1
|
de Oliveira JGCG, Miranda CH. Doxycycline protects against sepsis-induced endothelial glycocalyx shedding. Sci Rep 2024; 14:10477. [PMID: 38714743 PMCID: PMC11076551 DOI: 10.1038/s41598-024-60919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/29/2024] [Indexed: 05/10/2024] Open
Abstract
Endothelial glycocalyx (eGC) covers the inner surface of the vessels and plays a role in vascular homeostasis. Syndecan is considered the "backbone" of this structure. Several studies have shown eGC shedding in sepsis and its involvement in organ dysfunction. Matrix metalloproteinases (MMP) contribute to eGC shedding through their ability for syndecan-1 cleavage. This study aimed to investigate if doxycycline, a potent MMP inhibitor, could protect against eGC shedding in lipopolysaccharide (LPS)-induced sepsis and if it could interrupt the vascular hyperpermeability, neutrophil transmigration, and microvascular impairment. Rats that received pretreatment with doxycycline before LPS displayed ultrastructural preservation of the eGC observed using transmission electronic microscopy of the lung and heart. In addition, these animals exhibited lower serum syndecan-1 levels, a biomarker of eGC injury, and lower perfused boundary region (PBR) in the mesenteric video capillaroscopy, which is inversely related to the eGC thickness compared with rats that only received LPS. Furthermore, this study revealed that doxycycline decreased sepsis-related vascular hyperpermeability in the lung and heart, reduced neutrophil transmigration in the peritoneal lavage and inside the lungs, and improved some microvascular parameters. These findings suggest that doxycycline protects against LPS-induced eGC shedding, and it could reduce vascular hyperpermeability, neutrophils transmigration, and microvascular impairment.
Collapse
Affiliation(s)
- João Gabriel Craveiro Gonçalves de Oliveira
- Division of Emergency Medicine, Department of Internal Medicine, Vascular Biology Laboratory, Ribeirão Preto School of Medicine, São Paulo University, Avenue Bandeirantes, 3900 Anexo B, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carlos Henrique Miranda
- Division of Emergency Medicine, Department of Internal Medicine, Vascular Biology Laboratory, Ribeirão Preto School of Medicine, São Paulo University, Avenue Bandeirantes, 3900 Anexo B, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
2
|
Zeng N, Jian Z, Xu J, Zheng S, Fan Y, Xiao F. DLK1 overexpression improves sepsis-induced cardiac dysfunction and fibrosis in mice through the TGF-β1/Smad3 signaling pathway and MMPs. J Mol Histol 2023; 54:655-664. [PMID: 37759133 DOI: 10.1007/s10735-023-10161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Sepsis is a serious inflammatory disease caused by bacterial infection. Cardiovascular dysfunction and remodeling are serious complications of sepsis, which can significantly affect sepsis patients' mortality. Delta-like homologue 1 (DLK1) has been reported could inhibit cardiac myofibroblast differentiation. However, the function of DLK1 in sepsis is unknown. In the present study, the DLK1 expression was first identified based on the online dataset GSE79962 analysis and cecal ligation and puncture (CLP)-induced sepsis mouse model. DLK1 expression was significantly reduced in septic heart tissues. In septic mouse heart, CLP operation decreased the fractional shortening (EF) (%) and ejection fraction (FS) (%) and caused significant edema, disordered myofilament arrangement, and degradation and necrosis in myocardial cells; CLP operation also increased collagen deposition and elevated the protein levels of fibrotic markers (α-SMA and F-actin). DLK1 overexpression in septic mice could effectively increase EF (%) and FS (%), attenuate CLP-caused ECM degradation and deposition and partially inhibit the CLP-induced TGF-β1/Smad signaling activation. In conclusion, DLK1 expression was poorly expressed in the CLP-induced septic mouse heart. DLK1 overexpression partially alleviated sepsis-induced cardiac dysfunction and fibrosis, with the involvement of the TGF-β1/Smad3 signaling pathway and MMPs.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zaijin Jian
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junmei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sijia Zheng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongmei Fan
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Feng Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
3
|
Meng Q, Wang X, Guo D, Shi C, Gu R, Ma J, Nieman G, Kollisch-Singule M, Luo J, Cooney RN. Nano-chemically Modified Tetracycline-3 (nCMT-3) Attenuates Acute Lung Injury via Blocking sTREM-1 Release and NLRP3 Inflammasome Activation. Shock 2022; 57:749-758. [PMID: 35583915 DOI: 10.1097/shk.0000000000001927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Intratracheal (IT) lipopolysaccharide (LPS) causes severe acute lung injury (ALI) and systemic inflammation. CMT-3 has pleiotropic anti-inflammatory effects including matrix metalloproteinase (MMP) inhibition, attenuation of neutrophil (PMN) activation, and elastase release. CMT-3's poor water solubility limits its bioavailability when administered orally for treating ALI. We developed a nano-formulation of CMT-3 (nCMT-3) to test the hypothesis that the pleiotropic anti-inflammatory activities of IT nCMT-3 can attenuate LPS-induced ALI. METHODS C57BL/6 mice were treated with aerosolized IT nCMT-3 or saline, then had IT LPS or saline administered 2 h later. Tissues were harvested at 24 h. The effects of LPS and nCMT-3 on ALI were assessed by lung histology, MMP level/activity (zymography), NLRP3 protein, and activated caspase-1 levels. Blood and bronchoalveolar lavage fluid (BALF) cell counts, PMN elastase, and soluble triggering receptor expressed on myelocytes-1 (sTREM-1) levels, TNF-α, IL-1β, IL-6, IL-18, and BALF protein levels were also measured. RESULTS LPS-induced ALI was characterized by histologic lung injury (PMN infiltration, alveolar thickening, edema, and consolidation) elevated proMMP-2, -9 levels and activity, increased NLRP-3 protein and activated caspase-1 levels in lung tissue. LPS-induced increases in plasma and BALF levels of sTREM-1, TNF-α, IL-1β, IL-6, IL-18, PMN elastase and BALF protein levels demonstrate significant lung/systemic inflammation and capillary leak. nCMT-3 significantly ameliorated all of these LPS-induced inflammatory markers to control levels, and decreased the incidence of ALI. CONCLUSIONS Pre-treatment with nCMT3 significantly attenuates LPS-induced lung injury/inflammation by multiple mechanisms including: MMP activation, PMN elastase, sTREM-1 release, and NLRP3 inflammasome/caspase-1 activation.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Xiaojing Wang
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Dandan Guo
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Changying Shi
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Raymond Gu
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Julia Ma
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Gary Nieman
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
- Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Michaela Kollisch-Singule
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
- Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Juntao Luo
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
- Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Robert N Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
- Sepsis Interdisciplinary Research Center (SIRC), State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| |
Collapse
|
4
|
Sauer A, Putensen C, Bode C. Immunomodulation by Tetracyclines in the Critically Ill: An Emerging Treatment Option? Crit Care 2022; 26:74. [PMID: 35337355 PMCID: PMC8951664 DOI: 10.1186/s13054-022-03909-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2022. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2022 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Sauer A, Peukert K, Putensen C, Bode C. Antibiotics as immunomodulators: a potential pharmacologic approach for ARDS treatment. Eur Respir Rev 2021; 30:210093. [PMID: 34615700 PMCID: PMC9489085 DOI: 10.1183/16000617.0093-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/02/2021] [Indexed: 11/05/2022] Open
Abstract
First described in the mid-1960s, acute respiratory distress syndrome (ARDS) is a life-threatening form of respiratory failure with an overall mortality rate of approximately 40%. Despite significant advances in the understanding and treatment of ARDS, no substantive pharmacologic therapy has proven to be beneficial, and current management continues to be primarily supportive. Beyond their antibacterial activity, several antibiotics such as macrolides and tetracyclines exert pleiotropic immunomodulatory effects that might be able to rectify the dysregulated inflammatory response present in patients with ARDS. This review aims to provide an overview of preclinical and clinical studies that describe the immunomodulatory effects of antibiotics in ARDS. Moreover, the underlying mechanisms of their immunomodulatory properties will be discussed. Further studies are necessary to investigate their full therapeutic potential and to identify ARDS phenotypes which are most likely to benefit from their immunomodulatory effects.
Collapse
Affiliation(s)
- Andrea Sauer
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Konrad Peukert
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Putensen
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Bode
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
6
|
Tong Y, Yu Z, Chen Z, Zhang R, Ding X, Yang X, Niu X, Li M, Zhang L, Billiar TR, Pitt BR, Li Q. The HIV protease inhibitor Saquinavir attenuates sepsis-induced acute lung injury and promotes M2 macrophage polarization via targeting matrix metalloproteinase-9. Cell Death Dis 2021; 12:67. [PMID: 33431821 PMCID: PMC7798387 DOI: 10.1038/s41419-020-03320-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
Imbalance of macrophage polarization plays an indispensable role in acute lung injury (ALI), which is considered as a promising target. Matrix metalloproteinase-9 (MMP-9) is expressed in the macrophage, and has a pivotal role in secreting inflammatory cytokines. We reported that saquinavir (SQV), a first-generation human immunodeficiency virus-protease inhibitor, restricted exaggerated inflammatory response. However, whether MMP-9 could regulate macrophage polarization and inhibit by SQV is still unknown. We focused on the important role of macrophage polarization in CLP (cecal ligation puncture)-mediated ALI and determined the ability of SQV to maintain M2 over M1 phenotype partially through the inhibition of MMP-9. We also performed a limited clinical study to determine if MMP-9 is a biomarker of sepsis. Lipopolysaccharide (LPS) increased MMP-9 expression and recombinant MMP-9 (rMMP-9) exacerbated LPS-mediated M1 switching. Small interfering RNA to MMP-9 inhibited LPS-mediated M1 phenotype and SQV inhibition of this switching was reversed with rMMP-9, suggesting an important role for MMP-9 in mediating LPS-induced M1 phenotype. MMP-9 messenger RNA levels in peripheral blood mononuclear cells of these 14 patients correlated with their clinical assessment. There was a significant dose-dependent decrease in mortality and ALI after CLP with SQV. SQV significantly inhibited LPS-mediated M1 phenotype and increased M2 phenotype in cultured RAW 264.7 and primary murine bone marrow-derived macrophages as well as lung macrophages from CLP-treated mice. This study supports an important role for MMP-9 in macrophage phenotypic switching and suggests that SQV-mediated inhibition of MMP-9 may be involved in suppressing ALI during systemic sepsis.
Collapse
Affiliation(s)
- Yao Tong
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200000, Shanghai, China
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Zhuang Yu
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Zhixia Chen
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China
| | - Renlingzi Zhang
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Xibing Ding
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Xiaohu Yang
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Xiaoyin Niu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Mengzhu Li
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Lingling Zhang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Bruce R Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School Public Health, Pittsburgh, PA, 15219, USA
| | - Quan Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China.
| |
Collapse
|
7
|
Abstract
Background: Coronavirus disease (COVID-19) is an infectious disease discovered in 2019 and currently in outbreak across the world. Lung injury with severe respiratory failure is the leading cause of death in COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there still lacks efficient treatment for COVID-19 induced lung injury and acute respiratory failure. Methods: Inhibition of angiotensin-converting enzyme 2 (ACE2) caused by the spike protein of SARS-CoV-2 is the most plausible mechanism of lung injury in COVID-19. We performed drug repositioning analysis to identify drug candidates that reverse gene expression pattern in L1000 lung cell line HCC515 treated with ACE2 inhibitor. We confirmed these drug candidates by similar bioinformatics analysis using lung tissues from patients deceased from COVID-19. We further investigated deregulated genes and pathways related to lung injury, as well as the gene-pathway-drug candidate relationships. Results: We propose two candidate drugs, COL-3 (a chemically modified tetracycline) and CGP-60474 (a cyclin-dependent kinase inhibitor), for treating lung injuries in COVID-19. Further bioinformatics analysis shows that 12 significantly enriched pathways (P-value <0.05) overlap between HCC515 cells treated with ACE2 inhibitor and human COVID-19 patient lung tissues. These include signaling pathways known to be associated with lung injury such as TNF signaling, MAPK signaling and chemokine signaling pathways. All 12 pathways are targeted in COL-3 treated HCC515 cells, in which genes such as RHOA, RAC2, FAS, CDC42 have reduced expression. CGP-60474 shares 11 of 12 pathways with COL-3 and common target genes such as RHOA. It also uniquely targets other genes related to lung injury, such as CALR and MMP14. Conclusions: This study shows that ACE2 inhibition is likely part of the mechanisms leading to lung injury in COVID-19, and that compounds such as COL-3 and CGP-60474 have potential as repurposed drugs for its treatment.
Collapse
Affiliation(s)
- Bing He
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, 48105, USA
| | - Lana Garmire
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, 48105, USA
| |
Collapse
|
8
|
Abstract
Background: Coronavirus disease (COVID-19) is an infectious disease discovered in 2019 and currently in outbreak across the world. Lung injury with severe respiratory failure is the leading cause of death in COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there still lacks efficient treatment for COVID-19 induced lung injury and acute respiratory failure. Methods: Inhibition of angiotensin-converting enzyme 2 (ACE2) caused by the spike protein of SARS-CoV-2 is the most plausible mechanism of lung injury in COVID-19. We performed drug repositioning analysis to identify drug candidates that reverse gene expression pattern in L1000 lung cell line HCC515 treated with ACE2 inhibitor. We confirmed these drug candidates by similar bioinformatics analysis using lung tissues from patients deceased from COVID-19. We further investigated deregulated genes and pathways related to lung injury, as well as the gene-pathway-drug candidate relationships. Results: We propose two candidate drugs, COL-3 (a chemically modified tetracycline) and CGP-60474 (a cyclin-dependent kinase inhibitor), for treating lung injuries in COVID-19. Further bioinformatics analysis shows that 12 significantly enriched pathways (P-value <0.05) overlap between HCC515 cells treated with ACE2 inhibitor and human COVID-19 patient lung tissues. These include signaling pathways known to be associated with lung injury such as TNF signaling, MAPK signaling and chemokine signaling pathways. All 12 pathways are targeted in COL-3 treated HCC515 cells, in which genes such as RHOA, RAC2, FAS, CDC42 have reduced expression. CGP-60474 shares 11 of 12 pathways with COL-3 and common target genes such as RHOA. It also uniquely targets other genes related to lung injury, such as CALR and MMP14. Conclusions: This study shows that ACE2 inhibition is likely part of the mechanisms leading to lung injury in COVID-19, and that compounds such as COL-3 and CGP-60474 have potential as repurposed drugs for its treatment.
Collapse
Affiliation(s)
- Bing He
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, 48105, USA
| | - Lana Garmire
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, 48105, USA
| |
Collapse
|
9
|
Zinter MS, Delucchi KL, Kong MY, Orwoll BE, Spicer AS, Lim MJ, Alkhouli MF, Ratiu AE, McKenzie AV, McQuillen PS, Dvorak CC, Calfee CS, Matthay MA, Sapru A. Early Plasma Matrix Metalloproteinase Profiles. A Novel Pathway in Pediatric Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 199:181-189. [PMID: 30114376 PMCID: PMC6353006 DOI: 10.1164/rccm.201804-0678oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
RATIONALE MMPs (Matrix metalloproteinases) and their endogenous tissue inhibitors may contribute to lung injury through extracellular matrix degradation and modulation of inflammation and fibrosis. OBJECTIVES To test for an association between MMP pathway proteins and inflammation, endothelial dysfunction, and clinical outcomes. METHODS We measured MMPs in plasma collected on acute respiratory distress syndrome (ARDS) Day 1 from 235 children at five hospitals between 2008 and 2017. We used latent class analysis to identify patients with distinct MMP profiles and then associated those profiles with markers of inflammation (IL-1RA, -6, -8, -10, and -18; macrophage inflammatory protein-1α and -1β; tumor necrosis factor-α and -R2), endothelial injury (angiopoietin-2, von Willebrand factor, soluble thrombomodulin), impaired oxygenation (PaO2/FiO2 [P/F] ratio, oxygenation index), morbidity, and mortality. MEASUREMENTS AND MAIN RESULTS In geographically distinct derivation and validation cohorts, approximately one-third of patients demonstrated an MMP profile characterized by elevated MMP-1, -2, -3, -7, and -8 and tissue inhibitor of metalloproteinase-1 and -2; and depressed active and total MMP-9. This MMP profile was associated with multiple markers of inflammation, endothelial injury, and impaired oxygenation on Day 1 of ARDS, and conferred fourfold increased odds of mortality or severe morbidity independent of the P/F ratio and other confounders (95% confidence interval, 2.1-7.6; P < 0.001). Logistic regression using both the P/F ratio and MMP profiles was superior to the P/F ratio alone in prognosticating mortality or severe morbidity (area under the receiver operating characteristic curve, 0.75; 95% confidence interval, 0.68-0.82 vs. area under the receiver operating characteristic curve, 0.66; 95% confidence interval, 0.58-0.73; P = 0.009). CONCLUSIONS Pediatric patients with ARDS have specific plasma MMP profiles associated with inflammation, endothelial injury, morbidity, and mortality. MMPs may play a role in the pathobiology of children with ARDS.
Collapse
Affiliation(s)
| | | | - Michele Y. Kong
- Division of Critical Care Medicine, Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama; and
| | | | | | - Michelle J. Lim
- Division of Critical Care, Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles Geffen School of Medicine, Los Angeles, California
| | | | - Anna E. Ratiu
- Division of Critical Care, Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles Geffen School of Medicine, Los Angeles, California
| | | | | | - Christopher C. Dvorak
- Division of Allergy, Immunology, and Blood & Marrow Transplantation, Department of Pediatrics, Benioff Children’s Hospital
| | - Carolyn S. Calfee
- Department of Anesthesia and
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, California
| | - Michael A. Matthay
- Department of Anesthesia and
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, California
| | - Anil Sapru
- Division of Critical Care and
- Division of Critical Care, Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
10
|
Valencia AM, Abrantes MA, Hasan J, Aranda JV, Beharry KD. Reactive Oxygen Species, Biomarkers of Microvascular Maturation and Alveolarization, and Antioxidants in Oxidative Lung Injury. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2018; 6:373-388. [PMID: 30533532 DOI: 10.20455/ros.2018.867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lungs of extremely low gestational age neonates (ELGANs) are deficient in pulmonary surfactant and are incapable of efficient gas exchange necessary for successful transition from a hypoxic intrauterine environment to ambient air. To improve gas exchange and survival, ELGANs often receive supplemental oxygen with mechanical ventilation which disrupts normal lung developmental processes, including microvascular maturation and alveolarization. Factors that regulate these developmental processes include vascular endothelial growth factor and matrix metalloproteinases, both of which are influenced by generation of oxygen byproducts, or reactive oxygen species (ROS). ELGANs are also deficient in antioxidants necessary to scavenge excessive ROS. Thus, the accumulation of ROS in the preterm lungs exposed to prolonged hyperoxia, results in inflammation and development of bronchopulmonary dysplasia (BPD), a form of chronic lung disease (CLD). Despite advances in neonatal care, BPD/CLD remains a major cause of neonatal morbidity and mortality. The underlying mechanisms are not completely understood, and the benefits of current therapeutic interventions are limited. The association between ROS and biomarkers of microvascular maturation and alveolarization, as well as antioxidant therapies in the setting of hyperoxia-induced neonatal lung injury are reviewed in this article.
Collapse
Affiliation(s)
- Arwin M Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saddleback Memorial Hospital, Laguna Hills, CA 92653, USA
| | - Maria A Abrantes
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Kaiser Permanente, Anaheim, CA 92806, USA
| | - Jamal Hasan
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Miller's Children's and Women's Hospital, Long Beach, CA 90806, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
11
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
12
|
Pharmacologic Strategies for the Treatment of Acute Respiratory Distress Syndrome: The Horizon is Getting Closer. J Intensive Care Med 2016. [DOI: 10.1177/0885066602238036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
de Souza P, Schulz R, da Silva-Santos JE. Matrix metalloproteinase inhibitors prevent sepsis-induced refractoriness to vasoconstrictors in the cecal ligation and puncture model in rats. Eur J Pharmacol 2015; 765:164-70. [PMID: 26297976 DOI: 10.1016/j.ejphar.2015.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/02/2023]
Abstract
Previous studies have shown that the loss of contractility in aortas from lipopolysaccharide (LPS)-treated rats is related to intracellular activation of matrix metalloproteinase (MMPs). However, the role of MMPs in the vascular refractoriness to vasoconstrictors has not been investigated in a model of polymicrobial sepsis. We evaluated the effects of the oral administration of the MMP inhibitors doxycycline or ONO-4817 in the in vitro vascular reactivity of aortic rings from rats subjected to the cecal ligation and puncture (CLP) model of sepsis. Both doxycycline and ONO-4817 did not change vascular responses in sham-operated rats, but fully prevented hyporeactivity to KCl, phenylephrine and angiotensin II in vessels from CLP rats. This protective effect was not associated with changes in hematological parameters or blood nitrate and nitrite. The refractoriness to contractile agents was accompanied by enhanced activity of MMP-2 in aorta from CLP rats, which was abrogated by MMP inhibitors. CLP-induced sepsis did not impair the levels of MMP-2 in aorta, but significantly reduced calponin-1, a regulatory protein of vascular contraction. In addition, augmented levels of TIMP-1 were found in vessels from CLP rats. All these differences were prevented by either doxycycline or ONO-4817. Our study shows, for the first time in the CLP rat model of sepsis, that the vascular refractoriness to different contractile agents induced by polymicrobial sepsis is associated with increased activity of MMP-2 and reduced amounts of calponin-1 in the aorta. These findings reinforce the importance of the enhanced activity of MMPs for vascular failure in septic shock.
Collapse
Affiliation(s)
- Priscila de Souza
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Richard Schulz
- Departments of Pediatrics & Pharmacology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - José Eduardo da Silva-Santos
- Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
14
|
Sharp C, Millar AB, Medford ARL. Advances in understanding of the pathogenesis of acute respiratory distress syndrome. Respiration 2015; 89:420-34. [PMID: 25925331 DOI: 10.1159/000381102] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/12/2015] [Indexed: 02/05/2023] Open
Abstract
The clinical syndrome of acute lung injury (ALI) occurs as a result of an initial acute systemic inflammatory response. This can be consequent to a plethora of insults, either direct to the lung or indirect. The insult results in increased epithelial permeability, leading to alveolar flooding with a protein-rich oedema fluid. The resulting loss of gas exchange leads to acute respiratory failure and typically catastrophic illness, termed acute respiratory distress syndrome (ARDS), requiring ventilatory and critical care support. There remains a significant disease burden, with some estimates showing 200,000 cases each year in the USA with a mortality approaching 50%. In addition, there is a significant burden of morbidity in survivors. There are currently no disease-modifying therapies available, and the most effective advances in caring for these patients have been in changes to ventilator strategy as a result of the ARDS network studies nearly 15 years ago. Here, we will give an overview of more recent advances in the understanding of the cellular biology of ALI and highlight areas that may prove fertile for future disease-modifying therapies.
Collapse
Affiliation(s)
- Charles Sharp
- Academic Respiratory Unit, University of Bristol, Southmead Hospital, Westbury-on-Trym, UK
| | | | | |
Collapse
|
15
|
Villalta PC, Rocic P, Townsley MI. Role of MMP2 and MMP9 in TRPV4-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L652-9. [PMID: 25150065 DOI: 10.1152/ajplung.00113.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ca(2+) entry through transient receptor potential vanilloid 4 (TRPV4) results in swelling, blebbing, and detachment of the epithelium and capillary endothelium in the intact lung. Subsequently, increased permeability of the septal barrier and alveolar flooding ensue. In this study, we tested the hypothesis that TRPV4 activation provides a Ca(2+) source necessary for proteolytic disruption of cell-cell or cell-matrix adhesion by matrix metalloproteinases (MMPs) 2 and 9, thus increasing septal barrier permeability. In our study, C57BL/6 or TRPV4(-/-) mouse lungs were perfused with varying doses of the TRPV4 agonist GSK-1016790A (Sigma) and then prepared for Western blot. Lung injury, assessed by increases in lung wet-to-dry weight ratios and total protein levels in the bronchoalveolar lavage fluid, was increased in a dose-dependent fashion in TRPV4(+/+) but not TRPV4(-/-) lungs. In concert with lung injury, we detected increased active MMP2 and MMP9 isoforms, suggesting that TRPV4 can provide the Ca(2+) source necessary for increased MMP2/9 activation. Furthermore, tissue inhibitor of metalloproteinases (TIMP) 2 levels in the TRPV4-injured lungs were decreased, suggesting that TRPV4 activation increases the availability of these active MMPs. We then determined whether MMP2 and MMP9 mediate TRPV4-induced lung injury. Pharmacological blockade (SB-3CT, 1 μM; Sigma) of MMP2 and MMP9 resulted in protection against TRPV4-induced lung injury. We conclude that TRPV4 activation and the subsequent Ca(2+) transient initiates a rapid cascade of events leading to release and activation of the gelatinase MMPs, which then contribute to lung injury.
Collapse
Affiliation(s)
- Patricia C Villalta
- Department of Physiology and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Mary I Townsley
- Department of Physiology and Center for Lung Biology, University of South Alabama, Mobile, Alabama; Department of Medicine, University of South Alabama, Mobile, Alabama; and
| |
Collapse
|
16
|
Gal Y, Mazor O, Alcalay R, Seliger N, Aftalion M, Sapoznikov A, Falach R, Kronman C, Sabo T. Antibody/doxycycline combined therapy for pulmonary ricinosis: Attenuation of inflammation improves survival of ricin-intoxicated mice. Toxicol Rep 2014; 1:496-504. [PMID: 28962263 PMCID: PMC5598361 DOI: 10.1016/j.toxrep.2014.07.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 11/17/2022] Open
Abstract
Ricin, a highly toxic plant-derived toxin, is considered a potential weapon in biological warfare due to its high availability and ease of preparation. Pulmonary exposure to ricin results in the generation of an acute edematous inflammation followed by respiratory insufficiency and death. Passive immunization with polyclonal anti-ricin antibodies conferred protection against pulmonary ricinosis, however, at clinically-relevant time points for treatment, survival rates were limited. In this study, intranasal instillation of a lethal dose of ricin to mice, served as a lung challenge model for the evaluation and comparison of different therapeutic modalities against pulmonary ricinosis. We show that treatment with doxycycline resulted in a significant reduction of pro-inflammatory cytokines, markers of oxidative stress and capillary permeability in the lungs of the mice. Moreover, survival rates of mice intoxicated with ricin and treated 24 h later with anti-ricin antibody were significantly improved by co-administration of doxycycline. In contrast, co-administration of the steroid drug dexamethasone with anti-ricin antibodies did not increase survival rates when administered at late hours after intoxication, however dexamethasone did exert a positive effect on survival when applied in conjunction with the doxycycline treatment. These studies strongly suggest that combined therapy, comprised of neutralizing anti-ricin antibodies and an appropriate anti-inflammatory agent, can promote high-level protection against pulmonary ricinosis at clinically-relevant time points post-exposure.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Mazor
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Nehama Seliger
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
17
|
Kalayarasan S, Sriram N, Soumyakrishnan S, Sudhandiran G. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2. Toxicol Appl Pharmacol 2013; 271:184-95. [PMID: 23656969 DOI: 10.1016/j.taap.2013.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/04/2013] [Accepted: 04/28/2013] [Indexed: 02/04/2023]
Abstract
Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF.
Collapse
Affiliation(s)
- Srinivasan Kalayarasan
- University of Madras, Department of Biochemistry, Cell Biology Laboratory, Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| | | | | | | |
Collapse
|
18
|
Immunomodulatory effect of chinese herbal medicine formula sheng-fei-yu-chuan-tang in lipopolysaccharide-induced acute lung injury mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:976342. [PMID: 23997804 PMCID: PMC3755419 DOI: 10.1155/2013/976342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/21/2013] [Accepted: 06/26/2013] [Indexed: 02/06/2023]
Abstract
Traditional Chinese medicine formula Sheng-Fei-Yu-Chuan-Tang (SFYCT), consisting of 13 medicinal plants, was used to treat patients with lung diseases. This study investigated the immunoregulatory effect of SFYCT on intratracheal lipopolysaccharides- (LPS-) challenged acute lung injury (ALI) mice. SFYCT attenuated pulmonary edema, macrophages, and neutrophils infiltration in the airways. SFYCT decreased inflammatory cytokines, including tumor necrosis factor-α (TNFα), interleukin-1β, and interleukin-6 and inhibited nitric oxide (NO) production but increased anti-inflammatory cytokines, interleukin-4, and interleukin-10, in the bronchoalveolar lavage fluid of LPS-challenged mice. TNFα and monocyte chemotactic protein-1 mRNA expression in the lung of LPS-challenged mice as well as LPS-stimulated lung epithelial cell and macrophage were decreased by SFYCT treatment. SFYCT treatment also decreased the inducible nitric oxide synthase expression and phosphorylation of nuclear factor-κB (NF-κB) in the lung of mice and macrophage with LPS stimulation. SFYCT treatment dose dependently decreased the LPS-induced NO and reactive oxygen species generation in LPS-stimulated macrophage. In conclusion, SFYCT attenuated lung inflammation during LPS-induced ALI through decreasing inflammatory cytokines production while increasing anti-inflammatory cytokines production. The immunoregulatory effect of SFYCT is related to inhibiting NF-κB phosphorylation.
Collapse
|
19
|
Early biomarker activity in severe sepsis and septic shock and a contemporary review of immunotherapy trials: not a time to give up, but to give it earlier. Shock 2013; 39:127-37. [PMID: 23324881 DOI: 10.1097/shk.0b013e31827dafa7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Improving time to diagnosis and intervention has positively impacted outcomes in acute myocardial infarction, stroke, and trauma through elucidating the early pathogenesis of those diseases. This insight may partly explain the futility of time-insensitive immunotherapy trials for severe sepsis and septic shock. The aim of this study was to examine the early natural history of circulatory biomarker activity in sepsis, relative to previous animal and human outcome trials. We conducted a literature search using PubMed, MEDLINE, and Google Scholar to identify outcome trials targeting biomarkers with emphasis on the timing of therapy. These findings were compared with the biomarker activity observed over the first 72 h of hospital presentation in a cohort of severe sepsis and septic shock patients. Biomarker levels in animal and human research models are elevated within 30 min after exposure to an inflammatory septic stimulus. Consistent with these findings, the biomarker cascade is activated at the most proximal point of hospital presentation in our patient cohort. These circulatory biomarkers overlap; some have bimodal patterns and generally peak between 3 and 36 h while diminishing over the subsequent 72 h of observation. When this is taken into account, prior outcome immunotherapy trials have generally enrolled patients after peak circulatory biomarker concentrations. In previous immunotherapy sepsis trials, intervention was delayed after the optimal window of peak biomarker activity. As a result, future studies need to recalibrate the timing of enrollment and administration of immunotherapy agents that still may hold great promise for this deadly disease.
Collapse
|
20
|
Chemically Modified Tetracycline 3 Prevents Acute Respiratory Distress Syndrome in a Porcine Model of Sepsis + Ischemia/Reperfusion–Induced Lung Injury. Shock 2012; 37:424-32. [DOI: 10.1097/shk.0b013e318245f2f9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Castro MM, Cena J, Cho WJ, Walsh MP, Schulz R. Matrix metalloproteinase-2 proteolysis of calponin-1 contributes to vascular hypocontractility in endotoxemic rats. Arterioscler Thromb Vasc Biol 2012; 32:662-8. [PMID: 22199370 DOI: 10.1161/atvbaha.111.242685] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Matrix metalloproteinase (MMP)-2 is activated in aorta during endotoxemia and plays a role in the hypocontractility to vasoconstrictors. Calponin-1 is a regulator of vascular smooth muscle tone with similarities to troponin, a cardiac myocyte protein that is cleaved by MMP-2 in myocardial oxidative stress injuries. We hypothesized that calponin-1 may be proteolyzed by MMP-2 in endotoxemia-induced vascular hypocontractility. METHODS AND RESULTS Rats were given a nonlethal dose of bacterial lipopolysaccharide (LPS) or vehicle. Some rats were given the MMP inhibitors ONO-4817 or doxycycline. Six hours later, plasma nitrate+nitrite increased >15-fold in LPS-treated rats, an effect unchanged by doxycycline. Both ONO-4817 and doxycycline prevented LPS-induced aortic hypocontractility to phenylephrine. LPS activated MMP-2 in the aorta by S-glutathiolation. Calponin-1 levels decreased by 25% in endotoxemic aortae, which was prevented by doxycycline. Calponin-1 and MMP-2 coimmunoprecipitated and both exhibited uniform cytosolic staining in medial vascular smooth muscle cells. In vitro incubation of calponin-1 with MMP-2 led to calponin-1 degradation and appearance of its cleavage product. CONCLUSION Calponin-1 is a target of MMP-2, which contributes to endotoxemia-induced vascular hypocontractility.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
22
|
Wygrecka M, Wilhelm J, Jablonska E, Zakrzewicz D, Preissner KT, Seeger W, Guenther A, Markart P. Shedding of Low-Density Lipoprotein Receptor–related Protein-1 in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2011; 184:438-48. [DOI: 10.1164/rccm.201009-1422oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Kong MYF, Li Y, Oster R, Gaggar A, Clancy JP. Early elevation of matrix metalloproteinase-8 and -9 in pediatric ARDS is associated with an increased risk of prolonged mechanical ventilation. PLoS One 2011; 6:e22596. [PMID: 21857935 PMCID: PMC3152289 DOI: 10.1371/journal.pone.0022596] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/25/2011] [Indexed: 01/11/2023] Open
Abstract
Background Matrix metalloproteinases (MMP) -8 and -9 may play key roles in the modulation of neutrophilic lung inflammation seen in pediatric Acute Respiratory Distress Syndrome (ARDS). We aimed to perform a comprehensive analysis of MMP-8 and MMP-9 activity in tracheal aspirates of pediatric ARDS patients compared with non-ARDS controls, testing whether increased MMP-8 and -9 activities were associated with clinical outcomes. Methods Tracheal aspirates were collected from 33 pediatric ARDS patients and 21 non-ARDS controls at 48 hours of intubation, and serially for those who remained intubated greater than five days. MMPs, tissue inhibitor of metalloproteinases (TIMPs), human neutrophil elastase (HNE) and myeloperoxidase (MPO) activity were measured by ELISA, and correlated with clinical indicators of disease severity such as PRISM (Pediatric Risk of Mortality) scores, oxygen index (OI), multi-organ system failure (MOSF) and clinical outcome measures including length of intubation, ventilator-free days (VFDs) and mortality in the Pediatric Intensive Care Unit (PICU). Results Active MMP-9 was elevated early in pediatric ARDS subjects compared to non-ARDS controls. Higher MMP-8 and active MMP-9 levels at 48 hours correlated with a longer course of mechanical ventilation (r = 0.41, p = 0.018 and r = 0.75, p<0.001; respectively) and fewer number of VFDs (r = −0.43, p = 0.013 and r = −0.76, p<0.001; respectively), independent of age, gender and severity of illness. Patients with the highest number of ventilator days had the highest levels of active MMP-9. MMP-9 and to a lesser extent MMP-8 activities in tracheal aspirates from ARDS subjects were sensitive to blockade by small molecule inhibitors. Conclusions Higher MMP-8 and active MMP-9 levels at 48 hours of disease onset are associated with a longer duration of mechanical ventilation and fewer ventilator-free days among pediatric patients with ARDS. Together, these results identify early biomarkers predictive of disease course and potential therapeutic targets for this life threatening disease.
Collapse
Affiliation(s)
- Michele Y F Kong
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | | | | | | | | |
Collapse
|
24
|
Roy SK, Kendrick D, Sadowitz BD, Gatto L, Snyder K, Satalin JM, Golub LM, Nieman G. Jack of all trades: pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacol Res 2011; 64:580-9. [PMID: 21767646 DOI: 10.1016/j.phrs.2011.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sepsis is a disease process that has humbled the medical profession for centuries with its resistance to therapy, relentless mortality, and pathophysiologic complexity. Despite 30 years of aggressive, concerted, well-resourced efforts the biomedical community has been unable to reduce the mortality of sepsis from 30%, nor the mortality of septic shock from greater than 50%. In the last decade only one new drug for sepsis has been brought to the market, drotrecogin alfa-activated (Xigris™), and the success of this drug has been limited by patient safety issues. Clearly a new agent is desperately needed. The advent of recombinant human immune modulators held promise but the outcomes of clinical trials using biologics that target single immune mediators have been disappointing. The complex pathophysiology of the systemic inflammatory response syndrome (SIRS) is self-amplifying and redundant at multiple levels. In this review we argue that perhaps pharmacologic therapy for sepsis will only be successful if it addresses this pathophysiologic complexity; the drug would have to be pleiotropic, working on many components of the inflammatory cascade at once. In this context, therapy that targets any single inflammatory mediator will not adequately address the complexity of SIRS. We propose that chemically modified tetracycline-3, CMT-3 (or COL-3), a non-antimicrobial modified tetracycline with pleiotropic anti-inflammatory properties, is an excellent agent for the management of sepsis and its associated complication of the acute respiratory distress syndrome (ARDS). The purpose of this review is threefold: (1) to examine the shortcomings of current approaches to treatment of sepsis and ARDS in light of their pathophysiology, (2) to explore the application of COL-3 in ARDS and sepsis, and finally (3) to elucidate the mechanisms of COL-3 that may have potential therapeutic benefit in ARDS and sepsis.
Collapse
Affiliation(s)
- Shreyas K Roy
- Department of Surgery, Upstate University Hospital, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Castro MM, Kandasamy AD, Youssef N, Schulz R. Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res 2011; 64:551-60. [PMID: 21689755 DOI: 10.1016/j.phrs.2011.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases best known for their capacity to proteolyse several proteins of the extracellular matrix. Their increased activity contributes to the pathogenesis of several cardiovascular diseases. MMP-2 in particular is now considered to be also an important intracellular protease which has the ability to proteolyse specific intracellular proteins in cardiac muscle cells and thus reduce contractile function. Accordingly, inhibition of MMPs is a growing therapeutic aim in the treatment or prevention of various cardiovascular diseases. Tetracyclines, especially doxycycline, have been frequently used as important MMP inhibitors since they inhibit MMP activity independently of their antimicrobial properties. In this review we will focus on the intracellular actions of MMPs in some cardiovascular diseases including ischemia and reperfusion (I/R) injury, inflammatory heart diseases and septic shock; and explain how tetracyclines, as MMP inhibitors, have therapeutic actions to treat such diseases. We will also briefly discuss how MMPs can be intracellularly regulated and activated by oxidative stress, thus cleaving several important proteins inside cells. In addition to their potential therapeutic effects, MMP inhibitors may also be useful tools to understand the biological consequences of MMP activity and its respective extra- and intracellular effects.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
26
|
Chen H, Bai C, Wang X. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev Respir Med 2011; 4:773-83. [PMID: 21128752 DOI: 10.1586/ers.10.71] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a syndrome characterized by pulmonary edema and acute inflammation. Lipopolysaccharide (LPS), a major component in Gram-negative bacteria, has been used to induce ALI/ARDS. LPS-induced animal models highlight ways to explore mechanisms of multiple diseases and provide useful information on the discovery of novel biomarkers and drug targets. However, each model has its own merits and drawbacks. The goal of this article is to summarize and evaluate the results of experimental findings in LPS-induced ALI/ARDS, and the possible mechanisms and treatments elucidated. Advantages and disadvantages of such models in pulmonary research and new directions for future investigations are also discussed.
Collapse
Affiliation(s)
- Hong Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | |
Collapse
|
27
|
Ribeiro JKC, Cunha DDS, Fook JMSLL, Sales MP. New properties of the soybean trypsin inhibitor: Inhibition of human neutrophil elastase and its effect on acute pulmonary injury. Eur J Pharmacol 2010; 644:238-44. [PMID: 20624384 DOI: 10.1016/j.ejphar.2010.06.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/11/2010] [Accepted: 06/24/2010] [Indexed: 11/21/2022]
Abstract
Seeds from legumes including the Gilcine max are known to be a rich source of protease inhibitors. The soybean Kunitz trypsin inhibitors (SKTIs) have been well characterised and have been found to exhibit many biological activities. However their effects on inflammatory diseases have not been studied to date. In this study, SKTI was purified using anion exchange chromatography using a Resource Q column. The purified protein was able to inhibit human neutrophil elastase (HNE) and bovine trypsin. Purified SKTI inhibited HNE with an IC(50) value of 8mug or 0.3nM. At this concentration SKTI showed neither cytotoxic nor haemolytic effects on human blood cell populations. SKTI showed no deleterious effects on organs, blood cells or the hepatic enzymes ALT and AST in the mouse model of acute systemic toxicity. Human neutrophils incubated with SKTI released less HNE than control neutrophils when stimulated with PAF or fMLP (83.1% and 70% respectively). These results showed that SKTI affected both pathways of elastase release by PAF and fMLP stimuli, suggesting that SKTI is an antagonist of fMLP/PAF receptors. In an in vivo mouse model of LPS acute lung injury, SKTI significantly suppressed the inflammatory effects caused by elastase in a dose-dependent manner. Histological sections stained by hematoxylin/eosin confirmed this decrease in inflammation. These results showed that SKTI could be used as a pharmacological agent for the therapy of many inflammatory diseases.
Collapse
Affiliation(s)
- Jannison K C Ribeiro
- Laboratório de Química e Função de Proteínas Bioativas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte 59072-970 Natal, RN, Brazil
| | | | | | | |
Collapse
|
28
|
A Tetracycline Analog Improves Acute Respiratory Distress Syndrome Survival in an Ovine Model. Ann Thorac Surg 2010; 90:419-26. [DOI: 10.1016/j.athoracsur.2010.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 11/22/2022]
|
29
|
Shiomi T, Lemaître V, D’Armiento J, Okada Y. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int 2010; 60:477-96. [PMID: 20594269 PMCID: PMC3745773 DOI: 10.1111/j.1440-1827.2010.02547.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cellular functions within tissues are strictly regulated by the tissue microenvironment which comprises extracellular matrix and extracellular matrix-deposited factors such as growth factors, cytokines and chemokines. These molecules are metabolized by matrix metalloproteinases (MMP), a disintegrin and metalloproteinases (ADAM) and ADAM with thrombospondin motifs (ADAMTS), which are members of the metzincin superfamily. They function in various pathological conditions of both neoplastic and non-neoplastic diseases by digesting different substrates under the control of tissue inhibitors of metalloproteinases (TIMP) and reversion-inducing, cysteine-rich protein with Kazal motifs (RECK). In neoplastic diseases MMP play a central role in cancer cell invasion and metastases, and ADAM are also important to cancer cell proliferation and progression through the metabolism of growth factors and their receptors. Numerous papers have described the involvement of these metalloproteinases in non-neoplastic diseases in nearly every organ. In contrast to the numerous review articles on their roles in cancer cell proliferation and progression, there are very few articles discussing non-neoplastic diseases. This review therefore will focus on the properties of MMP, ADAM and ADAMTS and their implications for non-neoplastic diseases of the cardiovascular system, respiratory system, central nervous system, digestive system, renal system, wound healing and infection, and joints and muscular system.
Collapse
Affiliation(s)
- Takayuki Shiomi
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
- Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Vincent Lemaître
- Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Jeanine D’Armiento
- Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Yasunori Okada
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
30
|
Doroszko A, Hurst TS, Polewicz D, Sawicka J, Fert-Bober J, Johnson DH, Sawicki G. Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury. Proteome Sci 2010; 8:3. [PMID: 20205825 PMCID: PMC2824689 DOI: 10.1186/1477-5956-8-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/29/2010] [Indexed: 12/20/2022] Open
Abstract
Background Although mechanical ventilation (MV) is a major supportive therapy for patients with acute respiratory distress syndrome, it may result in side effects including lung injury. In this study we hypothesize that MMP-9 inhibition by doxycycline might reduce MV-related lung damage. Using a proteomic approach we identified the pulmonary proteins altered in high volume ventilation-induced lung injury (VILI). Forty Wistar rats were randomized to an orally pretreated with doxycycline group (n = 20) or to a placebo group (n = 20) each of which was followed by instrumentation prior to either low or high tidal volume mechanical ventilation. Afterwards, animals were euthanized and lungs were harvested for subsequent analyses. Results Mechanical function and gas exchange parameters improved following treatment with doxycycline in the high volume ventilated group as compared to the placebo group. Nine pulmonary proteins have shown significant changes between the two biochemically analysed (high volume ventilated) groups. Treatment with doxycycline resulted in a decrease of pulmonary MMP-9 activity as well as in an increase in the levels of soluble receptor for advanced glycation endproduct, apoliporotein A-I, peroxiredoxin II, four molecular forms of albumin and two unnamed proteins. Using the pharmacoproteomic approach we have shown that treatment with doxycycline leads to an increase in levels of several proteins, which could potentially be part of a defense mechanism. Conclusion Administration of doxycycline might be a significant supportive therapeutic strategy in prevention of VILI.
Collapse
Affiliation(s)
- Adrian Doroszko
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Cena JJ, Lalu MM, Cho WJ, Chow AK, Bagdan ML, Daniel EE, Castro MM, Schulz R. Inhibition of matrix metalloproteinase activity in vivo protects against vascular hyporeactivity in endotoxemia. Am J Physiol Heart Circ Physiol 2009; 298:H45-51. [PMID: 19837953 DOI: 10.1152/ajpheart.00273.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Persistent arterial hypotension is a hallmark of sepsis and is believed to be caused, at least in part, by excess nitric oxide (NO). NO can combine with superoxide to produce peroxynitrite, which activates matrix metalloproteinases (MMPs). Whether MMP inhibition in vivo protects against vascular hyporeactivity induced by endotoxemia is unknown. Male Sprague-Dawley rats were administered either bacterial lipopolysaccharide (LPS, 4 mg/kg ip) or vehicle (pyrogen-free water). Later (30 min), animals received the MMP inhibitor doxycycline (4 mg/kg ip) or vehicle (pyrogen-free water). After LPS injection (6 h), animals were killed, and aortas were excised. Aortic rings were mounted in organ baths, and contractile responses to phenylephrine or KCl were measured. Aortas and plasma were examined for MMP activity by gelatin zymography. Aortic MMP and inducible nitric oxide synthase (iNOS) were examined by immunoblot and/or immunohistochemistry. Doxycycline prevented the LPS-induced development of ex vivo vascular hyporeactivity to phenylephrine and KCl. iNOS protein was significantly upregulated in aortic homogenates from endotoxemic rats; doxycycline did not alter its level. MMP-9 activity was undetectable in aortic homogenates from LPS-treated rats but significantly upregulated in the plasma; this was attenuated by doxycycline. Plasma MMP-2 activities were unchanged by LPS. Specific MMP-2 activity was increased in aortas from LPS-treated rats. This study demonstrates the in vivo protective effect of the MMP inhibitor doxycycline against the development of vascular hyporeactivity in endotoxemic rats.
Collapse
Affiliation(s)
- Jonathan J Cena
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ehrenfeld P, Matus CE, Pavicic F, Toledo C, Nualart F, Gonzalez CB, Burgos RA, Bhoola KD, Figueroa CD. Kinin B1 receptor activation turns on exocytosis of matrix metalloprotease-9 and myeloperoxidase in human neutrophils: involvement of mitogen-activated protein kinase family. J Leukoc Biol 2009; 86:1179-89. [PMID: 19641039 DOI: 10.1189/jlb.0109012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During neutrophil activation and degranulation, MMP-9 and MPO are released into the extracellular space to propagate inflammatory disorders. As kinin peptides are major participants in acute inflammatory responses, and the G-protein-coupled B(1)R mediates the chemotaxis of human neutrophils, we examined the release of the neutrophil enzymes MMP-9 and MPO by the B(1)R agonist LDBK and determined the signaling pathways that may regulate this cellular effect. Cytochalasin-treated and -untreated neutrophils were suspended in HBSS and stimulated with a range concentration of LDBK for 5 min. Zymography and Western blotting revealed that LDBK induced the release of MMP-9 and MPO. The use of specific signaling transduction inhibitors showed that release of MMP-9 depended on ERK1/2 and p38 MAPKs, whereas release of MPO involved only the p38 cascade. Inhibition of the key steps in these pathways showed that the release of both enzymes depended on PKC and PI3K. Stimulation of neutrophils with LDBK produced phosphorylation of ERK1/2 and p38 MAPK, which was inhibited by B(1)R antagonists. The phosphorylated ERK1/2 MAPK translocated to the neutrophil nucleus, suggesting that transcription of new genes may follow activation of B(1)R. Our results demonstrate that in human neutrophils, activation of kinin B(1)R by LDBK initiates separate signaling cascades that trigger the release of MMP-9 and MPO from tertiary and primary granules, respectively, suggesting that the B(1)R plays a pivotal role in inflammatory disorders.
Collapse
Affiliation(s)
- Pamela Ehrenfeld
- Laboratorio de Patologia Celular, Instituto de Anatomía, Histología and Patología, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lung transplant ischemia reperfusion injury: metalloprotease inhibition down-regulates exposure of type V collagen, growth-related oncogene-induced neutrophil chemotaxis, and tumor necrosis factor-alpha expression. Transplantation 2008; 85:417-26. [PMID: 18322435 DOI: 10.1097/tp.0b013e31815e91b6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Immunity to type V collagen [col(V)] contributes to lung transplant rejection. Matrix metalloproteases (MMPs), which are induced by transplant-related ischemia-reperfusion injury (IRI), could expose col(V) and regulate local IRI-induced inflammation. METHODS To test the hypothesis that MMPs induce col(V) exposure and inflammation, Wistar-Kyoto rats were treated with the MMP inhibitor, COL-3, before inducing lung IRI without transplantation, and in parallel studies, Wistar-Kyoto lung donor and recipients were treated with COL-3 pre- and postisograft lung transplantation. RESULTS Ischemia-reperfusion injury induced growth-related oncogene/CINC-1-dependent neutrophil influx, and up-regulated tumor necrosis factor-alpha. MMP2 and MMP9, induced at 4 and 24 hr after IRI, respectively, were associated with detection of antigenic col(V) in bronchoalveolar lavage and lung interstitium because of MMP-mediated matrix degradation. MMP-inhibitor treatment significantly reduced polymorphonuclear leukocytes, growth-related oncogene/CINC-1, and tumor necrosis factor-alpha; abrogated MMP-9 expression; and resulted in lower levels of antigenic col(V) in bronchoalveolar lavage. In the lung transplant model, inhibiting MMPs in the donor before lung harvest and in the recipient after lung transplantation resulted in improved oxygenation and diminished polymorphonuclear leukocyte influx into the isograft. CONCLUSION MMP inhibition may be a potential therapy to prevent release of antigenic col(V) and ameliorate IRI in the transplant recipient.
Collapse
|
34
|
Fingleton B. MMPs as therapeutic targets--still a viable option? Semin Cell Dev Biol 2007; 19:61-8. [PMID: 17693104 PMCID: PMC2677300 DOI: 10.1016/j.semcdb.2007.06.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 06/23/2007] [Indexed: 02/08/2023]
Abstract
Matrix metalloproteinases (MMPs) appear to be ideal drug targets--they are disease-associated, extracellular enzymes with a dependence on zinc for activity. This apparently straightforward target, however, is much more complex than initially realized. Although disease associated, the roles for particular enzymes may be healing rather than harmful making broad-spectrum inhibition unwise; targeting the catalytic zinc with specificity is difficult, since other related proteases as well as non-related proteins can be affected by some chelating groups. While the failure of early-generation MMP inhibitors dampened enthusiasm for this type of drug, there has recently been a wealth of studies examining the basic biology of MMPs which will greatly inform new drug trials in this field.
Collapse
Affiliation(s)
- Barbara Fingleton
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA.
| |
Collapse
|
35
|
Chow AK, Cena J, Schulz R. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 2007; 152:189-205. [PMID: 17592511 PMCID: PMC1978261 DOI: 10.1038/sj.bjp.0707344] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Matrix metalloproteinases (MMPs) have been shown to play significant roles in a number of physiological as well as pathological processes. Best known to proteolyse components of the extracellular matrix, MMPs have recently been discovered to also target a growing list of proteins apart from these, both inside and outside the cell. MMPs have also been traditionally thought of as enzymes involved in chronic processes such as angiogenesis, remodelling and atherosclerosis on a days-week time-scale. However they are now understood to also act acutely in response to oxidative stress on a minutes time-scale on non-extracellular matrix substrates. This review focuses on the acute actions and both extracellular and intracellular targets of two prominent MMP family members, MMP-2 and -9, in cardiovascular diseases including ischaemia/reperfusion injury, inflammatory heart disease, septic shock and pre-eclampsia. Also discussed are various ways of regulating MMP activity, including post-translational mechanisms, the endogenous tissue inhibitors of metalloproteinases and pharmacological inhibitors. A comprehensive understanding of MMP biology is necessary for the development of novel pharmacological therapies to combat the impact of cardiovascular disease.
Collapse
Affiliation(s)
- A K Chow
- Department of Pediatrics, Cardiovascular Research Group, University of Alberta Edmonton, Alberta, Canada
| | - J Cena
- Department of Pharmacology, Cardiovascular Research Group, University of Alberta Edmonton, Alberta, Canada
| | - R Schulz
- Department of Pediatrics, Cardiovascular Research Group, University of Alberta Edmonton, Alberta, Canada
- Department of Pharmacology, Cardiovascular Research Group, University of Alberta Edmonton, Alberta, Canada
- Author for correspondence:
| |
Collapse
|
36
|
Martin EL, Sheikh TA, Leco KJ, Lewis JF, Veldhuizen RAW. Contribution of alveolar macrophages to the response of the TIMP-3 null lung during a septic insult. Am J Physiol Lung Cell Mol Physiol 2007; 293:L779-89. [PMID: 17586692 DOI: 10.1152/ajplung.00442.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice deficient in tissue inhibitor of metalloproteinase-3 (TIMP-3) develop an emphysema-like phenotype involving increased pulmonary compliance, tissue degradation, and matrix metalloproteinase (MMP) activity. After a septic insult, they develop a further increase in compliance that is thought to be a result of heightened metalloproteinase activity produced by the alveolar macrophage, potentially modeling an emphysemic exacerbation. Therefore, we hypothesized that TIMP-3 null mice lacking alveolar macrophages would not be susceptible to the altered lung function associated with a septic insult. TIMP-3 null and wild-type (WT) mice were depleted of alveolar macrophages before the induction of a septic insult and assessed for alteration in lung mechanics, alveolar structure, metalloproteinase levels, and inflammation. The results showed that TIMP-3 null mice lacking alveolar macrophages were protected from sepsis-induced alterations in lung mechanics, particularly pulmonary compliance, a finding that was supported by changes in alveolar structure. Additionally, changes in lung mechanics involved primarily peripheral tissue vs. central airways as determined using the flexiVent system. From investigation into possible molecules that could cause these alterations, it was found that although several proteases and inflammatory mediators were increased during the septic response, only MMP-7 was attenuated after macrophage depletion. In conclusion, the alveolar macrophage is essential for the TIMP-3 null sepsis-induced compliance alterations. This response may be mediated in part by MMP-7 activity but occurs independently of inflammatory cytokine and/or chemokine concentrations.
Collapse
Affiliation(s)
- Erica L Martin
- Department of Physiology and Pharmacology, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
37
|
Yoshida S, Iwata T, Chiyo M, Smith GN, Foresman BH, Mickler EA, Heidler KM, Cummings OW, Fujisawa T, Brand DD, Baker A, Wilkes DS. Metalloproteinase Inhibition Has Differential Effects on Alloimmunity, Autoimmunity, and Histopathology in the Transplanted Lung. Transplantation 2007; 83:799-808. [PMID: 17414715 DOI: 10.1097/01.tp.0000258600.05531.5d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Upregulation of matrix metalloproteinases (MMPs) has been associated with chronic lung allograft rejection known as bronchiolitis obliterans syndrome. It has been suggested that MMP inhibition could prevent the rejection response. However, the effect of MMP inhibition on lung allograft rejection has not been reported. METHODS Utilizing a rat model of lung transplantation, tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were overexpressed by gene therapy in F344 rat lung allografts prior to transplantation into WKY recipient rats. Separately, WKY rats that received F344 lung allografts were treated systemically with COL-3, a global MMP inhibitor. RESULTS TIMP-1 and TIMP-2 had differential effects on delayed type hypersensitivity (DTH) responses to donor antigens and type V collagen, an autoantigen involved in the rejection response. Neither TIMP-1 or TIMP-2 affected the onset of rejection pathology. COL-3 suppressed DTH responses to donor antigens and type V collagen, abrogated local production of tumor necrosis factor-alpha, and interleukin-1beta. Although it did not prevent rejection pathology, COL-3 (30 mg/kg) induced intragraft B cell hyperplasia suggestive of posttransplant proliferative disorder (PTLD). CONCLUSIONS These data identify a complex role for MMPs and TIMPs in the immunopathogenesis of lung allograft rejection, and indicate their effects are not limited to matrix remodeling.
Collapse
Affiliation(s)
- Shigetoshi Yoshida
- Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Deree J, Martins JO, Leedom A, Lamon B, Putnam J, de Campos T, Hoyt DB, Wolf P, Coimbra R. Hypertonic saline and pentoxifylline reduces hemorrhagic shock resuscitation-induced pulmonary inflammation through attenuation of neutrophil degranulation and proinflammatory mediator synthesis. ACTA ACUST UNITED AC 2007; 62:104-11. [PMID: 17215740 DOI: 10.1097/ta.0b013e31802d96cb] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ringer's lactate (RL), the current standard resuscitation fluid, potentiates neutrophil activation and is associated with pulmonary inflammation. Resuscitation with hypertonic saline and pentoxifylline (HSPTX) has been shown to attenuate hemorrhagic shock-induced injury when compared with RL. Because the neutrophil plays a major role in postshock inflammation, we hypothesized that HSPTX reduces pulmonary inflammation after resuscitation in comparison to RL. METHODS Sprague-Dawley rats underwent controlled shock and were resuscitated with RL (32 mL/kg) or HSPTX (4 mL/kg 7.5% NaCl + pentoxifylline 25 mg/kg). Animals who did not undergo shock or resuscitation served as controls. After 24 hours, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. Cytokine induced neutrophil chemoattractant (CINC) was measured in BALF by enzyme-linked immunosorbent assay. Matrix metalloproteinases (MMP)-2 and -9 were measured by zymography. Hemeoxygenase-1 (HO-1) was assessed by Western blot and immunohistochemistry. RESULTS HSPTX resuscitation led to a 62% decrease in CINC levels compared with RL (p < 0.01). BALF MMP-2 expression was attenuated by 11% with HSPTX (p = 0.09). Lung MMP-2 and MMP-9 expression was reduced by 89% (p < 0.01) and 76%, respectively (p < 0.05). Lung HO-1 expression declined by 34% with HSPTX in comparison to RL (p < 0.01), indicating less oxidative injury. Lung immunohistochemistry localized HO-1 to neutrophils, macrophages, and airway epithelial cells. CONCLUSION Collectively, the attenuation of pulmonary inflammation with HSPTX after shock when compared with RL is associated with downregulation of neutrophil activation, oxidative stress, and proinflammatory mediator production.
Collapse
Affiliation(s)
- Jessica Deree
- Division of Trauma and Surgical Critical Care, Department of Surgery, University of California School of Medicine, San Diego, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Halter JM, Pavone LA, Steinberg JM, Gatto LA, DiRocco J, Landas S, Nieman GF. CHEMICALLY MODIFIED TETRACYCLINE (COL-3) IMPROVES SURVIVAL IF GIVEN 12 BUT NOT 24 HOURS AFTER CECAL LIGATION AND PUNCTURE. Shock 2006; 26:587-91. [PMID: 17117134 DOI: 10.1097/01.shk.0000245019.63246.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sepsis can result in excessive and maladaptive inflammation that is responsible for more than 215,00 deaths per year in the United State alone. Current strategies for reducing the morbidity and mortality associated with sepsis rely on treatment of the syndrome rather than prophylaxis. We have been investigating a modified tetracycline, COL-3, which can be given prophylactically to patients at high risk for developing sepsis. Our group has shown that COL-3 is very effect at preventing the sequelae of sepsis if given before or immediately after injury in both rat and porcine sepsis models. In this study, we wanted to determine the "treatment window" for COL-3 after injury at which it remains protective. Sepsis was induced by cecal ligation and puncture (CLP). Rats were anesthetized and placed into five groups: CLP (n = 20) = CLP without COL-3, sham (n = 5) = surgery without CLP or COL-3, COL3@6h (n = 10) = COL-3 given by gavage 6 h after CLP, COL3@12h (n = 10) = COL-3 given by gavage 12 h after CLP, and COL3@24h (n = 20) = COL-3 given by gavage 24 h after CLP. COL-3 that was given at 6 and 12 h after CLP significantly improved survival as compared with the CLP and the CLP@24h groups. Improved survival was associated with a significant improvement in lung pathology assessed morphologically. These data suggest that COL-3 can be given up to 12 h after trauma and remain effective.
Collapse
Affiliation(s)
- Jeffrey M Halter
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Deree J, Lall R, Melbostad H, Loomis W, Hoyt DB, Coimbra R. Pentoxifylline attenuates stored blood-induced inflammation: A new perspective on an old problem. Surgery 2006; 140:186-91. [PMID: 16904968 DOI: 10.1016/j.surg.2006.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 03/07/2006] [Accepted: 03/24/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND Blood transfusion is a risk factor for many inflammatory processes. Its supernatant fraction has been proven to activate neutrophils. We hypothesized that pentoxifylline (PTX) would attenuate stored blood-induced neutrophil activation and pro-inflammatory mediator production. METHODS Whole blood was incubated with HBSS, LPS (100 microg/mL), leukoreduced PRBC supernatant + LPS, or supernatant + LPS + PTX (2 mmol/L). TNF-alpha levels were measured by ELISA. MMP-9 was evaluated with zymography. Neutrophil CD66b expression was determined by flow cytometry in blood treated with HBSS, fMLP (1 micromol/L), supernatant + fMLP, or supernatant + fMLP + PTX. RESULTS TNF-alpha levels were elevated in both the LPS and supernatant + LPS groups (100%; P < 0.01 and 120%; P < 0.01, respectively). PTX administration resulted in a 106% decrease in TNF-alpha (P < 0.0001). MMP-9 levels were increased in all groups. Administration of PTX to the supernatant + LPS group generated a 33% decrease in MMP-9 levels, which was not statistically significant (P < 0.4). Upregulation of CD66b expression was seen in LPS and supernatant + LPS groups. Significant attenuation was seen with PTX (47%; P < 0.01). CONCLUSIONS PTX downregulates CD66b and TNF-alpha expression in supernatant-induced whole blood. Because blood transfusion can contribute to inflammatory injury, the adjunctive use of PTX may have therapeutic potential.
Collapse
Affiliation(s)
- Jessica Deree
- Division of Trauma and Surgical Critical Care, Department of Surgery, University of California San Diego School of Medicine, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Robinson EK, West SD, Mercer DW. Salicylate enhances rat gastric gelatinase activity. J Surg Res 2006; 133:69-75. [PMID: 16360173 DOI: 10.1016/j.jss.2005.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 09/20/2005] [Accepted: 09/29/2005] [Indexed: 11/28/2022]
Abstract
BACKGROUND Increased matrix metalloproteinase (MMP) activity is associated with tissue injury in some organs. Their role in gut injury remains to be fully elucidated. We recently demonstrated that increased MMP-2 activity participated in lipopolysaccharide (LPS)-induced gastric injury. Thus we hypothesized that MMPs may play a role in other models of gastric injury. MATERIALS AND METHODS The effect of L-NAME (10 mg/kg IP) or salicylate (100 mg/kg IP) on gastric injury from 20% ethanol was evaluated in an anesthetized model of gastric injury. In a separate experiment, gastric metalloproteinase activity was assessed after salicylate or L-NAME administration. Rats were given either L-NAME (10 mg/kg), salicylate (100 mg/kg), or saline IP and sacrificed after 6 hours. Gastric mucosa was harvested and portions of the glandular stomach snap frozen for gelatin and in situ zymography as indices of MMP activity. Subsequently the effect of MMP inhibition on macroscopic gastric injury from salicylate and a dilute luminal irritant was determined. RESULTS Both L-NAME and salicylate significantly increased gastric injury from 20% ethanol versus saline controls. Salicylate treatment significantly increased gelatinase activity as determined by in situ zymography and gelatin zymography while L-NAME did not. MMP inhibition ameliorated macroscopic gastric injury secondary to salicylate and a dilute luminal irritant. CONCLUSIONS This is the first study to report that MMP activity increases in the stomach following salicylate treatment. These data suggest that MMPs may play a role in the ability of salicylate to exacerbate gastric injury from irritants, but likely do not play a role in mediating the deleterious effects of L-NAME.
Collapse
Affiliation(s)
- Emily K Robinson
- Department of Surgery at the University of Texas Health Science Center Houston, USA.
| | | | | |
Collapse
|
42
|
Robinson EK, Seaworth CM, Suliburk JW, Adams SD, Kao LS, Mercer DW. EFFECT OF NOS INHIBITION ON RAT GASTRIC MATRIX METALLOPROTEINASE PRODUCTION DURING ENDOTOXEMIA. Shock 2006; 25:507-14. [PMID: 16680016 DOI: 10.1097/01.shk.0000209543.83929.bd] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UNLABELLED Matrix metalloproteinases (MMPs) degrade the extracellular matrix and contribute to LPS-induced gastric injury. MMPs are closely modulated by their activators, membrane type-MMP (MT-MMPs) and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). As LPS-induced gastric injury is mediated in part by iNOS, and NO modulates MMP production in vitro, we hypothesized that NOS inhibition would similarly modulate LPS-induced gastric MMP production. Therefore, the purpose of these studies was to compare the effects of selective and nonselective NOS inhibition on LPS-induced gastric MMP production. METHODS Sprague-Dawley rats were given either the nonselective NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 5 mg/kg, s.c.), a selective iNOS inhibitor, aminoguanidine (45 mg/kg, i.p.) or L-N-iminoethyl-lysine (L-NIL; 10 mg/kg, i.p.), or vehicle 15 min before saline or LPS (20 mg/kg, i.p.) and killed 24 h after LPS administration. Stomachs were assessed for macroscopic injury (computed planimetry), and gastric mucosal MMP production was assessed by gelatin zymography, in situ zymography, and Western analysis for MMP-2, MT1-MMP, and TIMP-2. (n > or = 4/group; ANOVA). RESULTS Aminoguanidine treatment decreased LPS-induced macroscopic gastric injury as well as MMP-2 and MT1-MMP protein production while having no effect on TIMP-2 protein levels. L-NIL similarly attenuated the induction of MMP-2 and MT1-MMP by LPS. L-NAME failed to attenuate LPS induced gastric injury or MT1-MMP protein induction and increased MMP-2 levels. L-NAME similarly had no effect on gastric TIMP-2 production. CONCLUSIONS Selective iNOS inhibition decreases gastric MMP-2 activity after LPS administration, whereas nonselective inhibition increases MMP-2 levels. The ability of selective iNOS inhibition to ameliorate LPS-induced gastric injury may be due in part to its inhibition of active MMP-2 production, whereas nonselective NOS inhibitors increase MMP-2 levels and maintain gastric injury after LPS administration.
Collapse
Affiliation(s)
- Emily K Robinson
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Swartz MF, Halter JM, Fink GW, Pavone L, Zaitsev A, Lee HM, Steinberg JM, Lutz CJ, Sorsa T, Gatto LA, Landas S, Hare C, Nieman GF. Chemically Modified Tetracycline Improves Contractility in Porcine Coronary Ischemia/Reperfusion Injury. J Card Surg 2006; 21:254-60. [PMID: 16684053 DOI: 10.1111/j.1540-8191.2006.00226.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Reperfusion of ischemic myocardium has been implicated in extension of infarct size and deleterious clinical outcomes. Anti-inflammatory agents reduce this reperfusion injury. Chemically modified tetracycline-3 (CMT-3) (Collagenex Pharmaceuticals, Newtown, PA, USA) lacks antimicrobial properties yet retains anti-inflammatory activity. We examined infarct size and myocardial function in a porcine coronary artery occlusion/reperfusion model in CMT-3-treated and control animals. METHODS Yorkshire pigs (n = 8) underwent median sternotomy, pretreatment with heparin (300 U/kg and 67 U/kg/hr IV) and lidocaine (1 mg/kg IV) and were divided into two groups. Group one (n = 4) had the left anterior descending artery (LAD) occluded for 1 hour, after which it was reperfused for 2 hours. Group two (n = 4) had an identical protocol to group one except CMT-3 (2 mg/kg IV) was administered prior to occlusion of the LAD. RESULTS Animals receiving CMT-3 had significantly decreased infarct size in relation to the ventricular area-at-risk (AAR) (28 +/- 9% vs. 64 +/- 8%; p < 0.05). Myocardial contractile function was superior in the CMT-3 treatment, indicated by a higher cardiac index (2.9 +/- 0.3 vs. 2.0 +/- 0.3 L/min/m(2); p < 0.05) and stroke volume index (22 +/- 2 vs. 17 +/- 1 L/m(2)/beat; p < 0.05). CONCLUSIONS CMT-3 decreased infarct size in relation to the AAR resulting in relative preservation of contractility, suggesting CMT-3 may improve outcomes during myocardial ischemia reperfusion.
Collapse
Affiliation(s)
- Michael F Swartz
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Robinson EK, West SD, Garay A, Mercer DW. Rat gastric gelatinase induction during endotoxemia. Dig Dis Sci 2006; 51:548-59. [PMID: 16614966 DOI: 10.1007/s10620-006-3169-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Accepted: 06/29/2005] [Indexed: 12/09/2022]
Abstract
Despite continued investigation, the pathogenesis of tissue injury secondary to sepsis remains elusive. Further evaluation of the mechanisms by which endotoxemia and sepsis induce tissue injury is necessary to formulate rational and effective treatment strategies. The purpose of these studies was to evaluate the role of the matrix metalloproteinases MMP-2 and MMP-9 in gastric injury during lipopolysaccharide induced endotoxemia. Lipopolysaccharide increased gastric gelatinase activity as determined by in situ and gelatin zymography. Specifically, lipopolysaccharide induced MMP-2, MMP-9, and tissue inhibitor of metalloproteinase-1 (TIMP-1) transcription, with subsequent increases in MMP-2 and TIMP-1 protein expression. Furthermore, selective metalloproteinase inhibition ameliorated gastric injury in this model. These data suggest that lipopolysaccharide-induced gastric injury is mediated, at least in part, by increased MMP-2 production.
Collapse
Affiliation(s)
- Emily K Robinson
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | | | | | | |
Collapse
|
45
|
Bhatia R, Dent C, Topley N, Pallister I. Neutrophil Priming for Elastase Release in Adult Blunt Trauma Patients. ACTA ACUST UNITED AC 2006; 60:590-6. [PMID: 16531859 DOI: 10.1097/01.ta.0000205614.51885.ff] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Elevated plasma elastase levels have been reported following major trauma and isolated femoral fracture. Reamed femoral nailing has been shown to further increase plasma elastase levels. The aim of this study was to investigate polymorphonuclear neutrophil (PMN) priming for degranulation following major trauma and isolated long-bone/pelvis fracture by assessing the ability of PMN to release elastase in vitro in response to a stimulus. METHODS We further analyzed PMN surface expression of the integrins CD11b and CD18 as markers of PMN activation. Ten major trauma (Injury Severity Score>or=18) patients and 12 patients with isolated long-bone/pelvis fracture were included in the study. Patients in the isolated fracture group were further stratified into reamed nail and external-fixation groups following surgery. RESULTS A significant increase in the capacity of PMN to release elastase was seen following major trauma, but not in isolated fracture patients. Surgery did not further alter PMN elastase release. CD11b and CD18 expression was essentially unaltered in all groups. CONCLUSIONS PMN is primed for increased degranulation following major trauma but not following isolated long-bone/pelvis fracture. Accumulation of primed, hyperactive PMN into tissues can lead to severe tissue damage and thus multiple organ failure.
Collapse
Affiliation(s)
- Raj Bhatia
- Department of Trauma and Orthopaedics, University Hospital for Wales, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
46
|
Steinberg J, Halter J, Schiller H, Gatto L, Carney D, Lee HM, Golub L, Nieman G. Chemically modified tetracycline prevents the development of septic shock and acute respiratory distress syndrome in a clinically applicable porcine model. Shock 2006; 24:348-56. [PMID: 16205320 DOI: 10.1097/01.shk.0000180619.06317.2c] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sepsis causes more than with 215,000 deaths per year in the United States alone. Death can be caused by multiple system organ failure, with the lung, in the form of the acute respiratory distress syndrome (ARDS), often being the first organ to fail. We developed a chronic porcine model of septic shock and ARDS and hypothesized that blocking the proteases neutrophil elastase (NE) and matrix metalloproteinases (MMP-2 and MMP-9) with the modified tetracycline, COL-3, would significantly improve morbidity in this model. Pigs were anesthetized and instrumented for hemodynamic monitoring and were then randomized to one of three groups: control (n = 3), laparotomy only; superior mesenteric artery occlusion (SMA) + fecal blood clot (FC; n = 7), with intraperitoneal placement of a FC; and SMA + FC + COL (n = 5), ingestion of COL-3 12 h before injury. Animals emerged from anesthesia and were monitored and treated with fluids and antibiotics in an animal intensive care unit continuously for 48 h. Serum and bronchoalveolar lavage fluid (BALF) were sampled and bacterial cultures, MMP-2, MMP-9, NE, and multiple cytokine concentrations were measured. Pigs were reanesthetized and placed on a ventilator when significant lung impairment occurred (PaO2/FiO2 < 250). At necropsy, lung water and histology were assessed. All animals in the SMA + FC group developed septic shock evidenced by a significant fall in arterial blood pressure that was not responsive to fluids. Lung injury typical of ARDS (i.e., a fall in lung compliance and PaO2/FiO2 ratio and a significant increase in lung water) developed in this group. Additionally, there was a significant increase in plasma IL-1 and IL-6 and in BALF IL-6, IL-8, IL-10, NE, and protein concentration in the SMA + FC group. COL-3 treatment prevented septic shock and ARDS and significantly decreased cytokine levels in plasma and BALF. COL-3 treatment also significantly reduced NE activity (P < 0.05) and reduced MMP-2 and MMP-9 activity in BALF by 64% and 34%, respectively, compared with the SMA + FC group. We conclude that prophylactic COL-3 prevented the development of ARDS and unexpectedly also prevented septic shock in a chronic insidious onset animal model of sepsis-induced ARDS. The mechanism of this protection is unclear, as COL-3 inhibited numerous inflammatory mediators. Nevertheless, COL-3 significantly reduced the morbidity in a clinically applicable animal model, demonstrating the possibility that COL-3 may be useful in reducing the morbidity associated with sepsis and ischemia/reperfusion injury in patients.
Collapse
Affiliation(s)
- Jay Steinberg
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chakrabarti S, Zee JM, Patel KD. Regulation of matrix metalloproteinase-9 (MMP-9) in TNF-stimulated neutrophils: novel pathways for tertiary granule release. J Leukoc Biol 2005; 79:214-22. [PMID: 16275891 DOI: 10.1189/jlb.0605353] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is present in the tertiary granules of neutrophils and is rapidly released following stimulation. We examined the pathways that regulate tumor necrosis factor (TNF)-mediated MMP-9 release and found this to be dependent on the TNF receptor I. TNF rapidly activated extracellular signal-regulated kinase and p38 mitogen-activated protein kinases, but neither of these pathways was critical for MMP-9 release. Many neutrophil responses to TNF require beta2-integrin-dependent signaling and subsequent Src family kinase activation. In contrast, we found that MMP-9 release from tertiary granules was only partially affected by blocking beta2-integrin-mediated adhesion. Similarly, blocking Src family kinases with the inhibitor PP2 only attenuated TNF-induced MMP-9 release. Blocking beta2-integrin-mediated adhesion and Src family kinases did not result in additive inhibition of MMP-9 release. In contrast, inhibiting protein kinase C (PKC) with a pan-specific inhibitor blocked greater than 85% of MMP-9 release. Inhibitors against specific PKC isoforms suggested a role for PKC alpha and PKC delta in maximal MMP-9 release. These data suggest that MMP-9 release from tertiary granules uses beta2-integrin-independent signaling pathways. Furthermore, PKC isoforms play a critical role in regulating tertiary granule release.
Collapse
Affiliation(s)
- Subhadeep Chakrabarti
- Department of Physiology and Biophysics, Immunology Research Group, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
48
|
Abstract
Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that have a number of important physiological roles including remodelling of the extracellular matrix, facilitating cell migration, cleaving cytokines, and activating defensins. However, excess MMP activity may lead to tissue destruction. The biology of MMP and the role of these proteases in normal pulmonary immunity are reviewed, and evidence that implicates excess MMP activity in causing matrix breakdown in chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), sarcoidosis, and tuberculosis is discussed. Evidence from both clinical studies and animal models showing that stromal and inflammatory cell MMP expression leads to immunopathology is examined, and the mechanisms by which excess MMP activity may be targeted to improve clinical outcomes are discussed.
Collapse
Affiliation(s)
- P T G Elkington
- Department of Infectious Diseases, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
49
|
Zhang T, Zhang X, Shao Z, Ding R, Yang S, Ruan J, Sun X, Xu J, Huang C, Hu Z, Zhang X. The Prophylactic and Therapeutic Effects of Cholinolytics on Perfluoroisobutylene Inhalation Induced Acute Lung Injury. J Occup Health 2005; 47:277-85. [PMID: 16096351 DOI: 10.1539/joh.47.277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Perfluoroisobutylene (PFIB) is a kind of fluoro-olefin that is ten times more toxic than phosgene. The mechanisms of the acute lung injury (ALI) induced by PFIB inhalation remain unclear. To find possible pharmacological interventions, mice and rats were exposed to PFIB, and the prophylactic or therapeutic effects of 3-quinuclidinyl benzilate (QNB) and anisodamine were studied and confirmed. It was observed that the wet lung/body weight and the dry lung/body weight ratios at 24 h after PFIB exposure (130 mg/m(3) for 5 min) were significantly decreased when a single dose of QNB (5 mg/kg) was administered intraperitoneally either 30 min before exposure or 10 h after exposure. Anisodamine was without any prophylactic or therapeutic effects at single doses below 30 mg/kg. The effects of QNB against PFIB inhalation induced ALI were well evidenced by the significantly decreased mice mortality at 72 h, the total protein concentration in bronchoalveolar lavage fluid at 24 h after the PFIB exposure, as well as the ultrastructural observations. The analysis of the time courses of lung sulfhydryl concentration, myeloperoxidase (MPO) activity and hemorheology assay showed that the toxicity of PFIB may be due to consumption of lung protein sulfhydryl, influx of polymorphonuclear leukocytes (PMNs) into the lung, and increased peripheral blood viscosity at a low shear rate, all of which were partially blocked by QNB intervention except for PMN influx. The results suggest that cholinolytics might have prophylactic and therapeutic roles in PFIB inhalation induced ALI.
Collapse
Affiliation(s)
- Tianhong Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fook JMSLL, Macedo LLP, Moura GEDD, Teixeira FM, Oliveira AS, Queiroz AFS, Sales MP. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase. Life Sci 2005; 76:2881-91. [PMID: 15820500 DOI: 10.1016/j.lfs.2004.10.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Accepted: 10/05/2004] [Indexed: 10/25/2022]
Abstract
Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors.
Collapse
Affiliation(s)
- J M S L L Fook
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brasil
| | | | | | | | | | | | | |
Collapse
|