakob CL. Crystal Structures of Human Adenosine Kinase Inhibitor Complexes Reveal Two Distinct Binding Modes†. J Med Chem 2006; 49:6726-31. [PMID: 17154503 DOI: 10.1021/jm060189a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine kinase (AK) is an enzyme responsible for converting endogenous adenosine (ADO) to adenosine monophosphate (AMP) in an adenosine triphosphate- (ATP-) dependent manner. The structure of AK consists of two domains, the first a large alpha/beta Rossmann-like nucleotide binding domain that forms the ATP binding site, and a smaller mixed alpha/beta domain, which, in combination with the larger domain, forms the ADO binding site and the site of phosphoryl transfer. AK inhibitors have been under investigation as antinociceptive, antiinflammatory, and anticonvulsant as well as antiinfective agents. In this work, we report the structures of AK in complex with two classes of inhibitors: the first, ADO-like, and the second, a novel alkynylpyrimidine series. The two classes of structures, which contain structurally similar substituents, reveal distinct binding modes in which the AK structure accommodates the inhibitor classes by a 30 degrees rotation of the small domain relative to the large domain. This change in binding mode stabilizes an open and a closed intermediate structural state and provide structural insight into the transition required for catalysis. This results in a significant rearrangement of both the protein active site and the orientation of the alkynylpyrimidine ligand when compared to the observed orientation of nucleosidic inhibitors or substrates.
Collapse
Affiliation(s)
- Steven W Muchmore
- Structural Biology, R46Y, and Neuroscience Research, R4PM, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lott JS, Paget B, Johnston JM, Delbaere LTJ, Sigrell-Simon JA, Banfield MJ, Baker EN. The structure of an ancient conserved domain establishes a structural basis for stable histidine phosphorylation and identifies a new family of adenosine-specific kinases. J Biol Chem 2006; 281:22131-22141. [PMID: 16737961 DOI: 10.1074/jbc.m603062200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of both small molecules and proteins plays a central role in many biological processes. In proteins, phosphorylation most commonly targets the oxygen atoms of Ser, Thr, and Tyr. In contrast, stably phosphorylated His residues are rarely found, due to the lability of the N-P bond, and histidine phosphorylation features most often in transient processes. Here we present the crystal structure of a protein of previously unknown function, which proves to contain a stably phosphorylated histidine residue. The protein is the product of open reading frame PAE2307, from the hyperthermophilic archaeon Pyrobaculum aerophilum, and is representative of a highly conserved protein family found in archaea and bacteria. The crystal structure of PAE2307, solved at 1.45-A resolution (R = 0.208, R(free) = 0.227), forms a remarkably tightly associated hexamer. The phosphorylated histidine at the proposed active site, pHis85, occupies a cavity that is at the interface between two subunits and contains a number of fully conserved residues. Stable phosphorylation is attributed to favorable hydrogen bonding of the phosphoryl group and a salt bridge with pHis85 that provides electronic stabilization. In silico modeling suggested that the protein may function as an adenosine kinase, a conclusion that is supported by in vitro assays of adenosine binding, using fluorescence spectroscopy, and crystallographic visualization of an adenosine complex of PAE2307 at 2.25-A resolution.
Collapse
Affiliation(s)
- J Shaun Lott
- Laboratory of Structural Biology, Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds St., Private Bag 92-019, Auckland, New Zealand
| | - Blake Paget
- Laboratory of Structural Biology, Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds St., Private Bag 92-019, Auckland, New Zealand
| | - Jodie M Johnston
- Laboratory of Structural Biology, Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds St., Private Bag 92-019, Auckland, New Zealand
| | - Louis T J Delbaere
- Department of Biochemistry, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Jill A Sigrell-Simon
- Department of Research and Development, GE Healthcare, Björkgatan 30, SE-751 84 Uppsala, Sweden
| | - Mark J Banfield
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Edward N Baker
- Laboratory of Structural Biology, Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds St., Private Bag 92-019, Auckland, New Zealand.
| |
Collapse
|
25
|
Bookser BC, Ugarkar BG, Matelich MC, Lemus RH, Allan M, Tsuchiya M, Nakane M, Nagahisa A, Wiesner JB, Erion MD. Adenosine kinase inhibitors. 6. Synthesis, water solubility, and antinociceptive activity of 5-phenyl-7-(5-deoxy-beta-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidines substituted at C4 with glycinamides and related compounds. J Med Chem 2006; 48:7808-20. [PMID: 16302820 DOI: 10.1021/jm050394a] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4-(Phenylamino)-5-phenyl-7-(5-deoxy-beta-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine 1 and related compounds known as "diaryltubercidin" analogues are potent inhibitors of adenosine kinase (AK) and are orally active in animal models of pain such as the rat formalin paw model (GP3269 ED50= 6.4 mg/kg). However, the utility of this compound class is limited by poor water solubility that can be attributed to the high energy of crystallization caused by stacking of the parallel C4 and C5 aryl rings in the solid state (compound 1 and GP3269 each with pH 7.4 solubility <0.05 microg/mL). To increase water solubility, the hydrophobic C4-phenylamino substituent was replaced with a more hydrophilic group, glycinamide. This modification resulted in improved water solubility while retaining AK inhibition potency. Analogues were studied where changes in the glycinamide moiety were combined with changes to the base and sugar. A lead compound, 4-N-(N-cyclopropylcarbamoylmethyl)amino-5-phenyl-7-(5-deoxy-beta-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine (16c) (IC50= 3 nM and water solubility = 32 +/- 9 microg/mL at pH 7.4), was further characterized in biological assays. Compound 16c exhibited strong oral efficacy in the rat formalin paw model (ED50 of 2.5 mg/kg). In the most advanced assay, 16c was found to inhibit bradykinin-induced licking in marmoset monkeys with an ED50 estimated at 0.9 mg/kg without producing evidence of side effects such as ataxia, sedation, and emesis at this dose. However, lethal toxicity in the rat formalin paw model occurred with high doses of 16c, and further work on this series was discontinued.
Collapse
Affiliation(s)
- Brett C Bookser
- Metabasis Therapeutics, Inc., 9390 Towne Centre Drive, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bookser BC, Matelich MC, Ollis K, Ugarkar BG. Adenosine Kinase Inhibitors. 4. 6,8-Disubstituted Purine Nucleoside Derivatives. Synthesis, Conformation, and Enzyme Inhibition. J Med Chem 2005; 48:3389-99. [PMID: 15857145 DOI: 10.1021/jm048968j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6,8-Disubstituted purine nucleosides were synthesized and evaluated as adenosine kinase inhibitors (AKIs). A method was developed to selectively substitute arylamines for halogens at C6 and C8 which utilizes alkali salts of arylamino anions. Regioselectivity was found to be counterion dependent. Potassium and sodium salts add selectively to C6 of 6-chloro-8-iodo-9-(2,3,5-tris-O-tert-butyldimethylsilyl-beta-d-ribofuranosyl)purine (7a) while lithium salts add to C6 and C8 positions. Differential 6,8-bisarylamin-N,N'-diylpurine nucleosides such as 8-anilin-N-yl-6-indolin-N-yl-9-(beta-d-ribofuranosyl)purine (10b) can be prepared by employing stepwise reactions of potassium and then lithium salts of different arylamino anions followed by fluoride ion-induced desilylation. Other C8-substituted compounds were prepared by way of either C8 lithiation chemistry or palladium cross-coupling reactions. Several of these compounds were potent AKIs (e.g. 10b, AK IC(50) = 0.019 microM) and are more potent than the previous best purine-based AKI 5'-deoxy-5'-aminoadenosine (AK IC(50) = 0.170 microM). AK inhibitory potency was greatest for those compounds with (1)H NMR evidence of a predominant anti glycosyl bond conformation, whereas most analogues adopt a syn conformation because of steric repulsions between the C8 substituent and the ribose group. The inhibitors are proposed to bind in the anti conformation with the hydrophobic C6 and C8 substituents contributing to AK affinity in a manner similar to the C4 and C5 aryl substituents of the potent diaryltubercidin nucleoside inhibitor series.
Collapse
Affiliation(s)
- Brett C Bookser
- Metabasis Therapeutics, Inc., 9390 Towne Centre Drive, San Diego, California 92121, USA. bookser@ mbasis.com
| | | | | | | |
Collapse
|
27
|
Chaudhary K, Donald RGK, Nishi M, Carter D, Ullman B, Roos DS. Differential localization of alternatively spliced hypoxanthine-xanthine-guanine phosphoribosyltransferase isoforms in Toxoplasma gondii. J Biol Chem 2005; 280:22053-9. [PMID: 15814612 DOI: 10.1074/jbc.m503178200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A unique feature of the Toxoplasma gondii purine salvage pathway is the expression of two isoforms of the hypoxanthine-xanthine-guanine phosophoribosyltransferase (HXGPRT) of the parasite encoded by a single genetic locus. These isoforms differ in the presence or absence of a 49-amino acid insertion (which is specified by a single differentially spliced exon) but exhibit similar substrate specificity, kinetic characteristics, and temporal expression patterns. To examine possible functional differences between the two HXGPRT isoforms, fluorescent protein fusions were expressed in parasites lacking the endogenous hxgprt gene. Immunoblot analysis of fractionated cell extracts and fluorescence microscopy indicated that HXGPRT-I (which lacks the 49-amino acid insertion) is found in the cytosol, whereas HXGPRT-II (which contains the insertion) localizes to the inner membrane complex (IMC) of the parasite. Simultaneous expression of both isoforms resulted in the formation of hetero-oligomers, which distributed between the cytosol and IMC. Chimeric constructs expressing N-terminal peptides from either isoform I (11 amino acids) or isoform II (60 amino acids) fused to a chloramphenicol acetyl transferase (CAT) reporter demonstrated that the N-terminal domain of isoform II is both necessary and sufficient for membrane association. Metabolic labeling experiments with transgenic parasites showed that isoform II or an isoform II-CAT fusion protein (but not isoform I or isoform I-CAT) incorporate [(3)H]palmitate. Mutation of three adjacent cysteine residues within the isoform II-targeting domain to serines blocked both palmitate incorporation and IMC attachment without affecting enzyme activity, demonstrating that acylation of N-terminal isoform II cysteine residues is responsible for the association of HXGPRT-II with the IMC.
Collapse
Affiliation(s)
- Kshitiz Chaudhary
- Department of Biology, University of Pennsylvania, 415 S. University Avenue, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
28
|
Chaudhary K, Darling JA, Fohl LM, Sullivan WJ, Donald RGK, Pfefferkorn ER, Ullman B, Roos DS. Purine salvage pathways in the apicomplexan parasite Toxoplasma gondii. J Biol Chem 2004; 279:31221-7. [PMID: 15140885 DOI: 10.1074/jbc.m404232200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have exploited a variety of molecular genetic, biochemical, and genomic techniques to investigate the roles of purine salvage enzymes in the protozoan parasite Toxoplasma gondii. The ability to generate defined genetic knockouts and target transgenes to specific loci demonstrates that T. gondii uses two (and only two) pathways for purine salvage, defined by the enzymes hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) and adenosine kinase (AK). Both HXGPRT and AK are single-copy genes, and either one can be deleted, indicating that either one of these pathways is sufficient to meet parasite purine requirements. Fitness defects suggest both pathways are important for the parasite, however, and that the salvage of adenosine is more important than salvage of hypoxanthine and other purine nucleobases. HXGPRT and AK cannot be deleted simultaneously unless one of these enzymes is provided in trans, indicating that alternative routes of functionally significant purine salvage are lacking. Despite previous reports to the contrary, we found no evidence of adenine phosphoribosyltransferase (APRT) activity when parasites were propagated in APRT-deficient host cells, and no APRT ortholog is evident in the T. gondii genome. Expression of Leishmania donovani APRT in transgenic T. gondii parasites yielded low levels of activity but did not permit genetic deletion of both HXGPRT and AK. A detailed comparative genomic study of the purine salvage pathway in various apicomplexan species highlights important differences among these parasites.
Collapse
Affiliation(s)
- Kshitiz Chaudhary
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The Mechanism of Phosphoryl Transfer Reaction and the Role of Active Site Residues on the Basis of Ribokinase-Like Kinases. Int J Mol Sci 2004. [DOI: 10.3390/i5040141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Abstract
Parasites are responsible for a wide variety of infectious diseases in human as well as in domestic and wild animals, causing an enormous health and economical blight. Current containment strategies are not entirely successful and parasitic infections are on the rise. In the absence of availability of antiparasitic vaccines, chemotherapy remains the mainstay for the treatment of most parasitic diseases. However, there is an urgent need for new drugs to prevent or combat some major parasitic infections because of lack of a single effective approach for controlling the parasites (e.g., trypanosomiasis) or because some serious parasitic infections developed resistance to presently available drugs (e.g., malaria). The rational design of a drug is usually based on biochemical and physiological differences between pathogens and host. Some of the most striking differences between parasites and their mammalian host are found in purine metabolism. Purine nucleotides can be synthesized by the de novo and/or the so-called "salvage" pathways. Unlike their mammalian host, most parasites studied lack the pathways for de novo purine biosynthesis and rely on the salvage pathways to meet their purine demands. Moreover, because of the great phylogenic separation between the host and the parasite, there are in some cases sufficient distinctions between corresponding enzymes of the purine salvage from the host and the parasite that can be exploited to design specific inhibitors or "subversive substrates" for the parasitic enzymes. Furthermore, the specificities of purine transport, the first step in purine salvage, diverge significantly between parasites and their mammalian host. This review highlights the unique transporters and enzymes responsible for the salvage of purines in parasites that could constitute excellent potential targets for the design of safe and effective antiparasitic drugs.
Collapse
Affiliation(s)
- Mahmoud H el Kouni
- Department of Pharmacology and Toxicology, Center for AIDS Research, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Cabrera R, Fischer H, Trapani S, Craievich AF, Garratt RC, Guixé V, Babul J. Domain motions and quaternary packing of phosphofructokinase-2 from Escherichia coli studied by small angle x-ray scattering and homology modeling. J Biol Chem 2003; 278:12913-9. [PMID: 12527754 DOI: 10.1074/jbc.m212137200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of MgATP and fructose-6-phosphate to phosphofructokinase-2 from Escherichia coli induces conformational changes that result in significant differences in the x-ray-scattering profiles compared with the unligated form of the enzyme. When fructose- 6-phosphate binds to the active site of the enzyme, the pair distribution function exhibits lower values at higher distances, indicating a more compact structure. Upon binding of MgATP to the allosteric site of the enzyme, the intensity at lower angles increases as a consequence of tetramer formation, but differences along higher angles also suggest changes at the tertiary structure level. We have used homology modeling to build the native dimeric form of phosphofructokinase-2 and fitted the experimental scattering curves by using rigid body movements of the domains in the model, similar to those observed in known homologous structures. The best fit with the experimental data of the unbound protein was achieved with open conformations of the domains in the model, whereas domain closure improves the agreement with the scattering of the enzyme-fructose-6-phosphate complex. Using the same approach, we utilized the scattering curve of the phosphofructokinase-2-MgATP complex to model the arrangement and conformation of dimers in the tetramer. We observed that, along with tetramerization, binding of MgATP to the allosteric site induces domain closure. Additionally, we used the scattering data to restore the low resolution structure of phosphofructokinase-2 (free and bound forms) by an ab initio procedure. Based on these findings, a proposal is made to account for the inhibitory effect of MgATP on the enzymatic activity.
Collapse
Affiliation(s)
- Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Coccidia provide a rich hunting ground for drug-designers, as there are significant biochemical differences between the parasites and their hosts. Recent years have brought the discovery of the plastid and its possible metabolic machinery, characterisation of acidocalcisomes, reports on the apparent absence from some coccidia of a typical mitochondrion, and the discovery of the mannitol cycle and shikimate pathway in the parasites. Moreover, modern technologies such as genomics and proteomics are bringing new insights into the biochemistry of coccidia and highlighting possible drug targets in abundance. A major issue for would-be drug discoverers is to decide upon the targets to prioritise. This review provides an update on recent findings on how coccidia differ biochemically from vertebrates. It includes discoveries within coccidian parasites themselves but also uses findings in Plasmodium to provide an overview of biochemical features that may be characteristics of many apicomplexan parasites and so potential targets for broad-spectrum drugs.
Collapse
Affiliation(s)
- G H Coombs
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, G12 8QQ, Glasgow, UK.
| | | |
Collapse
|
33
|
Maj MC, Singh B, Gupta RS. Pentavalent ions dependency is a conserved property of adenosine kinase from diverse sources: identification of a novel motif implicated in phosphate and magnesium ion binding and substrate inhibition. Biochemistry 2002; 41:4059-69. [PMID: 11900549 DOI: 10.1021/bi0119161] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic activity of adenosine kinase (AK) from mammalian sources has previously been shown to exhibit a marked dependency upon the presence of pentavalent ions (PVI), such as phosphate (PO4), arsenate, or vanadate. We now show that the activity of AK from diverse sources, including plant, yeast, and protist species, is also markedly enhanced in the presence of PVI. In all cases, PO4 or other PVI exerted their effects primarily by decreasing the Km for adenosine and alleviating the inhibition caused by high concentrations of substrates. These results provide evidence that PVI dependency is a conserved property of AK and perhaps of the PfkB family of carbohydrate kinases which includes AK. On the basis of sequence alignments, we have identified a conserved motif NXXE within the PfkB family. The N and E of this motif make close contacts with Mg2+ and PO4 ions in the crystal structures of AK and bacterial ribokinase (another PfkB member which shows PVI dependency), implicating these residues in their binding. Site-directed mutagenesis of these residues in Chinese hamster AK have resulted in active proteins with greatly altered phosphate stimulation and substrate inhibition characteristics. The N239Q mutation leads to the formation of an active protein whose activity was not stimulated by PO4 or inhibited by high concentrations of adenosine or ATP. The activity of the E242D mutant protein was also not significantly altered in the presence of phosphate. Although PO4 had no effect on the KmAdenosine for this mutant, the KmATP, K(i)Adenosine, and K(i)ATP were significantly decreased. In contrast to these mutations, N239L or E242L mutant proteins showed greatly decreased activity with an altered Mg2+ requirement. These observations support the view that N239 and E242 play an important role in the binding of PO4 and Mg2+ ions required for the catalytic activity of adenosine kinase.
Collapse
Affiliation(s)
- Mary C Maj
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | | | | |
Collapse
|
34
|
Abstract
Carbohydrate kinases frequently require a monovalent cation for their activity. The physical basis of this phenomenon is, however, usually unclear. We report here that Escherichia coli ribokinase is activated by potassium with an apparent K(d) of 5 mM; the enzyme should therefore be fully activated under physiological conditions. Cesium can be used as an alternative ion, with an apparent K(d) of 17 mM. An X-ray structure of ribokinase in the presence of cesium was solved and refined at 2.34 A resolution. The cesium ion was bound between two loops immediately adjacent to the anion hole of the active site. The buried location of the site suggests that conformational changes will accompany ion binding, thus providing a direct mechanism for activation. Comparison with structures of a related enzyme, the adenosine kinase of Toxoplasma gondii, support this proposal. This is apparently the first instance in which conformational activation of a carbohydrate kinase by a monovalent cation has been assigned a clear structural basis. The mechanism is probably general to ribokinases, to some adenosine kinases, and to other members of the larger family. A careful re-evaluation of the biochemical and structural data is suggested for other enzyme systems.
Collapse
Affiliation(s)
- C Evalena Andersson
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
35
|
McFadden DC, Camps M, Boothroyd JC. Resistance as a tool in the study of old and new drug targets in Toxoplasma. Drug Resist Updat 2001; 4:79-84. [PMID: 11512524 DOI: 10.1054/drup.2001.0184] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Drug resistance generated in vitro in the protozoan parasite Toxoplasma gondii is described. We focus on drugs that are in use in patients, that show some promise for such use, or that represent lead compounds for further development. No instance has yet been reported where resistance to any of these drugs has arisen in a patient or in the field although different strains do show varying degrees of sensitivity. For many of these drugs, however, resistant lines have been generated in the laboratory and these have proven very useful for elucidating a given drug's target. These targets range from metabolic pathways in the cytosol to organellar functions encoded in the mitochondrion or plastid. Such information makes predictions about how fast resistance will arise in the field but more importantly, it helps identify targets that are crucial to the parasite and predicts which combinations of drugs should act synergistically.
Collapse
Affiliation(s)
- D C McFadden
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5412, USA
| | | | | |
Collapse
|
36
|
Lecoq K, Belloc I, Desgranges C, Daignan-Fornier B. Role of adenosine kinase in Saccharomyces cerevisiae: identification of the ADO1 gene and study of the mutant phenotypes. Yeast 2001; 18:335-42. [PMID: 11223943 DOI: 10.1002/1097-0061(20010315)18:4<335::aid-yea674>3.0.co;2-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sequencing of the Saccharomyces cerevisiae genome revealed an open reading frame (YJR105w) encoding a putative protein highly similar to adenosine kinases from other species. Disruption of this gene (renamed ADO1) affected utilization of S-adenosyl methionine (AdoMet) as a purine source and resulted in a severe reduction of adenosine kinase activity in crude extracts. Furthermore, knock-out of ADO1 led to adenosine excretion in the medium and resistance to the toxic adenosine analogue cordycepin. From these data we conclude that ADO1 encodes yeast adenosine kinase. We also show that ADO1 does not play a major role in adenine utilization in yeast and we propose that the physiological role of adenosine kinase in S. cerevisiae could primarily be to recycle adenosine produced by the methyl cycle.
Collapse
Affiliation(s)
- K Lecoq
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, 1, rue Camille Saint-Saëns, F-33077 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
37
|
Ito S, Fushinobu S, Yoshioka I, Koga S, Matsuzawa H, Wakagi T. Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon. Structure 2001; 9:205-14. [PMID: 11286887 DOI: 10.1016/s0969-2126(01)00577-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND ATP is the most common phosphoryl group donor for kinases. However, certain hyperthermophilic archaea such as Thermococcus litoralis and Pyrococcus furiosus utilize unusual ADP-dependent glucokinases and phosphofructokinases in their glycolytic pathways. These ADP-dependent kinases are homologous to each other but show no sequence similarity to any of the hitherto known ATP-dependent enzymes. RESULTS We solved the crystal structure at 2.3 A resolution of an ADP-dependent glucokinase from T. litoralis (tlGK) complexed with ADP. The overall structure can be divided into large and small alpha/beta domains, and the ADP molecule is buried in a shallow pocket in the large domain. Unexpectedly, the structure was similar to those of two ATP-dependent kinases, ribokinase and adenosine kinase. Comparison based on three-dimensional structure revealed that several motifs important both in structure and function are conserved, and the recognition of the alpha- and beta-phosphate of the ADP in the tlGK was almost identical with the recognition of the beta- and gamma-phosphate of ATP in these ATP-dependent kinases. CONCLUSIONS Noticeable points of our study are the first structure of ADP-dependent kinase, the structural similarity to members of the ATP-dependent ribokinase family, its rare nucleotide specificity caused by a shift in nucleotide binding position by one phosphate unit, and identification of the residues that discriminate ADP- and ATP-dependence. The strict conservation of the binding site for the terminal and adjacent phosphate moieties suggests a common ancestral origin of both the ATP- and ADP-dependent kinases.
Collapse
Affiliation(s)
- S Ito
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Maj MC, Gupta RS. The effect of inorganic phosphate on the activity of bacterial ribokinase. JOURNAL OF PROTEIN CHEMISTRY 2001; 20:139-44. [PMID: 11563694 DOI: 10.1023/a:1011081508171] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ribokinase and adenosine kinase are both members of the PfkB family of carbohydrate kinases. The activity of mammalian adenosine kinase was previously shown to be affected by pentavalent ions (PVI). We now present evidence that the catalytic activity of E. coli ribokinase is also affected by PVI, increasing both the velocity and affinity of the enzyme for D-ribose. The Km, for ribose decreased from 0.61 mM to 0.21, 0.25, and 0.33 mM in the presence of 20 mM phosphate, arsenate, and vanadate, respectively. The activity of ribokinase was stimulated in a hyperbolic fashion, with the maximum velocity increasing 23-fold, 13-fold, and 11-fold under the same conditions, respectively. Activity was also affected upon the addition of phosphoenolpyruvate, suggesting that phosphorylated metabolites could be involved in enzymatic control. The similar effect of PVI on distantly related enzymes suggests that a common mechanism for activity is shared among PfkB family members.
Collapse
Affiliation(s)
- M C Maj
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
39
|
Maj MC, Singh B, Gupta RS. Structure-activity studies on mammalian adenosine kinase. Biochem Biophys Res Commun 2000; 275:386-93. [PMID: 10964675 DOI: 10.1006/bbrc.2000.3307] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure-activity relationship for Chinese hamster adenosine kinase (AK) was examined by making systematic deletions from the N- and C-terminal ends. The first 16 a.a. residues from the N-terminal end, which likely form a random coil, can be deleted without any effect on AK activity or stability. The successive removal of the next 11 residues, which stabilize the first beta structure of the protein, leads to a progressive loss of AK activity from 100 to about 3%. The loss in activity is accompanied by increasing thermal instability and a slight increase in the K(m) for adenosine. All deletions beyond residue M28, which should cause disruption of the tertiary structure, are devoid of AK activity. The residues at the C-terminal end form a substructure involved in the stability of the "adenosine 2 binding site" and removal of any residues results in significant loss of activity. Successive removal of the first 10 residues from this end causes progressive decrease in AK activity to about the 2% level, accompanied by a five-fold increase in the K(m) for ATP, supporting the view that the adenosine 2 binding site located near the C-terminal end is the ATP binding site. All deletions beyond residue R348, which forms two salt bridges with the ATP binding site, are inactive. Site-directed replacement of an aspartic acid residue (D316), which is postulated to function in the transfer of phosphate from ATP to adenosine by either asparagine or glutamic acid, leads to complete loss of activity, supporting the proposed role of D316 as the catalytic base.
Collapse
Affiliation(s)
- M C Maj
- Department of Biochemistry, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | |
Collapse
|