1
|
Lee Y, Kim KM, Nguyen DL, Jannah F, Seong HJ, Kim JM, Kim YP. Cyclized proteins with tags as permeable and stable cargos for delivery into cells and liposomes. Int J Biol Macromol 2023; 252:126520. [PMID: 37625744 DOI: 10.1016/j.ijbiomac.2023.126520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Despite the therapeutic potential of recombinant proteins, their cell permeabilities and stabilities remain significant challenges. Here we demonstrate that cyclized recombinant proteins can be used as universal cargos for permeable and stable delivery into cells and polydiacetylene liposomes. Utilizing a split intein-mediated process, cyclized model fluorescent proteins containing short tetraarginine (R4) and hexahistidine (H6) tags were generated without compromising their native protein functions. Strikingly, as compared to linear R4/H6-tagged proteins, the cyclized counterparts have substantially increased permeabilities in both cancer cells and synthetic liposomes, as well as higher resistances to enzymatic degradation in cancer cells. These properties are likely a consequence of structural constraints imposed on the proteins in the presence of short functional peptides. Additionally, photodynamic therapy by cyclized photoprotein-loaded liposomes in cancer cells was significantly improved in comparison to that by their non-cyclized counterparts. These findings suggest that our strategy will be universally applicable to intercellular delivery of proteins and therapeutics.
Collapse
Affiliation(s)
- Yeonju Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Min Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Duc Long Nguyen
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Fadilatul Jannah
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Jung Seong
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Wu WH, Guo J, Zhang L, Zhang WB, Gao W. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chem Biol 2022; 3:815-829. [PMID: 35866174 PMCID: PMC9257627 DOI: 10.1039/d1cb00246e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Living organisms have evolved cyclic or multicyclic peptides and proteins with enhanced stability and high bioactivity superior to their linear counterparts for diverse purposes. Herein, we review recent progress in applying this concept to artificial peptides and proteins to exploit the functional benefits of these macrocycles. Not only have simple cyclic forms been prepared, numerous macrocycle variants, such as knots and links, have also been developed. The chemical tools and synthetic strategies are summarized for the biological synthesis of these macrocycles, demonstrating it as a powerful alternative to chemical synthesis. Its further application to therapeutic peptides/proteins has led to biomedicines with profoundly improved pharmaceutical performances. Finally, we present our perspectives on the field and its future developments.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianwen Guo
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| |
Collapse
|
3
|
Raman R, Karpova A, Kreutz MR. One-step purification of tag free and soluble lamin B1 from an E. coli bacterial expression system. Protein Expr Purif 2022; 193:106057. [PMID: 35077781 DOI: 10.1016/j.pep.2022.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Lamin B1 is an intermediate filament protein that is a core component of the nuclear lamina. Structural studies and biochemical characterization of lamin B1 are severely hampered by the tendency of the protein to form inclusion bodies in E. coli bacterial expression systems. Therefore, the purity and consistency of the protein varies from batch to batch. In this work, we have purified a tag-free lamin B1 protein from a soluble fraction following bacterial expression. We also checked the functional properties of the purified as well as of the subsequently lyophilised protein. The current protocol helps to purify functional lamin B1 in a single step.
Collapse
Affiliation(s)
- Rajeev Raman
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120, Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| |
Collapse
|
4
|
Kim DI, Han SJ, Lim YB. Unique behaviour of α-helix in bending deformation. Chem Commun (Camb) 2022; 58:4368-4371. [DOI: 10.1039/d2cc00008c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maximum degree of bending that can be tolerated by the rigid rod-like α-helix remains unknown; however, it should be very difficult or even impossible to make α-helices with varying degrees...
Collapse
|
5
|
Lee BS, Choi WJ, Lee SW, Ko BJ, Yoo TH. Towards Engineering an Orthogonal Protein Translation Initiation System. Front Chem 2021; 9:772648. [PMID: 34765589 PMCID: PMC8576571 DOI: 10.3389/fchem.2021.772648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
In the last two decades, methods to incorporate non-canonical amino acids (ncAAs) into specific positions of a protein have advanced significantly; these methods have become general tools for engineering proteins. However, almost all these methods depend on the translation elongation process, and strategies leveraging the initiation process have rarely been reported. The incorporation of a ncAA specifically at the translation initiation site enables the installation of reactive groups for modification at the N-termini of proteins, which are attractive positions for introducing abiological groups with minimal structural perturbations. In this study, we attempted to engineer an orthogonal protein translation initiation system. Introduction of the identity elements of Escherichia coli initiator tRNA converted an engineered Methanococcus jannaschii tRNATyr into an initiator tRNA. The engineered tRNA enabled the site-specific incorporation of O-propargyl-l-tyrosine (OpgY) into the amber (TAG) codon at the translation initiation position but was inactive toward the elongational TAG codon. Misincorporation of Gln was detected, and the engineered system was demonstrated only with OpgY. We expect further engineering of the initiator tRNA for improved activity and specificity to generate an orthogonal translation initiation system.
Collapse
Affiliation(s)
- Byeong Sung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Woon Jong Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sang Woo Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
6
|
De Rosa L, Di Stasi R, Romanelli A, D’Andrea LD. Exploiting Protein N-Terminus for Site-Specific Bioconjugation. Molecules 2021; 26:3521. [PMID: 34207845 PMCID: PMC8228110 DOI: 10.3390/molecules26123521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Although a plethora of chemistries have been developed to selectively decorate protein molecules, novel strategies continue to be reported with the final aim of improving selectivity and mildness of the reaction conditions, preserve protein integrity, and fulfill all the increasing requirements of the modern applications of protein conjugates. The targeting of the protein N-terminal alpha-amine group appears a convenient solution to the issue, emerging as a useful and unique reactive site universally present in each protein molecule. Herein, we provide an updated overview of the methodologies developed until today to afford the selective modification of proteins through the targeting of the N-terminal alpha-amine. Chemical and enzymatic strategies enabling the selective labeling of the protein N-terminal alpha-amine group are described.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy;
| | - Luca Domenico D’Andrea
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR Via M. Bianco 9, 20131 Milano, Italy
| |
Collapse
|
7
|
Bowen J, Schneible J, Bacon K, Labar C, Menegatti S, Rao BM. Screening of Yeast Display Libraries of Enzymatically Treated Peptides to Discover Macrocyclic Peptide Ligands. Int J Mol Sci 2021; 22:ijms22041634. [PMID: 33562883 PMCID: PMC7915732 DOI: 10.3390/ijms22041634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
We present the construction and screening of yeast display libraries of post-translationally modified peptides wherein site-selective enzymatic treatment of linear peptides is achieved using bacterial transglutaminase. To this end, we developed two alternative routes, namely (i) yeast display of linear peptides followed by treatment with recombinant transglutaminase in solution; or (ii) intracellular co-expression of linear peptides and transglutaminase to achieve peptide modification in the endoplasmic reticulum prior to yeast surface display. The efficiency of peptide modification was evaluated via orthogonal detection of epitope tags integrated in the yeast-displayed peptides by flow cytometry, and via comparative cleavage of putative cyclic vs. linear peptides by tobacco etch virus (TEV) protease. Subsequently, yeast display libraries of transglutaminase-treated peptides were screened to isolate binders to the N-terminal region of the Yes-Associated Protein (YAP) and its WW domains using magnetic selection and fluorescence activated cell sorting (FACS). The identified peptide cyclo[E-LYLAYPAH-K] featured a KD of 1.75 μM for YAP and 0.68 μM for the WW domains of YAP as well as high binding selectivity against albumin and lysozyme. These results demonstrate the usefulness of enzyme-mediated cyclization in screening combinatorial libraries to identify cyclic peptide binders.
Collapse
Affiliation(s)
- John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
| | - John Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
| | - Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
| | - Collin Labar
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
- Correspondence: (S.M.); (B.M.R.)
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
- Correspondence: (S.M.); (B.M.R.)
| |
Collapse
|
8
|
Abstract
The importance of post-translational glycosylation in protein structure and function has gained significant clinical relevance recently. The latest developments in glycobiology, glycochemistry, and glycoproteomics have made the field more manageable and relevant to disease progression and immune-response signaling. Here, we summarize the current progress in glycoscience, including the new methodologies that have led to the introduction of programmable and automatic as well as large-scale enzymatic synthesis, and the development of glycan array, glycosylation probes, and inhibitors of carbohydrate-associated enzymes or receptors. These novel methodologies and tools have facilitated our understanding of the significance of glycosylation and development of carbohydrate-derived medicines that bring the field to the next level of scientific and medical significance.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
9
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
10
|
Hemmi S, Asano R, Kimura K, Umetsu M, Nakanishi T, Kumagai I, Makabe K. Construction of a circularly connected VHH bispecific antibody (cyclobody) for the desirable positioning of antigen-binding sites. Biochem Biophys Res Commun 2019; 523:72-77. [PMID: 31831177 DOI: 10.1016/j.bbrc.2019.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022]
Abstract
A bispecific antibody (bsAb) is an emerging class of next-generation biological therapeutics. BsAbs are engineered antibodies possessing dual antigen-binding paratopes in one molecule. The circular backbone topology has never been demonstrated, although an enormous number of bispecific constructs have been proposed. The circular topology is potentially beneficial for fixing the orientation of two paratopes and protection from exopeptidase digestion. We construct herein a circularly connected bispecific VHH, termed cyclobody, using the split-intein circular ligation of peptides and proteins. The constructed cyclobodies are protected from proteolysis with a retained bispecificity. The anti-EGFR × anti-GFP cyclobody can specifically stain EGFR-positive cells with GFP. The anti-EGFR × anti-CD16 cyclobody shows cytotoxic activity against EGFR-positive cancer cells with comparative activity of a tandem VHH construct. Successful demonstration of a new topology for the bispecific antibody will expand the construction strategy for developing antibody-based drugs and reagents.
Collapse
Affiliation(s)
- Saki Hemmi
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8538, Japan
| | - Kouki Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8538, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11-606 Aoba-yama, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Takeshi Nakanishi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8538, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
11
|
Mahmoodi S, Pourhassan-Moghaddam M, Wood DW, Majdi H, Zarghami N. Current affinity approaches for purification of recombinant proteins. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/23312025.2019.1665406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sahar Mahmoodi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - David W. Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hasan Majdi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Chow HY, Zhang Y, Matheson E, Li X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem Rev 2019; 119:9971-10001. [PMID: 31318534 DOI: 10.1021/acs.chemrev.8b00657] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic peptides have been attracting a lot of attention in recent decades, especially in the area of drug discovery, as more and more naturally occurring cyclic peptides with diverse biological activities have been discovered. Chemical synthesis of cyclic peptides is essential when studying their structure-activity relationships. Conventional peptide cyclization methods via direct coupling have inherent limitations, like the susceptibility to epimerization at the C-terminus, poor solubility of fully protected peptide precursors, and low yield caused by oligomerization. In this regard, chemoselective ligation-mediated cyclization methods have emerged as effective strategies for cyclic peptide synthesis. The toolbox for cyclic peptide synthesis has been expanded substantially in the past two decades, allowing more efficient synthesis of cyclic peptides with various scaffolds and modifications. This Review will explore different chemoselective ligation technologies used for cyclic peptide synthesis that generate both native and unnatural peptide linkages. The practical issues and limitations of different methods will be discussed. The advance in cyclic peptide synthesis will benefit the biological and medicinal study of cyclic peptides, an important class of macrocycles with potentials in numerous fields, notably in therapeutics.
Collapse
Affiliation(s)
- Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Eilidh Matheson
- School of Chemistry , University of Edinburgh , Edinburgh EH8 9LE , United Kingdom
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , P. R. China
| |
Collapse
|
13
|
Sarmiento C, Camarero JA. Biotechnological Applications of Protein Splicing. Curr Protein Pept Sci 2019; 20:408-424. [PMID: 30734675 PMCID: PMC7135711 DOI: 10.2174/1389203720666190208110416] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
Protein splicing domains, also called inteins, have become a powerful biotechnological tool for applications involving molecular biology and protein engineering. Early applications of inteins focused on self-cleaving affinity tags, generation of recombinant polypeptide α-thioesters for the production of semisynthetic proteins and backbone cyclized polypeptides. The discovery of naturallyoccurring split-inteins has allowed the development of novel approaches for the selective modification of proteins both in vitro and in vivo. This review gives a general introduction to protein splicing with a focus on their role in expanding the applications of intein-based technologies in protein engineering and chemical biology.
Collapse
Affiliation(s)
- Corina Sarmiento
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA9033 USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-9121, USA
| |
Collapse
|
14
|
Xu C, Xu Q, Huang H, Jiang L. Enhancing the stability of trehalose synthase via SpyTag/SpyCatcher cyclization to improve its performance in industrial biocatalysts. Biosci Biotechnol Biochem 2018; 82:1473-1479. [DOI: 10.1080/09168451.2018.1475212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
ABSTRACT
SpyTag and SpyCatcher can spontaneously and rapidly conjugate to form an irreversible and stable covalent bond. The trehalose synthase (TreS) from Thermomonospora curvata was successfully cyclized after the fusion of a SpyTag to its C-terminus and SpyCatcher to the N-terminus. Cyclized TreS retained more than 85% of its activity at temperatures ranging from 40 to 50°C and more than 95% at a pH range of 8 to 10, while the wild type kept only 60 and 80% of its activity under the same conditions. These results demonstrated that cyclized TreS had better resistance to high temperature and alkali than the wild type. Furthermore, structural analysis revealed that cyclized TreS had better conformational stability and was able to fold correctly at a higher temperature than the wild type. Our findings indicate that the use of SpyTag and SpyCatcher to cyclize enzymes is a promising strategy to increase their stability.
Collapse
Affiliation(s)
- Chao Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qing Xu
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
15
|
Henry N, Krammer EM, Stengel F, Adams Q, Van Liefferinge F, Hubin E, Chaves R, Efremov R, Aebersold R, Vandenbussche G, Prévost M, Raussens V, Deroo S. Lipidated apolipoprotein E4 structure and its receptor binding mechanism determined by a combined cross-linking coupled to mass spectrometry and molecular dynamics approach. PLoS Comput Biol 2018; 14:e1006165. [PMID: 29933361 PMCID: PMC6033463 DOI: 10.1371/journal.pcbi.1006165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 07/05/2018] [Accepted: 04/30/2018] [Indexed: 11/18/2022] Open
Abstract
Apolipoprotein E (apoE) is a forefront actor in the transport of lipids and the maintenance of cholesterol homeostasis, and is also strongly implicated in Alzheimer’s disease. Upon lipid-binding apoE adopts a conformational state that mediates the receptor-induced internalization of lipoproteins. Due to its inherent structural dynamics and the presence of lipids, the structure of the biologically active apoE remains so far poorly described. To address this issue, we developed an innovative hybrid method combining experimental data with molecular modeling and dynamics to generate comprehensive models of the lipidated apoE4 isoform. Chemical cross-linking combined with mass spectrometry provided distance restraints, characterizing the three-dimensional organization of apoE4 molecules at the surface of lipidic nanoparticles. The ensemble of spatial restraints was then rationalized in an original molecular modeling approach to generate monomeric models of apoE4 that advocated the existence of two alternative conformations. These two models point towards an activation mechanism of apoE4 relying on a regulation of the accessibility of its receptor binding region. Further, molecular dynamics simulations of the dimerized and lipidated apoE4 monomeric conformations revealed an elongation of the apoE N-terminal domain, whereby helix 4 is rearranged, together with Arg172, into a proper orientation essential for lipoprotein receptor association. Overall, our results show how apoE4 adapts its conformation for the recognition of the low density lipoprotein receptor and we propose a novel mechanism of activation for apoE4 that is based on accessibility and remodeling of the receptor binding region. Among the proteins involved in the transport of lipids and their distribution to the cells, apolipoprotein E (apoE) mediates the internalization of cholesterol rich lipoproteins by acting as a ligand for cell-surface receptors. In the central nervous system, while apoE is the major cholesterol transport protein, a dysfunction of apoE in the transport and metabolism of lipids is associated with Alzheimer’s disease. A molecular understanding of the mechanisms underlying the receptor binding abilities of apoE is crucial to address its biological functions, but is so far hindered by the dynamic and complex nature of these assemblies. We have designed an original hybrid approach combining experimental data and bioinformatics tools to generate high resolution models of lipidated apoE. Based on these models, we can propose how apoE adapts its conformation at the surface of lipid nanoparticles. Further, we propose a novel mechanism of regulation of the activation and receptor recognition of apoE that could prove valuable to interpret its role in Alzheimer and apoE-related cardiovascular diseases.
Collapse
Affiliation(s)
- Nicolas Henry
- Center for Structural Biology and Bioinformatics, Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eva-Maria Krammer
- Center for Structural Biology and Bioinformatics, Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Florian Stengel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Quentin Adams
- Center for Structural Biology and Bioinformatics, Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - François Van Liefferinge
- Center for Structural Biology and Bioinformatics, Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ellen Hubin
- Structural Biology Research Center, VIB, Brussels, Belgium
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rui Chaves
- Structural Biology Research Center, VIB, Brussels, Belgium
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rouslan Efremov
- Structural Biology Research Center, VIB, Brussels, Belgium
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Guy Vandenbussche
- Center for Structural Biology and Bioinformatics, Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martine Prévost
- Center for Structural Biology and Bioinformatics, Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Raussens
- Center for Structural Biology and Bioinformatics, Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail: (SD); (VT)
| | - Stéphanie Deroo
- Center for Structural Biology and Bioinformatics, Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail: (SD); (VT)
| |
Collapse
|
16
|
Zhang RY, Thapa P, Espiritu MJ, Menon V, Bingham JP. From nature to creation: Going around in circles, the art of peptide cyclization. Bioorg Med Chem 2018; 26:1135-1150. [DOI: 10.1016/j.bmc.2017.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 02/02/2023]
|
17
|
Chauhan S, Hou CY, Jung ST, Kang TJ. Detection and purification of backbone-cyclized proteins using a bacterially expressed anti-myc-tag single chain antibody. Anal Biochem 2017; 532:38-44. [PMID: 28600127 DOI: 10.1016/j.ab.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 11/26/2022]
Abstract
A myc-tag and of which recognition by an antibody 9E10 has long been used for the detection and purification of recombinant proteins. We have previously expanded the application of the tag to the specific detection and purification of backbone-cyclized proteins. Here we sought a more practical way to using the 9E10 antibody by expressing its single chain antibody (scAb) form in Escherichia coli. The combined use of a strong T7 promoter and auto-induction strategy rather than early to mid-log induction of a Lac promoter resulted in the soluble over-expression of 9E10 scAb. However, the co-expression of a chaperone, Skp, was absolutely necessary for the activity even when the protein was expressed in a soluble manner. We could purify about 4 mg of 9E10 scAb from 1 l of culture, and the resulting scAb could be used to detect and purify the backbone-cyclized protein as the parental full-length 9E10. Moreover, the immunoaffinity resin prepared using 9E10 scAb could be regenerated several times after the elution of bound proteins using an acid, which added more value to the ready preparation of the active antibody in bacteria.
Collapse
Affiliation(s)
- Sushma Chauhan
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chen Yuan Hou
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sang Taek Jung
- Department of Bio and Nano Chemistry, Kookmin University, Seoul, 02707, South Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea.
| |
Collapse
|
18
|
|
19
|
Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation. Protein Expr Purif 2017; 133:25-34. [DOI: 10.1016/j.pep.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 01/27/2023]
|
20
|
Adhikary R, Zimmermann J, Romesberg FE. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chem Rev 2017; 117:1927-1969. [DOI: 10.1021/acs.chemrev.6b00625] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Abstract
Segmental isotopic labeling of samples for NMR studies is attractive for large complex biomacromolecular systems, especially for studies of function-related protein-ligand interactions and protein dynamics (Goto and Kay, Curr Opin Struct Biol 10:585-592, 2000; Rosa et al., Molecules (Basel, Switzerland) 18:440, 2013; Hiroaki, Expert Opin Drug Discovery 8:523-536, 2013). Advantages of segmental isotopic labeling include selective examination of specific segment(s) within a protein by NMR, significantly reducing the spectral complexity for large proteins, and allowing for the application of a variety of solution-based NMR strategies. By utilizing intein techniques (Wood and Camarero, J Biol Chem 289:14512-14519, 2014; Paulus, Annu Rev Biochem 69:447-496, 2000), two related approaches can generally be used in the segmental isotopic labeling of proteins: expressed protein ligation (Muir, Annu Rev Biochem 72:249-289, 2003) and protein trans-splicing (Shah et al., J Am Chem Soc 134:11338-11341, 2012). Here, we describe general implementation and latest improvements of expressed protein ligation method for the production of segmental isotopic labeled NMR samples.
Collapse
Affiliation(s)
- Dongsheng Liu
- iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai, 201203, China
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
22
|
Nguyen GKT, Qiu Y, Cao Y, Hemu X, Liu CF, Tam JP. Butelase-mediated cyclization and ligation of peptides and proteins. Nat Protoc 2016; 11:1977-1988. [DOI: 10.1038/nprot.2016.118] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Si M, Xu Q, Jiang L, Huang H. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS One 2016; 11:e0162318. [PMID: 27658030 DOI: 10.1371/journal.pone.0162318.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/19/2016] [Indexed: 05/26/2023] Open
Abstract
SpyTag can spontaneously form a covalent isopeptide bond with its protein partner SpyCatcher. Firefly luciferase from Photinus pyralis was cyclized in vivo by fusing SpyCatcher at the N terminus and SpyTag at the C terminus. Circular LUC was more thermostable and alkali-tolerant than the wild type, without compromising the specific activity. Structural analysis indicated that the cyclized LUC increased the thermodynamic stability of the structure and remained more properly folded at high temperatures when compared with the wild type. We also prepared an N-terminally and C-terminally shortened form of the SpyCatcher protein and cyclization using this truncated form led to even more thermostability than the original form. Our findings suggest that cyclization with SpyTag and SpyCatcher is a promising and effective strategy to enhance thermostability of enzymes.
Collapse
Affiliation(s)
- Meng Si
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ling Jiang
- College of Food Sciences and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
24
|
Si M, Xu Q, Jiang L, Huang H. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS One 2016; 11:e0162318. [PMID: 27658030 PMCID: PMC5033358 DOI: 10.1371/journal.pone.0162318] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022] Open
Abstract
SpyTag can spontaneously form a covalent isopeptide bond with its protein partner SpyCatcher. Firefly luciferase from Photinus pyralis was cyclized in vivo by fusing SpyCatcher at the N terminus and SpyTag at the C terminus. Circular LUC was more thermostable and alkali-tolerant than the wild type, without compromising the specific activity. Structural analysis indicated that the cyclized LUC increased the thermodynamic stability of the structure and remained more properly folded at high temperatures when compared with the wild type. We also prepared an N-terminally and C-terminally shortened form of the SpyCatcher protein and cyclization using this truncated form led to even more thermostability than the original form. Our findings suggest that cyclization with SpyTag and SpyCatcher is a promising and effective strategy to enhance thermostability of enzymes.
Collapse
Affiliation(s)
- Meng Si
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ling Jiang
- College of Food Sciences and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- * E-mail: (LJ); (HH)
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
- * E-mail: (LJ); (HH)
| |
Collapse
|
25
|
Cao Y, Nguyen GKT, Tam JP, Liu CF. Butelase-mediated synthesis of protein thioesters and its application for tandem chemoenzymatic ligation. Chem Commun (Camb) 2016; 51:17289-92. [PMID: 26462854 DOI: 10.1039/c5cc07227a] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a recently discovered peptide ligase, butelase 1, we developed a novel method to access protein thioesters in good yield. We successfully combined it with native chemical ligation and sortase-mediated ligation in tandem for protein C-terminal labeling and dual-terminal labeling to exploit the orthogonality of these three ligation methods.
Collapse
Affiliation(s)
- Yuan Cao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| | - Giang K T Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| |
Collapse
|
26
|
Hemu X, Qiu Y, Nguyen GKT, Tam JP. Total Synthesis of Circular Bacteriocins by Butelase 1. J Am Chem Soc 2016; 138:6968-71. [DOI: 10.1021/jacs.6b04310] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xinya Hemu
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637551 Singapore
| | - Yibo Qiu
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637551 Singapore
| | - Giang K. T. Nguyen
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637551 Singapore
| | - James P. Tam
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637551 Singapore
| |
Collapse
|
27
|
Zernia S, Ott F, Bellmann-Sickert K, Frank R, Klenner M, Jahnke HG, Prager A, Abel B, Robitzki A, Beck-Sickinger AG. Peptide-Mediated Specific Immobilization of Catalytically Active Cytochrome P450 BM3 Variant. Bioconjug Chem 2016; 27:1090-7. [DOI: 10.1021/acs.bioconjchem.6b00074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarah Zernia
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Florian Ott
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | | | - Ronny Frank
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | - Marcus Klenner
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | - Andrea Prager
- Leibniz-Institute of Surface Modification (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institute of Surface Modification (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Andrea Robitzki
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | | |
Collapse
|
28
|
|
29
|
Nguyen GKT, Kam A, Loo S, Jansson AE, Pan LX, Tam JP. Butelase 1: A Versatile Ligase for Peptide and Protein Macrocyclization. J Am Chem Soc 2015; 137:15398-401. [PMID: 26633100 DOI: 10.1021/jacs.5b11014] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macrocyclization is a valuable tool for drug design and protein engineering. Although various methods have been developed to prepare macrocycles, a general and efficient strategy is needed. Here we report a highly efficient method using butelase 1 to macrocyclize peptides and proteins ranging in sizes from 26 to >200 residues. We achieved cyclizations that are 20,000 times faster than sortase A, the most widely used ligase for protein cyclization. The reactions completed within minutes with up to 95% yields.
Collapse
Affiliation(s)
- Giang K T Nguyen
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| | - Anna E Jansson
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| | - Lucy X Pan
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| |
Collapse
|
30
|
Liu EJ, Sinclair A, Keefe AJ, Nannenga BL, Coyle BL, Baneyx F, Jiang S. EKylation: Addition of an Alternating-Charge Peptide Stabilizes Proteins. Biomacromolecules 2015; 16:3357-61. [DOI: 10.1021/acs.biomac.5b01031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Erik J. Liu
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Andrew Sinclair
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Andrew J. Keefe
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Brent L. Nannenga
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Brandon L. Coyle
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - François Baneyx
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Shaoyi Jiang
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| |
Collapse
|
31
|
Ta DT, Redeker ES, Billen B, Reekmans G, Sikulu J, Noben JP, Guedens W, Adriaensens P. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. Protein Eng Des Sel 2015; 28:351-63. [PMID: 26243885 DOI: 10.1093/protein/gzv032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/01/2015] [Indexed: 11/13/2022] Open
Abstract
In this study, several expression strategies were investigated in order to develop a generic, highly productive and efficient protocol to produce nanobodies modified with a clickable alkyne function at their C-terminus via the intein-mediated protein ligation (IPL) technique. Hereto, the nanobody targeting the vascular cell adhesion molecule 1 (NbVCAM1) was used as a workhorse. The highlights of the protocol can be ascribed to a cytoplasmic expression of the nanobody-intein-chitin-binding domain fusion protein in the Escherichia coli SHuffle(®) T7 cells with a C-terminal extension, i.e. LEY, EFLEY or His6 spacer peptide, in the commonly used Luria-Bertani medium. The combination of these factors led to a high yield (up to 22 mg/l of culture) and nearly complete alkynation efficiency of the C-terminally modified nanobody via IPL. This yield can even be improved to ∼45 mg/l in the EnPresso(®) growth system but this method is more expensive and time-consuming. The resulting alkynated nanobodies retained excellent binding capacity towards the recombinant human VCAM1. The presented protocol benefits from time- and cost-effectiveness, which allows a feasible production up-scaling of generic alkynated nanobodies. The production of high quantities of site-specifically modified nanobodies paves the way to new biosurface applications that demand for a homogeneously oriented nanobody coupling. Prospectively, the alkynated nanobodies can be covalently coupled to a multitude of azide-containing counterparts, e.g. contrast labeling agents, particles or surfaces for numerous innovative applications.
Collapse
Affiliation(s)
- Duy Tien Ta
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium Faculty of Food Technology and Biotechnology, Can Tho University of Technology, Can Tho, Vietnam
| | - Erik Steen Redeker
- Maastricht Science Programme, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Brecht Billen
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Gunter Reekmans
- Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Josephine Sikulu
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute (Biomed) and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt University, Agoralaan-Building C, Diepenbeek BE-3590, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| |
Collapse
|
32
|
von der Heyde A, Lockhauserbäumer J, Uetrecht C, Elleuche S. A hydrolase-based reporter system to uncover the protein splicing performance of an archaeal intein. Appl Microbiol Biotechnol 2015; 99:7613-24. [PMID: 26026939 DOI: 10.1007/s00253-015-6689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/17/2015] [Indexed: 11/30/2022]
Abstract
Extein amino acid residues around the splice site junctions affect the functionality of inteins. To identify an optimal sequence context for efficient protein splicing of an intein from the thermoacidophilic archaeon Picrophilus torridus, single extein amino acid residues at the splice site junctions were continuously deleted. The construction of a set of different truncated extein variants showed that this intein tolerates multiple amino acid variations near the excision sites and exhibits full activity when -1 and +1 extein amino acid residues are conserved in an artificial GST-intein-HIS fusion construct. Moreover, splicing of the recombinant intein took place at temperatures between 4 and 42 °C with high efficiency, when produced in Escherichia coli. Therefore, structural model predictions were used to identify optimal insertion sites for the intein to be embedded within a hemicellulase from the psychrophilic bacterium Pseudoalteromonas arctica. The P. torridus intein inserted before amino acid residue Thr75 of the reporter enzyme retained catalytic activity. Moreover, the catalytic activity of the xylan-degrading hydrolase could be easily monitored in routine plate assays and in liquid test measurements at room temperature when produced in recombinant form in E. coli. This tool allows the indirect detection of the intein's catalytic activity to be used in screenings.
Collapse
Affiliation(s)
- Amélie von der Heyde
- Hamburg University of Technology (TUHH), Institute of Technical Microbiology, Kasernenstr. 12, 21073, Hamburg, Germany
| | | | | | | |
Collapse
|
33
|
Miraula M, Enculescu C, Schenk G, Mitić N. Inteins—A Focus on the Biotechnological Applications of Splicing-Promoting Proteins. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajmb.2015.52005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Waldhauer MC, Schmitz SN, Ahlmann-Eltze C, Gleixner JG, Schmelas CC, Huhn AG, Bunne C, Büscher M, Horn M, Klughammer N, Kreft J, Schäfer E, Bayer PA, Krämer SG, Neugebauer J, Wehler P, Mayer MP, Eils R, Di Ventura B. Backbone circularization of Bacillus subtilis family 11 xylanase increases its thermostability and its resistance against aggregation. MOLECULAR BIOSYSTEMS 2015; 11:3231-43. [DOI: 10.1039/c5mb00341e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While using a serine (S) as linker for circularization increases the thermostability, a longer linker (RGKCWE) leads to reduced aggregation after heat shock at elevated temperatures.
Collapse
|
35
|
Comparative Analysis of the Effectiveness of C-terminal Cleavage Intein-Based Constructs in Producing a Recombinant Analog of Anophelin, an Anticoagulant from Anopheles albimanus. Appl Biochem Biotechnol 2014; 175:2468-88. [DOI: 10.1007/s12010-014-1400-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
|
36
|
Tarasava K, Freisinger E. An optimized intein-mediated protein ligation approach for the efficient cyclization of cysteine-rich proteins. Protein Eng Des Sel 2014; 27:481-8. [PMID: 25335928 DOI: 10.1093/protein/gzu048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Head-to-tail backbone cyclization of proteins is a widely used approach for the improvement of protein stability. One way to obtain cyclic proteins via recombinant expression makes use of engineered Intein tags, which are self-cleaving protein domains. In this approach, pH-induced self-cleavage of the N-terminal Intein tag generates an N-terminal cysteine residue at the target protein, which then attacks in an intramolecular reaction the C-terminal thioester formed by the second C-terminal Intein tag resulting in the release of the cyclic target protein. In the current work we aimed to produce a cyclic analog of the small γ-Ec-1 domain of the wheat metallothionein, which contains six cysteine residues. During the purification process we faced several challenges, among them premature cleavage of one or the other Intein tag resulting in decreasing yields and contamination with linear species. To improve efficiency of the system we applied a number of optimizations such as the introduction of a Tobacco etch virus cleavage site and an additional poly-histidine tag. Our efforts resulted in the production of a cyclic protein in moderate yields without any contamination with linear protein species.
Collapse
Affiliation(s)
- Katsiaryna Tarasava
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Eva Freisinger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
37
|
Reif A, Siebenhaar S, Tröster A, Schmälzlein M, Lechner C, Velisetty P, Gottwald K, Pöhner C, Boos I, Schubert V, Rose-John S, Unverzagt C. Semisynthesis of biologically active glycoforms of the human cytokine interleukin 6. Angew Chem Int Ed Engl 2014; 53:12125-31. [PMID: 25243720 DOI: 10.1002/anie.201407160] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Indexed: 12/16/2022]
Abstract
Human interleukin 6 (IL-6) is a potent cytokine with immunomodulatory properties. As the influence of N-glycosylation on the in vivo activities of IL-6 could not be elucidated so far, a semisynthesis of homogeneous glycoforms of IL-6 was established by sequential native chemical ligation. The four cysteines of IL-6 are convenient for ligations and require only the short synthetic glycopeptide 43-48. The Cys-peptide 49-183 could be obtained recombinantly by cleavage of a SUMO tag. The fragment 1-42 was accessible by the simultaneous cleavage of two inteins, leading to the 1-42 thioester with the native N-terminus. Ligation and refolding studies showed that the inherently labile Asp-Pro bond 139-140 was detrimental for the sequential C- to N-terminal ligation. A reversed ligation sequence using glycopeptide hydrazides gave full-length IL-6 glycoproteins, which showed full bioactivity after efficient refolding and purification.
Collapse
Affiliation(s)
- Andreas Reif
- Bioorganic Chemistry, Gebaeude NWI, University of Bayreuth, 95440 Bayreuth (Germany)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Reif A, Siebenhaar S, Tröster A, Schmälzlein M, Lechner C, Velisetty P, Gottwald K, Pöhner C, Boos I, Schubert V, Rose-John S, Unverzagt C. Semisynthesis of Biologically Active Glycoforms of the Human Cytokine Interleukin 6. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Abel S, Geltinger B, Heinrich N, Michl D, Klose A, Beyermann M, Schwarzer D. Semisynthesis and optimization of G protein-coupled receptor mimics. J Pept Sci 2014; 20:831-6. [PMID: 25092519 DOI: 10.1002/psc.2680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/07/2014] [Accepted: 07/09/2014] [Indexed: 11/11/2022]
Abstract
We have recently developed a soluble mimic of the corticotropin-releasing factor receptor type 1 (CRF1), a membrane-spanning G protein-coupled receptor, which allowed investigations on receptor-ligand interactions. The CRF1 mimic consists of the receptor N-terminus and three synthetic extracellular loops (ECL1-3), which constitute the extracellular receptor domains (ECDs) of CRF1, coupled to a linear peptide template. Here, we report the synthesis of a modified CRF1 mimic, which is more similar to the native receptor possessing a cyclic template that displays the ECDs in a more physiological conformation compared with the initial linear design. In order to facilitate detailed biophysical investigations on CRF1 mimics, we have further established a cost-efficient access to the CRF1 mimic, which is suitable for isotopic labeling for NMR spectroscopy. To this end, the loop-mimicking cyclic peptide of the ECL2 of CRF1 was produced recombinantly and cyclized by expressed protein ligation. Cyclic ECL2 was obtained in milligram scale, and CRF1 mimics synthesized from this material displayed the same binding properties as synthetic CRF1 constructs.
Collapse
Affiliation(s)
- Sabine Abel
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 2014; 10:732-8. [PMID: 25038786 DOI: 10.1038/nchembio.1586] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/13/2014] [Indexed: 01/29/2023]
Abstract
Proteases are ubiquitous in nature, whereas naturally occurring peptide ligases, enzymes catalyzing the reverse reactions of proteases, are rare occurrences. Here we describe the discovery of butelase 1, to our knowledge the first asparagine/aspartate (Asx) peptide ligase to be reported. This highly efficient enzyme was isolated from Clitoria ternatea, a cyclic peptide-producing medicinal plant. Butelase 1 shares 71% sequence identity and the same catalytic triad with legumain proteases but does not hydrolyze the protease substrate of legumain. Instead, butelase 1 cyclizes various peptides of plant and animal origin with yields greater than 95%. With Kcat values of up to 17 s(-1) and catalytic efficiencies as high as 542,000 M(-1) s(-1), butelase 1 is the fastest peptide ligase known. Notably, butelase 1 also displays broad specificity for the N-terminal amino acids of the peptide substrate, thus providing a new tool for C terminus-specific intermolecular peptide ligations.
Collapse
|
41
|
Yoshimura H, Ozawa T. Methods of Split Reporter Reconstitution for the Analysis of Biomolecules. CHEM REC 2014; 14:492-501. [DOI: 10.1002/tcr.201402001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Hideaki Yoshimura
- Department of Chemistry; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takeaki Ozawa
- Department of Chemistry; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
42
|
Sonntag MH, Ibach J, Nieto L, Verveer PJ, Brunsveld L. Site-specific protection and dual labeling of human epidermal growth factor (hEGF) for targeting, imaging, and cargo delivery. Chemistry 2014; 20:6019-26. [PMID: 24700787 DOI: 10.1002/chem.201304090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/23/2014] [Indexed: 11/08/2022]
Abstract
Well-defined human epidermal growth factor (hEGF) constructs featuring selectively addressable labels are urgently needed to address outstanding questions regarding hEGF biology. A protein-engineering approach was developed to provide access to hEGF constructs that carry two cysteine-based site-specific orthogonal labeling sites in multi-milligram quantities. Also, a site-selective (de)protection and labeling approach was devised, which allows selective modification of these hEGF constructs. The hEGF, featuring three native disulfide bonds, was expressed featuring additional sulfhydryl groups, in the form of cysteine residues, as orthogonal ligation sites at both the N and C termini. Temporary protection of the N-terminal cysteine unit, in the form of a thiazolidine ring, avoids interference with protein folding and enables sequential labeling in conjunction with the cysteine residue at the C terminus. Based on thus-generated hEGF constructs, sequential and site-specific labeling with a variety of molecular probes could be demonstrated, thus leading to a biological fully functional hEGF with specifically incorporated fluorophores or protein cargo and native cellular targeting and uptake profiles. Thus, this novel strategy provides a robust entry to high-yielding access of hEGF and rapid and easy site-specific and multifunctional dual labeling of this growth factor.
Collapse
Affiliation(s)
- Michael H Sonntag
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems, University of Technology, Den Dolech 2, 5612 AZ Eindhoven (NL)
| | | | | | | | | |
Collapse
|
43
|
van Vught R, Pieters RJ, Breukink E. Site-specific functionalization of proteins and their applications to therapeutic antibodies. Comput Struct Biotechnol J 2014; 9:e201402001. [PMID: 24757499 PMCID: PMC3995230 DOI: 10.5936/csbj.201402001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/28/2014] [Accepted: 02/04/2014] [Indexed: 12/19/2022] Open
Abstract
Protein modifications are often required to study structure and function relationships. Instead of the random labeling of lysine residues, methods have been developed to (sequence) specific label proteins. Next to chemical modifications, tools to integrate new chemical groups for bioorthogonal reactions have been applied. Alternatively, proteins can also be selectively modified by enzymes. Herein we review the methods available for site-specific modification of proteins and their applications for therapeutic antibodies.
Collapse
Affiliation(s)
- Remko van Vught
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology. Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Eefjan Breukink
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| |
Collapse
|
44
|
Futaki S, Noshiro D, Kiwada T, Asami K. Extramembrane control of ion channel peptide assemblies, using alamethicin as an example. Acc Chem Res 2013; 46:2924-33. [PMID: 23680081 DOI: 10.1021/ar400051f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ion channels allow the influx and efflux of specific ions through a plasma membrane. Many ion channels can sense, for example, the membrane potential (the voltage gaps between the inside and the outside of the membrane), specific ligands such as neurotransmitters, and mechanical tension within the membrane. They modulate cell function in response to these stimuli. Researchers have focused on developing peptide- and non-peptide-based model systems to elucidate ion-channel protein functions and to create artificial sensing systems. In this Account, we employed a typical peptide that forms ion channels,alamethicin, as a model to evaluate our methodologies for controlling the assembly states of channel-forming molecules in membranes. As alamethicin self-assembles in membranes, it prompts channel formation, but number of peptide molecules in these channels is not constant. Using planar-lipid bilayer methods, we monitored the association states of alamethicin in real time. Many ligand-gated, natural-ion channel proteins have large extramembrane domains. As these proteins interact with specific ligands, those conformational alterations in the extramembrane domains are transmitted to the transmembrane, pore-forming domains to open and close the channels. We hypothesized that if we conjugated suitable extramembrane segments to alamethicin, ligand binding to the extramembrane segments could alter the structure of the extramembrane domains and influence the association states or association numbers of alamethicin in the membranes. We could then assess those changes by using single-channel current recording. We found that we could modulate channel assembly and eventual ion flux with attached leucine-zipper extramembrane peptide segments. Using conformationally switchable leucine-zipper extramembrane segments that respond to Fe(3+), we fabricated an artificial Fe(3+)-sensitive ion channel; a decrease in the helical content of the extramembrane segment led to an increase in the channel current. When we added a calmodulin C-terminus segment, we formed a channel that was sensitive to Ca(2+). This result demonstrated that we could prepare artificial channels that were sensitive to specific ligands by adding appropriate extramembrane segments from natural protein motifs that respond to external stimuli. In conclusion, our research points to the possibility of creating tailored sensor or signal transduction systems through the conjugation of a conformationally switchable extramembrane peptide/protein segment to a suitable transmembrane peptide segment.
Collapse
Affiliation(s)
- Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Daisuke Noshiro
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsuto Kiwada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Koji Asami
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
45
|
Sudheer PDVN, Pack SP, Kang TJ. Cyclization tag for the detection and facile purification of backbone-cyclized proteins. Anal Biochem 2013; 436:137-41. [PMID: 23439382 DOI: 10.1016/j.ab.2013.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 11/27/2022]
Abstract
Backbone-cyclized proteins, with their characteristic stability toward denaturants such as heat and chemicals, are becoming increasingly significant in many applications. Intein-mediated protein cyclization is the most efficient and frequently used method of choice and has been successfully applied to various targets, achieving stable proteins. However, the detection and isolation of the cyclic protein from the linear one after cyclization is very difficult because the backbone-cyclized protein and the linear one (a by-product formed during the cyclization reaction), which originated from the same molecule, are almost identical in terms of their size. Thus, we first developed a split c-myc tag system; the active c-myc tag was formed only in the backbone-cyclized protein and not in the linear by-product from the inactive precursor, and this helps both the detection and purification of the backbone-cyclized proteins. This tag system, which we called a cyclization tag, was further engineered in its sequence to develop an engineered c-myc (e-myc) tag with enhanced efficiency in the backbone cyclization reaction while keeping its specificity toward the commercial antibody intact. Using two different proteins as models, we show that the cyclization tag developed here can be used as a specific tag for the backbone-cyclized protein, thereby facilitating detection and purification.
Collapse
Affiliation(s)
- Pamidimarri D V N Sudheer
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | | | | |
Collapse
|
46
|
Noshiro D, Sonomura K, Yu HH, Imanishi M, Asami K, Futaki S. Construction of a Ca(2+)-gated artificial channel by fusing alamethicin with a calmodulin-derived extramembrane segment. Bioconjug Chem 2013; 24:188-95. [PMID: 23272973 DOI: 10.1021/bc300468x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using native chemical ligation, we constructed a Ca(2+)-gated fusion channel protein consisting of alamethicin and the C-terminal domain of calmodulin. At pH 5.4 and in the absence of Ca(2+), this fusion protein yielded a burst-like channel current with no discrete channel conductance levels. However, Ca(2+) significantly lengthened the specific channel open state and increased the mean channel current, while Mg(2+) produced no significant changes in the channel current. On the basis of 8-anilinonaphthalene-1-sulfonic acid (ANS) fluorescent measurement, Ca(2+)-stimulated gating may be related to an increased surface hydrophobicity of the extramembrane segment of the fusion protein.
Collapse
Affiliation(s)
- Daisuke Noshiro
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Ozawa T, Yoshimura H, Kim SB. Advances in Fluorescence and Bioluminescence Imaging. Anal Chem 2012; 85:590-609. [DOI: 10.1021/ac3031724] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Takeaki Ozawa
- Department of Chemistry, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sung Bae Kim
- Research Institute for Environmental Management
Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba
305-8569, Japan
| |
Collapse
|
48
|
Pakuła S, Orłowski M, Rymarczyk G, Krusiński T, Jakób M, Zoglowek A, Ożyhar A, Dobryszycki P. Conformational changes in the DNA-binding domains of the ecdysteroid receptor during the formation of a complex with the hsp27 response element. J Biomol Struct Dyn 2012; 30:379-93. [PMID: 22694217 DOI: 10.1080/07391102.2012.682215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The ecdysone receptor (EcR) and the ultraspiracle protein (Usp) form the functional receptor for ecdysteroids that initiates metamorphosis in insects. The Usp and EcR DNA-binding domains (UspDBD and EcRDBD, respectively) form a heterodimer on the natural pseudopalindromic element from the hsp27 gene promoter. The conformational changes in the protein-DNA during the formation of the UspDBD-EcRDBD-hsp27 complex were analyzed. Recombined UspDBD and EcRDBD proteins were purified and fluorescein labeled (FL) using the intein method at the C-ends of both proteins. The changes in the distances from the respective C-ends of EcRDBD and/or UspDBD to the 5'- and/or 3'-end of the response element were measured using fluorescence resonance energy transfer (FRET) methodology. The binding of EcRDBD induced a strong conformational change in UspDBD and caused the C-terminal fragment of the UspDBD molecule to move away from both ends of the regulatory element. UspDBD also induced a significant conformational change in the EcRDBD molecule. The EcRDBD C-terminus moved away from the 5'-end of the regulatory element and moved close to the 3'-end. An analysis was also done on the effect that DHR38DBD, the Drosophila ortholog of the mammalian NGFI-B, had on the interaction of UspDBD and EcRDBD with hsp27. FRET analysis demonstrated that hsp27 bending was induced by DHR38DBD. Fluorescence data revealed that hsp27 had a shorter end-to-end distance both in the presence of EcRDBD as well as in the presence of EcRDBD together with DHR38DBD, with DNA bend angles of about 36.2° and 33.6°, respectively. A model of how DHR38DBD binds to hsp27 in the presence of EcRDBD is presented.
Collapse
Affiliation(s)
- Szymon Pakuła
- Faculty of Chemistry, Division of Biochemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gao M, Tong Y, Tian H, Gao X, Yao W. Recombinant production of mGLP-1 by coupling of refolding and intein-mediated self-cleavage (CRIS). Appl Microbiol Biotechnol 2012; 96:1283-90. [PMID: 22644527 DOI: 10.1007/s00253-012-4163-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/04/2012] [Accepted: 05/10/2012] [Indexed: 11/21/2022]
Abstract
Glucagon-like peptide-1 as an endogenous glucose-lowering peptide is a promising candidate for anti-diabetic drug development. Here, we developed a convenient method by coupling of refolding and intein-mediated self-cleavage (CRIS) to improve the recombinant production of a mutated glucagon-like peptide-1 (mGLP-1). Bacterial cell culture employing auto-induction was performed at 37 °C to avoid the intracellular self-cleavage of the intein fusion protein. The impacts of urea, pH, and temperature on the efficiency of CRIS were tested, and then, the optimized CRIS was established. Using the optimized method, we obtained the purified mGLP-1 with a yield of 3.41 mg peptide/g bacterial cells which was 5.6-fold higher than before. After that, using chromatography, peptide electrophoresis, and mass spectrometry, we determined the purity and molecular weight of the purified peptide and then confirmed its glucose-lowering activity by performing glucose tolerance test in mice. These results suggest that CRIS is a relatively simple and efficacious method for the recombinant production of mGLP-1, and as a general method, it can also be used for the recombinant preparation of some other proteins and peptides.
Collapse
Affiliation(s)
- Mingming Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | | | | | | | | |
Collapse
|
50
|
Kamei A, Hauser PS, Beckstead JA, Weers PMM, Ryan RO. Expressed protein ligation-mediated template protein extension. Protein Expr Purif 2012; 83:113-6. [PMID: 22487214 DOI: 10.1016/j.pep.2012.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 11/18/2022]
Abstract
Expressed protein ligation (EPL) was performed to investigate sequence requirements for a variant human apolipoprotein A-I (apoA-I) to adopt a folded structure. A C-terminal truncated apoA-I, corresponding to residues 1-172, was expressed and isolated from Escherichia coli. Compared to full length apoA-I (243 amino acids), apoA-I(1-172) displayed less α-helix secondary structure and lower stability in solution. To determine if extension of this polypeptide would confer secondary structure content and/or stability, 20 residues were added to the C-terminus of apoA-I(1-172) by EPL, creating apoA-I(Milano)(1-192). The EPL product displayed biophysical properties similar to full-length apoA-I(Milano). The results provide a general protein engineering strategy to modify the length of a recombinant template polypeptide using synthetic peptides as well as a convenient, cost effective way to investigate the structure/function relations in apolipoprotein fragments or domains of different size.
Collapse
Affiliation(s)
- Ayako Kamei
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, United States
| | | | | | | | | |
Collapse
|