1
|
Howarth ERI, Szott ID, Witham CL, Wilding CS, Bethell EJ. Genetic polymorphisms in the serotonin, dopamine and opioid pathways influence social attention in rhesus macaques (Macaca mulatta). PLoS One 2023; 18:e0288108. [PMID: 37531334 PMCID: PMC10395878 DOI: 10.1371/journal.pone.0288108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023] Open
Abstract
Behaviour has a significant heritable component; however, unpicking the variants of interest in the neural circuits and molecular pathways that underpin these has proven difficult. Here, we present a comprehensive analysis of the relationship between known and new candidate genes from identified pathways and key behaviours for survival in 109 adult rhesus macaques (Macaca mulatta). Eight genes involved in emotion were analysed for variation at a total of nine loci. Genetic data were then correlated with cognitive and observational measures of behaviour associated with wellbeing and survival using MCMC-based Bayesian GLMM in R, to account for relatedness within the macaque population. For four loci the variants genotyped were length polymorphisms (SLC6A4 5-hydroxytryptamine transporter length-polymorphic repeat (5-HTTLPR), SLC6A4 STin polymorphism, Tryptophan 5-hydroxylase 2 (TPH2) and Monoamine oxidase A (MAOA)) whilst for the other five (5-hydroxytryptamine receptor 2A (HTR2A), Dopamine Receptor D4 (DRD4), Oxytocin receptor (OXTR), Arginine vasopressin receptor 1A (AVPR1a), Opioid receptor mu(μ) 1 (OPRM1)) SNPs were analysed. STin genotype, DRD4 haplotype and OXTR haplotype were significantly associated with the cognitive and observational measures of behaviour associated with wellbeing and survival. Genotype for 5-HTTLPR, STin and AVPR1a, and haplotype for HTR2A, DRD4 and OXTR were significantly associated with the duration of behaviours including fear and anxiety. Understanding the biological underpinnings of individual variation in negative emotion (e.g., fear and anxiety), together with their impact on social behaviour (e.g., social attention including vigilance for threat) has application for managing primate populations in the wild and captivity, as well as potential translational application for understanding of the genetic basis of emotions in humans.
Collapse
Affiliation(s)
- Emmeline R. I. Howarth
- Research Centre in Brain and Behaviour, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Biological Sciences, University of Chester, Chester, United Kingdom
| | - Isabelle D. Szott
- Research Centre in Brain and Behaviour, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Claire L. Witham
- Centre for Macaques, Harwell Institute, Medical Research Council, Salisbury, United Kingdom
| | - Craig S. Wilding
- Biodiversity and Conservation Group, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Emily J. Bethell
- Research Centre in Brain and Behaviour, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
2
|
Clinical, Genetic and Functional Characterization of a Novel AVPR2 Missense Mutation in a Woman with X-Linked Recessive Nephrogenic Diabetes Insipidus. J Pers Med 2022; 12:jpm12010118. [PMID: 35055433 PMCID: PMC8779739 DOI: 10.3390/jpm12010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare disorder characterized by renal unresponsiveness to the hormone vasopressin, leading to excretion of large volumes of diluted urine. Mutations in the arginine vasopressin receptor-2 (AVPR2) gene cause congenital NDI and have an X-linked recessive inheritance. The disorder affects almost exclusively male family members, but female carriers occasionally present partial phenotypes due to skewed inactivation of the X-chromosome. Here, we report a rare case of a woman affected with X-linked recessive NDI, presenting an average urinary output of 12 L/day. Clinical and biochemical studies showed incomplete responses to water deprivation and vasopressin stimulation tests. Genetic analyses revealed a novel heterozygous missense mutation (c.493G > C, p.Ala165Pro) in the AVPR2 gene. Using a combination of in-silico protein modeling with human cellular models and molecular phenotyping, we provide functional evidence for phenotypic effects. The mutation destabilizes the helical structure of the AVPR2 transmembrane domains and disrupts its plasma membrane localization and downstream intracellular signaling pathways upon activation with its agonist vasopressin. These defects lead to deficient aquaporin 2 (AQP2) membrane translocation, explaining the inability to concentrate urine in this patient.
Collapse
|
3
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Żera T. Complementary Role of Oxytocin and Vasopressin in Cardiovascular Regulation. Int J Mol Sci 2021; 22:11465. [PMID: 34768894 PMCID: PMC8584236 DOI: 10.3390/ijms222111465] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The neurons secreting oxytocin (OXY) and vasopressin (AVP) are located mainly in the supraoptic, paraventricular, and suprachiasmatic nucleus of the brain. Oxytocinergic and vasopressinergic projections reach several regions of the brain and the spinal cord. Both peptides are released from axons, soma, and dendrites and modulate the excitability of other neuroregulatory pathways. The synthesis and action of OXY and AVP in the peripheral organs (eye, heart, gastrointestinal system) is being investigated. The secretion of OXY and AVP is influenced by changes in body fluid osmolality, blood volume, blood pressure, hypoxia, and stress. Vasopressin interacts with three subtypes of receptors: V1aR, V1bR, and V2R whereas oxytocin activates its own OXTR and V1aR receptors. AVP and OXY receptors are present in several regions of the brain (cortex, hypothalamus, pons, medulla, and cerebellum) and in the peripheral organs (heart, lungs, carotid bodies, kidneys, adrenal glands, pancreas, gastrointestinal tract, ovaries, uterus, thymus). Hypertension, myocardial infarction, and coexisting factors, such as pain and stress, have a significant impact on the secretion of oxytocin and vasopressin and on the expression of their receptors. The inappropriate regulation of oxytocin and vasopressin secretion during ischemia, hypoxia/hypercapnia, inflammation, pain, and stress may play a significant role in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.); (A.C.-J.); (T.Ż.)
| | | | | | | |
Collapse
|
4
|
Weiss A, Wilson VAD, Hopkins WD. Early social rearing, the V1A arginine vasopressin receptor genotype, and autistic traits in chimpanzees. Autism Res 2021; 14:1843-1853. [PMID: 34089305 DOI: 10.1002/aur.2550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/04/2023]
Abstract
Previous studies found associations between autism-related phenotypes and both rearing and V1A arginine vasopressin receptor (AVPR1A) genotypes. We tested whether these exposures as well as their interaction were associated with autism-related phenotypes in 121 laboratory-housed chimpanzees. We used expert-derived weights to obtain autism scores from ratings on the 43-item Chimpanzee Personality Questionnaire; higher scores indicated more autistic-like traits. The first model included fixed effects for sex, age, and rearing, and a random effect that addressed the relatedness of subjects. The second model was the same except that it also included the rearing × AVPR1A genotype interaction as a fixed effect. Both models indicated that the phenotype was moderately heritable and that chimpanzees reared by their mothers had lower scores on the scale. The effect of genotype in both models indicated that chimpanzees with an indel deletion had higher scores on the scale, although the credible interval included zero. Moreover, the rearing × genotype interaction in the second model indicated that chimpanzees who possessed the non-deletion genotype and who were reared by their mother were at even greater risk. The credible interval for this effect did not include zero, but fit statistics indicated that the model without the interaction was marginally better, and the interaction was in the opposite direction than we expected based on previous work. These findings highlight the importance of rearing effects in the typical social development of our closet-living nonhuman relative. LAY SUMMARY: We tested whether, in chimpanzees, scores on a scale comprising traits that resembled aspects of autism were related to a gene associated with autism in prior research and/or early rearing. Human-reared chimpanzees had higher scores (indicating more autistic-like traits). Chimpanzees that possessed the gene also had higher scores, but we could not exclude the possibility that there was no effect of genotype. These findings suggest that we can measure autism-like characteristics in chimpanzees, and so study it in this species.
Collapse
Affiliation(s)
- Alexander Weiss
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Wildlife Research Center, Kyoto University, Kyoto, Japan.,Scottish Primate Research Group, United Kingdom
| | - Vanessa A D Wilson
- Department of Comparative Cognition, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland.,Distributional Linguistics Lab, Department of Comparative Language Science, University of Zurich, Zürich, Switzerland
| | - William D Hopkins
- Department of Comparative Medicine, The University of Texas M D Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
5
|
Sparapani S, Millet-Boureima C, Oliver J, Mu K, Hadavi P, Kalostian T, Ali N, Avelar CM, Bardies M, Barrow B, Benedikt M, Biancardi G, Bindra R, Bui L, Chihab Z, Cossitt A, Costa J, Daigneault T, Dault J, Davidson I, Dias J, Dufour E, El-Khoury S, Farhangdoost N, Forget A, Fox A, Gebrael M, Gentile MC, Geraci O, Gnanapragasam A, Gomah E, Haber E, Hamel C, Iyanker T, Kalantzis C, Kamali S, Kassardjian E, Kontos HK, Le TBU, LoScerbo D, Low YF, Mac Rae D, Maurer F, Mazhar S, Nguyen A, Nguyen-Duong K, Osborne-Laroche C, Park HW, Parolin E, Paul-Cole K, Peer LS, Philippon M, Plaisir CA, Porras Marroquin J, Prasad S, Ramsarun R, Razzaq S, Rhainds S, Robin D, Scartozzi R, Singh D, Fard SS, Soroko M, Soroori Motlagh N, Stern K, Toro L, Toure MW, Tran-Huynh S, Trépanier-Chicoine S, Waddingham C, Weekes AJ, Wisniewski A, Gamberi C. The Biology of Vasopressin. Biomedicines 2021; 9:89. [PMID: 33477721 PMCID: PMC7832310 DOI: 10.3390/biomedicines9010089] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada; (S.S.); (C.M.-B.); (J.O.); (K.M.); (P.H.); (T.K.); (N.A.); (C.M.A.); (M.B.); (B.B.); (M.B.); (G.B.); (R.B.); (L.B.); (Z.C.); (A.C.); (J.C.); (T.D.); (J.D.); (I.D.); (J.D.); (E.D.); (S.E.-K.); (N.F.); (A.F.); (A.F.); (M.G.); (M.C.G.); (O.G.); (A.G.); (E.G.); (E.H.); (C.H.); (T.I.); (C.K.); (S.K.); (E.K.); (H.K.K.); (T.B.U.L.); (D.L.); (Y.F.L.); (D.M.R.); (F.M.); (S.M.); (A.N.); (K.N.-D.); (C.O.-L.); (H.W.P.); (E.P.); (K.P.-C.); (L.S.P.); (M.P.); (C.-A.P.); (J.P.M.); (S.P.); (R.R.); (S.R.); (S.R.); (D.R.); (R.S.); (D.S.); (S.S.F.); (M.S.); (N.S.M.); (K.S.); (L.T.); (M.W.T.); (S.T.-H.); (S.T.-C.); (C.W.); (A.J.W.); (A.W.)
| |
Collapse
|
6
|
Muscogiuri G, Barrea L, Annunziata G, Vecchiarini M, Orio F, Di Somma C, Colao A, Savastano S. Water intake keeps type 2 diabetes away? Focus on copeptin. Endocrine 2018; 62:292-298. [PMID: 30027433 DOI: 10.1007/s12020-018-1680-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In both diabetic subjects and animal models high levels of vasopressin (AVP) have beendetected. The relationship between AVP and glucose metabolism is mediated through several direct andindirect effects and most of them are still unknown. METHODS We have reviewed 100 manuscripts retrieved from Cochrane Library, Embase and Pubmeddatabases in order to highlight a possible relationship between copeptin and type 2 diabetes and to provideinsights on the molecular mechanism that could explain this association. RESULTS AND CONCLUSIONS AVP potentiates CRH action at pituitary level resulting in an increased ACTH secretion and in turn in an increased cortisol secretion that escapes the negative feedback loop. Further, AVP regulates insulin and glucagon secretion through V1b receptor and promotes hepatic glycogenolysis and gluconeogenesis through V1a receptor. In addition to worsen glucose metabolism, AVP has been reported to have a role in the pathogenesis of diabetic complications such as cardiovascular diseases, kidney and ocular complications. Due to the very low concentration of AVP in the blood, the small size and poor stability, the assay of AVP is very difficult to perform. Thus, copeptin, the stable C-terminal portion of the prepro-vasopressin peptide has been identified as an easier assay to be measured and that mirrors AVP activity. Although there are promising evidence that copeptin could be involved in the pathogenesis of type 2 diabetes, further studies need to demonstrate the importance of copeptin as clinical marker to predict glucose metabolism derangements.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.
| | - Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Giuseppe Annunziata
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | | | - Francesco Orio
- Dipartimento di Scienze Motorie e del Benessere, Università Partenope di Napoli, Naples, Italy
| | | | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| |
Collapse
|
7
|
Cataldo I, Azhari A, Esposito G. A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. Front Mol Neurosci 2018; 11:27. [PMID: 29487501 PMCID: PMC5816822 DOI: 10.3389/fnmol.2018.00027] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/18/2018] [Indexed: 12/24/2022] Open
Abstract
Oxytocin (OXT) and arginine-vasopressin (AVP) play a key regulatory part in social and affiliative behaviors; two aspects highly compromised in Autism Spectrum Disorder (ASD). Furthermore, variants in the adjacent oxytocin-vasopressin gene regions have been found to be associated with ASD diagnosis and endophenotypes. This review focuses mainly on common OXTr single nucleotide polymorphisms (SNPs), AVPR1a microsatellites and AVPR1b polymorphisms in relation to the development of autism. Although these genes did not surface in genome-wide association studies, evidence supports the hypothesis that these receptors and their polymorphisms are widely involved in the regulation of social behavior, and in modulating neural and physiological pathways contributing to the etiology of ASD. With a specific focus on variants considered to be among the most prevalent in the development of ASD, these issues will be discussed in-depth and suggestions to approach inconsistencies in the present literature will be provided. Translational implications and future directions are deliberated from a short-term and a forward-looking perspective. While the scientific community has made significant progress in enhancing our understanding of ASD, more research is required for the ontology of this disorder to be fully elucidated. By supplementing information related to genetics, highlighting the differences across male and female sexes, this review provides a wider view of the current state of knowledge of OXTr and AVPr mechanisms of functioning, eventually addressing future research in the identification of further risk factors, to build new strategies for early interventions.
Collapse
Affiliation(s)
- Ilaria Cataldo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,Mobile and Social Computing Lab, Fondazione Bruno Kessler, Trento, Italy
| | - Atiqah Azhari
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Koshy L, Vijayalekshmi SV, Harikrishnan S, Raman KV, Jissa VT, Jayakumaran Nair A, Gangaprasad A, Nair GM, Sudhakaran PR. Lack of association of mirSNP rs11174811 in AVPR1A gene with arterial blood pressure and hypertension in South Indian population. Clin Exp Hypertens 2017; 40:534-538. [PMID: 29182374 DOI: 10.1080/10641963.2017.1403624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epigenetic regulation of arterial blood pressure mediated through mirSNPs in renin-angiotensin aldosterone system (RAAS) genes is a less explored hypothesis. Recently, the mirSNP rs11174811 in the 3'UTR of the AVPR1A gene was associated with higher arterial blood pressure in a large study population from the Study of Myocardial Infarctions Leiden (SMILE). The aim of the present study was to replicate the association of mirSNP rs11174811 with blood pressure outcomes and hypertension in a south Indian population. Four hundred and fifteen hypertensive cases and 416 normotensive controls were genotyped using a 5' nuclease allelic discrimination assay. Logistic regression was used to test the association of mirSNP rs11174811 with the hypertension phenotype. Censored normal regression was used to test the association of the polymorphism with continuous blood pressure outcomes such as systolic and diastolic blood pressure. The mirSNP rs11174811 did not show any significant association with hypertension. The adjusted odds ratio was 1.02, with 95% CI of 0.72 to 1.45 (p = 0.909). The mean systolic and diastolic blood pressure values were not significantly different across the three genotypic groups, between hypertensives and normotensives, or when stratified by gender. Despite having a similar minor allele frequency (MAF) of 14.5% compared with the SMILE cohort, our results did not support an association of the mirSNP rs11174811 with the hypertension phenotype or with continuous blood pressure outcomes in the south Indian population.
Collapse
Affiliation(s)
- Linda Koshy
- a Inter-University Centre for Genomics and Gene Technology, Department of Biotechnology , University of Kerala , Trivandrum , India
| | - S V Vijayalekshmi
- a Inter-University Centre for Genomics and Gene Technology, Department of Biotechnology , University of Kerala , Trivandrum , India
| | - S Harikrishnan
- b Department of Cardiology , Sree Chitra Tirunal Institute for Medical Sciences and Technology , Trivandrum , India
| | - Kutty V Raman
- c Achutha Menon Centre for Health Science Studies , Sree Chitra Tirunal Institute for Medical Sciences and Technology , Trivandrum , India
| | - V T Jissa
- c Achutha Menon Centre for Health Science Studies , Sree Chitra Tirunal Institute for Medical Sciences and Technology , Trivandrum , India
| | - A Jayakumaran Nair
- a Inter-University Centre for Genomics and Gene Technology, Department of Biotechnology , University of Kerala , Trivandrum , India
| | - A Gangaprasad
- d Department of Botany , University of Kerala , Trivandrum , India
| | - G M Nair
- a Inter-University Centre for Genomics and Gene Technology, Department of Biotechnology , University of Kerala , Trivandrum , India
| | - P R Sudhakaran
- a Inter-University Centre for Genomics and Gene Technology, Department of Biotechnology , University of Kerala , Trivandrum , India
| |
Collapse
|
9
|
Yang SY, Kim SA, Hur GM, Park M, Park JE, Yoo HJ. Replicative genetic association study between functional polymorphisms in AVPR1A and social behavior scales of autism spectrum disorder in the Korean population. Mol Autism 2017; 8:44. [PMID: 28808521 PMCID: PMC5550983 DOI: 10.1186/s13229-017-0161-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023] Open
Abstract
Background Arginine vasopressin has been shown to affect social and emotional behaviors, which is mediated by the arginine vasopressin receptor (AVPR1A). Genetic polymorphisms in the AVPR1A promoter region have been identified to be associated with susceptibility to social deficits in autism spectrum disorder (ASD). We hypothesize that alleles of polymorphisms in the promoter region of AVPR1A may differentially interact with certain transcriptional factors, which in turn affect quantitative traits, such as sociality, in children with autism. Methods We performed an association study between ASD and polymorphisms in the AVPR1A promoter region in the Korean population using a family-based association test (FBAT). We evaluated the correlation between genotypes and the quantitative traits that are related to sociality in children with autism. We also performed a promoter assay in T98G cells and evaluated the binding affinities of transcription factors to alleles of rs7294536. Results The polymorphisms—RS1, RS3, rs7294536, and rs10877969—were analyzed. Under the dominant model, RS1–310, the shorter allele, was preferentially transmitted. The FBAT showed that the rs7294536 A allele was also preferentially transmitted in an additive and dominant model under the bi-allelic mode. When quantitative traits were used in the FBAT, rs7294536 and rs10877969 were statistically significant in all genotype models and modes. Luciferase and electrophoretic mobility-shift assays suggest that the rs7294536 A/G allele results in a Nf-κB binding site that exhibits differential binding affinities depending on the allele. Conclusion These results demonstrate that polymorphisms in the AVPR1A promoter region might be involved in pathophysiology of ASD and in functional regulation of the expression of AVPR1A. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0161-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- So Young Yang
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Mira Park
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, Jeonbuk Republic of Korea
| | - Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, 173-82, Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do 463-707 South Korea.,Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Procyshyn TL, Hurd PL, Crespi BJ. Association testing of vasopressin receptor 1a microsatellite polymorphisms in non-clinical autism spectrum phenotypes. Autism Res 2016; 10:750-756. [PMID: 27874273 DOI: 10.1002/aur.1716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 08/19/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
Variation in the AVPR1a gene, which codes for a receptor for the neurohormone vasopressin, has been found to relate to autism risk. Interestingly, variation in this gene also relates to differences in social behaviour in non-clinical populations. Variation in this gene may affect expression of AVPR1a receptors in brain areas involved in social behaviour. Here, we tested whether AVPR1a variation was associated with Autism Quotient (AQ) scores, a questionnaire that measures non-clinical manifestations of autism, in a population of 873 healthy university students. The AVPR1a RS1 and RS3 microsatellites were examined, and variants were categorized as "long" or "short". The RS3 long/long genotype was significantly associated with a higher AQ score (i.e., a more autistic-like phenotype) for the combined population and for females only. Further examination showed that this relationship was due to a specific RS3 variant, termed the "target allele", which previous research has linked to reduced altruism and increased marital problems in healthy individuals. We also observed that the relationship between RS3 genotype and AQ score was mainly due to the "attention switching" (the ability to shift attention from one task to another) component of the questionnaire; this ability is commonly impaired in autism spectrum disorders. Overall, our study establishes continuity between the existing AVPR1a research in clinical and non-clinical populations. Our results suggest that vasopressin may exert its effects on social behaviour in part by modulating attentional focus between social and non-social cues. Autism Res 2017, 10: 750-756. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tanya L Procyshyn
- Department of Biological Sciences, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Peter L Hurd
- Department of Psychology and Centre for Neuroscience, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, V5A 1S6, Canada
| |
Collapse
|
11
|
Wilson VAD, Weiss A, Humle T, Morimura N, Udono T, Idani G, Matsuzawa T, Hirata S, Inoue-Murayama M. Chimpanzee Personality and the Arginine Vasopressin Receptor 1A Genotype. Behav Genet 2016; 47:215-226. [PMID: 27804047 PMCID: PMC5306277 DOI: 10.1007/s10519-016-9822-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/29/2016] [Indexed: 12/05/2022]
Abstract
Polymorphisms of the arginine vasopressin receptor 1a (AVPR1a) gene have been linked to various measures related to human social behavior, including sibling conflict and agreeableness. In chimpanzees, AVPR1a polymorphisms have been associated with traits important for social interactions, including sociability, joint attention, dominance, conscientiousness, and hierarchical personality dimensions named low alpha/stability, disinhibition, and negative emotionality/low dominance. We examined associations between AVPR1a and six personality domains and hierarchical personality dimensions in 129 chimpanzees (Pan troglodytes) living in Japan or in a sanctuary in Guinea. We fit three linear and three animal models. The first model included genotype, the second included sex and genotype, and the third included genotype, sex, and sex × genotype. All personality phenotypes were heritable. Chimpanzees possessing the long form of the allele were higher in conscientiousness, but only in models that did not include the other predictors; however, additional analyses suggested that this may have been a consequence of study design. In animal models that included sex and sex × genotype, chimpanzees homozygous for the short form of the allele were higher in extraversion. Taken with the findings of previous studies of chimpanzees and humans, the findings related to conscientiousness suggest that AVPR1a may be related to lower levels of impulsive aggression. The direction of the association between AVPR1a genotype and extraversion ran counter to what one would expect if AVPR1a was related to social behaviors. These results help us further understand the genetic basis of personality in chimpanzees.
Collapse
Affiliation(s)
- V A D Wilson
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Cognitive Ethology, German Primate Center, Georg-August-University Goettingen, Leibniz-ScienceCampus, Göttingen, Germany
| | - A Weiss
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| | - T Humle
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - N Morimura
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - T Udono
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - G Idani
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - T Matsuzawa
- Institute for Advanced Study, Kyoto University, Kyoto, Japan.,Primate Research Institute, Kyoto University, Inuyama, Japan.,Japan Monkey Centre, Inuyama, Japan
| | - S Hirata
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - M Inoue-Murayama
- Wildlife Research Center, Kyoto University, Kyoto, Japan.,National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
12
|
Aspé-Sánchez M, Moreno M, Rivera MI, Rossi A, Ewer J. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits. Front Neurosci 2016; 9:510. [PMID: 26858594 PMCID: PMC4729929 DOI: 10.3389/fnins.2015.00510] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/21/2015] [Indexed: 01/24/2023] Open
Abstract
Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date.
Collapse
Affiliation(s)
- Mauricio Aspé-Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de ValparaísoValparaíso, Chile; Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del DesarrolloSantiago, Chile; Scuola Internazionale Superiore di Studi AvanzatiTrieste, Italy
| | - Macarena Moreno
- Programa de Doctorado Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Maria Ignacia Rivera
- Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del Desarrollo Santiago, Chile
| | - Alejandra Rossi
- Department of Psychiatry, Harvard Medical School Boston, MA, USA
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
13
|
Staes N, Koski SE, Helsen P, Fransen E, Eens M, Stevens JMG. Chimpanzee sociability is associated with vasopressin (Avpr1a) but not oxytocin receptor gene (OXTR) variation. Horm Behav 2015; 75:84-90. [PMID: 26299644 DOI: 10.1016/j.yhbeh.2015.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/16/2015] [Accepted: 08/14/2015] [Indexed: 11/25/2022]
Abstract
The importance of genes in regulating phenotypic variation of personality traits in humans and animals is becoming increasingly apparent in recent studies. Here we focus on variation in the vasopressin receptor gene 1a (Avpr1a) and oxytocin receptor gene (OXTR) and their effects on social personality traits in chimpanzees. We combine newly available genetic data on Avpr1a and OXTR allelic variation of 62 captive chimpanzees with individual variation in personality, based on behavioral assessments. Our study provides support for the positive association of the Avpr1a promoter region, in particular the presence of DupB, and sociability in chimpanzees. This complements findings of previous studies on adolescent chimpanzees and studies that assessed personality using questionnaire data. In contrast, no significant associations were found for the single nucleotide polymorphism (SNP) ss1388116472 of the OXTR and any of the personality components. Most importantly, our study provides additional evidence for the regulatory function of the 5' promoter region of Avpr1a on social behavior and its evolutionary stable effect across species, including rodents, chimpanzees and humans. Although it is generally accepted that complex social behavior is regulated by a combination of genes, the environment and their interaction, our findings highlight the importance of candidate genes with large effects on behavioral variation.
Collapse
Affiliation(s)
- Nicky Staes
- University of Antwerp, Department of Biology, B-2610 Antwerp, Belgium; Centre for Research and Conservation, Royal Zoological Society of Antwerp, B-2018 Antwerp, Belgium.
| | - Sonja E Koski
- Helsinki University, Finnish Centre of Excellence in Intersubjectivity in Interaction, FI-00014 Helsinki, Finland.
| | - Philippe Helsen
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, B-2018 Antwerp, Belgium; University of Antwerp, Department of Biology, B-2610 Antwerp, Belgium.
| | - Erik Fransen
- University of Antwerp, Statua Center for Statistics, B-2000 Antwerp, Belgium.
| | - Marcel Eens
- University of Antwerp, Department of Biology, B-2610 Antwerp, Belgium.
| | - Jeroen M G Stevens
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, B-2018 Antwerp, Belgium; University of Antwerp, Department of Biology, B-2610 Antwerp, Belgium.
| |
Collapse
|
14
|
Uzefovsky F, Shalev I, Israel S, Edelman S, Raz Y, Mankuta D, Knafo-Noam A, Ebstein RP. Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Horm Behav 2015; 67:60-5. [PMID: 25476609 DOI: 10.1016/j.yhbeh.2014.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/28/2014] [Accepted: 11/08/2014] [Indexed: 01/10/2023]
Abstract
Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions.
Collapse
Affiliation(s)
- F Uzefovsky
- Psychology Department, Hebrew University, Jerusalem 91501, Israel; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - I Shalev
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - S Israel
- Psychology Department, Hebrew University, Jerusalem 91501, Israel
| | - S Edelman
- Psychology Department, Hebrew University, Jerusalem 91501, Israel
| | - Y Raz
- Neurobiology, Hebrew University, Jerusalem, Israel
| | - D Mankuta
- Hadassah Medical Organization, Department of Labor and Delivery, Jerusalem, Israel
| | - A Knafo-Noam
- Psychology Department, Hebrew University, Jerusalem 91501, Israel
| | - R P Ebstein
- Psychology Department, National University of Singapore, Singapore
| |
Collapse
|
15
|
Molecular variation in AVP and AVPR1a in New World monkeys (Primates, Platyrrhini): evolution and implications for social monogamy. PLoS One 2014; 9:e111638. [PMID: 25360668 PMCID: PMC4216101 DOI: 10.1371/journal.pone.0111638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
The neurohypophysial hormone arginine vasopressin (AVP) plays important roles in fluid regulation and vascular resistance. Differences in AVP receptor expression, particularly mediated through variation in the noncoding promoter region of the primary receptor for AVP (AVPR1a), may play a role in social phenotypes, particularly social monogamy, in rodents and humans. Among primates, social monogamy is rare, but is common among New World monkeys (NWM). AVP is a nonapeptide and generally conserved among eutherian mammals, although a recent paper demonstrated that some NWM species possess a novel form of the related neuropeptide hormone, oxytocin. We therefore characterized variation in the AVP and AVPR1a genes in 22 species representing every genus in the three major platyrrhine families (Cebidae, Atelidae and Pitheciidae). For AVP, a total of 16 synonymous substitutions were detected in 15 NWM species. No non-synonymous substitutions were noted, hence, AVP is conserved in NWM. By contrast, relative to the human AVPR1a, 66 predicted amino acids (AA) substitutions were identified in NWM. The AVPR1a N-terminus (ligand binding domain), third intracellular (G-protein binding domain), and C-terminus were variable among species. Complex evolution of AVPR1a is also apparent in NWM. A molecular phylogenetic tree inferred from AVPR1a coding sequences revealed some consensus taxonomic separation by families, but also a mixed group composed of genera from all three families. The overall dN/dS ratio of AVPR1a was 0.11, but signals of positive selection in distinct AVPR1a regions were observed, including the N-terminus, in which we identified six potential positive selection sites. AA substitutions at positions 241, 319, 399 and 409 occurred uniquely in marmosets and tamarins. Our results enhance the appreciation of genetic diversity in the mammalian AVP/AVPR1a system, and set the stage for molecular modeling of the neurohypophyseal hormones and social behavior in primates.
Collapse
|
16
|
AVPR1A Variation in Chimpanzees (Pan troglodytes): Population Differences and Association with Behavioral Style. INT J PRIMATOL 2014. [DOI: 10.1007/s10764-013-9747-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Fukui H, Toyoshima K. Influence of music on steroid hormones and the relationship between receptor polymorphisms and musical ability: a pilot study. Front Psychol 2013; 4:910. [PMID: 24348454 PMCID: PMC3848314 DOI: 10.3389/fpsyg.2013.00910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/15/2013] [Indexed: 01/08/2023] Open
Abstract
Studies have shown that music confers plasticity to the brain. In a preliminary pilot study, we examined the effect of music listening on steroid hormones and the relationship between steroid hormone receptor polymorphisms and musical ability. Twenty-one subjects (10 males and 11 females) were recruited and divided into musically talented and control groups. The subjects selected (1) music they preferred (chill-inducing music) and (2) music they did not like. Before and after the experiments, saliva was collected to measure the levels of steroid hormones such as testosterone, estradiol, and cortisol. DNA was also isolated from the saliva samples to determine the androgen receptor (AR) and arginine vasopressin receptor 1A genotypes. Advanced Measures of Music Audiation (AMMA) was used to determine the musical ability of the subjects. With both types of music, the cortisol levels decreased significantly in both sexes. The testosterone (T) levels declined in males when they listened to both types of music. In females, the T levels increased in those listening to chill-inducing music but declined when they listened to music they disliked. However, these differences were not significant. The 17-beta estradiol levels increased in males with both types of music, whereas the levels increased with chill-inducing music but declined with disliked music in females. The AMMA scores were higher for the short repeat length-type AR than for the long repeat length-type. Comparisons of AR polymorphisms and T levels before the experiments showed that the T levels were within the low range in the short repeat length-type group and there was a positive relationship with the repeat length, although it was not significant. This is the first study conducted in humans to analyze the relationships between the AR gene, T levels, and musical ability.
Collapse
Affiliation(s)
- Hajime Fukui
- Department of Education, Nara University of EducationNara, Japan
| | | |
Collapse
|
18
|
Donaldson ZR, Young LJ. The relative contribution of proximal 5' flanking sequence and microsatellite variation on brain vasopressin 1a receptor (Avpr1a) gene expression and behavior. PLoS Genet 2013; 9:e1003729. [PMID: 24009523 PMCID: PMC3757045 DOI: 10.1371/journal.pgen.1003729] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/01/2013] [Indexed: 01/16/2023] Open
Abstract
Certain genes exhibit notable diversity in their expression patterns both within and between species. One such gene is the vasopressin receptor 1a gene (Avpr1a), which exhibits striking differences in neural expression patterns that are responsible for mediating differences in vasopressin-mediated social behaviors. The genomic mechanisms that contribute to these remarkable differences in expression are not well understood. Previous work has suggested that both the proximal 5′ flanking region and a polymorphic microsatellite element within that region of the vole Avpr1a gene are associated with variation in V1a receptor (V1aR) distribution and behavior, but neither has been causally linked. Using homologous recombination in mice, we reveal the modest contribution of proximal 5′ flanking sequences to species differences in V1aR distribution, and confirm that variation in V1aR distribution impacts stress-coping in the forced swim test. We also demonstrate that the vole Avpr1a microsatellite structure contributes to Avpr1a expression in the amygdala, thalamus, and hippocampus, mirroring a subset of the inter- and intra-species differences observed in central V1aR patterns in voles. This is the first direct evidence that polymorphic microsatellite elements near behaviorally relevant genes can contribute to diversity in brain gene expression profiles, providing a mechanism for generating behavioral diversity both at the individual and species level. However, our results suggest that many features of species-specific expression patterns are mediated by elements outside of the immediate 5′ flanking region of the gene. DNA sequence variation underlies many differences both within and between species. In this paper, we investigate a specific DNA sequence that is thought to influence expression of a gene that modulates behavior, the vasopressin V1a receptor gene (Avpr1a). Specifically, differences in the expression of V1a receptor in the brain have been causally tied to social behavior differences, but the genetic basis of these differences is not understood. Using transgenic mice, we investigate the role of DNA sequences upstream of this gene in generating species-specific and individual variation in Avpr1a expression. We find that, contrary to our expectation, this region has only a modest influence on differences in expression patterns across rodent species. This indicates that DNA elements outside of this region play a larger role in species-level differences in expression. We confirm that variation in Avpr1a expression mediated by this upstream region translates to differences in behavior. We also find that variable DNA sequences associated with repetitive motifs within this region subtly influence gene expression. Together these findings highlight the complexity of genetic mechanisms that influence diversity in brain receptor patterns and support the idea that variable repetitive elements can influence both species and individual differences in gene expression patterns.
Collapse
Affiliation(s)
- Zoe R Donaldson
- Division of Integrative Neuroscience, Department of Psychiatry, Columbia University, New York, New York, United States of America.
| | | |
Collapse
|
19
|
Bankir L, Bouby N, Ritz E. Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat Rev Nephrol 2013; 9:223-39. [PMID: 23438973 DOI: 10.1038/nrneph.2013.22] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
After several decades during which little attention was paid to vasopressin and/or urine concentration in clinical practice, interest in vasopressin has renewed with the availability of new, potent, orally active vasopressin-receptor antagonists--the vaptans--and with the results of epidemiological studies evaluating copeptin (a surrogate marker of vasopressin) in large population-based cohorts. Several experimental studies in rats and mice had previously shown that vasopressin, acting via vasopressin V2 antidiuretic receptors, contributes to the progression of chronic kidney disease; in particular, to autosomal dominant polycystic kidney disease. New epidemiological studies now suggest a role for vasopressin in the pathogenesis of diabetes mellitus and metabolic disorders via activation of hepatic V1a and/or pancreatic islet V1b receptors. The first part of this Review describes the adverse effects of vasopressin, as revealed by clinical and experimental studies in kidney diseases, hypertension, diabetes and the metabolic syndrome. The second part provides insights into vasopressin physiology and pathophysiology that may be relevant to the understanding of these adverse effects and that are linked to the excretion of concentrated nitrogen wastes and associated hyperfiltration. Collectively, the studies reviewed here suggest that more attention should be given to the vasopressin-thirst-urine concentration axis in clinical investigations and in patient care. Whether selective blockade of the different vasopressin receptors may provide therapeutic benefits beyond their present indication in hyponatraemia requires new clinical trials.
Collapse
Affiliation(s)
- Lise Bankir
- INSERM UMRS 872, Equipe 2, Centre de Recherche des Cordeliers, Paris, France.
| | | | | |
Collapse
|
20
|
Knapp LA, Innocent SHS. Molecules and mating: positive selection and reproductive behaviour in primates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:218-36. [PMID: 22399405 DOI: 10.1007/978-1-4614-1704-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sexual reproduction is generally thought to be more costly than asexual reproduction. However, it does have the advantage of accelerating rates of adaptation through processes such as recombination and positive selection. Comparative studies of the human and nonhuman primate genomes have demonstrated that positive selection has played an important role in the evolutionary history of humans and other primates. To date, many dozens of genes, thought to be affected by positive selection, have been identified. In this chapter, we will focus on genes that are associated with mating behaviours and reproductive processes, concentrating on genes that are most likely to enhance reproductive success and that also show evidence of positive selection. The genes encode phenotypic features that potentially influence mate choice decisions or impact the evolution and function of genes involved in the perception and regulation of, and the response to, phenotypic signals. We will also consider genes that influence precopulatory behavioural traits in humans and nonhuman primates, such as social bonding and aggression. The evolution of post-copulatory strategies such as sperm competition and selective abortion may also evolve in the presence of intense competition and these adaptations will also be considered. Although behaviour may not be solely determined by genes, the evidence suggests that the genes discussed in this chapter have some influence on human and nonhuman primate behaviour and that positive selection on these genes results in some degree of population differentiation and diversity.
Collapse
Affiliation(s)
- Leslie A Knapp
- Primate Immunogenetics and Molecular Ecology Research Group, Department of Biological Anthropology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
21
|
Avinun R, Israel S, Shalev I, Gritsenko I, Bornstein G, Ebstein RP, Knafo A. AVPR1A variant associated with preschoolers' lower altruistic behavior. PLoS One 2011; 6:e25274. [PMID: 21980412 PMCID: PMC3182215 DOI: 10.1371/journal.pone.0025274] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022] Open
Abstract
The genetic origins of altruism, defined here as a costly act aimed to benefit non-kin individuals, have not been examined in young children. However, previous findings concerning adults pointed at the arginine vasopressin receptor 1A (AVPR1A) gene as a possible candidate. AVPR1A has been associated with a range of behaviors including aggressive, affiliative and altruistic phenotypes, and recently a specific allele (327 bp) of one of its promoter region polymorphisms (RS3) has been singled out in particular. We modeled altruistic behavior in preschoolers using a laboratory-based economic paradigm, a modified dictator game (DG), and tested for association between DG allocations and the RS3 “target allele.” Using both population and family-based analyses we show a significant link between lower allocations and the RS3 “target allele,” associating it, for the first time, with a lower proclivity toward altruistic behavior in children. This finding helps further the understanding of the intricate mechanisms underlying early altruistic behavior.
Collapse
Affiliation(s)
- Reut Avinun
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Salomon Israel
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Shalev
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Gary Bornstein
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Center for the Study of Rationality and Interactive Decision Theory, Jerusalem, Israel
| | - Richard P. Ebstein
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Ariel Knafo
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
22
|
Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 2011; 12:524-38. [PMID: 21852800 DOI: 10.1038/nrn3044] [Citation(s) in RCA: 1159] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) are evolutionarily highly conserved mediators in the regulation of complex social cognition and behaviour. Recent studies have investigated the effects of OXT and AVP on human social interaction, the genetic mechanisms of inter-individual variation in social neuropeptide signalling and the actions of OXT and AVP in the human brain as revealed by neuroimaging. These data have advanced our understanding of the mechanisms by which these neuropeptides contribute to human social behaviour. OXT and AVP are emerging as targets for novel treatment approaches--particularly in synergistic combination with psychotherapy--for mental disorders characterized by social dysfunction, such as autism, social anxiety disorder, borderline personality disorder and schizophrenia.
Collapse
Affiliation(s)
- Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Square J5, D-68159 Mannheim, Germany.
| | | | | | | |
Collapse
|
23
|
Russell JA. Bench-to-bedside review: Vasopressin in the management of septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:226. [PMID: 21892977 PMCID: PMC3387647 DOI: 10.1186/cc8224] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This review of vasopressin in septic shock differs from previous reviews by providing more information on the physiology and pathophysiology of vasopressin and vasopressin receptors, particularly because of recent interest in more specific AVPR1a agonists and new information from the Vasopressin and Septic Shock Trial (VASST), a randomized trial of vasopressin versus norepinephrine in septic shock. Relevant literature regarding vasopressin and other AVPR1a agonists was reviewed and synthesized. Vasopressin, a key stress hormone in response to hypotension, stimulates a family of receptors: AVPR1a, AVPR1b, AVPR2, oxytocin receptors and purinergic receptors. Rationales for use of vasopressin in septic shock are as follows: first, a deficiency of vasopressin in septic shock; second, low-dose vasopressin infusion improves blood pressure, decreases requirements for norepinephrine and improves renal function; and third, a recent randomized, controlled, concealed trial of vasopressin versus norepinephrine (VASST) suggests low-dose vasopressin may decrease mortality of less severe septic shock. Previous clinical studies of vasopressin in septic shock were small or not controlled. There was no difference in 28-day mortality between vasopressin-treated versus norepinephrine-treated patients (35% versus 39%, respectively) in VASST. There was potential benefit in the prospectively defined stratum of patients with less severe septic shock (5 to 14 μg/minute norepinephrine at randomization): vasopressin may have lowered mortality compared with norepinephrine (26% versus 36%, respectively, P = 0.04 within stratum). The result was robust: vasopressin also decreased mortality (compared with norepinephrine) if less severe septic shock was defined by the lowest quartile of arterial lactate or by use of one (versus more than one) vasopressor at baseline. Other investigators found greater hemodynamic effects of higher dose of vasopressin (0.06 units/minute) but also unique adverse effects (elevated liver enzymes and serum bilirubin). Use of higher dose vasopressin requires further evaluation of efficacy and safety. There are very few studies of interactions of therapies in critical care - or septic shock - and effects on mortality. Therefore, the interaction of vasopressin infusion, corticosteroid treatment and mortality of septic shock was evaluated in VASST. Low-dose vasopressin infusion plus corticosteroids significantly decreased 28-day mortality compared with corticosteroids plus norepinephrine (44% versus 35%, respectively, P = 0.03; P = 0.008 interaction statistic). Prospective randomized controlled trials would be necessary to confirm this interesting interaction. In conclusion, low-dose vasopressin may be effective in patients who have less severe septic shock already receiving norepinephrine (such as patients with modest norepinephrine infusion (5 to 15 μg/minute) or low serum lactate levels). The interaction of vasopressin infusion and corticosteroid treatment in septic shock requires further study.
Collapse
Affiliation(s)
- James A Russell
- Critical Care Medicine, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6.
| |
Collapse
|
24
|
Tansey KE, Hill MJ, Cochrane LE, Gill M, Anney RJ, Gallagher L. Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism. Mol Autism 2011; 2:3. [PMID: 21453499 PMCID: PMC3080300 DOI: 10.1186/2040-2392-2-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 03/31/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Arginine vasopressin (AVP) has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. The arginine vasopressin receptor 1A gene (AVPR1A) is widely expressed in the brain and is considered to be a key receptor for regulation of social behaviour. Moreover, genetic variation at AVPR1A has been reported to be associated with autism. Evidence from non-human mammals implicates variation in the 5'-flanking region of AVPR1A in variable gene expression and social behaviour. METHODS We examined four tagging single nucleotide polymorphisms (SNPs) (rs3803107, rs1042615, rs3741865, rs11174815) and three microsatellites (RS3, RS1 and AVR) at the AVPR1A gene for association in an autism cohort from Ireland. Two 5'-flanking region polymorphisms in the human AVPR1A, RS3 and RS1, were also tested for their effect on relative promoter activity. RESULTS The short alleles of RS1 and the SNP rs11174815 show weak association with autism in the Irish population (P = 0.036 and P = 0.008, respectively). Both RS1 and RS3 showed differences in relative promoter activity by length. Shorter repeat alleles of RS1 and RS3 decreased relative promoter activity in the human neuroblastoma cell line SH-SY5Y. CONCLUSIONS These aligning results can be interpreted as a functional route for this association, namely that shorter alleles of RS1 lead to decreased AVPR1A transcription, which may proffer increased susceptibility to the autism phenotype.
Collapse
Affiliation(s)
- Katherine E Tansey
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
25
|
Babb PL, Fernandez-Duque E, Schurr TG. AVPR1A Sequence Variation in Monogamous Owl Monkeys (Aotus azarai) and Its Implications for the Evolution of Platyrrhine Social Behavior. J Mol Evol 2010; 71:279-97. [DOI: 10.1007/s00239-010-9383-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 08/17/2010] [Indexed: 12/31/2022]
|
26
|
Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol Psychiatry 2009; 14:968-75. [PMID: 18490926 PMCID: PMC2754603 DOI: 10.1038/mp.2008.54] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, the neuropeptide vasopressin is a key molecule for complex emotional and social behaviours. Two microsatellite polymorphisms, RS1 and RS3, near the promoter of AVPR1A, encoding the receptor subtype most heavily implicated in behaviour regulation, have been linked to autism and behavioural traits. However, the impact of these variants on human brain function is unknown. Here we show that human amygdala function is strongly associated with genetic variation in AVPR1A. Using an imaging genetics approach in a sample of 121 volunteers studied with an emotional face-matching paradigm, we found that differential activation of amygdala is observed in carriers of risk alleles for RS3 and RS1. Alleles in RS1 previously reported to be significantly over- and undertransmitted to autistic probands showed opposing effects on amygdala activation. Furthermore, we show functional difference in human brain between short and long repeat lengths that mirror findings recently obtained in a corresponding variant in voles. Our results indicate a neural mechanism mediating genetic risk for autism through an impact on amygdala signalling and provide a rationale for exploring therapeutic strategies aimed at abnormal amygdala function in this disorder.
Collapse
|
27
|
Phelps SM, Campbell P, Zheng DJ, Ophir AG. Beating the boojum: comparative approaches to the neurobiology of social behavior. Neuropharmacology 2009; 58:17-28. [PMID: 19591851 DOI: 10.1016/j.neuropharm.2009.06.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 06/30/2009] [Indexed: 11/25/2022]
Abstract
Neuropeptides coordinate complex social behaviors important to both basic and applied science. Understanding such phenomena requires supplementing the powerful tools of behavioral neuroscience with less conventional model species and more rigorous evolutionary analyses. We review studies that use comparative methods to examine the roles of vasopressin and oxytocin in mammalian social behavior. We find that oxytocin and vasopressin receptor distributions are remarkably variable within species. Studies of socially monogamous prairie voles reveal that pronounced individual differences in spatial memory structures (retrosplenial cortex and hippocampus) are better predictors of social and sexual fidelity than are areas known to regulate pairbonding directly, a pattern that seems to be mediated by the contributions of the neuropeptides to space use in natural settings. We next examine studies of individual and species differences in cis-regulatory regions of the avpr1a locus. While individual differences in social behaviors are linked to length of a microsatellite at the avpr1a locus, phylogenetic analyses reveal that the presence or absence of a microsatellite does not explain major differences between species. There seems to be no simple relationship between microsatellite length and behavior, but rather microsatellite length may be a marker for more subtle sequence differences between individuals. Lastly, we introduce the singing mouse, Scotinomys teguina, whose neuropeptide receptor distributions and unique natural history make it an exciting new model for mammalian vocalization and social cognition. The findings demonstrate how taxonomic and conceptual diversity provide a broader basis for understanding social behavior and its dysfunction.
Collapse
Affiliation(s)
- Steven M Phelps
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
28
|
Levin R, Heresco-Levy U, Bachner-Melman R, Israel S, Shalev I, Ebstein RP. Association between arginine vasopressin 1a receptor (AVPR1a) promoter region polymorphisms and prepulse inhibition. Psychoneuroendocrinology 2009; 34:901-8. [PMID: 19195791 DOI: 10.1016/j.psyneuen.2008.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/25/2008] [Accepted: 12/26/2008] [Indexed: 01/22/2023]
Abstract
Arginine vasopressin and the arginine vasopressin 1a (AVPR1a) gene contribute to a range of social behaviors both in lower vertebrates and in humans. Human promoter-region microsatellite repeat regions (RS1 and RS3) in the AVPR1a gene region have been associated with autism spectrum disorders, prosocial behavior and social cognition. Prepulse inhibition (PPI) of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. Reduced PPI has been observed in disorders including schizophrenia that are distinguished by deficits in social skills. In the current investigation association was examined between PPI and the AVPR1a RS1 and RS repeat regions and PPI in a group of 113 nonclinical subjects. Using a robust family-based strategy, association was observed between AVPR1a promoter-region repeat length, especially RS3) and PPI (30 ms: global p=0.04; 60 ms p=0.006; 120 ms p=0.008). Notably, longer RS3 alleles were associated with greater levels of prepulse inhibition. Using a short/long classification scheme for the repeat regions, significant association was also observed between all three PPI intervals (30, 60 and 120 ms) and both RS1 and RS3 polymorphisms (PBAT: FBAT-PC(2) statistic p=0.047). Tests of within-subject effects (SPSS GLM) showed significant sexxRS3 interactions at 30 ms (p=0.045) and 60 ms (p=0.01). Longer alleles, especially in male subjects, are associated with significantly higher PPI response, consistent with a role for the promoter repeat region in partially molding social behavior in both animals and humans. This is the first report in humans demonstrating a role of the AVPR1a gene in contributing to the PPI response to auditory stimuli.
Collapse
Affiliation(s)
- Raz Levin
- Neurobiology, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Shepard KN, Michopoulos V, Toufexis DJ, Wilson ME. Genetic, epigenetic and environmental impact on sex differences in social behavior. Physiol Behav 2009; 97:157-70. [PMID: 19250945 PMCID: PMC2670935 DOI: 10.1016/j.physbeh.2009.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/23/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
The field of behavioral neuroendocrinology has generated thousands of studies that indicate differences in brain structure and reactivity to gonadal steroids that produce sex-specific patterns of social behavior. However, rapidly emerging evidence shows that genetic polymorphisms and resulting differences in the expression of neuroactive peptides and receptors as well as early-life experience and epigenetic changes are important modifiers of social behavior. Furthermore, due to its inherent complexity, the neurochemical mechanisms underlying sex differences in social behavior are usually studied in a tightly regulated laboratory setting rather than in complex environments. Importantly, specific hormones may elicit a range of different behaviors depending on the cues present in these environments. For example, individuals exposed to a psychosocial stressor may respond differently to the effects of a gonadal steroid than those not exposed to chronic stress. The objective of this review is not to re-examine the activational effects of hormones on sex differences in social behavior but rather to consider how genetic and environmental factors modify the effects of hormones on behavior. We will focus on estrogen and its receptors but consideration is also given to the role of androgens. Furthermore, we have limited our discussions to the importance of oxytocin and vasopressin as targets of gonadal steroids and how these effects are modified by genetic and experiential situations. Taken together, the data clearly underscore the need to expand research initiatives to consider gene-environment interactions for better understanding of the neurobiology of sex differences in social behavior.
Collapse
Affiliation(s)
- Kathryn N. Shepard
- Division of Psychobiology, Yerkes National Primate Research Center, Emory University Atlanta GA 30322
| | - Vasiliki Michopoulos
- Division of Psychobiology, Yerkes National Primate Research Center, Emory University Atlanta GA 30322
| | | | - Mark E. Wilson
- Division of Psychobiology, Yerkes National Primate Research Center, Emory University Atlanta GA 30322
| |
Collapse
|
30
|
Rosso L, Keller L, Kaessmann H, Hammond RL. Mating system and avpr1a promoter variation in primates. Biol Lett 2008; 4:375-8. [PMID: 18430667 DOI: 10.1098/rsbl.2008.0122] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has been suggested that primate mating and social behaviours may be influenced by variation in promoter region repetitive DNA of the vasopressin receptor 1a gene (avpr1a). We show that male mating behaviour does not covary in a simple way with promoter repetitive DNA in 12 Old World primates. We found that one microsatellite (-553 bp upstream) was present in all species, irrespective of their behaviour. By contrast, two microsatellites (-3956 and -3625 bp upstream) were present only in some species, yet this variation did not correlate with behaviour. These findings agree with a recent comparative analysis of voles and show that the variation in repetitive DNA in the avpr1a promoter region does not generally explain variation in male mating behaviour. Phylogenetic analysis revealed a GAGTA motif that has been independently deleted three times and involved in another larger deletion. Importantly, the presence/absence of this GAGTA motif leads to changes in predicted transcription factor-binding sites. Given the repeated loss of this motif, we speculate that it might be of functional relevance. We suggest that such non-repetitive variation, either in indels or in sequence variation, are likely to be important in explaining interspecific variation in avpr1a expression.
Collapse
Affiliation(s)
- Lia Rosso
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
| | | | | | | |
Collapse
|
31
|
Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proc Natl Acad Sci U S A 2008; 105:14153-6. [PMID: 18765804 DOI: 10.1073/pnas.0803081105] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pair-bonding has been suggested to be a critical factor in the evolutionary development of the social brain. The brain neuropeptide arginine vasopressin (AVP) exerts an important influence on pair-bonding behavior in voles. There is a strong association between a polymorphic repeat sequence in the 5' flanking region of the gene (avpr1a) encoding one of the AVP receptor subtypes (V1aR), and proneness for monogamous behavior in males of this species. It is not yet known whether similar mechanisms are important also for human pair-bonding. Here, we report an association between one of the human AVPR1A repeat polymorphisms (RS3) and traits reflecting pair-bonding behavior in men, including partner bonding, perceived marital problems, and marital status, and show that the RS3 genotype of the males also affects marital quality as perceived by their spouses. These results suggest an association between a single gene and pair-bonding behavior in humans, and indicate that the well characterized influence of AVP on pair-bonding in voles may be of relevance also for humans.
Collapse
|
32
|
Donaldson ZR, Kondrashov FA, Putnam A, Bai Y, Stoinski TL, Hammock EAD, Young LJ. Evolution of a behavior-linked microsatellite-containing element in the 5' flanking region of the primate AVPR1A gene. BMC Evol Biol 2008; 8:180. [PMID: 18573213 PMCID: PMC2483724 DOI: 10.1186/1471-2148-8-180] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 06/23/2008] [Indexed: 11/29/2022] Open
Abstract
Background The arginine vasopressin V1a receptor (V1aR) modulates social cognition and behavior in a wide variety of species. Variation in a repetitive microsatellite element in the 5' flanking region of the V1aR gene (AVPR1A) in rodents has been associated with variation in brain V1aR expression and in social behavior. In humans, the 5' flanking region of AVPR1A contains a tandem duplication of two ~350 bp, microsatellite-containing elements located approximately 3.5 kb upstream of the transcription start site. The first block, referred to as DupA, contains a polymorphic (GT)25 microsatellite; the second block, DupB, has a complex (CT)4-(TT)-(CT)8-(GT)24 polymorphic motif, known as RS3. Polymorphisms in RS3 have been associated with variation in sociobehavioral traits in humans, including autism spectrum disorders. Thus, evolution of these regions may have contributed to variation in social behavior in primates. We examined the structure of these regions in six ape, six monkey, and one prosimian species. Results Both tandem repeat blocks are present upstream of the AVPR1A coding region in five of the ape species we investigated, while monkeys have only one copy of this region. As in humans, the microsatellites within DupA and DupB are polymorphic in many primate species. Furthermore, both single (lacking DupB) and duplicated alleles (containing both DupA and DupB) are present in chimpanzee (Pan troglodytes) populations with allele frequencies of 0.795 and 0.205 for the single and duplicated alleles, respectively, based on the analysis of 47 wild-caught individuals. Finally, a phylogenetic reconstruction suggests two alternate evolutionary histories for this locus. Conclusion There is no obvious relationship between the presence of the RS3 duplication and social organization in primates. However, polymorphisms identified in some species may be useful in future genetic association studies. In particular, the presence of both single and duplicated alleles in chimpanzees provides a unique opportunity to assess the functional role of this duplication in contributing to variation in social behavior in primates. While our initial studies show no signs of directional selection on this locus in chimps, pharmacological and genetic association studies support a potential role for this region in influencing V1aR expression and social behavior.
Collapse
|
33
|
Knafo A, Israel S, Darvasi A, Bachner-Melman R, Uzefovsky F, Cohen L, Feldman E, Lerer E, Laiba E, Raz Y, Nemanov L, Gritsenko I, Dina C, Agam G, Dean B, Bornstein G, Ebstein RP. Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. GENES BRAIN AND BEHAVIOR 2007; 7:266-75. [PMID: 17696996 DOI: 10.1111/j.1601-183x.2007.00341.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human altruism is a widespread phenomenon that puzzled evolutionary biologists since Darwin. Economic games illustrate human altruism by showing that behavior deviates from economic predictions of profit maximization. A game that most plainly shows this altruistic tendency is the Dictator Game. We hypothesized that human altruistic behavior is to some extent hardwired and that a likely candidate that may contribute to individual differences in altruistic behavior is the arginine vasopressin 1a (AVPR1a) receptor that in some mammals such as the vole has a profound impact on affiliative behaviors. In the current investigation, 203 male and female university students played an online version of the Dictator Game, for real money payoffs. All subjects and their parents were genotyped for AVPR1a RS1 and RS3 promoter-region repeat polymorphisms. Parents did not participate in online game playing. As variation in the length of a repetitive element in the vole AVPR1a promoter region is associated with differences in social behavior, we examined the relationship between RS1 and RS3 repeat length (base pairs) and allocation sums. Participants with short versions (308-325 bp) of the AVPR1a RS3 repeat allocated significantly (likelihood ratio = 14.75, P = 0.001, df = 2) fewer shekels to the 'other' than participants with long versions (327-343 bp). We also implemented a family-based association test, UNPHASED, to confirm and validate the correlation between the AVPR1a RS3 repeat and monetary allocations in the dictator game. Dictator game allocations were significantly associated with the RS3 repeat (global P value: likelihood ratio chi(2) = 11.73, df = 4, P = 0.019). The association between the AVPR1a RS3 repeat and altruism was also confirmed using two self-report scales (the Bardi-Schwartz Universalism and Benevolence Value-expressive Behavior scales). RS3 long alleles were associated with higher scores on both measures. Finally, long AVPR1a RS3 repeats were associated with higher AVPR1a human post-mortem hippocampal messenger RNA levels than short RS3 repeats (one-way analysis of variance (ANOVA): F = 15.04, P = 0.001, df = 14) suggesting a functional molecular genetic basis for the observation that participants with the long RS3 repeats allocate more money than participants with the short repeats. This is the first investigation showing that a common human polymorphism, with antecedents in lower mammals, contributes to decision making in an economic game. The finding that the same gene contributing to social bonding in lower animals also appears to operate similarly in human behavior suggests a common evolutionary mechanism.
Collapse
Affiliation(s)
- A Knafo
- Psychology Department, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hasan KN, Shoji M, Sugimoto K, Tsutaya S, Matsuda E, Kudo R, Nakaji S, Suda T, Yasujima M. Association of novel promoter single nucleotide polymorphisms in vasopressin V1a receptor gene with essential hypertension in nonobese Japanese. J Hum Hypertens 2007; 21:825-7. [PMID: 17653244 DOI: 10.1038/sj.jhh.1002227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We studied the association between four novel single nucleotide polymorphisms (SNPs) in the promoter region of V1aR gene and essential hypertension in 620 Japanese subjects (365 hypertensives and 255 healthy). A significant association was found between one of the genotypes and alleles at SNP -6951 and hypertension in a subsample of nonobese individuals. This association demonstrated an independent risk for nonobese hypertension.
Collapse
|
35
|
Hammock EA, Young LJ. Oxytocin, vasopressin and pair bonding: implications for autism. Philos Trans R Soc Lond B Biol Sci 2006; 361:2187-98. [PMID: 17118932 PMCID: PMC1764849 DOI: 10.1098/rstb.2006.1939] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the neurobiological substrates regulating normal social behaviours may provide valuable insights in human behaviour, including developmental disorders such as autism that are characterized by pervasive deficits in social behaviour. Here, we review the literature which suggests that the neuropeptides oxytocin and vasopressin play critical roles in modulating social behaviours, with a focus on their role in the regulation of social bonding in monogamous rodents. Oxytocin and vasopressin contribute to a wide variety of social behaviours, including social recognition, communication, parental care, territorial aggression and social bonding. The effects of these two neuropeptides are species-specific and depend on species-specific receptor distributions in the brain. Comparative studies in voles with divergent social structures have revealed some of the neural and genetic mechanisms of social-bonding behaviour. Prairie voles are socially monogamous; males and females form long-term pair bonds, establish a nest site and rear their offspring together. In contrast, montane and meadow voles do not form a bond with a mate and only the females take part in rearing the young. Species differences in the density of receptors for oxytocin and vasopressin in ventral forebrain reward circuitry differentially reinforce social-bonding behaviour in the two species. High levels of oxytocin receptor (OTR) in the nucleus accumbens and high levels of vasopressin 1a receptor (V1aR) in the ventral pallidum contribute to monogamous social structure in the prairie vole. While little is known about the genetic factors contributing to species-differences in OTR distribution, the species-specific distribution pattern of the V1aR is determined in part by a species-specific repetitive element, or 'microsatellite', in the 5' regulatory region of the gene encoding V1aR (avpr1a). This microsatellite is highly expanded in the prairie vole (as well as the monogamous pine vole) compared to a very short version in the promiscuous montane and meadow voles. These species differences in microsatellite sequence are sufficient to change gene expression in cell culture. Within the prairie vole species, intraspecific variation in the microsatellite also modulates gene expression in vitro as well as receptor distribution patterns in vivo and influences the probability of social approach and bonding behaviour. Similar genetic variation in the human AVPR1A may contribute to variations in human social behaviour, including extremes outside the normal range of behaviour and those found in autism spectrum disorders. In sum, comparative studies in pair-bonding rodents have revealed neural and genetic mechanisms contributing to social-bonding behaviour. These studies have generated testable hypotheses regarding the motivational systems and underlying molecular neurobiology involved in social engagement and social bond formation that may have important implications for the core social deficits characterizing autism spectrum disorders.
Collapse
Affiliation(s)
| | - Larry J Young
- Department of Psychiatry and Behavioural Sciences, Centre for Behavioural NeuroscienceYerkes National Primate Research Centre, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
36
|
Hasan KN, Shoji M, Tsutaya S, Kudo R, Matsuda E, Saito J, Kimura T, Yasujima M. Study of V1a vasopressin receptor gene single nucleotide polymorphisms in platelet vasopressin responsiveness. J Clin Lab Anal 2006; 20:87-92. [PMID: 16721832 PMCID: PMC6807323 DOI: 10.1002/jcla.20106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
There is a significant heterogeneity among individuals in terms of platelet aggregation response to arginine vasopressin (AVP). The aim of this study was to evaluate whether four single nucleotide polymorphisms (SNPs) in the promoter region of vasopressin V1a receptor gene (V1aR) could be used as genetic markers for divergent platelet aggregation response to AVP. Seventeen of 33 subjects showed more than 60% of maximum platelet aggregation and were classified as responders. Sixteen were classified as nonresponders because they had less than 30% aggregation. In a preliminary study, V1aR gene sequences were determined in two responders and two nonresponders. We found four SNPs in the promoter region of the V1aR gene: -6951G/A, -4112A/T, -3860T/C, and -242C/T. In all 33 subjects the genotypes of four SNPs were determined using either polymerase chain reaction (PCR) with allele-specific primers or PCR followed by restriction-fragment length polymorphism (RFLP). There were no differences in the AVP-induced aggregation between the subjects with and without variant alleles of each four SNPs. The genotype frequencies of four SNPs of V1aR were almost identical between AVP responders and nonresponders. These results suggest that the four SNPs in the promoter region of the V1aR gene may not be useful as genetic markers for platelet aggregation heterogeneity.
Collapse
Affiliation(s)
- Kazi N. Hasan
- Department of Laboratory Medicine, Hirosaki University School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Masaru Shoji
- Department of Laboratory Medicine, Hirosaki University School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Shoji Tsutaya
- Department of Clinical Laboratory, Hirosaki University Hospital, Hirosaki, Japan
| | - Ryoko Kudo
- Department of Clinical Laboratory, Hirosaki University Hospital, Hirosaki, Japan
| | - Eriko Matsuda
- Department of Clinical Laboratory, Hirosaki University Hospital, Hirosaki, Japan
| | - Junko Saito
- Department of Clinical Laboratory, Hirosaki University Hospital, Hirosaki, Japan
| | | | - Minoru Yasujima
- Department of Laboratory Medicine, Hirosaki University School of Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
37
|
Yirmiya N, Rosenberg C, Levi S, Salomon S, Shulman C, Nemanov L, Dina C, Ebstein RP. Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Mol Psychiatry 2006; 11:488-94. [PMID: 16520824 DOI: 10.1038/sj.mp.4001812] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined three microsatellites in the arginine vasopressin 1a receptor gene (AVPR1a), two in the promoter region (RS1 and RS3) and an intronic microsatellite (AVR), for association with autism as well as scores on the Vineland Adaptive Behavior Scale (VABS), the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Scale-Generic (ADOS-G), measures that are widely used to diagnose autism spectrum disorders. We tested for association between the AVPR1a microsatellites and autism in 116 families (128 probands diagnosed with the ADI-R and ADOS-G using a family-based association test (UNPHASED)). Testing each individual microsatellite showed significant transmission disequilibrium in these families with the AVR intronic microsatellite (UNPHASED: LRS=11.46, global P-value=0.009, df=3). Haplotype analysis of three microsatellites also showed significant association (LRS=144.94, df=103, global P=0.004). Additionally, significant association is observed between these three microsatellite haplotypes and the VABS scores (P=0.009), with the ADI-R (P=0.009) and the ADOS-G (P=0.0000765) diagnoses of autistic disorder versus pervasive developmental disorder-not otherwise specified (PDD-NOS) that were available for 47 of these probands. This is the third consecutive report of an association between the AVPR1a gene and autism spectrum disorders and in the current study a third microsatellite is shown to be associated with autism spectrum disorders as well as haplotypes consisting of all three markers. Importantly, the association appears to be mainly mediated by the role of the AVPR1a gene in shaping socialization skills, similar to its role in lower vertebrates.Molecular Psychiatry (2006) 11, 488-494. doi:10.1038/sj.mp.4001812; published online 7 March 2006.
Collapse
Affiliation(s)
- N Yirmiya
- Department of Psychology, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hammock EAD, Lim MM, Nair HP, Young LJ. Association of vasopressin 1a receptor levels with a regulatory microsatellite and behavior. GENES BRAIN AND BEHAVIOR 2005; 4:289-301. [PMID: 16011575 DOI: 10.1111/j.1601-183x.2005.00119.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vasopressin regulates complex behaviors such as anxiety, parenting, social engagement and attachment and aggression in a species-specific manner. The capacity of vasopressin to modulate these behaviors is thought to depend on the species-specific distribution patterns of vasopressin 1a receptors (V1aRs) in the brain. There is considerable individual variation in the pattern of V1aR binding in the brains of the prairie vole species, Microtus ochrogaster. We hypothesize that this individual variability in V1aR expression levels is associated with individual variation in a polymorphic microsatellite in the 5' regulatory region of the prairie vole v1ar gene. Additionally, we hypothesize that individual variation in V1aR expression contributes to individual variation in vasopressin-dependent behaviors. To test these hypotheses, we first screened 20 adult male prairie voles for behavioral variation using tests that measure anxiety-related and social behaviors. We then assessed the brains of those animals for V1aR variability with receptor autoradiography and used polymerase chain reaction to genotype the same animals for the length of their 5' microsatellite polymorphism in the v1ar gene. In this report, we describe the results of this discovery-based experimental approach to identify potential gene, brain and behavior interrelationships. The analysis reveals that V1aR levels, in some but not all brain regions, are associated with microsatellite length and that V1aR levels in those and other brain regions correlate with anxiety-related and social behaviors. These results generate novel hypotheses regarding neural control of anxiety-related and social behaviors and yield insight into potential mechanisms by which non-coding gene polymorphisms may influence behavioral traits.
Collapse
Affiliation(s)
- E A D Hammock
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
39
|
Bachner-Melman R, Dina C, Zohar AH, Constantini N, Lerer E, Hoch S, Sella S, Nemanov L, Gritsenko I, Lichtenberg P, Granot R, Ebstein RP. AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genet 2005; 1:e42. [PMID: 16205790 PMCID: PMC1239939 DOI: 10.1371/journal.pgen.0010042] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/26/2005] [Indexed: 12/31/2022] Open
Abstract
Dancing, which is integrally related to music, likely has its origins close to the birth of Homo sapiens, and throughout our history, dancing has been universally practiced in all societies. We hypothesized that there are differences among individuals in aptitude, propensity, and need for dancing that may partially be based on differences in common genetic polymorphisms. Identifying such differences may lead to an understanding of the neurobiological basis of one of mankind's most universal and appealing behavioral traits--dancing. In the current study, 85 current performing dancers and their parents were genotyped for the serotonin transporter (SLC6A4: promoter region HTTLPR and intron 2 VNTR) and the arginine vasopressin receptor 1a (AVPR1a: promoter microsatellites RS1 and RS3). We also genotyped 91 competitive athletes and a group of nondancers/nonathletes (n = 872 subjects from 414 families). Dancers scored higher on the Tellegen Absorption Scale, a questionnaire that correlates positively with spirituality and altered states of consciousness, as well as the Reward Dependence factor in Cloninger's Tridimensional Personality Questionnaire, a measure of need for social contact and openness to communication. Highly significant differences in AVPR1a haplotype frequencies (RS1 and RS3), especially when conditional on both SLC6A4 polymorphisms (HTTLPR and VNTR), were observed between dancers and athletes using the UNPHASED program package (Cocaphase: likelihood ratio test [LRS] = 89.23, p = 0.000044). Similar results were obtained when dancers were compared to nondancers/nonathletes (Cocaphase: LRS = 92.76, p = 0.000024). These results were confirmed using a robust family-based test (Tdtphase: LRS = 46.64, p = 0.010). Association was also observed between Tellegen Absorption Scale scores and AVPR1a (Qtdtphase: global chi-square = 26.53, p = 0.047), SLC6A4 haplotypes (Qtdtphase: chi-square = 2.363, p = 0.018), and AVPR1a conditional on SCL6A4 (Tdtphase: LRS = 250.44, p = 0.011). Similarly, significant association was observed between Tridimensional Personality Questionnaire Reward Dependence scores and AVPR1a RS1 (chi-square = 20.16, p = 0.01). Two-locus analysis (RS1 and RS3 conditional on HTTLPR and VNTR) was highly significant (LRS = 162.95, p = 0.001). Promoter repeat regions in the AVPR1a gene have been robustly demonstrated to play a role in molding a range of social behaviors in many vertebrates and, more recently, in humans. Additionally, serotonergic neurotransmission in some human studies appears to mediate human religious and spiritual experiences. We therefore hypothesize that the association between AVPR1a and SLC6A4 reflects the social communication, courtship, and spiritual facets of the dancing phenotype rather than other aspects of this complex phenotype, such as sensorimotor integration.
Collapse
Affiliation(s)
| | - Christian Dina
- Génétique Maladies Multifactorielles—Institut de Biologie de Lille, Lille, France
| | - Ada H Zohar
- Psychology, Behavioral Sciences, Ruppin Academic Center, Emek Hefer, Israel
| | - Naama Constantini
- Israeli Olympic Medical Committee and Medical Faculty, Tel Aviv University, Te Aviv, Israel
| | - Elad Lerer
- Sarah Herzog Memorial Hospital and Hebrew University, Jerusalem, Israel
| | - Sarah Hoch
- Sarah Herzog Memorial Hospital and Hebrew University, Jerusalem, Israel
| | - Sarah Sella
- Sarah Herzog Memorial Hospital and Hebrew University, Jerusalem, Israel
| | - Lubov Nemanov
- Sarah Herzog Memorial Hospital and Hebrew University, Jerusalem, Israel
| | - Inga Gritsenko
- Sarah Herzog Memorial Hospital and Hebrew University, Jerusalem, Israel
| | | | - Roni Granot
- Musicology Department, Hebrew University, Jerusalem, Israel
| | - Richard P Ebstein
- Department of Psychology, Mount Scopus, Hebrew University, Jerusalem, Israel
- Sarah Herzog Memorial Hospital and Hebrew University, Jerusalem, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Hammock EAD, Young LJ. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 2005; 308:1630-4. [PMID: 15947188 DOI: 10.1126/science.1111427] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Repetitive microsatellites mutate at relatively high rates and may contribute to the rapid evolution of species-typical traits. We show that individual alleles of a repetitive polymorphic microsatellite in the 5' region of the prairie vole vasopressin 1a receptor (avpr1a) gene modify gene expression in vitro. In vivo, we observe that this regulatory polymorphism predicts both individual differences in receptor distribution patterns and socio-behavioral traits. These data suggest that individual differences in gene expression patterns may be conferred via polymorphic microsatellites in the cis-regulatory regions of genes and may contribute to normal variation in behavioral traits.
Collapse
Affiliation(s)
- Elizabeth A D Hammock
- Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | |
Collapse
|
41
|
Bachner-Melman R, Zohar AH, Bacon-Shnoor N, Elizur Y, Nemanov L, Gritsenko I, Ebstein RP. Link Between Vasopressin Receptor AVPR1A Promoter Region Microsatellites and Measures of Social Behavior in Humans. JOURNAL OF INDIVIDUAL DIFFERENCES 2005. [DOI: 10.1027/1614-0001.26.1.2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Two markers near the vasopressin receptor (AVPR1A) gene located on chromosome 12q14-15 were tested for linkage to two complex social behaviors in humans: Sibling relationships and self-presentation style. Self-report questionnaires were administered to 552 same-sex siblings from 248 families. Suggestive linkage was observed between both microsatellites (RS1 and RS3) and the Sibling Relationship Questionnaire Conflict scale (RS1: χ2 = 13.65, LOD = 2.96, p = .0001; RS3: χ2 = 14.54, LOD = 3.16, p = .00007) and the Concern for Appropriateness Scale Self-presentational style (RS1: χ2 = 8.25, LOD = 1.79 p = .002; RS3: χ2 = 8.81, LOD = 1.91, p = .002. The current results provide the first provisional evidence that the vasopressin receptor mediates social behavior in humans and links a specific genetic element to perceived sibling interactions.
Collapse
Affiliation(s)
| | - Ada H. Zohar
- Behavioral Sciences, Ruppin Academic Center, Emek Hefer, Israel
| | - Naomi Bacon-Shnoor
- Department of Psychology, Mount Scopus, Hebrew University of Jerusalem, Israel
| | - Yoel Elizur
- Department of Psychology, Mount Scopus, Hebrew University of Jerusalem, Israel
| | - Lubov Nemanov
- Sarah Herzog Memorial Hospital, Givat Shaul, Jerusalem, Israel
| | - Inga Gritsenko
- Sarah Herzog Memorial Hospital, Givat Shaul, Jerusalem, Israel
| | - Richard P. Ebstein
- Sarah Herzog Memorial Hospital, Givat Shaul, Jerusalem, Israel
- Sheinfeld Center, Department of Psychology, Hebrew University of Jerusalem, Israel
| |
Collapse
|
42
|
Bachner-Melman R, Zohar AH, Elizur Y, Nemanov L, Gritsenko I, Konis D, Ebstein RP. Association between a vasopressin receptor AVPR1A promoter region microsatellite and eating behavior measured by a self-report questionnaire (Eating Attitudes Test) in a family-based study of a nonclinical population. Int J Eat Disord 2004; 36:451-60. [PMID: 15558634 DOI: 10.1002/eat.20049] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Considerable evidence including twin and family studies suggests that biologic determinants interact with cultural cues in the etiology of anorexia and bulimia nervosa. A gene that makes "biologic sense" in contributing susceptibility to these disorders, and to our knowledge not previously investigated for this phenotype, is the vasopressin receptor (AVPR1A), which we have tested for association with eating pathology. METHODS We genotyped 280 families with same-sex siblings for two microsatellites in the promoter region of the AVPR1A gene. Siblings completed the 26-item Eating Attitudes Test (EAT) and the Drive for Thinness (DT) and Body Dissatisfaction (BD) subscales of the Eating Disorders Inventory (EDI). The Quantitative Transmission Disequilibrium Test program (QTDT), which employs flexible and powerful variance-components procedures, was used to test for an association between EAT scores and the two AVPR1A promoter region microsatellites, RS1 and RS3. RESULTS A significant association (p = .036) was detected between the RS3 microsatellite and EAT scores. The strongest association was between RS3 and the Dieting subscale of the EAT (p = .011). A significant association was also observed between the EDI-DT and the RS3 microsatellit (p = .0450). CONCLUSIONS We demonstrate for the first time an association between a microsatellite polymorphism in the AVPR1A promoter region and scores on the EAT as well as with the EDI-DT. The strongest association was observed between the RS3 microsatellite and the Dieting subscale of the EAT. The relevant phenotype appears to tap severe dietary restriction for weight loss purposes.
Collapse
|
43
|
Wassink TH, Piven J, Vieland VJ, Pietila J, Goedken RJ, Folstein SE, Sheffield VC. Examination of AVPR1a as an autism susceptibility gene. Mol Psychiatry 2004; 9:968-72. [PMID: 15098001 DOI: 10.1038/sj.mp.4001503] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impaired reciprocal social interaction is one of the core features of autism. While its determinants are complex, one biomolecular pathway that clearly influences social behavior is the arginine-vasopressin (AVP) system. The behavioral effects of AVP are mediated through the AVP receptor 1a (AVPR1a), making the AVPR1a gene a reasonable candidate for autism susceptibility. We tested the gene's contribution to autism by screening its exons in 125 independent autistic probands and genotyping two promoter polymorphisms in 65 autism affected sibling pair (ASP) families. While we found no nonconservative coding sequence changes, we did identify evidence of linkage and of linkage disequilibrium. These results were most pronounced in a subset of the ASP families with relatively less severe impairment of language. Thus, though we did not demonstrate a disease-causing variant in the coding sequence, numerous nontraditional disease-causing genetic abnormalities are known to exist that would escape detection by traditional gene screening methods. Given the emerging biological, animal model, and now genetic data, AVPR1a and genes in the AVP system remain strong candidates for involvement in autism susceptibility and deserve continued scrutiny.
Collapse
Affiliation(s)
- T H Wassink
- Department of Psychiatry, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Membrane receptors that couple to guanine nucleotide binding protein (GPCRs) represent one of the largest families of proteins in the genome. Because of their universal distribution and multiple actions, genetic variations of GPCRs are associated with various human diseases. For instance, the clinical phenotype of congenital nephrogenic diabetes insipidus has been linked to more than 155 loss-of-function putative mutations of the arginine vasopressin (AVP) V(2) receptor, which span each and every segment of this seven-transmembrane domain receptor. These mutant receptors, which are mostly trapped in the endoplasmic reticulum, can be rescued by membrane-permeant nonpeptidic AVP receptor antagonists. An overexpression of V(1)-vascular and V(3)-pituitary AVP receptors has been observed in some endocrine tumors. The single nucleotide polymorphism of AVP receptors in the context of complex genetic traits is currently being investigated, and preliminary findings have been reported in arterial hypertension and autism.
Collapse
Affiliation(s)
- Marc Thibonnier
- Division of Clinical and Molecular Endocrinology, Department of Medicine, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4951, USA.
| |
Collapse
|
45
|
Saito S, Iida A, Sekine A, Kawauchi S, Higuchi S, Ogawa C, Nakamura Y. Catalog of 178 variations in the Japanese population among eight human genes encoding G protein-coupled receptors (GPCRs). J Hum Genet 2003; 48:461-468. [PMID: 12955588 DOI: 10.1007/s10038-003-0062-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 07/19/2003] [Indexed: 11/29/2022]
Abstract
We screened DNAs from 48 Japanese individuals for single-nucleotide polymorphisms (SNPs) in eight genes encoding G protein-coupled receptors (GPCRs) by directly sequencing the entire relevant genomic regions except for repetitive-sequence elements. This approach identified 147 SNPs and 31 insertion/deletion polymorphisms among the eight GPCR genes. On average, we identified one SNP in every 584 nucleotides. Of the 147 SNPs, 69 were identified in AGTR1, 12 in AGTR2, nine in AGTRL1, 20 in AVPR1A, nine in AVPR2, 16 in DRD1, six in ITGA2B, and six in PTGIR. Twenty-one SNPs were located in 5' flanking regions, 76 in introns, 32 in exons, and 18 in 3' flanking regions. These variants should contribute to investigations of possible correlations between genotypes and phenotypes as regards susceptibility to disease or responsiveness to drug therapy.
Collapse
MESH Headings
- Exons
- Genetic Variation
- Genotype
- Humans
- Introns
- Japan
- Phenotype
- Platelet Membrane Glycoprotein IIb/genetics
- Polymerase Chain Reaction
- Polymorphism, Single Nucleotide
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/genetics
- Receptors, Dopamine/genetics
- Receptors, G-Protein-Coupled/genetics
- Receptors, Prostaglandin/genetics
- Receptors, Vasopressin/genetics
- Sequence Analysis, DNA
- Untranslated Regions/genetics
Collapse
Affiliation(s)
- Susumu Saito
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research , Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Aritoshi Iida
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research , Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Akihiro Sekine
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research , Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Saori Kawauchi
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research , Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shoko Higuchi
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research , Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chie Ogawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Nakamura
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research , Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
46
|
Kim SJ, Young LJ, Gonen D, Veenstra-VanderWeele J, Courchesne R, Courchesne E, Lord C, Leventhal BL, Cook EH, Insel TR. Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Mol Psychiatry 2002; 7:503-7. [PMID: 12082568 DOI: 10.1038/sj.mp.4001125] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2001] [Revised: 02/25/2002] [Accepted: 02/26/2002] [Indexed: 11/09/2022]
Abstract
Impairment in social reciprocity is a central component of autism. In preclinical studies, arginine vasopressin (AVP) has been shown to increase a range of social behaviors, including affiliation and attachment, via the V(1a) receptor (AVPR1A) in the brain. Both the behavioral effects of AVP and the neural distribution of the V1a receptor vary greatly across mammalian species. This difference in regional receptor expression as well as differences in social behavior may result from a highly variable repetitive sequence in the 5' flanking region of the V1a gene (AVPR1A). Given this comparative evidence for a role in inter-species variation in social behavior, we explored whether within our own species, variation in the human AVPR1A may contribute to individual variations in social behavior, with autism representing an extreme form of social impairment. We genotyped two microsatellite polymorphisms from the 5' flanking region of AVPR1A for 115 autism trios and found nominally significant transmission disequilibrium between autism and one of the microsatellite markers by Multiallelic Transmission/Disequilibrium test (MTDT) that was not significant after Bonferroni correction. We also screened approximately 2 kb of the 5' flanking region and the coding region and identified 10 single nucleotide polymorphisms.
Collapse
Affiliation(s)
- S-J Kim
- Laboratory of Developmental Neuroscience, Child and Adolescent Psychiatry, Department of Psychiatry, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hammock EAD, Young LJ. Variation in the vasopressin V1a receptor promoter and expression: implications for inter- and intraspecific variation in social behaviour. Eur J Neurosci 2002; 16:399-402. [PMID: 12193181 DOI: 10.1046/j.1460-9568.2002.02083.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Instability in highly repetitive microsatellite DNA located in the regulatory regions of genes may be a major factor producing diversity in both region-specific gene expression and the resulting phenotypes. Polymorphisms in promoter regions affecting expression of genes involved in regulating behaviour may play a role in generating individual variation in behaviour, including psychopathologies in humans, and probably are also important for the evolution of behaviour. Here we discuss the prairie vole vasopressin V1a receptor gene as a model that may be useful for understanding the evolution of promoter sequences and the relationship between gene sequence, expression and behavioural phenotype.
Collapse
Affiliation(s)
- Elizabeth A D Hammock
- Department of Psychiatry and Behavioral Sciences and the Center for Behavioral Neuroscience, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
48
|
Abstract
Rodent models of social behavior provide powerful experimental tools for elucidating the molecular, cellular, and neurobiological mechanisms regulating social behavior. Here I discuss several rodent models that have been particularly useful in understanding the neurobiology of the discrimination of social verses nonsocial stimuli, affiliative behavior, and social avoidance. The oxytocin knockout mouse model has been useful for understanding how, in the context of social recognition, the brain may process social stimuli differently from nonsocial stimuli. Vole species that are either highly social and monogamous or solitary and promiscuous have provided a model for investigating the brain mechanisms involved in promoting social interactions. Comparative studies in these species strongly implicate the neuropeptides oxytocin and vasopressin in the regulation of affiliative behavior as well as social attachment. A conditioned defeat model in hamsters may provide a useful model to understand how adverse social experiences may facilitate social avoidance. These models have yielded valuable insights into the regulation of social behaviors, and the findings of these studies may prove useful in understanding the neural mechanisms that underlie individual differences in human personality traits.
Collapse
Affiliation(s)
- Larry J Young
- Department of Psychiatry, Center for Behavioral Neuroscience, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
49
|
Schafer AI. Genetic polymorphisms in arterial thrombosis and vascular disease. J Endovasc Ther 2001; 8:441-3. [PMID: 11718399 DOI: 10.1177/152660280100800502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- A I Schafer
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
50
|
Schafer AI. Genetic Polymorphisms in Arterial Thrombosis and Vascular Disease. J Endovasc Ther 2001. [DOI: 10.1583/1545-1550(2001)008<0441:gpiata>2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|