1
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
2
|
Wood AJ, Currie PD. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy. Int J Biochem Cell Biol 2014; 56:30-7. [PMID: 25449259 DOI: 10.1016/j.biocel.2014.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/12/2014] [Accepted: 10/18/2014] [Indexed: 01/16/2023]
Abstract
The congenital muscular dystrophies (CMDs) are a clinically and genetically heterogeneous group of muscle disorders. Clinically hypotonia is present from birth, with progressive muscle weakness and wasting through development. For the most part, CMDs can mechanistically be attributed to failure of basement membrane protein laminin-α2 sufficiently binding with correctly glycosylated α-dystroglycan. The majority of CMDs therefore arise as the result of either a deficiency of laminin-α2 (MDC1A) or hypoglycosylation of α-dystroglycan (dystroglycanopathy). Here we consider whether by filling a regenerative medicine niche, the zebrafish model can address the present challenge of delivering novel therapeutic solutions for CMD. In the first instance the readiness and appropriateness of the zebrafish as a model organism for pioneering regenerative medicine therapies in CMD is analysed, in particular for MDC1A and the dystroglycanopathies. Despite the recent rapid progress made in gene editing technology, these approaches have yet to yield any novel zebrafish models of CMD. Currently the most genetically relevant zebrafish models to the field of CMD, have all been created by N-ethyl-N-nitrosourea (ENU) mutagenesis. Once genetically relevant models have been established the zebrafish has several important facets for investigating the mechanistic cause of CMD, including rapid ex vivo development, optical transparency up to the larval stages of development and relative ease in creating transgenic reporter lines. Together, these tools are well suited for use in live-imaging studies such as in vivo modelling of muscle fibre detachment. Secondly, the zebrafish's contribution to progress in effective treatment of CMD was analysed. Two approaches were identified in which zebrafish could potentially contribute to effective therapies. The first hinges on the augmentation of functional redundancy within the system, such as upregulating alternative laminin chains in the candyfloss fish, a model of MDC1A. Secondly high-throughput small molecule screens not only provide effective therapies, but also an alternative strategy for investigating CMD in zebrafish. In this instance insight into disease mechanism is derived in reverse. Zebrafish models are therefore clearly of critical importance in the advancement of regenerative medicine strategies in CMD. This article is part of a Directed Issue entitled: Regenerative Medicine: The challenge of translation.
Collapse
Affiliation(s)
- A J Wood
- Australian Regenerative Medicine Institute, Building 75, Level 1, Clayton Campus, Wellington Road, Melbourne, Victoroia 3181, Australia
| | - P D Currie
- Australian Regenerative Medicine Institute, Building 75, Level 1, Clayton Campus, Wellington Road, Melbourne, Victoroia 3181, Australia.
| |
Collapse
|
3
|
Won J, Shi LY, Hicks W, Wang J, Naggert JK, Nishina PM. Translational vision research models program. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:391-7. [PMID: 22183357 DOI: 10.1007/978-1-4614-0631-0_50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ENU mutagenesis is an efficient method to identify new animal models of ocular disease. The new alleles described herein will be a useful resource to further examine the role of the affected molecules and the effects of their disruption within the retina.
Collapse
Affiliation(s)
- Jungyeon Won
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
The need for mouse models, with their well-developed genetics and similarity to human physiology and anatomy, is clear and their central role in furthering our understanding of human disease is readily apparent in the literature. Mice carrying mutations that alter developmental pathways or cellular function provide model systems for analyzing defects in comparable human disorders and for testing therapeutic strategies. Mutant mice also provide reproducible, experimental systems for elucidating pathways of normal development and function. Two programs, the Eye Mutant Resource and the Translational Vision Research Models, focused on providing such models to the vision research community are described herein. Over 100 mutant lines from the Eye Mutant Resource and 60 mutant lines from the Translational Vision Research Models have been developed. The ocular diseases of the mutant lines include a wide range of phenotypes, including cataracts, retinal dysplasia and degeneration, and abnormal blood vessel formation. The mutations in disease genes have been mapped and in some cases identified by direct sequencing. Here, we report 3 novel alleles of Crxtvrm65, Rp1tvrm64, and Rpe65tvrm148 as successful examples of the TVRM program, that closely resemble previously reported knockout models.
Collapse
|
5
|
Budzynski E, Gross AK, McAlear SD, Peachey NS, Shukla M, He F, Edwards M, Won J, Hicks WL, Wensel TG, Naggert JK, Nishina PM. Mutations of the opsin gene (Y102H and I307N) lead to light-induced degeneration of photoreceptors and constitutive activation of phototransduction in mice. J Biol Chem 2010; 285:14521-33. [PMID: 20207741 DOI: 10.1074/jbc.m110.112409] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the Rhodopsin (Rho) gene can lead to autosomal dominant retinitis pigmentosa (RP) in humans. Transgenic mouse models with mutations in Rho have been developed to study the disease. However, it is difficult to know the source of the photoreceptor (PR) degeneration in these transgenic models because overexpression of wild type (WT) Rho alone can lead to PR degeneration. Here, we report two chemically mutagenized mouse models carrying point mutations in Rho (Tvrm1 with an Y102H mutation and Tvrm4 with an I307N mutation). Both mutants express normal levels of rhodopsin that localize to the PR outer segments and do not exhibit PR degeneration when raised in ambient mouse room lighting; however, severe PR degeneration is observed after short exposures to bright light. Both mutations also cause a delay in recovery following bleaching. This defect might be due to a slower rate of chromophore binding by the mutant opsins compared with the WT form, and an increased rate of transducin activation by the unbound mutant opsins, which leads to a constitutive activation of the phototransduction cascade as revealed by in vitro biochemical assays. The mutant-free opsins produced by the respective mutant Rho genes appear to be more toxic to PRs, as Tvrm1 and Tvrm4 mutants lacking the 11-cis chromophore degenerate faster than mice expressing WT opsin that also lack the chromophore. Because of their phenotypic similarity to humans with B1 Rho mutations, these mutants will be important tools in examining mechanisms underlying Rho-induced RP and for testing therapeutic strategies.
Collapse
Affiliation(s)
- Ewa Budzynski
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cardiac Development: Toward a Molecular Basis for Congenital Heart Disease. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Caspary T, Anderson KV. Uncovering the uncharacterized and unexpected: unbiased phenotype-driven screens in the mouse. Dev Dyn 2006; 235:2412-23. [PMID: 16724327 DOI: 10.1002/dvdy.20853] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phenotype-based chemical mutagenesis screens for mouse mutations have undergone a transformation in the past five years from a potential approach to a practical tool. This change has been driven by the relative ease of identifying causative mutations now that the complete genome sequence is available. These unbiased screens make it possible to identify genes, gene functions and processes that are uniquely important to mammals. In addition, because chemical mutagenesis generally induces point mutations, these alleles often uncover previously unappreciated functions of known proteins. Here we provide examples of the success stories from forward genetic screens, emphasizing the examples that illustrate the discovery of mammalian-specific processes that could not be discovered in other model organisms. As the efficiency of sequencing and mutation detection continues to improve, it is likely that forward genetic screens will provide an even more important part of the repertoire of mouse genetics in the future.
Collapse
Affiliation(s)
- Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
8
|
Mar L, Rivkin E, Kim DY, Yu JY, Cordes SP. A genetic screen for mutations that affect cranial nerve development in the mouse. J Neurosci 2006; 25:11787-95. [PMID: 16354937 PMCID: PMC6726029 DOI: 10.1523/jneurosci.3813-05.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cranial motor and sensory nerves arise stereotypically in the embryonic hindbrain, act as sensitive indicators of general and region-specific neuronal development, and are directly or indirectly affected in many human disorders, particularly craniofacial syndromes. The molecular genetic hierarchies that regulate cranial nerve development are mostly unknown. Here, we describe the first mouse genetic screen that has used direct immunohistochemical visualization methods to systematically identify genetic loci required for cranial nerve development. After screening 40 pedigrees, we recovered seven new neurodevelopmental mutations. Two mutations model human genetic syndromes. Mutation 7-1 causes facial nerve anomalies and a reduced lower jaw, and is located in a region of conserved synteny with an interval associated with the micrognathia and mental retardation of human cri-du-chat syndrome. Mutation 22-1 is in the Pax3 gene and, thus, models human Waardenburg syndrome. Three mutations cause global axon guidance deficits: one interferes with initial motor axon extension from the neural tube, another causes overall axon defasciculation, and the third affects general choice point selection. Another two mutations affect the oculomotor nerve specifically. Oculomotor nerve development, which is disrupted by six mutations, appears particularly sensitive to genetic perturbations. Phenotypic comparisons of these mutants identifies a "transition zone" that oculomotor axons enter after initial outgrowth and in which new factors govern additional progress. The number of interesting neurodevelopmental mutants revealed by this small-scale screen underscores the promise of similar focused genetic screens to contribute significantly to our understanding of cranial nerve development and human craniofacial syndromes.
Collapse
Affiliation(s)
- Lynn Mar
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | | | | | | | | |
Collapse
|
9
|
Kennedy CL, O'Bryan MK. N-ethyl-N-nitrosourea (ENU) mutagenesis and male fertility research. Hum Reprod Update 2006; 12:293-301. [PMID: 16436467 DOI: 10.1093/humupd/dmk004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Male infertility affects about 1 in 25 men in the western world. Conversely, there is an urgent requirement for additional male-based contraceptives, yet progress in both areas has been severely hampered by a lack of knowledge of the biochemistry and physiology of male reproductive function. It is only through a thorough knowledge of these processes that we can hope to insightfully regulate male reproductive function. Without doubt, mouse models will form an important foundation in any future process. In recent years, the chemical mutagen N-ethyl-N-nitrosourea (ENU) has been used widely to identify genes essential for a range of biological systems including male infertility. These studies have shown random mutagenesis is an attractive means of identifying key genes for male fertility. This technique has distinct, but complementary advantages compared to knockout technologies. Specifically, it allows the removal of researcher bias whereby only pre-conceived genes are tested for function; it produces mice with a guaranteed phenotype and allows for the production of allelic series of mice to dissect all aspects of gene function. ENU mouse mutagenesis programs will enable advances in the diagnosis and treatment of human male infertility and ultimately aid in the development of novel male-based contraceptives.
Collapse
Affiliation(s)
- C L Kennedy
- The Centre for Reproduction and Development, Monash Institute of Medical Research and the ARC Centre of Excellence in Biotechnology and Development, Monash University, Melbourne, Australia
| | | |
Collapse
|
10
|
Chick WSH, Mentzer SE, Carpenter DA, Rinchik EM, Johnson D, You Y. X-ray-induced deletion complexes in embryonic stem cells on mouse chromosome 15. Mamm Genome 2005; 16:661-71. [PMID: 16245023 DOI: 10.1007/s00335-005-0011-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 05/31/2005] [Indexed: 12/20/2022]
Abstract
Chromosomal deletions have long been used as genetic tools in dissecting the functions of complex genomes, and new methodologies are still being developed to achieve the maximum coverage. In the mouse, where the chromosomal deletion coverage is far less extensive than that in Drosophila, substantial coverage of the genome with deletions is strongly desirable. This article reports the generation of three deletion complexes in the distal part of mouse Chromosome (Chr) 15. Chromosomal deletions were efficiently induced by X rays in embryonic stem (ES) cells around the Otoconin 90 (Oc 90), SRY-box-containing gene 10 (Sox 10), and carnitine palmitoyltransferase 1b (Cpt 1 b) loci. Deletions encompassing the Oc 90 and Sox 10 loci were transmitted to the offspring of the chimeric mice that were generated from deletion-bearing ES cells. Whereas deletion complexes encompassing the Sox 10 and the Cpt 1 b loci overlap each other, no overlap of the Oc 90 complex with the Sox 10 complex was found, possibly indicating the existence of a haploinsufficient gene located between Oc 90 and Sox 10. Deletion frequency and size induced by X rays depend on the selective locus, possibly reflecting the existence of haplolethal genes in the vicinity of these loci that yield fewer and smaller deletions. Deletions induced in ES cells by X rays vary in size and location of breakpoints, which makes them desirable for mapping and for functional genomics studies.
Collapse
Affiliation(s)
- Wallace S H Chick
- Graduate School of Genome Sciences and Technology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Over the past two decades, molecular genetic studies have enabled a common conceptual framework for the development and basic function of the nervous system. These studies, and the pioneering efforts of mouse geneticists and neuroscientists to identify and clone genes for spontaneous mouse mutants, have provided a paradigm for understanding complex processes of the vertebrate brain. Gene cloning for human brain malformations and degenerative disorders identified other important central nervous system (CNS) genes. However, because many debilitating human disorders are genetically complex, phenotypic screens are difficult to design. This difficulty has led to large-scale, genomic approaches to discover genes that are uniquely expressed in brain circuits and regions that control complex behaviors. In this review, we summarize current phenotype- and genotype-driven approaches to discover novel CNS-expressed genes, as well as current approaches to carry out large-scale, gene-expression screens in the CNS.
Collapse
Affiliation(s)
- Mary E Hatten
- Laboratory of Developmental Neurobiology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
12
|
Kumar TR. Gonadotropin gene targeting and biological implications. Endocrine 2005; 26:227-33. [PMID: 16034176 DOI: 10.1385/endo:26:3:227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 04/27/2005] [Indexed: 11/11/2022]
Abstract
Pituitary gonadotropins FSH and LH are heterodimeric glycoproteins consisting of a common alpha and a hormone-specific beta subunit that are non-covalently linked. These hormones orchestrate gonadal growth, differentiation, and function by regulating both steroid-ogenesis and gametogenesis. Advances in the past two decades in manipulating the mouse genome by site-specific mutagenesis have heralded a new dimension to our understanding of the biology of gonadotropins. Using these gene-targeting approaches, knockout mice lacking the hormone-specific gonadotropin subunits, and hence the functional dimeric hormones, have been generated. These individual gonadotropin-deficient mice are useful to delineate the distinct in vivo biological roles of FSH and LH. These mice also serve as valuable genetic tools to study the signaling mechanisms within the gonads and help a better understanding of some forms of human infertility.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, 66160, USA.
| |
Collapse
|
13
|
Kan L, Kessler JA. New tool for an old problem: can RNAi efficiently resolve the issue of genetic redundancy? Bioessays 2005; 27:14-6. [PMID: 15612040 DOI: 10.1002/bies.20172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA interference (RNAi) has become a generally accepted tool for inhibiting gene expression in many laboratory organisms. Nagel et al.,(1) in a recent paper, give an example of how this tool can also be used to address the question of genetic redundancy. Their focus was on the redundancy in Drosophila melanogaster of the Enhancer of split gene complex [E(spl)-C] which comprises seven highly related genes. Their somewhat conflicting findings are probably the typical scenario for most RNAi experiments: some expected results and some surprises.
Collapse
Affiliation(s)
- Lixin Kan
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Ward Building 10-185, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
14
|
|
15
|
Bergstrom DE, Bergstrom RA, Munroe RJ, Lee BK, Browning VL, You Y, Eicher EM, Schimenti JC. Overlapping deletions spanning the proximal two-thirds of the mouse t complex. Mamm Genome 2004; 14:817-29. [PMID: 14724736 PMCID: PMC2583125 DOI: 10.1007/s00335-003-2298-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Accepted: 07/17/2003] [Indexed: 11/25/2022]
Abstract
Chromosome deletion complexes in model organisms serve as valuable genetic tools for the functional and physical annotation of complex genomes. Among their many roles, deletions can serve as mapping tools for simple or quantitative trait loci (QTLs), genetic reagents for regional mutagenesis experiments, and, in the case of mice, models of human contiguous gene deletion syndromes. Deletions also are uniquely suited for identifying regions of the genome containing haploinsufficient or imprinted loci. Here we describe the creation of new deletions at the proximal end of mouse Chromosome (Chr) 17 by using the technique of ES cell irradiation and the extensive molecular characterization of these and previously isolated deletions that, in total, cover much of the mouse t complex. The deletions are arranged in five overlapping complexes that collectively span about 25 Mbp. Furthermore, we have integrated each of the deletion complexes with physical data from public and private mouse genome sequences, and our own genetic data, to resolve some discrepancies. These deletions will be useful for characterizing several phenomena related to the t complex and t haplotypes, including transmission ratio distortion, male infertility, and the collection of t haplotype embryonic lethal mutations. The deletions will also be useful for mapping other loci of interest on proximal Chr 17, including T-associated sex reversal ( Tas) and head-tilt ( het). The new deletions have thus far been used to localize the recently identified t haplolethal ( Thl1) locus to an approximately 1.3-Mbp interval.
Collapse
Affiliation(s)
- David E Bergstrom
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Clark AT, Firozi K, Justice MJ. Mutations in a Novel Locus on Mouse Chromosome 11 Resulting in Male Infertility Associated with Defects in Microtubule Assembly and Sperm Tail Function1. Biol Reprod 2004; 70:1317-24. [PMID: 14711786 DOI: 10.1095/biolreprod.103.020628] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Traditional gene knock-out approaches using homologous recombination in embryonic stem cells are routinely used to provide functional information about genes involved in reproduction. In the present study, we examined a novel approach using N-ethyl-N-nitrosourea (ENU) together with a balancer chromosome mating strategy to identify new loci with functional roles in male fertility. Our genetic strategy is a forward-genetic approach; thus, our phenotypic investigation begins with the discovery of an abnormal phenotype without previous knowledge of the mutant locus. We isolated eight recessive mutations on chromosome 11 that resulted in male or female infertility from a screen of 184 founder pedigrees from ENU-treated males. After testing the six male infertile and two female infertile mutations for their ability to complement, we found that three independent recessive male infertile mutations failed to complement each other. The male infertility was associated with reduced epididymal sperm count, a block in late-spermatid differentiation, and increased apoptosis. Furthermore, the three male infertile mutants had severe defects in epididymal sperm morphology associated with incorrect microtubule assembly. Electron microscopy revealed unique defects in sperm head and tail morphology for each of the three alleles. One allele had an abnormal manchette assembly of the sperm head. The other two alleles had different abnormalities in the 9+2 patterning of the microtubules in the sperm tail axoneme, with one containing only five of the microtubule doublets and the other containing an extra doublet. The isolation of this allelic series identifies a new locus on mouse chromosome 11 that is required for spermiogenesis and male fertility.
Collapse
Affiliation(s)
- Amander T Clark
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
17
|
Abstract
Segmental inversions causing recombination suppression are an essential feature of balancer chromosomes. Meiotic crossing over between homologous chromosomes within an inversion interval will lead to nonviable gametes, while gametes generated from recombination events elsewhere on the chromosome will be unaffected. This apparent recombination suppression has been widely exploited in genetic studies in Drosophila to maintain and analyze stocks carrying recessive lethal mutations. Balancers are particularly useful in mutagenesis screens since they help to establish the approximate genomic location of alleles of genes causing phenotypes. Using the Cre-loxP recombination system, we have constructed two mouse balancer chromosomes carrying 8- and 30-cM inversions between Wnt3 and D11Mit69 and between Trp53 and EgfR loci, respectively. The Wnt3-D11Mit69 inversion mutates the Wnt3 locus and is therefore homozygous lethal. The Trp53-EgfR inversion is homozygous viable, since the EgfR locus is intact and mutations in p53 are homozygous viable. A dominantly acting K14-agouti minigene tags both rearrangements, which enables these balancer chromosomes to be visibly tracked in mouse stocks. With the addition of these balancers to the previously reported Trp53-Wnt3 balancer, most of mouse chromosome 11 is now available in balancer stocks.
Collapse
Affiliation(s)
- Jan Klysik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
18
|
Ozdemir O, Bardakci F, Eğilmez H, Eğilmez R. Subcutaneous undifferentiated sarcoma induced by N'-ethyl-N'-nitrosourea in rat: radiology, histopathology and mutagenesis. ACTA ACUST UNITED AC 2004; 55:295-300. [PMID: 14703776 DOI: 10.1078/0940-2993-00331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to investigate high dose and long-term effects of a common industrial agent, N'-ethyl-N'-nitrosourea (ENU), on soft tissues in a rat model. ENU, which was dissolved in polyethyleneglycol (PEG) was injected intra-peritoneally once a week (300 mg/kg) in the first experimental group. The second group received only PEG. The control group was free of any agent administration. Only rats treated with ENU for a period of 45 weeks developed large subcutaneous tumours (approximately 5-9 cm in size). Tumoral tissues were examined radiologically, histopathologically and immunohistochemically. There was no bone destruction beneath the soft tumoral tissues in direct X radiograms. Computed tomographic (CT) images showed heterogeneous soft tissue masses with a density ranging from 50 to 65 HU. Macroscopically, all tumors were circumscribed with a gray-white surface in the cross-sections. The histopathological and immunohistochemical examination of the subcutaneous tumoral tissues showed a spindle cell type of sarcoma. Lymphatic and skeletal muscle invasion, atypical mitoses and necroses were determined in all tumoral tissues in the experimental group. A somatic point mutation was detected in exon 2 of KRAS oncogene in sarcoma tissues using the single strand conformational polymorphism (SSCP) analysis. In conclusion, the activated KRAS oncogene might contribute to the progression of subcutaneous sarcoma in experimentally ENU induced rats due to point mutation.
Collapse
Affiliation(s)
- Oztürk Ozdemir
- Department of Medical Biology and Genetics, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| | | | | | | |
Collapse
|
19
|
Frank AC, Meyers KA, Welsh IC, O'Brien TP. Development of an enhanced GFP-based dual-color reporter to facilitate genetic screens for the recovery of mutations in mice. Proc Natl Acad Sci U S A 2003; 100:14103-8. [PMID: 14615591 PMCID: PMC283553 DOI: 10.1073/pnas.1936166100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutagenesis screens to isolate a variety of alleles leading to null and non-null phenotypes represent an important approach for the characterization of gene function. Genetic schemes that use visible markers permit the efficient recovery of chemically induced mutations. We have developed a universal reporter system to visibly mark chromosomes for genetic screens in the mouse. The dual-color reporter is based on a single vector that drives the ubiquitous coexpression of the enhanced GFP (EGFP) spectral variants yellow and cyan. We show that widespread expression of the dual-color reporter is readily detected in embryonic stem cells, mice, and throughout developmental stages. CRE-loxP- and FLPe-FRT-mediated deletion of each color cassette demonstrates the modular design of the marker system. Random integration followed by plasmid rescue and sequence-based mapping was used to introduce the marker to a defined genomic location. Thus, single-step placement will simplify the construction of a genomewide bank of marked chromosomes. The dual-color nature of the marker permits complete identification of genetic classes of progeny as embryos or mice in classic regionally directed screens. The design also allows for more efficient and novel schemes, such as marked suppressor screens, in the mouse. The result is a versatile reporter that can be used independently or in combination with the growing sets of deletion and inversion resources to enhance the design and application of a wide variety of genetic schemes for the functional dissection of the mammalian genome.
Collapse
|
20
|
Srivastava AK, Mohan S, Wergedal JE, Baylink DJ. A genomewide screening of N-ethyl-N-nitrosourea-mutagenized mice for musculoskeletal phenotypes. Bone 2003; 33:179-91. [PMID: 14499351 DOI: 10.1016/s8756-3282(03)00156-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chemical mutagenesis followed by screening for abnormal phenotypes in the mouse holds much promise as a method for revealing gene function. We describe a mouse N-ethyl-N-nitrosourea (ENU) mutagenesis program incorporating a genomewide screen of dominant as well as recessive mutations affecting musculoskeletal disorders in C3H/HeJ mice. In a primary screen, progeny of one-generation dominant mutations (F(1)) and three-generation recessive (F(3)) mutations were screened at 10 weeks of age for musculoskeletal disorders using dual-energy X-ray absorptiometery (DEXA) and biochemical markers affecting bone metabolism, such as osteocalcin, type I collagen breakdown product, skeletal alkaline phosphatase, and insulin-like growth factor I (IGF-I). Abnormal phenotypes were identified as +/-3SD units different from baseline data collected from age- and sex-matched nonmutagenized control mice. A secondary screen at 16 weeks of age, which included peripheral quantitative computed tomography (pQCT) in addition to those parameters described in our primary screen, was used to confirm the abnormal phenotypes observed in the primary screen. The phenodeviant or outlier mice were progeny tested to determine whether their abnormality segregates bimodally in their offspring with the expected 1:1 or 1:3 Mendelian ratio, in dominant and recessive screens, respectively. With the above screening strategy, we were able to identify several mice with quantitative abnormalities in BMD, BMC, bone size, and bone metabolism. We have progeny tested and confirmed four outliers with low BMD, low bone size, and growth-related abnormality. Our results indicate that the magnitude of change in quantitative phenotypes in the ENU-mutagenized progeny was between 10 and 15%, and hence, the yield of outliers was dependent on the precision of the methods. So far, this ENU mutagenesis program has identified four outliers that can undergo positional cloning.
Collapse
Affiliation(s)
- A K Srivastava
- Musculoskeletal Disease Center, Jerry L. Pettis Veterans Medical Center, and Department of Medicine, Loma Linda University, Loma Linda, CA 92357, USA
| | | | | | | |
Collapse
|
21
|
Bogue CW. Genetic Models in Applied Physiology. Functional genomics in the mouse: powerful techniques for unraveling the basis of human development and disease. J Appl Physiol (1985) 2003; 94:2502-9. [PMID: 12736192 DOI: 10.1152/japplphysiol.00209.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Now that near-complete DNA sequences of both the mouse and human genomes are available, the next major challenge will be to determine how each of these genes functions, both alone and in combination with other genes in the genome. The mouse has a long and rich history in biological research, and many consider it a model organism for the study of human development and disease. Over the past few years, exciting progress has been made in developing techniques for chromosome engineering, mutagenesis, mapping and maintenance of mutations, and identification of mutant genes in the mouse. In this mini-review, many of these powerful techniques will be presented along with their application to the study of development, physiology, and disease.
Collapse
Affiliation(s)
- Clifford W Bogue
- Yale Child Health Research Center, Section of Critical Care and Applied Physiology, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06519, USA.
| |
Collapse
|
22
|
Abstract
In the postgenomic era the mouse will be central to the challenge of ascribing a function to the 40,000 or so genes that constitute our genome. In this review, we summarize some of the classic and modern approaches that have fueled the recent dramatic explosion in mouse genetics. Together with the sequencing of the mouse genome, these tools will have a profound effect on our ability to generate new and more accurate mouse models and thus provide a powerful insight into the function of human genes during the processes of both normal development and disease.
Collapse
|
23
|
Carpinelli MR, Wicks IP, Sims NA, O’Donnell K, Hanzinikolas K, Burt R, Foote SJ, Bahlo M, Alexander WS, Hilton DJ. An ethyl-nitrosourea-induced point mutation in phex causes exon skipping, x-linked hypophosphatemia, and rickets. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1925-33. [PMID: 12414538 PMCID: PMC1850771 DOI: 10.1016/s0002-9440(10)64468-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G(1)) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease.
Collapse
Affiliation(s)
- Marina R. Carpinelli
- From the Walter and Eliza Hall Institute of Medical Research,* Post Office Royal Melbourne Hospital, Victoria; and The Cooperative Research Centre for Cellular Growth Factors,† The Cooperative Research Centre for Discovery of Genes for Common Human Diseases,‡ and the St. Vincent’s Institute of Medical Research,§ Fitzroy, Victoria, Australia
| | - Ian P. Wicks
- From the Walter and Eliza Hall Institute of Medical Research,* Post Office Royal Melbourne Hospital, Victoria; and The Cooperative Research Centre for Cellular Growth Factors,† The Cooperative Research Centre for Discovery of Genes for Common Human Diseases,‡ and the St. Vincent’s Institute of Medical Research,§ Fitzroy, Victoria, Australia
| | - Natalie A. Sims
- From the Walter and Eliza Hall Institute of Medical Research,* Post Office Royal Melbourne Hospital, Victoria; and The Cooperative Research Centre for Cellular Growth Factors,† The Cooperative Research Centre for Discovery of Genes for Common Human Diseases,‡ and the St. Vincent’s Institute of Medical Research,§ Fitzroy, Victoria, Australia
| | - Kristy O’Donnell
- From the Walter and Eliza Hall Institute of Medical Research,* Post Office Royal Melbourne Hospital, Victoria; and The Cooperative Research Centre for Cellular Growth Factors,† The Cooperative Research Centre for Discovery of Genes for Common Human Diseases,‡ and the St. Vincent’s Institute of Medical Research,§ Fitzroy, Victoria, Australia
| | - Katherine Hanzinikolas
- From the Walter and Eliza Hall Institute of Medical Research,* Post Office Royal Melbourne Hospital, Victoria; and The Cooperative Research Centre for Cellular Growth Factors,† The Cooperative Research Centre for Discovery of Genes for Common Human Diseases,‡ and the St. Vincent’s Institute of Medical Research,§ Fitzroy, Victoria, Australia
| | - Rachel Burt
- From the Walter and Eliza Hall Institute of Medical Research,* Post Office Royal Melbourne Hospital, Victoria; and The Cooperative Research Centre for Cellular Growth Factors,† The Cooperative Research Centre for Discovery of Genes for Common Human Diseases,‡ and the St. Vincent’s Institute of Medical Research,§ Fitzroy, Victoria, Australia
| | - Simon J. Foote
- From the Walter and Eliza Hall Institute of Medical Research,* Post Office Royal Melbourne Hospital, Victoria; and The Cooperative Research Centre for Cellular Growth Factors,† The Cooperative Research Centre for Discovery of Genes for Common Human Diseases,‡ and the St. Vincent’s Institute of Medical Research,§ Fitzroy, Victoria, Australia
| | - Melanie Bahlo
- From the Walter and Eliza Hall Institute of Medical Research,* Post Office Royal Melbourne Hospital, Victoria; and The Cooperative Research Centre for Cellular Growth Factors,† The Cooperative Research Centre for Discovery of Genes for Common Human Diseases,‡ and the St. Vincent’s Institute of Medical Research,§ Fitzroy, Victoria, Australia
| | - Warren S. Alexander
- From the Walter and Eliza Hall Institute of Medical Research,* Post Office Royal Melbourne Hospital, Victoria; and The Cooperative Research Centre for Cellular Growth Factors,† The Cooperative Research Centre for Discovery of Genes for Common Human Diseases,‡ and the St. Vincent’s Institute of Medical Research,§ Fitzroy, Victoria, Australia
| | - Douglas J. Hilton
- From the Walter and Eliza Hall Institute of Medical Research,* Post Office Royal Melbourne Hospital, Victoria; and The Cooperative Research Centre for Cellular Growth Factors,† The Cooperative Research Centre for Discovery of Genes for Common Human Diseases,‡ and the St. Vincent’s Institute of Medical Research,§ Fitzroy, Victoria, Australia
| |
Collapse
|
24
|
Smith AJH, Xian J, Richardson M, Johnstone KA, Rabbitts PH. Cre-loxP chromosome engineering of a targeted deletion in the mouse corresponding to the 3p21.3 region of homozygous loss in human tumours. Oncogene 2002; 21:4521-9. [PMID: 12085230 DOI: 10.1038/sj.onc.1205530] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Revised: 03/22/2002] [Accepted: 03/26/2002] [Indexed: 11/08/2022]
Abstract
Chromosomal deletions are a common feature of epithelial tumours and when further defined by homozygous deletions, are often the location of tumour suppressor genes. Deletions within the short arm of chromosome 3 occur very frequently in human carcinomas: a minimal region of loss at 3p21.3 (the Luca) region has been defined by overlapping homozygous deletions in lung and breast cancer cell lines. Using a rapid strategy for Cre-loxP chromosome engineering, a deletion of approximately 370 kb was created in the mouse germline corresponding to the deleted region at 3p21.3. The deletion when homozygous is embryonic lethal. Heterozygotes develop normally despite being haplo-insufficient for twelve genes including the candidate tumour suppressor gene Rassf1. Because damage to 3p21.3 often occurs very early in the sequence of genetic changes that lead to malignancy, particularly in lung and breast cancer, further genetic damage to these mice will provide the opportunity to model multi-step tumorigenesis of these tumours.
Collapse
Affiliation(s)
- Andrew J H Smith
- Centre for Genome Research, University of Edinburgh, Kings Buildings, West Mains Road, UK
| | | | | | | | | |
Collapse
|
25
|
Santoro SW, Schultz PG. Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A 2002; 99:4185-90. [PMID: 11904359 PMCID: PMC123623 DOI: 10.1073/pnas.022039799] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2002] [Indexed: 11/18/2022] Open
Abstract
Cre recombinase from bacteriophage P1 recognizes a 34-bp recombination site, loxP, with exquisite sequence specificity and catalyzes the site-specific insertion, excision, or rearrangement of DNA. To better understand the molecular basis of protein-DNA recognition and generate recombinases with altered specificities, we have developed a directed evolution strategy that can be used to identify recombinases that recognize variant loxP sites. To be selected, members of a library of Cre variants produced by targeted random mutagenesis must rapidly catalyze recombination, in vivo, between two variant loxP sites that are located on a reporter plasmid. Recombination results in an altered pattern of fluorescent protein expression that can be identified by flow cytometry. Fluorescence-activated cell sorting can be used either to screen positively for recombinase variants that recognize a novel loxP site, or negatively for variants that cannot recognize the wild-type loxP site. The use of positive screening alone resulted in a relaxation of recombination site specificity, whereas a combination of positive and negative screening resulted in a switching of specificity. One of the identified recombinases selectively recombines a novel recombination site and operates at a rate identical to that of wild-type Cre. Analysis of the sequences of the resulting Cre variants provides insight into the evolution of these altered specificities. This and other systems should contribute to our understanding of protein-DNA recognition and may eventually be used to evolve custom-tailored recombinases that can be used for gene study and inactivation.
Collapse
Affiliation(s)
- Stephen W Santoro
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, SR202, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
26
|
Rinchik EM, Carpenter DA, Johnson DK. Functional annotation of mammalian genomic DNA sequence by chemical mutagenesis: a fine-structure genetic mutation map of a 1- to 2-cM segment of mouse chromosome 7 corresponding to human chromosome 11p14-p15. Proc Natl Acad Sci U S A 2002; 99:844-9. [PMID: 11792855 PMCID: PMC117393 DOI: 10.1073/pnas.022628199] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eleven independent, recessive, N-ethyl-N-nitrosourea-induced mutations that map to a approximately 1- to 2-cM region of mouse chromosome (Chr) 7 homologous to human Chr 11p14-p15 were recovered from a screen of 1,218 gametes. These mutations were initially identified in a hemizygous state opposite a large p-locus deletion and subsequently were mapped to finer genomic intervals by crosses to a panel of smaller p deletions. The 11 mutations also were classified into seven complementation groups by pairwise crosses. Four complementation groups were defined by seven prenatally lethal mutations, including a group (l7R3) comprised of two alleles of obvious differing severity. Two allelic mutations (at the psrt locus) result in a severe seizure and runting syndrome, but one mutation (at the fit2 locus) results in a more benign runting phenotype. This experiment has added seven loci, defined by phenotypes of presumed point mutations, to the genetic map of a small (1-2 cM) region of mouse Chr 7 and will facilitate the task of functional annotation of DNA sequence and transcription maps both in the mouse and the corresponding human 11p14-p15 homology region.
Collapse
Affiliation(s)
- Eugene M Rinchik
- Life Sciences Division, Oak Ridge National Laboratory, P. O. Box 2009, Oak Ridge, TN 37831-8077, USA.
| | | | | |
Collapse
|
27
|
Abstract
Identifying the genes that underlie the pathogenesis of chromosome deletion and duplication syndromes is a challenge because the affected chromosomal segment can contain many genes. The identification of genes that are relevant to these disorders often requires the analysis of individuals that carry rare, small deletions, translocations or single-gene mutations. Research into the chromosome 22 deletion (del22q11) syndrome, which encompasses DiGeorge and velocardiofacial syndrome, has taken a different path in recent years, using mouse models to circumvent the paucity of informative human material. These mouse models have provided new insights into the pathogenesis of del22q11 syndrome and have established strategies for research into chromosomal-deletion and -duplication syndromes.
Collapse
Affiliation(s)
- E A Lindsay
- Division of Cardiology, Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA.
| |
Collapse
|
28
|
Jo D, Nashabi A, Doxsee C, Lin Q, Unutmaz D, Chen J, Ruley HE. Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat Biotechnol 2001; 19:929-33. [PMID: 11581657 DOI: 10.1038/nbt1001-929] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies of mammalian gene function are hampered by temporal limitations in which phenotypes occurring at one stage of development interfere with analysis at later stages. Moreover, phenotypes resulting from altered gene activity include both direct and indirect effects that may be difficult to distinguish. In the present study, recombinant fusion proteins bearing the 12 amino acid membrane translocation sequence (MTS) from the Kaposi fibroblast growth factor (FGF-4) were used to transduce enzymatically active Cre proteins directly into mammalian cells. High levels of recombination were observed in a variety of cultured cell types and in all tissues examined in mice following intraperitoneal administration. This represents the first use of protein transduction to induce the enzymatic conversion of a substrate in living cells and animals and provides a rapid and efficient means to manipulate mammalian gene structure and function.
Collapse
Affiliation(s)
- D Jo
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21 Avenue South, AA4210, Nashville, TN 37232-2363, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Babinet C, Cohen-Tannoudji M. Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology. AN ACAD BRAS CIENC 2001; 73:365-83. [PMID: 11600898 DOI: 10.1590/s0001-37652001000300007] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to introduce genetic modifications in the germ line of complex organisms has been a long-standing goal of those who study developmental biology. In this regard, the mouse, a favorite model for the study of the mammals, is unique: indeed not only is it possible since the late seventies, to add genes to the mouse genome like in several other complex organisms but also to perform gene replacement and modification. This has been made possible via two technological breakthroughs: 1) the isolation and culture of embryonic stem cells (ES), which have the unique ability to colonize all the tissues of an host embryo including its germ line; 2) the development of methods allowing homologous recombination between an incoming DNA and its cognate chromosomal sequence (gene "targeting"). As a result, it has become possible to create mice bearing null mutations in any cloned gene (knock-out mice). Such a possibility has revolutionized the genetic approach of almost all aspects of the biology of the mouse. In recent years, the scope of gene targeting has been widened even more, due to the refinement of the knock-out technology: other types of genetic modifications may now be created, including subtle mutations (point mutations, micro deletions or insertions, etc.) and chromosomal rearrangements such as large deletions, duplications and translocations. Finally, methods have been devised which permit the creation of conditional mutations, allowing the study of gene function throughout the life of an animal, when gene inactivation entails embryonic lethality. In this paper, we present an overview of the methods and scenarios used for the programmed modification of mouse genome, and we underline their enormous interest for the study of mammalian biology.
Collapse
Affiliation(s)
- C Babinet
- Unité de Biologie du Développement, Institut Pasteur, CNRS URA 1960, Paris, France.
| | | |
Collapse
|
30
|
Abstract
Experimental approaches for deciphering the function of human genes rely heavily on our ability to generate mutations in model organisms such as the mouse. However, because recessive mutations are masked by the wild-type allele in the diploid context, conventional mutagenesis and screening is often laborious and costly. Chromosome engineering combines the power of gene targeting in embryonic stem (ES) cells with Cre--loxP technology to create mice that are functionally haploid in discrete portions of the genome. Chromosome deletions, duplications and inversions can be tagged with visible markers, facilitating strain maintenance. These approaches allow for more refined mutagenesis screens that will greatly accelerate functional mouse genomics and generate mammalian models for developmental processes and cancer.
Collapse
Affiliation(s)
- A A Mills
- Cold Spring Harbor Laboratory, 1 BungtownRoad, Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
31
|
Affiliation(s)
- A A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
32
|
Shannon KM, Le Beau MM, Largaespada DA, Killeen N. Modeling myeloid leukemia tumor suppressor gene inactivation in the mouse. Semin Cancer Biol 2001; 11:191-200. [PMID: 11407944 DOI: 10.1006/scbi.2001.0372] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introducing dominant oncogenic alterations uncovered in human myeloid malignancies into the mouse germline provides a powerful approach for studying leukemogenesis. However, little is known about how gene inactivation contributes to the development of myeloid malignancies. We describe how Nf1 mutant mice provide one example in which disrupting a tumor suppressor gene has been used to generate an informative murine leukemia model. We also discuss how chromosome engineering technologies are being harnessed to model the segmental deletions found in myeloid malignancies, and how these approaches can be combined with retrovirally medicated insertional mutagenesis to generate new models and for gene discovery.
Collapse
Affiliation(s)
- K M Shannon
- Department of Pediatrics, University of California-San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
33
|
|
34
|
Roix JJ, Hagge-Greenberg A, Bissonnette DM, Rodick S, Russell LB, O'Brien TP. Molecular and functional mapping of the piebald deletion complex on mouse chromosome 14. Genetics 2001; 157:803-15. [PMID: 11156998 PMCID: PMC1461538 DOI: 10.1093/genetics/157.2.803] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The piebald deletion complex is a set of overlapping chromosomal deficiencies surrounding the endothelin receptor B locus collected during the Oak Ridge specific-locus-test mutagenesis screen. These chromosomal deletions represent an important resource for genetic studies to dissect the functional content of a genomic region, and several developmental defects have been associated with mice homozygous for distinct piebald deletion alleles. We have used molecular markers to order the breakpoints for 20 deletion alleles that span a 15.7-18-cM region of distal mouse chromosome 14. Large deletions covering as much as 11 cM have been identified that will be useful for regionally directed mutagenesis screens to reveal recessive mutations that disrupt development. Deletions identified as having breakpoints positioned within previously described critical regions have been used in complementation studies to further define the functional intervals associated with the developmental defects. This has focused our efforts to isolate genes required for newborn respiration and survival, skeletal patterning and morphogenesis, and central nervous system development.
Collapse
Affiliation(s)
- J J Roix
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Abstract. Stable integration into the mouse genome of exogenous genetic information, i.e., the creation of transgenic mice, has become a privileged way of analyzing gene function in normal development and pathology. Both gene addition and gene replacement may be performed. This has allowed, in particular, the creation of mice in which precise mutations are introduced into a given gene. Furthermore, in recent years, strategies that induce the expression of a mutation in a given type of cell and/or at a given time in development have been developed. Thus, the transgenic methodology affords a unique and irreplaceable tool for the study of mammalian development and biology and for the creation of animal models for human genetic diseases.
Collapse
|
36
|
Harris S, Foord SM. Transgenic gene knock-outs: functional genomics and therapeutic target selection. Pharmacogenomics 2000; 1:433-43. [PMID: 11257927 DOI: 10.1517/14622416.1.4.433] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The completion of the first draft of the human genome presents both a tremendous opportunity and enormous challenge to the pharmaceutical industry since the whole community, with few exceptions, will soon have access to the same pool of candidate gene sequences from which to select future therapeutic targets. The commercial imperative to select and pursue therapeutically relevant genes from within the overall content of the genome will be particularly intense for those gene families that currently represent the chemically tractable or 'drugable' gene targets. As a consequence the emphasis within exploratory research has shifted towards the evaluation and adoption of technology platforms that can add additional value to the gene selection process, either through functional studies or direct/indirect measures of disease alignment e.g., genetics, differential gene expression, proteomics, tissue distribution, comparative species data etc. The selection of biological targets for the development of potential new medicines relies, in part, on the quality of the in vivo biological data that correlates a particular molecular target with the underlying pathophysiology of a disease. Within the pharmaceutical industry, studies employing transgenic animals and, in particular, animals with specific gene deletions are playing an increasingly important role in the therapeutic target gene selection, drug candidate selection and product development phases of the overall drug discovery process. The potential of phenotypic information from gene knock-outs to contribute to a high-throughput target selection/validation strategy has hitherto been limited by the resources required to rapidly generate and characterise a large number of knock-out transgenics in a timely fashion. The offerings of several companies that provide an opportunity to overcome these hurdles, albeit at a cost, are assessed with respect to the strategic business needs of the pharmaceutical industry.
Collapse
Affiliation(s)
- S Harris
- Glaxo Wellcome Research & Development, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK.
| | | |
Collapse
|
37
|
Pershouse M, Li J, Yang C, Su H, Brundage E, Di W, Biggs PJ, Bradley A, Chinault AC. BAC contig from a 3-cM region of mouse chromosome 11 surrounding Brca1. Genomics 2000; 69:139-42. [PMID: 11013085 DOI: 10.1006/geno.2000.6323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Even with the completion of a draft version of the human genome sequence only a fraction of the genes identified from this sequence have known functions. Chromosomal engineering in mouse cells, in concert with gene replacement assays to prove the functional significance of a given genomic region or gene, represents a rapid and productive means for understanding the role of a given set of genes. Both techniques rely heavily on detailed maps of chromosomal regions, initially to understand the scope of the regions being modified and finally to provide the cloned resources necessary to allow both finished sequencing and large insert complementation. This report describes the creation of a BAC clone contig on mouse chromosome 11 in a region showing conservation of synteny with sequences on human chromosome 17. We have created a detailed map of an approximately 3-cM region containing at least 33 genes through the use of multiple BAC mapping strategies, including chromosome walking and multiplex oligonucleotide hybridization and gap filling. The region described is one of the targets of a large effort to create a series of mice with regional deletions on mouse chromosome 11 (33-80 cM) that can subsequently be subjected to further mutagenesis.
Collapse
Affiliation(s)
- M Pershouse
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
LePage DF, Church DM, Millie E, Hassold TJ, Conlon RA. Rapid generation of nested chromosomal deletions on mouse chromosome 2. Proc Natl Acad Sci U S A 2000; 97:10471-6. [PMID: 10984539 PMCID: PMC27048 DOI: 10.1073/pnas.97.19.10471] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nested chromosomal deletions are powerful genetic tools. They are particularly suited for identifying essential genes in development either directly or by screening induced mutations against a deletion. To apply this approach to the functional analysis of mouse chromosome 2, a strategy for the rapid generation of nested deletions with Cre recombinase was developed and tested. A loxP site was targeted to the Notch1 gene on chromosome 2. A targeted line was cotransfected with a second loxP site and a plasmid for transient expression of Cre. Independent random integrations of the second loxP site onto the targeted chromosome in direct repeat orientation created multiple nested deletions. By virtue of targeting in an F(1) hybrid embryonic stem cell line, F(1)(129S1xCast/Ei), the deletions could be verified and rapidly mapped. Ten deletions fell into seven size classes, with the largest extending six or seven centiMorgans. The cytology of the deletion chromosomes were determined by fluorescent in situ hybridization. Eight deletions were cytologically normal, but the two largest deletions had additional rearrangements. Three deletions, including the largest unrearranged deletion, have been transmitted through the germ line. Several endpoints also have been cloned by plasmid rescue. These experiments illustrate the means to rapidly create and map deletions anywhere in the mouse genome. They also demonstrate an improved method for generating nested deletions in embryonic stem cells.
Collapse
Affiliation(s)
- D F LePage
- Department of Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- J D McDonald
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0026, USA
| |
Collapse
|
40
|
Abstract
The humble house mouse's cohabitation with humans has been noted since the birth of agriculture, about 10 000 years ago, in the fertile flood plains of the Middle East. In recent times, however, the mouse has been elevated from pest to model for the study of human health and disease. Recent genomics and genetics initiatives will ensure the continued growth of the house mouse as a disease model.
Collapse
Affiliation(s)
- P Denny
- MRC UK Mouse Genome Centre and Mammalian Genetics Unit, Harwell, Oxfordshire, UK.
| | | |
Collapse
|
41
|
West DB, Iakougova O, Olsson C, Ross D, Ohmen J, Chatterjee A. Mouse genetics/genomics: an effective approach for drug target discovery and validation. Med Res Rev 2000; 20:216-30. [PMID: 10797467 DOI: 10.1002/(sici)1098-1128(200005)20:3<216::aid-med6>3.0.co;2-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mouse has become the premier mammalian system for the identification of the genetic basis of both mono- and oligogenic disorders, as well as the understanding of complex diseases with gene-gene and gene-environment interactions. The similarity between human and mouse genetic disease is sometimes striking, while in other cases the phenotypes are less similar. The ability to genetically map and then clone single gene disorders rapidly, and the emerging technologies that will allow the economical identification of the polygenes controlling quantitative traits further demonstrate the utility of the mouse as a model for gene discovery. Additionally, the ability to genetically manipulate the mouse through transgenesis and gene targeting allows for the testing of hypotheses regarding specific gene function and their role in disease. The utility of the mouse extends beyond being just a gene discovery tool to provide prevalidated targets. It can also be used for the development of animal models, and the testing of compounds in specifically constructed transgenic and knockout strains to further define the target and pathway of a therapeutic compound.
Collapse
Affiliation(s)
- D B West
- Parke-Davis Laboratory for Molecular Genetics, 1501 Harbor Bay Parkway, Alameda, CA 94502, USA.
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Abstract
The zebrafish has become a popular model system for the study of vertebrate developmental biology because of its numerous strengths as a molecular genetic and embryological system. To determine the requirement for specific genes during embryogenesis, it is necessary to generate organisms carrying loss-of-function mutations. This can be accomplished in zebrafish through a reverse genetic approach. This review discusses the current techniques for generating mutations in known genes in zebrafish. These techniques include the generation of chromosomal deletions and the subsequent identification of complementation groups within deletions through noncomplementation assays. In addition, this review will discuss methods currently being evaluated that may improve the methods for finding mutations in a known sequence, including screening for randomly induced small deletions within genes and screening for randomly induced point mutations within specific genes.
Collapse
Affiliation(s)
- A C Lekven
- Howard Hughes Medical Institute, Department of Pharmacology, Center for Developmental Biology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Over the past two decades, the mouse has established itself as the primary organism in which to investigate the fundamental mechanisms of carcinogenesis and to model human neoplasia. The principal reason underlying such dominance almost certainly arises out of our ever increasing ability to manipulate the murine germline. Over the past 20 years we have moved from a position where animal models arose either spontaneously or were generated through exposure to carcinogen to a position in which it is possible to create and study precise mutations of choice. The most recent advances in inducible and conditional technologies now open the possibility for both temporal and tissue-specific gene manipulation. Each of these technological breakthroughs has facilitated significant steps forward in our understanding of the genetic basis of tumorigenesis. This review will highlight some of the major advances in the production and use of murine models of neoplasia over the last two decades.
Collapse
Affiliation(s)
- A R Clarke
- Cardiff School of Biosciences, Cardiff University, PO Box 911, Cardiff CF10 3US, UK.
| |
Collapse
|
45
|
Boyd Y, Blair HJ, Cunliffe P, Masson WK, Reed V. A phenotype map of the mouse X chromosome: models for human X-linked disease. Genome Res 2000; 10:277-92. [PMID: 10720569 DOI: 10.1101/gr.10.3.277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identification of many of the transcribed genes in man and mouse is being achieved by large scale sequencing of expressed sequence tags (ESTs). Attention is now being turned to elucidating gene function and many laboratories are looking to the mouse as a model system for this phase of the genome project. Mouse mutants have long been used as a means of investigating gene function and disease pathogenesis, and recently, several large mutagenesis programs have been initiated to fulfill the burgeoning demand of functional genomics research. Nevertheless, there is a substantial existing mouse mutant resource that can be used immediately. This review summarizes the available information about the loci encoding X-linked phenotypic mutants and variants, including 40 classical mutants and 40 that have arisen from gene targeting.
Collapse
Affiliation(s)
- Y Boyd
- Medical Research Council (MRC) Mammalian Genetics Unit, Harwell, Oxon OX11 0RD UK.
| | | | | | | | | |
Collapse
|
46
|
Abstract
The genetic control of mammalian embryogenesis is not well understood. N-ethyl-N-nitrosourea (ENU) mutagenesis screens in the mouse provide a route to identify more of the genes that are required for mammalian development. The characterization of ENU-induced mutations can build on the resources provided by the mouse and human genome projects to help define the tissue interactions and signaling pathways that direct early mammalian development.
Collapse
Affiliation(s)
- K V Anderson
- Molecular Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
47
|
Kim JH, Nishina PM, Naggert JK. Genetic models for non insulin dependent diabetes mellitus in rodents. J Basic Clin Physiol Pharmacol 1999; 9:325-45. [PMID: 10212842 DOI: 10.1515/jbcpp.1998.9.2-4.325] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Efforts to identify human genes with major effects on insulin resistance and type II diabetes have yet to be successful because of the technical difficulties associated with the analysis of complex traits in humans. Animal models, particularly the rodent models with their well developed genetic tools, and their genetic similarity to humans, offer an alternate approach to access genes important in the etiology of diabetes. This approach is validated by the remarkable progress that has been made in the identification and characterization of the genes mutated in five monogenic mouse models of obesity. Identification of these genes has led to new insights into the etiology of obesity and provided promising targets for therapeutic intervention. Arguably, genetic animal models could do the same for our understanding of diabetes. In this brief review, we introduce rodent models of type II diabetes and report on the state of their genetic analyses.
Collapse
Affiliation(s)
- J H Kim
- Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | |
Collapse
|
48
|
Sharma RK, Ehinger B. Management of hereditary retinal degenerations: present status and future directions. Surv Ophthalmol 1999; 43:427-44. [PMID: 10340561 DOI: 10.1016/s0039-6257(99)00006-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research on hereditary retinal degenerations has considerably improved our understanding of these disorders, although much remains to be learned about the exact mechanism involved in the pathogenesis. The advent of recombinant DNA technology will refine diagnostic capabilities, which have so far been based on the manifestations of the disease to localization of the molecular defects. The correlation of the molecular defects with the phenotype of the disease will result in better prognostic counseling for patients. In certain forms of retinitis pigmentosa, such as Refsum disease, gyrate atrophy of the choroid and retina, and abetalipoproteinemia, exact biochemical defects have been identified and specific treatments have been applied with some success. In other forms of retinitis pigmentosa, various investigations have suggested the possibilities of arresting the progress of degeneration by means such as the use of growth factors and controlling apoptosis. Efforts to alter the expression of the mutated gene or to introduce a normal gene into the genome are in their infancy, but results are encouraging. Vitamin A has been tried in patients with retinitis pigmentosa, and the results demonstrate statistically significant beneficial effects of this vitamin, suggesting that the course of the disease can be decelerated to some extent. Another interesting research area with potential for therapeutic application is the replacement of the retinal pigment epithelium or the degenerated neural retina by transplantation of the respective cell types. Clinical trials are being conducted both with retinal pigment epithelium and neuroretinal transplants.
Collapse
Affiliation(s)
- R K Sharma
- Department of Ophthalmology, University Hospital of Lund, Sweden.
| | | |
Collapse
|
49
|
Abstract
A high resolution ultrasound imaging technique, ultrasound backscatter microscopy (UBM), has previously been shown to be useful for in utero imaging of mouse embryos, and for direct manipulation of mouse embryos through UBM-guided injections. UBM images from mouse embryos staged between 8.5 and 10.5 days of gestation are presented to demonstrate the range of anatomical structures which can be studied with this approach. Ultrasound contrast agents have been injected into the forebrain ventricle of 10.5 day embryos to characterize the resulting three-dimensional distribution of the injected agents. These studies provide important background data relevant to future use of this technique for in utero analysis of early brain and heart development, and for in utero manipulation of mouse embryos through UBM-guided injections.
Collapse
Affiliation(s)
- D H Turnbull
- Department of Radiology, New York University School of Medicine, NY 10016, USA.
| |
Collapse
|
50
|
Affiliation(s)
- A P Davis
- Life Sciences Division, Oak Ridge National Laboratory, TN 37831-8080, USA.
| | | |
Collapse
|