1
|
Guimarães GM, Costa K, da Silva Santana Moura C, Moreira SED, Marchiori JM, de Menezes Santos ACP, Batista RRA, Queiroz-Junior CM, Raposo JDA, Braga FC, Caliari MV, Nunes ÁC, Fagundes CT, Neumann E. Influence of Tryptophan Metabolism on the Protective Effect of Weissella paramesenteroides WpK4 in a Murine Model of Chemotherapy-Induced Intestinal Mucositis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10413-1. [PMID: 39602009 DOI: 10.1007/s12602-024-10413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Dysbiosis is a notable marker of intestinal mucositis, an inflammatory condition induced by antineoplastic chemotherapy. Scientific evidence supports the effectiveness of probiotics in managing dysbiosis associated with intestinal mucositis. It is known that tryptophan metabolism is a regulatory component in the multifactorial phenomenon of mucosal homeostasis. In the face of that, we aimed to investigate if oral administration of Weissella paramesenteroides WpK4, a probiotic candidate strain, has a protective effect in a murine model of intestinal mucositis induced by 5-fluorouracil (5-FU) and if tryptophan metabolism plays any role in this effect. Gavage with viable cells of W. paramesenteroides WpK4 increased intestinal mucus production, regeneration of villi, as well as control of dysbiosis in mice submitted to 5-FU chemotherapy, and resulted in 100% survival, unlike the control saline-treated group, which resulted in 60% survival of mice after mucositis induction. Weissella paramesenteroides WpK4 genome harbors sequences encoding enzymes for tryptophan production and catabolism and can synthesize tryptophan, tryptamine, and indole acetic acid in vitro. Besides, oral administration of WpK4 induced increased expression of molecules involved in tryptophan metabolism in mouse ileum and serum. Notably, simultaneous treatment with alfa-naphthoflavone, an aryl hydrocarbon receptor (AhR) inhibitor, abolished the protective effects exerted by W. paramesenteroides Wpk4, as manifested by a significant decline in body weight, suggesting that treatment with the probiotic strain modulates AhR activation. Our results suggest that tryptophan metabolism is potentially involved in the protective effects caused by oral administration of W. paramesenteroides WpK4 to mice during gut inflammatory conditions induced by 5-FU.
Collapse
Affiliation(s)
- Gabriele Moreira Guimarães
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Karen Costa
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - César da Silva Santana Moura
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Sarah Elisa Diniz Moreira
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Joana Mozer Marchiori
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Anna Clara Paiva de Menezes Santos
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Rafaela Ribeiro Alvares Batista
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
- Center for Drug Research and Development, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Celso Martins Queiroz-Junior
- Center for Drug Research and Development, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Juliana Divina Almeida Raposo
- Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Álvaro Cantini Nunes
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Caio Tavares Fagundes
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil
- Center for Drug Research and Development, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Elisabeth Neumann
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, 31270-901, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Lin J, Xiao D, Wu M, Chen X, Xu Q, Wang S, Zang L. Pleiotropic effects of Ebony on pigmentation and development in the Asian multi-coloured ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae). INSECT MOLECULAR BIOLOGY 2024. [PMID: 39513325 DOI: 10.1111/imb.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Melanin plays a pivotal role in insect body pigmentation, significantly contributing to their adaptation to diverse biotic and abiotic environmental challenges. Several genes involved in insect melanin synthesis showed pleiotropic effects on insect development and reproduction. Among these, the N-β-alanyl dopamine synthetase gene (Ebony) is integral to the pigmentation process. However, the full spectrum of its pleiotropic impacts is not yet thoroughly understood. In this study, we identified and characterised the HaEbony gene in the Asian multi-coloured ladybird beetle (Harmonia axyridis) and found that HaEbony gene is a conserved gene within the Coleoptera order. We aimed to further explore the multiple roles of HaEbony in the physiology and behaviour in H. axyridis. The CRISPR/Cas9 system was applied to generate multiple HaEbony knockout allele (HaEbony+/-), showing nucleotide deletion in the G0 and G1 generations. Remarkably, the resultant HaEbony+/- mutants consistently displayed darker pigmentation than their wild-type counterparts across larval, pupal and adult stages. Furthermore, these HaEbony+/- individuals (G0) demonstrated an enhanced predatory efficiency, evidenced by a higher number of aphids consumed compared to the wild type. A significant finding was the reduced egg hatchability in both G0 and G1 generations of the HaEbony+/- group, highlighting a potential reproductive fitness cost associated with HaEbony deficiency. In conclusion, our study not only sheds light on the multifaceted roles of HaEbony in H. axyridis but also highlights the potential of employing CRISPR/Cas9-targeted modifications of the Ebony gene. Such genetic interventions could enhance the environmental adaptability and predatory efficacy of ladybirds, presenting a novel strategy in biological control application.
Collapse
Affiliation(s)
- Jing Lin
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Da Xiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengmeng Wu
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xu Chen
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Qingxuan Xu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Su Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Liansheng Zang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Tan Y, Cao Y, Mou F, Liu B, Wu H, Zou S, Ai L, Sui S. Transcriptome Profiling of Two Camellia japonica Cultivars with Different Heat Tolerance Reveals Heat Stress Response Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:3089. [PMID: 39520009 PMCID: PMC11548091 DOI: 10.3390/plants13213089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Camellia (Camellia japonica) is a semi-shaded plant that is highly vulnerable to heat stress. To investigate the mechanisms underlying heat stress in C. japonica, two C. japonica cultivars, "Xiaotaohong" and "Zhuapolian", which exhibit significant differences in heat tolerance, were selected from four common cultivars. The selection methods included phenotypic observations and physiological index detection, including relative electric conductivity (REC), malondialdehyde (MDA) content, superoxide dismutase (SOD) enzyme activity, relative water content (RWC), and chlorophyll content. RNA-seq analysis yielded 980 million reads and identified 68,455 differentially expressed genes (DEGs) in the two C. japonica cultivars during heat stress compared to the control samples. Totals of 12,565 and 16,046 DEGs were differentially expressed at 16 h and 32 h, respectively, in "Xiaotaohong" during heat stress. In "Zhuapolian", 40,280 and 37,539 DEGs were found at 16 h and 32 h, respectively. KEGG enrichment analysis revealed that both cultivars were enriched in the "plant hormone signal transduction" and "circadian rhythm" pathways at two stages, indicating the critical role these pathways play in the heat stress response. The differences in the tolerance between the two cultivars are likely linked to pathways such as "plant hormone signal transduction", "photosynthesis", and "circadian rhythm". Some members of heat shock proteins (HSPs) are associated with the heat stress response. It is speculated that transcription factor families contributing to the tolerance differences include AP2/ERF, C3H, bHLH, bZIP, and MYB-related with a small number of heat shock factors (HSFs) also induced by the stress. In conclusion, these results reveal the changes in the physiological indices and molecular networks of two C. japonica cultivars under heat stress. This study lays the foundation for the breeding of superior heat-resistant C. japonica cultivars and for further molecular research.
Collapse
Affiliation(s)
- Yue Tan
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing 400715, China; (Y.T.); (S.Z.)
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (Y.C.); (F.M.); (B.L.); (H.W.)
| | - Yinzhu Cao
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (Y.C.); (F.M.); (B.L.); (H.W.)
| | - Fenglian Mou
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (Y.C.); (F.M.); (B.L.); (H.W.)
| | - Bin Liu
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (Y.C.); (F.M.); (B.L.); (H.W.)
| | - Huafeng Wu
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (Y.C.); (F.M.); (B.L.); (H.W.)
| | - Shihui Zou
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing 400715, China; (Y.T.); (S.Z.)
| | - Lijiao Ai
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing 400715, China; (Y.T.); (S.Z.)
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (Y.C.); (F.M.); (B.L.); (H.W.)
| |
Collapse
|
4
|
Freitas ADS, Barroso FAL, Campos GM, Américo MF, Viegas RCDS, Gomes GC, Vital KD, Fernandes SOA, Carvalho RDDO, Jardin J, Miranda APGDS, Ferreira E, Martins FS, Laguna JG, Jan G, Azevedo V, de Jesus LCL. Exploring the anti-inflammatory effects of postbiotic proteins from Lactobacillus delbrueckii CIDCA 133 on inflammatory bowel disease model. Int J Biol Macromol 2024; 277:134216. [PMID: 39069058 DOI: 10.1016/j.ijbiomac.2024.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice. This postbiotic protein fraction reduced the disease activity index and prevented colon shortening in mice. Furthermore, histological analysis revealed colitis prevention with reduced inflammatory cell infiltration into the colon mucosa. Postbiotic consumption also induced an immunomodulatory profile in colitic mice, as evidenced by both mRNA transcript levels (Tlr2, Nfkb1, Nlpr3, Tnf, and Il6) and cytokines concentration (IL1β, TGFβ, and IL10). Additionally, it enhanced the levels of secretory IgA, upregulated the transcript levels of tight junction proteins (Hp and F11r), and improved paracellular intestinal permeability. More interestingly, the consumption of postbiotic proteins modulated the gut microbiota (Bacteroides, Arkkemansia, Dorea, and Oscillospira). Pearson correlation analysis indicated that IL10 and IL1β levels were positively associated with Bacteroides and Arkkemansia_Lactobacillus abundance. Our study reveals that CIDCA 133-derived proteins possess anti-inflammatory properties in colonic inflammation.
Collapse
Affiliation(s)
- Andria Dos Santos Freitas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gabriela Munis Campos
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferrary Américo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gabriel Camargos Gomes
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Kátia Duarte Vital
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Enio Ferreira
- Federal University of Minas Gerais, Department of General Pathology, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Guimarães Laguna
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Vasco Azevedo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| | - Luís Cláudio Lima de Jesus
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Lloren KKS, Sivasankar C, Lee JH. Comparative immunogenic and immunoprotective activities of PCV2d Cap and Rep antigens delivered by an efficient eukaryotic expression system engineered into a Salmonella vaccine vector. Vet Microbiol 2024; 295:110151. [PMID: 38870752 DOI: 10.1016/j.vetmic.2024.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Porcine circovirus type 2 (PCV2) stands as a predominant etiological agent in porcine circovirus-associated diseases. To manage the spread of the disease, it is necessary to develop a next-generation vaccine expressing PCV2 antigens that target the prevailing genotype such as PCV2d. A bacterial-mediated vaccine delivery by live-attenuated Salmonella has attracted interest for its low-cost production and highly effective vaccine delivery. Thus, in this study, we utilized the advantages of the Salmonella-mediated vaccine delivery by cloning PCV2d cap and rep into a eukaryotic expression plasmid pJHL204 and electroporation into an engineered live-attenuated Salmonella Typhimurium JOL2500 (Δlon, ΔcpxR, ΔsifA, Δasd). The eukaryotic antigen expression by JOL2995 (p204:cap) and JOL2996 (p204:rep) was confirmed in vitro and in vivo which showed efficient antigen delivery. Furthermore, vaccination of mice model with the vaccine candidates elicited humoral and cell-mediated immune responses as depicted by high levels of PCV2-specific antibodies, CD4+ and CD8+ T cells, and neutralizing antibodies, especially by JOL2995 (p204:cap) which correlated with the significant decrease in the viral load in PCV2d-challenged mice. Interestingly, JOL2996 (p204:rep) may not have elicited high levels of neutralizing antibodies and protective efficacy, but it elicited considerably higher cell-mediated immune responses. This study demonstrated Salmonella-mediated vaccine delivery system coupled with the eukaryotic expression vector can efficiently deliver and express the target PCV2d antigens for strong induction of immune response and protective efficacy in mice model, further supporting the potential application of the Salmonella-mediated vaccine delivery system as an effective novel approach in vaccine strategies for PCV2d.
Collapse
Affiliation(s)
- Khristine Kaith S Lloren
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea.
| |
Collapse
|
6
|
Ma Q, Zhong S, Ma T, Yue Y, Zou S, Sui S, Ai L, Guo Y. Transcriptome Analysis Reveals That FvPAP1 Genes Are Related to the Prolongation of Red-Leaf Period in Ficus virens. Curr Issues Mol Biol 2024; 46:5724-5743. [PMID: 38921014 PMCID: PMC11202158 DOI: 10.3390/cimb46060343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Ficus virens is a deciduous tree that is highly valuable both economically and medicinally. Like other plants with 'red young leaves', the red-leaf period of most F. virens trees lasts only a few days, and the red leaves have little ornamental value. However, in recent years, some lines of F. virens with bright red young leaves and a prolonged red-leaf period have been utilized for urban greening. To explore the mechanism of the different lengths of the duration of F. virens leaves, we analyzed the physiology and changes in gene expression during the development of two varieties of leaves. The detection of anthocyanin in different developmental stages of the F. virens leaves showed that the changes in color of the red leaves of F. virens were primarily caused by the change in anthocyanin content. A transcriptome analysis showed that the expression of genes related to the biosynthesis of anthocyanin changed significantly during the development of leaves. A MYB gene FvPAP1, which was consistent with the change in anthocyanin content, was identified. A real-time quantitative reverse transcription PCR analysis and heterologous expression transgenic studies showed that FvPAP1 promoted the biosynthesis of anthocyanins. The difference in the expression of FvPAP1 in time and intensity in the young leaves may be the reason for the difference in the duration of the red-leaf period in different lines of F. virens. A sequence analysis showed that the cDNA sequence of FvPAP1 was polymorphic, and possible reasons were discussed. These results can provide insight for similar studies on the mechanism of the formation of red coloring in other woody plant leaves and provide molecular targets to breed new materials with more prolonged red-leaf periods in F. virens.
Collapse
Affiliation(s)
- Qingchao Ma
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing 400715, China; (Q.M.)
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| | - Shuhua Zhong
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| | - Tianci Ma
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| | - Yajie Yue
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| | - Shihui Zou
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing 400715, China; (Q.M.)
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| | - Lijiao Ai
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing 400715, China; (Q.M.)
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| |
Collapse
|
7
|
de Jesus LCL, Freitas ADS, Dutra JDCF, Campos GM, Américo MF, Laguna JG, Dornelas EG, Carvalho RDDO, Vital KD, Fernandes SOA, Cardoso VN, de Oliveira JS, de Oliveira MFA, Faria AMC, Ferreira E, Souza RDO, Martins FS, Barroso FAL, Azevedo V. Lactobacillus delbrueckii CIDCA 133 fermented milk modulates inflammation and gut microbiota to alleviate acute colitis. Food Res Int 2024; 186:114322. [PMID: 38729712 DOI: 10.1016/j.foodres.2024.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-β-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.
Collapse
Affiliation(s)
- Luís Cláudio Lima de Jesus
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Andria Dos Santos Freitas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Joyce da Cruz Ferraz Dutra
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Munis Campos
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferrary Américo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Guimarães Laguna
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Evandro Gonçalves Dornelas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Kátia Duarte Vital
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | | | - Valbert Nascimento Cardoso
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil Silvano de Oliveira
- Federal University of Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ana Maria Caetano Faria
- Federal University of Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Minas Gerais, Brazil
| | - Enio Ferreira
- Federal University of Minas Gerais, Department of General Pathology, Belo Horizonte, Minas Gerais, Brazil
| | - Ramon de Oliveira Souza
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil; Ezequiel Dias Foundation, Research and Development Board, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | | | - Vasco Azevedo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Li X, Wang M, Feng K, Sun H, Tang F. The Function of Termicin from Odontotermes formosanus (Shiraki) in the Defense against Bacillus thuringiensis (Bt) and Beauveria bassiana (Bb) Infection. INSECTS 2024; 15:360. [PMID: 38786916 PMCID: PMC11122213 DOI: 10.3390/insects15050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Odontotermes formosanus (Shiraki) is a subterranean termite species known for causing severe damage to trees and structures such as dams. During the synergistic evolution of O. formosanus with pathogenic bacteria, the termite has developed a robust innate immunity. Termicin is a crucial antimicrobial peptide in termites, significantly contributing to the defense against external infections. Building upon the successful construction and expression of the dsRNA-HT115 engineering strains of dsOftermicin1 and dsOftermicin2 in our laboratory, this work employs the ultrasonic breaking method to establish an inactivated dsOftermicins-HT115 technological system capable of producing a substantial quantity of dsRNA. This approach also addresses the limitation of transgenic strains which cannot be directly applied. Treatment of O. formosanus with dsOftermicins produced by this method could enhance the virulence of both Bt and Bb to the termites. This study laid the theoretical groundwork for the development of novel termite immunosuppressants and for the advancement and application of termite biological control strategies.
Collapse
Affiliation(s)
- Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.L.); (M.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.L.); (M.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.L.); (M.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Sun
- Jiangsu Province Rural Water Conservancy Science and Technology Development Center, Nanjing 210029, China;
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.L.); (M.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Vital KD, Pires LO, Gallotti B, Silva JL, Lima de Jesus LC, Alvarez-Leite JI, Ferreira Ê, de Carvalho Azevedo VA, Santos Martins F, Nascimento Cardoso V, Antunes Fernandes SO. Atorvastatin attenuates intestinal mucositis induced by 5-fluorouracil in mice by modulating the epithelial barrier and inflammatory response. J Chemother 2024:1-18. [PMID: 38711347 DOI: 10.1080/1120009x.2024.2345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Chemotherapy-induced intestinal mucositis is a major side effect of cancer treatment. Statins are 3-hydroxy-3-methyl glutaryl coenzyme reductase inhibitors used to treat hypercholesterolemia and atherosclerotic diseases. Recent studies have demonstrated that atorvastatin (ATV) has antioxidant, anti-inflammatory, and resulting from the regulation of different molecular pathways. In the present study, we investigated the effects of ATV on intestinal homeostasis in 5-fluorouracil (5-FU)-induced mucositis. Our results showed that ATV protected the intestinal mucosa from epithelial damage caused by 5-FU mainly due to inflammatory infiltrate and intestinal permeability reduction, downregulation of inflammatory markers, such as Tlr4, MyD88, NF-κB, Tnf-a, Il1β, and Il6 dose-dependent. ATV also improved epithelial barrier function by upregulating the mRNA transcript levels of mucin 2 (MUC2), and ZO-1 and occludin tight junction proteins. The results suggest that the ATV anti-inflammatory and protective effects on 5-FU-induced mice mucositis involve the inhibition of the TLR4/MYD88/NPRL3/NF-κB, iNos, and caspase 3.
Collapse
Affiliation(s)
- Kátia Duarte Vital
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Octavio Pires
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Gallotti
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Janayne Luihan Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luís Cláudio Lima de Jesus
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ênio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Pereira IAG, Freitas CS, Câmara RSB, Jesus MM, Lage DP, Tavares GSV, Soyer TG, Ramos FF, Soares NP, Santiago SS, Martins VT, Vale DL, Pimenta BL, Ludolf F, Oliveira FM, Duarte MC, Chávez-Fumagalli MA, Costa AV, Gonçalves DU, Roatt BM, Teixeira RR, Coelho EAF. Treatment using vanillin-derived synthetic molecules incorporated into polymeric micelles is effective against infection caused by Leishmania amazonensis species. Exp Parasitol 2024; 260:108743. [PMID: 38513973 DOI: 10.1016/j.exppara.2024.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Treatment against leishmaniasis presents problems, mainly due to the toxicity of the drugs, high cost, and the emergence of resistant strains. A previous study showed that two vanillin-derived synthetic molecules, 3s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], presented antileishmanial activity against Leishmania infantum, L. amazonensis, and L. braziliensis species. In the present work, 3s and 3t were evaluated to treat L. amazonensis-infected mice. Molecules were used pure or incorporated into Poloxamer 407-based micelles. In addition, amphotericin B (AmpB) and its liposomal formulation, Ambisome®, were used as control. Animals received the treatment and, one and 30 days after, they were euthanized to evaluate immunological, parasitological, and biochemical parameters. Results showed that the micellar compositions (3s/Mic and 3t/Mic) induced significant reductions in the lesion mean diameter and parasite load in the infected tissue and distinct organs, as well as a specific and significant antileishmanial Th1-type immune response, which was based on significantly higher levels of IFN-γ, IL-12, nitrite, and IgG2a isotype antibodies. Drug controls showed also antileishmanial action; although 3s/Mic and 3t/Mic have presented better and more significant parasitological and immunological data, which were based on significantly higher IFN-γ production and lower parasite burden in treated animals. In addition, significantly lower levels of urea, creatinine, alanine transaminase, and aspartate transaminase were found in mice treated with 3s/Mic and 3t/Mic, when compared to the others. In conclusion, results suggest that 3s/Mic and 3t/Mic could be considered as therapeutic candidates to treat against L. amazonensis infection.
Collapse
Affiliation(s)
- Isabela A G Pereira
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S B Câmara
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo M Jesus
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Tauane G Soyer
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Nícia P Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas Em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Samira S Santiago
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs, S/N, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Breno L Pimenta
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação Em Ciências da Saúde, Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, 30130-110, Minas Gerais, Brazil
| | - Fabrício M Oliveira
- Instituto Federal de Educação de Minas Gerais, Rua Afonso Sardinha, 90, Bairro Pioneiros, 36420-000, Ouro Branco, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, Peru
| | - Adilson V Costa
- Departamento de Química e Física, Universidade Federal Do Espírito Santo, Alto Universitário, S/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Denise U Gonçalves
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas Em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Róbson R Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs, S/N, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Freitas CS, Pereira IAG, Lage DP, Vale DL, Pimenta BL, Soares NP, Santiago SS, Martins VT, Câmara RSB, Jesus MM, Tavares GSV, Ramos FF, Ludolf F, Magalhães LND, Oliveira FM, Duarte MC, Chávez-Fumagalli MA, Costa AV, Roatt BM, Teixeira RR, Coelho EAF. New synthetic molecules incorporated into polymeric micelles used for treatment against visceral leishmaniasis. Cytokine 2024; 177:156543. [PMID: 38373365 DOI: 10.1016/j.cyto.2024.156543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Treatment against visceral leishmaniasis (VL) presents problems, mainly related to drug toxicity, high cost and/or by emergence of resistant strains. In the present study, two vanillin synthetic derivatives, 3 s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3 t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], were evaluated as therapeutic candidates in a murine model against Leishmania infantum infection. Molecules were used pure (3 s and 3 t) or incorporated into Poloxamer 407-based micelles (3 s/M and 3 t/M) in the infected animals, which also received amphotericin B (AmpB) or Ambisome® as control. Results showed that 3 s/M and 3 t/M compositions induced a Th1-type immune response in treated animals, with higher levels of IFN-γ, IL-2, TNF-α, IL-12, nitrite, and IgG2a antibodies. Animals presented also low toxicity and significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, as compared as control groups mice, with the evaluations performed one and 30 days after the application of the therapeutics. In conclusion, preliminary data suggest that 3 s/M and 3 t/M could be considered for future studies as therapeutic agents against VL.
Collapse
Affiliation(s)
- Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Breno L Pimenta
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Nícia P Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Samira S Santiago
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs, S/N, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S B Câmara
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo M Jesus
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte 30130-110, Minas Gerais, Brazil
| | - Lícia N D Magalhães
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Fabrício M Oliveira
- Instituto Federal de Educação de Minas Gerais, Rua Afonso Sardinha, 90, Bairro Pioneiros, 36420-000 Ouro Branco, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, Peru
| | - Adilson V Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Róbson R Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs, S/N, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Kalyanasundaram A, Henry BJ, Henry C, Leach J, Kendall RJ. Selection of suitable reference genes for normalization of RT-qPCR in three tissues of Northern bobwhite (Colinus virginianus) infected with eyeworm (Oxyspirura petrowi). Mol Biol Rep 2024; 51:483. [PMID: 38578540 DOI: 10.1007/s11033-024-09401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The Northern bobwhite (Colinus virginianus) is an economically important, and popular game bird in North America. Northern bobwhites have experiencing declines of > 3.5% annually in recent decades due to several factors. The eyeworm Oxyspirura petrowi is a nematode parasite frequently found in the eyes of bobwhites. Although reported frequently in wild bobwhites, there is no research to understand the host-parasite mechanism. Hence, it is important to investigate mechanisms of eyeworm invasion and immune modulation in bobwhite. Cytokine gene expression using RT-PCR is widely used to identify the innate immune response of a host to an infection. METHODOLOGY In this study, we evaluated ten reference genes (HMBS, RPL19, RPL32, RPS7, RPS8, TATA, SDHA, YWHAZ, GAPDH, and ACTB) for their stability across three tissues (liver, spleen, and caecal tonsils) of control and O. petrowi infected Northern bobwhites. Primer efficiency and reference genes stability were assessed using GeNorm, NormFinder, and BestKeeper. RESULTS Expression of these reference genes with respect to O. petrowi infection in bobwhites showed RPL32 and HMBS were the most stable genes in the liver, HMBS and SDHA were the most stable genes in the spleen, and HMBS and YWHAZ were equally stable reference genes in the caecal tonsils. CONCLUSION Based on the geometric mean of all three analyses, our results indicate that the combination of RPL32 and HMBS for the liver, HMBS and SDHA for the spleen, and YWHAZ and HMBS for caecal tonsils might be used as reference genes for normalization in gene expression investigations on Northern bobwhites.
Collapse
Affiliation(s)
| | - Brett J Henry
- The Wildlife Toxicology Laboratory, Texas Tech University, Lubbock, TX, 79409-3290, USA
| | - Cassandra Henry
- The Wildlife Toxicology Laboratory, Texas Tech University, Lubbock, TX, 79409-3290, USA
| | - Jeremiah Leach
- The Wildlife Toxicology Laboratory, Texas Tech University, Lubbock, TX, 79409-3290, USA
| | - Ronald J Kendall
- The Wildlife Toxicology Laboratory, Texas Tech University, Lubbock, TX, 79409-3290, USA.
| |
Collapse
|
13
|
Laguna JG, Freitas ADS, Barroso FAL, De Jesus LCL, De Vasconcelos OAGG, Quaresma LS, Américo MF, Campos GM, Glória RDA, Dutra JDCF, Da Silva TF, Vital KD, Fernandes SO, Souza RO, Martins FDS, Ferreira E, Santos TM, Birbrair A, De Oliveira MFA, Faria AMC, Carvalho RDDO, Venanzi FM, Le Loir Y, Jan G, Guédon É, Azevedo VADC. Recombinant probiotic Lactococcus lactis delivering P62 mitigates moderate colitis in mice. Front Microbiol 2024; 15:1309160. [PMID: 38680913 PMCID: PMC11047439 DOI: 10.3389/fmicb.2024.1309160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction and objective p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.
Collapse
Affiliation(s)
- Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Luís Cláudio Lima De Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael de Assis Glória
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando Da Silva
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Duarte Vital
- Department of Clinical Analysis and Toxicology, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Simone O. Fernandes
- Department of Clinical Analysis and Toxicology, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Ramon O. Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Enio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Túlio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Franco Maria Venanzi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | | | | | | | | |
Collapse
|
14
|
Messina DN, Peralta ED, Acosta CG. Complex alterations in inflammatory pain and analgesic sensitivity in young and ageing female rats: involvement of ASIC3 and Nav1.8 in primary sensory neurons. Inflamm Res 2024; 73:669-691. [PMID: 38483556 DOI: 10.1007/s00011-024-01862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE AND DESIGN Our aim was to determine an age-dependent role of Nav1.8 and ASIC3 in dorsal root ganglion (DRG) neurons in a rat pre-clinical model of long-term inflammatory pain. METHODS We compared 6 and 24 months-old female Wistar rats after cutaneous inflammation. We used behavioral pain assessments over time, qPCR, quantitative immunohistochemistry, selective pharmacological manipulation, ELISA and in vitro treatment with cytokines. RESULTS Older rats exhibited delayed recovery from mechanical allodynia and earlier onset of spontaneous pain than younger rats after inflammation. Moreover, the expression patterns of Nav1.8 and ASIC3 were time and age-dependent and ASIC3 levels remained elevated only in aged rats. In vivo, selective blockade of Nav1.8 with A803467 or of ASIC3 with APETx2 alleviated mechanical and cold allodynia and also spontaneous pain in both age groups with slightly different potency. Furthermore, in vitro IL-1β up-regulated Nav1.8 expression in DRG neurons cultured from young but not old rats. We also found that while TNF-α up-regulated ASIC3 expression in both age groups, IL-6 and IL-1β had this effect only on young and aged neurons, respectively. CONCLUSION Inflammation-associated mechanical allodynia and spontaneous pain in the elderly can be more effectively treated by inhibiting ASIC3 than Nav1.8.
Collapse
Affiliation(s)
- Diego N Messina
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina
| | - Emanuel D Peralta
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina
| | - Cristian G Acosta
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina.
| |
Collapse
|
15
|
Souza JLN, Lopes CDA, Leal-Silva T, Vieira-Santos F, Amorim CCO, Padrão LDLS, Antunes Porto AR, Fujiwara RT, Russo RC, Bueno LL. Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in different tissues from mice infected by Ascaris suum. Microb Pathog 2024; 189:106567. [PMID: 38364877 DOI: 10.1016/j.micpath.2024.106567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Human ascariasis is the most prevalent helminth infection, affecting 445 million people worldwide. To better understand the impact of the immune system on the pathophysiology of individuals infected with Ascaris suum, mice have been used as experimental models. The RT-qPCR technique is a critical auxiliary tool of investigation used to quantify mRNA levels. However, proper normalization using reference genes is essential to ensure reliable outcomes to avoid analytical errors and false results. Despite the importance of reference genes for experimental A. suum infection studies, no specific reference genes have been identified yet. Therefore, we conducted a study to assess five potential reference genes (GAPDH, 18s, ACTB, B2M, and HPRT1) in different tissues (liver, lungs, small and large intestines) affected by A. suum larval migration in C57BL/6j mice. Tissue collection was carried out to analyze parasite burden and confirm the presence of larvae during the peak of migration in each tissue. Upon confirmation, we analyzed different genes in the tissues and found no common gene with stable expression. Our results highlight the importance of analyzing different genes and using different software programs to ensure reliable relative expression results. Based on our findings, B2M was ranked as the ideal reference gene for the liver, while 18S was the most stable gene in the lung and small intestine. ACTB, or a combination of ACTB with GAPDH, was deemed suitable as reference genes for the large intestine due to their stable expression and less variation between the control and infected groups. To further demonstrate the impact of using different reference genes, we normalized the expression of a chemokine gene (CXCL9) in all tissues. Significant differences in CXCL9 expression levels were observed between different groups in all tissues except for the large intestine. This underscores the importance of selecting appropriate reference genes to avoid overestimating target gene expression levels and encountering normalization-related issues that can lead to false results. In conclusion, our study highlights the significance of using reliable reference genes for accurate RT-qPCR analysis, especially in the context of A. suum infection studies in different tissues. Proper normalization is crucial to ensure the validity of gene expression data and avoid potential pitfalls in interpreting results.
Collapse
Affiliation(s)
- Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Leal-Silva
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Lima Silva Padrão
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Rafaela Antunes Porto
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
16
|
Zhang L, Tu H, Tang F. Cloning of three epsilon-class glutathione S-transferase genes from Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) and their response to tannic acid. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:172-179. [PMID: 38327098 DOI: 10.1017/s0007485323000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Micromelalopha troglodyta (Graeser) is an important pest of poplar in China, and glutathione S-transferase (GST) is an important detoxifying enzyme in M. troglodyta. In this paper, three full-length GST genes from M. troglodyta were cloned and identified. These GST genes all belonged to the epsilon class (MtGSTe1, MtGSTe2, and MtGSTe3). Furthermore, the expression of these three MtGSTe genes in different tissues, including midguts and fat bodies, and the MtGSTe expression in association with different concentrations of tannic acid, including 0.001, 0.01, 0.1, 1, and 10 mg ml-1, were analysed in detail. The results showed that the expression levels of MtGSTe1, MtGSTe2, and MtGSTe3 were all the highest in the fourth instar larvae; the expression levels of MtGSTe1 and MtGSTe3 were the highest in fat bodies, while the expression level of MtGSTe2 was the highest in midguts. Furthermore, the expression of MtGSTe mRNA was induced by tannic acid in M. troglodyta. These studies were helpful to clarify the interaction between plant secondary substances and herbivorous insects at a deep level and provided a theoretical foundation for controlling M. troglodyta.
Collapse
Affiliation(s)
- Ling Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Huizhen Tu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
17
|
Zhang P, Chen S, Chen S, Zhu Y, Lin Y, Xu X, Liu Z, Zou S. Selection and Validation of qRT-PCR Internal Reference Genes to Study Flower Color Formation in Camellia impressinervis. Int J Mol Sci 2024; 25:3029. [PMID: 38474274 DOI: 10.3390/ijms25053029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Real-time quantitative PCR (qRT-PCR) is a pivotal technique for gene expression analysis. To ensure reliable and accurate results, the internal reference genes must exhibit stable expression across varied experimental conditions. Currently, no internal reference genes for Camellia impressinervis have been established. This study aimed to identify stable internal reference genes from eight candidates derived from different developmental stages of C. impressinervis flowers. We employed geNorm, NormFinder, and BestKeeper to evaluate the expression stability of these candidates, which was followed by a comprehensive stability analysis. The results indicated that CiTUB, a tubulin gene, exhibited the most stable expression among the eight reference gene candidates in the petals. Subsequently, CiTUB was utilized as an internal reference for the qRT-PCR analysis of six genes implicated in the petal pigment synthesis pathway of C. impressinervis. The qRT-PCR results were corroborated by transcriptome sequencing data, affirming the stability and suitability of CiTUB as a reference gene. This study marks the first identification of stable internal reference genes within the entire genome of C. impressinervis, establishing a foundation for future gene expression and functional studies. Identifying such stable reference genes is crucial for advancing molecular research on C. impressinervis.
Collapse
Affiliation(s)
- Peilan Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuying Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyu Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanming Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqing Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Sivasankar C, Lloren KKS, Lee JH. Deciphering the Interrelationship of arnT Involved in Lipid-A Alteration with the Virulence of Salmonella Typhimurium. Int J Mol Sci 2024; 25:2760. [PMID: 38474006 DOI: 10.3390/ijms25052760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The lipopolysaccharide (LPS) that resides on the outermost surface and protects Gram-negative bacteria from host defenses is one of the key components leading to Salmonella infection, particularly the endotoxic lipid A domain of LPS. Lipid A modifications have been associated with several genes such as the arnT that encodes 4-amino-4-deoxy-L-arabinose transferase, which can be critical for bacteria to resist cationic antimicrobial peptides and interfere with host immune recognition. However, the association of arnT with virulence is not completely understood. Thus, this study aimed to elucidate the interrelationship of the major lipid A modification gene arnT with Salmonella Typhimurium virulence. We observed that the arnT-deficient S. Typhimurium (JOL2943), compared to the wild type (JOL401), displayed a significant decrease in several virulence phenotypes such as polymyxin B resistance, intracellular survival, swarming, and biofilm and extracellular polymeric substance (EPS) production. Interestingly, the cell-surface hydrophobicity, adhesion, and invasion characteristics remained unaffected. Additionally, LPS isolated from the mutant induced notably lower levels of endotoxicity-related cytokines in RAW and Hela cells and mice, particularly IL-1β with a nine-fold decrease, than WT. In terms of in vivo colonization, JOL2943 showed diminished presence in internal organs such as the spleen and liver by more than 60%, while ileal infectivity remained similar to JOL401. Overall, the arnT deletion rendered the strain less virulent, with low endotoxicity, maintained gut infectivity, and reduced colonization in internal organs. With these ideal characteristics, it can be further explored as a potential attenuated Salmonella strain for therapeutics or vaccine delivery systems.
Collapse
Affiliation(s)
- Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
19
|
Chen F, Du H, Tao M, Xu L, Wang C, White JC, Wang Z, Xing B. Nitrogen-Doped Carbon Dots Facilitate CRISPR/Cas for Reducing Antibiotic Resistance Genes in the Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3397-3405. [PMID: 38335532 DOI: 10.1021/acs.jafc.3c08558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The continued acquisition and propagation of antibiotic resistance genes (ARGs) in the environment confound efforts to manage the global rise in antibiotic resistance. Here, CRISPR-Cas9/sgRNAs carried by nitrogen-doped carbon dots (NCDs) were developed to precisely target multi-"high-risk" ARGs (tet, cat, and aph(3')-Ia) commonly detected in the environment. NCDs facilitated the delivery of Cas9/sgRNAs to Escherichia coli (E. coli) without cytotoxicity, achieving sustained elimination of target ARGs. The elimination was optimized using different weight ratios of NCDs and Cas9 protein (1:1, 1:20, and 1:40), and Cas9/multi sgRNAs were designed to achieve multi-cleavage of ARGs in either a single strain or mixed populations. Importantly, NCDs successfully facilitated Cas9/multi sgRNAs for resensitization of antibiotic-resistant bacteria in soil (approaching 50%), whereas Cas9/multi sgRNAs alone were inactivated in the complex environment. This work highlights the potential of a fast and precise strategy to minimize the reservoir of antibiotic resistance in agricultural system.
Collapse
Affiliation(s)
- Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Hao Du
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
20
|
Shao W, Zhang X, Zhou Z, Ma Y, Chu D, Wang L, Yang Y, Du L, Du Y, Du J, Zhao Q. Genome- and transcriptome-wide identification of trehalose-6-phosphate phosphatases (TPP) gene family and their expression patterns under abiotic stress and exogenous trehalose in soybean. BMC PLANT BIOLOGY 2023; 23:641. [PMID: 38082382 PMCID: PMC10714469 DOI: 10.1186/s12870-023-04652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Trehalose-6-phosphate phosphatase (TPP) is an essential enzyme catalyzing trehalose synthesis, an important regulatory factor for plant development and stress response in higher plants. However, the TPP gene family in soybean has not been reported. RESULTS A comprehensive analysis of the TPP gene family identified 18 GmTPPs classified into eight groups based on the phylogenetic relationships and the conservation of protein in six monocot and eudicot plants. The closely linked subfamilies had similar motifs and intron/exon numbers. Segmental duplication was the main driving force of soybean GmTPPs expansion. In addition, analysis of the cis-regulatory elements and promoter regions of GmTPPs revealed that GmTPPs regulated the response to several abiotic stresses. Moreover, RNA-seq and qRT-PCR analysis of the tissue-specific GmTPPs under different abiotic stresses revealed that most GmTPPs were associated with response to different stresses, including cold, drought, saline-alkali, and exogenous trehalose. Notably, exogenous trehalose treatment up-regulated the expression of most TPP genes under saline-alkali conditions while increasing the carbohydrate and trehalose levels and reducing reactive oxygen species (ROS) accumulation in soybean sprouts, especially in the saline-alkali tolerant genotype. Furthermore, the interaction network and miRNA target prediction revealed that GmTPPs interacted with abiotic stress response-related transcription factors. CONCLUSIONS The findings in this study lay a foundation for further functional studies on TPP-based breeding to improve soybean development and stress tolerance.
Collapse
Affiliation(s)
- Wenjing Shao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xinlin Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Zhiheng Zhou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yue Ma
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Duo Chu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Lei Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yiming Yang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Lin Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yanli Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Jidao Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| | - Qiang Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| |
Collapse
|
21
|
Park HJ, Choi EA, Choi SM, Choi YK, Lee JI, Jung KC. IL-4/IL-4 Ab complex enhances the accumulation of both antigen-specific and bystander CD8 T cells in mouse lungs infected with influenza A virus. Lab Anim Res 2023; 39:32. [PMID: 38037190 PMCID: PMC10691054 DOI: 10.1186/s42826-023-00183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Unlike conventional T cells, innate and virtual-memory CD8 T cells in naïve mice acquire their memory phenotypes and functions in the absence of antigenic encounters in a cytokine-dependent manner. The relevant cytokines include interleukin-4 (IL-4), type I interferon, and interleukin-15 (IL-15). Moreover, exogenous IL-4 can also induce de novo generation and/or expansion of the virtual-memory CD8 T cell population. In this study, we investigated whether exogenous IL-4 could enhance the immune response to a viral infection. RESULTS In vivo administration of IL-4 and an anti-IL-4 antibody complex (IL-4C) increased CXCR3 expression in both memory and naïve phenotype CD8 T cells in the absence of antigenic stimulation, and protected mice from lethal influenza infection. Flow cytometric analysis of lung-infiltrating immune cells on day 5 after virus infection revealed higher numbers of antigen-specific and bystander CD8 T cells in IL-4C-treated mice than in control mice. In particular, the bystander CD8 T cells were a naïve or evident memory phenotypes. Crucially, an anti-CXCR3 blocking antibody abrogated this IL-4C effect, reflecting that the increased accumulation of CD8 T cells in the lungs after IL-4C treatment is dependent on CXCR3. CONCLUSIONS These data demonstrate that exogenous IL-4C plays a protective role by enhancing CXCR3-dependent migration of CD8 T cells into influenza-infected lungs.
Collapse
Affiliation(s)
- Hi Jung Park
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Eun Ah Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung Min Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Young-Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungcheongbuk-do, 28644, South Korea
| | - Jae Il Lee
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Kyeong Cheon Jung
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
| |
Collapse
|
22
|
Jesus MM, Lage DP, Vale DL, Freitas CS, Pimenta BL, Moreira GJL, Ramos FF, Pereira IAG, Bandeira RS, Ludolf F, Tavares GSV, Galdino AS, Duarte MC, Menezes-Souza D, Chávez-Fumagalli MA, Teixeira AL, Gonçalves DU, Roatt BM, Christodoulides M, Martins VT, Coelho EAF. Immunization with recombinant LiHyp1 protein plus adjuvant is protective against tegumentary leishmaniasis. Parasitol Res 2023; 122:2917-2931. [PMID: 37768367 DOI: 10.1007/s00436-023-07981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Tegumentary leishmaniasis (TL) is the main clinical manifestation of leishmaniasis, and it can cause the infected hosts to self-healing cutaneous lesions until mutilating scars in mucosal membranes, particularly in the nose and throat. The treatment against disease presents problems, and the diagnosis is hampered by variable sensitivity and/or specificity of the tests. In this context, the development of prophylactic vaccines could be considered as a strategy to control the disease. Previously, we showed that the recombinant LiHyp1 protein plus adjuvant protected mice from infection with Leishmania infantum, which causes visceral leishmaniasis. In the present study, we tested whether rLiHyp1 could induce protection against infection with L. amazonensis, a parasite species able to cause TL. We immunized BALB/c mice with rLiHyp1 plus saponin (rLiHyp1/S) or incorporated in micelles (rLiHyp1/M) as adjuvants and performed parasitological and immunological evaluations before and after infection. Results showed that after in vitro stimulation from spleen cell cultures using rLiHyp1 or a Leishmania antigenic extract (SLA), rLiHyp1/S and rLiHyp1/M groups developed a Th1-type immune response, which was characterized by high levels of IFN-γ, IL-2, TNF-α and IL-12 cytokines, nitrite, and IgG2a isotype antibodies when compared to values found in the control (saline, saponin, micelles alone) groups, which showed higher levels of anti-SLA IL-4, IL-10, and IgG1 antibodies before and after challenge. In addition, mice receiving rLiHyp1/S or rLiHyp1/M presented significant reductions in the lesion average diameter and parasite load in the infected tissue and internal organs. Blood samples were collected from healthy subjects and TL patients to obtain PBMC cultures, which were in vitro stimulated with rLiHyp1 or SLA, and results showed higher lymphoproliferation and IFN-γ production after stimulus using rLiHyp1, as compared to values found using SLA. These results suggest that rLiHyp1 plus adjuvant was protective against experimental TL and could also be considered for future studies as a vaccine candidate against human disease.
Collapse
Affiliation(s)
- Marcelo M Jesus
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno L Pimenta
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel J L Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexsandro S Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis, MG, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, Peru
| | - Antônio L Teixeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, USA
| | - Denise U Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, England
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, Brazil.
| |
Collapse
|
23
|
Lloren KKS, Lee JH. Live-Attenuated Salmonella-Based Oral Vaccine Candidates Expressing PCV2d Cap and Rep by Novel Expression Plasmids as a Vaccination Strategy for Mucosal and Systemic Immune Responses against PCV2d. Vaccines (Basel) 2023; 11:1777. [PMID: 38140182 PMCID: PMC10748173 DOI: 10.3390/vaccines11121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Oral vaccines are highly envisaged for veterinary applications due to their convenience and ability to induce protective mucosal immunity as the first line of defense. The present investigation harnessed live-attenuated Salmonella Typhimurium to orally deliver novel expression vector systems containing the Cap and Rep genes from porcine circovirus type 2 (PCV2), a significant swine pathogen. The antigen expression by the vaccine candidates JOL2885 and JOL2886, comprising eukaryotic pJHL204 and pro-eukaryotic expression pJHL270 plasmids, respectively, was confirmed by Western blot and IFA. We evaluated their immunogenicity and protective efficacy through oral vaccination in a mouse model. This approach elicited both mucosal and systemic immunity against PCV2d. Oral administration of the candidates induced PCV2-specific sIgA, serum IgG antibodies, and neutralizing antibodies, resulting in reduced viral loads in the livers and lungs of PCV2d-challenged mice. T-lymphocyte proliferation and flow-cytometry assays confirmed enhanced cellular immune responses after oral inoculation. The synchronized elicitation of both Th1 and Th2 responses was also confirmed by enhanced expression of TNF-α, IFN-γ, IL-4, MHC-I, and MHC-II. Our findings highlight the effectiveness and safety of the constructs with an engineered-attenuated S. Typhimurium, suggesting its potential application as an oral PCV2 vaccine candidate.
Collapse
Affiliation(s)
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| |
Collapse
|
24
|
Lage DP, Martins VT, Vale DL, Freitas CS, Pimenta BL, Moreira GJL, Ramos FF, Pereira IAG, Bandeira RS, de Jesus MM, Ludolf F, Tavares GSV, Chávez-Fumagalli MA, Roatt BM, Christodoulides M, Coelho EAF. The association between rLiHyp1 protein plus adjuvant and amphotericin B is an effective immunotherapy against visceral leishmaniasis in mice. Acta Trop 2023; 246:106986. [PMID: 37453579 DOI: 10.1016/j.actatropica.2023.106986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Treatment of visceral leishmaniasis (VL) is compromised by drug toxicity, high cost and/or the emergence of resistant strains. Though canine vaccines are available, there are no licensed prophylactic human vaccines. One strategy to improve clinical outcome for infected patients is immunotherapy, which associates a chemotherapy that acts directly to reduce parasitism and the administration of an immunogen-adjuvant that activates the host protective Th1-type immune response. In this study, we evaluated an immunotherapy protocol in a murine model by combining recombinant (r)LiHyp1 (a hypothetical amastigote-specific Leishmania protein protective against Leishmania infantum infection), with monophosphoryl-lipid A (MPLA) as adjuvant and amphotericin B (AmpB) as reference antileishmanial drug. We used this protocol to treat L. infantum infected-BALB/c mice, and parasitological, immunological and toxicological evaluations were performed at 1 and 30 days after treatment. Results showed that mice treated with rLiHyp1/MPLA/AmpB presented the lowest parasite burden in all organs evaluated, when both a limiting dilution technique and qPCR were used. In addition, these animals produced higher levels of IFN-γ and IL-12 cytokines and IgG2a isotype antibody, which were associated with lower production of IL-4 and IL-10 and IgG1 isotype. Furthermore, low levels of renal and hepatic damage markers were found in animals treated with rLiHyp1/MPLA/AmpB possibly reflecting the lower parasite load, as compared to the other groups. We conclude that the rLiHyp1/MPLA/AmpB combination could be considered in future studies as an immunotherapy protocol to treat against VL.
Collapse
Affiliation(s)
- Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno L Pimenta
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel J L Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo M de Jesus
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, 04000, Peru
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD England
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
25
|
Argentato PP, Marchesi JAP, Dejani NN, Nakandakare PY, Teles LDFDS, Batista LPR, Leitão MPC, Luzia LA, Ramos ES, Rondó PH. The relationship between obesity-related H19DMR methylation and H19 and IGF2 gene expression on offspring growth and body composition. Front Nutr 2023; 10:1170411. [PMID: 37810933 PMCID: PMC10552537 DOI: 10.3389/fnut.2023.1170411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background and objective Imprinted genes are important for the offspring development. To assess the relationship between obesity-related H19DMR methylation and H19 and IGF2 gene expression and offspring growth and body composition. Methods Thirty-nine overweight/obese and 25 normal weight pregnant women were selected from the "Araraquara Cohort Study" according to their pre-pregnancy BMI. Fetal growth and body composition and newborn growth were assessed, respectively, by ultrasound and anthropometry. The methylation of H19DMR in maternal blood, cord blood, maternal decidua and placental villi tissues was evaluated by methylation-sensitive restriction endonuclease qPCR, and H19 and IGF2 expression by relative real-time PCR quantification. Multiple linear regression models explored the associations of DNA methylation and gene expression with maternal, fetal, and newborn parameters. Results H19DMR was less methylated in maternal blood of the overweight/obese group. There were associations of H19DMR methylation in cord blood with centiles of fetal biparietal diameter (BPD) and abdominal subcutaneous fat thickness and newborn head circumference (HC); H19DMR methylation in maternal decidua with fetal occipitofrontal diameter (OFD), HC, and length; H19DMR methylation in placental villi with fetal OFD, HC and abdominal subcutaneous fat thickness and with newborn HC. H19 expression in maternal decidua was associated with fetal BPD and femur length centiles and in placental villi with fetal OFD and subcutaneous arm fat. IGF2 expression in maternal decidua was associated with fetal BPD and in placental villi with fetal OFD. Conclusion To our knowledge, this is the first study to demonstrate associations of imprinted genes variations at the maternal-fetal interface of the placenta and in cord blood with fetal body composition, supporting the involvement of epigenetic mechanisms in offspring growth and body composition.
Collapse
Affiliation(s)
- Perla Pizzi Argentato
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | | | - Naiara Naiana Dejani
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Liania Alves Luzia
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Ester Silveira Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Patricia Helen Rondó
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Verdiguel-Fernández L, Arredondo-Hernández R, Mejía-Estrada JA, Ortiz A, Verdugo-Rodríguez A, Orduña P, Ponce de León-Rosales S, Calva JJ, López-Vidal Y. Differential expression of biomarkers in saliva related to SARS-CoV-2 infection in patients with mild, moderate and severe COVID-19. BMC Infect Dis 2023; 23:602. [PMID: 37715121 PMCID: PMC10502992 DOI: 10.1186/s12879-023-08573-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Severe COVID-19 is a disease characterized by profound dysregulation of the innate immune system. There is a need to identify highly reliable prognostic biomarkers that can be rapidly assessed in body fluids for early identification of patients at higher risk for hospitalization and/or death. This study aimed to assess whether differential gene expression of immune response molecules and cellular enzymes, detected in saliva samples of COVID-19 patients, occurs according to disease severity staging. METHODS In this cross-sectional study, subjects with a COVID-19 diagnosis were classified as having mild, moderate, or severe disease based on clinical features. Transcripts of genes encoding 6 biomarkers, IL-1β, IL-6, IL-10, C-reactive protein, IDO1 and ACE2, were measured by RT‒qPCR in saliva samples of patients and COVID-19-free individuals. RESULTS The gene expression levels of all 6 biomarkers in saliva were significantly increased in severe disease patients compared to mild/moderate disease patients and healthy controls. A significant strong inverse relationship between oxemia and the level of expression of the 6 biomarkers (Spearman's correlation coefficient between -0.692 and -0.757; p < 0.001) was found. CONCLUSIONS Biomarker gene expression determined in saliva samples still needs to be validated as a potentially valuable predictor of severe clinical outcomes early at the onset of COVID-19 symptoms.
Collapse
Affiliation(s)
- Lázaro Verdiguel-Fernández
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México
| | | | - Jesús Andrés Mejía-Estrada
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México
| | - Adolfo Ortiz
- Departamento de Microbiología E Inmunología, Unidad de Bioseguridad de Brucella, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, CDMX, México
| | - Antonio Verdugo-Rodríguez
- Departamento de Microbiología E Inmunología, Laboratorio de Microbiología Molecular, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, CDMX, México
| | - Patricia Orduña
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, UNAM, CDMX, México
| | | | - Juan José Calva
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", CDMX, México.
| | - Yolanda López-Vidal
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México.
| |
Collapse
|
27
|
Lucas Nascimento Souza J, Cavalcante Silva F, da Silva CG, Maria Fortaleza Neves Bomfim I, Rocha de Medeiros H, Giotto Zaros L. Analysis of the stability of the reference genes GAPDH, SDHA and RPL-19 in sheep from a semi-arid region infected by gastrointestinal nematodes. BMC Vet Res 2023; 19:147. [PMID: 37679739 PMCID: PMC10483723 DOI: 10.1186/s12917-023-03709-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Analyzing the stability of reference genes already described as universal is an important methodology to lead gene expression analysis because different studies have shown that the expression of universal reference genes may vary between experimental treatments. In this sense, the glyceraldehyde 3-phosphate dehydrogenase (GAPDH), Succinate dehydrogenase complex subunit A (SDHA) and Ribosomal Protein L-19 (RPL-19) reference genes (already described in other studies with sheep from different regions, breeds and infectious agents or in organisms evolutionarily close to sheep) were investigated in the abomasum, small and large intestines of resistant and susceptible crossbred sheep groups to gastrointestinal nematode infections in the Semi-arid region in Northeast of Brazil. The animals were naturally infected to determine the resistance or susceptibility status by counting eggs per gram (EPG) of feces from the gastrointestinal tract after 33 weeks of observations of infection evolution. Relative gene expression was performed by RT-qPCR methodology using Sybr green and relative gene expression stability was tested by different software programs such as REST, BestKeeper, geNorm and Normfinder. Our results showed the susceptible animals had increase in egg counts per gram of feces than resistant animals (p < 0.001), and both groups showed a mixed infection by nematodes of the genus Haemonchus, Trichostrongylus, Oesophagostomum and Trichuris. Furthermore, we show the importance of analyzing different genes in different software programs and the importance to choose ideal reference genes. In this sense, GAPDH was the most stable gene in the abomasum, whereas SDHA was the most stable in the small and large intestines. In addition, we discuss about variables which can interfere in relative expression such as breed, species, climate and tissue. However, utilizing other reference genes already described in other studies with the same and different variables should be performed.
Collapse
Affiliation(s)
- Jorge Lucas Nascimento Souza
- Graduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Fernanda Cavalcante Silva
- Graduate Program in Animal Production, Jundiaí Agricultural School, Federal University of Rio Grande do Norte, Macaíba, Rio Grande do Norte, Brazil
| | - Carlikelly Gleicy da Silva
- Graduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Henrique Rocha de Medeiros
- Jundiaí Agricultural School, Federal University of Rio Grande do Norte, Macaíba, Rio Grande do Norte, Brazil
| | - Lilian Giotto Zaros
- Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
28
|
Tavares LM, de Jesus LCL, Batista VL, Barroso FAL, Dos Santos Freitas A, Campos GM, Américo MF, da Silva TF, Coelho-Rocha ND, Belo GA, Drumond MM, Mancha-Agresti P, Vital KD, Fernandes SOA, Cardoso VN, Birbrair A, Ferreira E, Martins FS, Laguna JG, Azevedo V. Synergistic synbiotic containing fructooligosaccharides and Lactobacillus delbrueckii CIDCA 133 alleviates chemotherapy-induced intestinal mucositis in mice. World J Microbiol Biotechnol 2023; 39:235. [PMID: 37365380 DOI: 10.1007/s11274-023-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.
Collapse
Affiliation(s)
- Laísa Macedo Tavares
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane Lima Batista
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Giovanna Angeli Belo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Martins Drumond
- Federal Center for Technological Education of Minas Gerais, Department of Biological Sciences, Belo Horizonte, Brazil
- Federal Center for Technological Education of Minas Gerais, Materials Engineering Post- Graduation Program, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Federal Center for Technological Education of Minas Gerais, Department of Biological Sciences, Belo Horizonte, Brazil
- Federal Center for Technological Education of Minas Gerais, Materials Engineering Post- Graduation Program, Belo Horizonte, Brazil
| | - Kátia Duarte Vital
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Enio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
29
|
Vale DL, Freitas CS, Martins VT, Moreira GJL, Machado AS, Ramos FF, Pereira IAG, Bandeira RS, de Jesus MM, Tavares GSV, Ludolf F, Chávez-Fumagalli MA, Galdino AS, Fujiwara RT, Bueno LL, Roatt BM, Christodoulides M, Coelho EAF, Lage DP. Efficacy of an Immunotherapy Combining Immunogenic Chimeric Protein Plus Adjuvant and Amphotericin B against Murine Visceral Leishmaniasis. BIOLOGY 2023; 12:851. [PMID: 37372136 PMCID: PMC10295016 DOI: 10.3390/biology12060851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Visceral leishmaniasis (VL) in the Americas is a chronic systemic disease caused by infection with Leishmania infantum parasites. The toxicity of antileishmanial drugs, long treatment course and limited efficacy are significant concerns that hamper adequate treatment against the disease. Studies have shown the promise of an immunotherapeutics approach, combining antileishmanial drugs to reduce the parasitism and vaccine immunogens to activate the host immune system. In the current study, we developed an immunotherapy using a recombinant T cell epitope-based chimeric protein, ChimT, previously shown to be protective against Leishmania infantum, with the adjuvant monophosphoryl lipid A (MPLA) and amphotericin B (AmpB) as the antileishmanial drug. BALB/c mice were infected with L. infantum stationary promastigotes and later they received saline or were treated with AmpB, MPLA, ChimT/Amp, ChimT/MPLA or ChimT/MPLA/AmpB. The combination of ChimT/MPLA/AmpB significantly reduced the parasite load in mouse organs (p < 0.05) and induced a Th1-type immune response, which was characterized by higher ratios of anti-ChimT and anti-parasite IgG2a:IgG1 antibodies, increased IFN-γ mRNA and IFN-γ and IL-12 cytokines and accompanied by lower levels of IL-4 and IL-10 cytokines, when compared to other treatments and controls (all p < 0.05). Organ toxicity was also lower with the ChimT/MPLA/AmpB immunotherapy, suggesting that the inclusion of the vaccine and adjuvant ameliorated the toxicity of AmpB to some degree. In addition, the ChimT vaccine alone stimulated in vitro murine macrophages to significantly kill three different internalized species of Leishmania parasites and to produce Th1-type cytokines into the culture supernatants. To conclude, our data suggest that the combination of ChimT/MPLA/AmpB could be considered for further studies as an immunotherapy for L. infantum infection.
Collapse
Affiliation(s)
- Danniele L. Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Camila S. Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Vívian T. Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Gabriel J. L. Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Amanda S. Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Fernanda F. Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Isabela A. G. Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Raquel S. Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Marcelo M. de Jesus
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Grasiele S. V. Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa 04000, Peru
| | - Alexsandro S. Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Lílian L. Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Bruno M. Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
- Departamento de Patologia Clínica, Colégio Técnico (COLTEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Daniela P. Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| |
Collapse
|
30
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
31
|
Furtado A, Esgalhado AJ, Duarte AC, Costa AR, Costa-Brito AR, Carro E, Ishikawa H, Schroten H, Schwerk C, Gonçalves I, Arosa FA, Santos CRA, Quintela T. Circadian rhythmicity of amyloid-beta-related molecules is disrupted in the choroid plexus of a female Alzheimer's disease mouse model. J Neurosci Res 2023; 101:524-540. [PMID: 36583371 DOI: 10.1002/jnr.25164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
The choroid plexus (CP) is part of the blood-cerebrospinal fluid barrier (BCSFB) and was recently described as an important component of the circadian clock system. It is the principal source of cerebrospinal fluid (CSF) and responsible for the synthesis and secretion of various neuroprotective peptides including those involved in amyloid-β (Aβ) transport/degradation, contributing to Aβ homeostasis. Inadequate Aβ metabolic clearance and transport across the BCSFB have been associated with circadian dysfunctions in Alzheimer's disease (AD) patients. To investigate whether AD pathology influences Aβ scavengers circadian expression, we collected CP at different time points from an AD mouse model (APP/PS1) (female and male animals, aged 6- and 12-months-old) and analyzed their mRNA expression by Real-time RT-PCR. Only angiotensin-converting enzyme (Ace) expression in 6-month-old female wild-type mice and transthyretin (Ttr) expression in 12-month-old female wild-type mice presented significant rhythmicity. The circadian rhythmicity of Ace and Ttr, prompt us to analyze the involvement of circadian rhythm in Aβ uptake. A human CP papilloma (HIBCPP) cell line was incubated with Aβ-488 and uptake was evaluated at different time points using flow cytometry. Aβ uptake displayed circadian rhythmicity. Our results suggest that AD might affect Aβ scavengers rhythmicity and that Aβ clearance is a rhythmic process possibly regulated by the rhythmic expression of Aβ scavengers.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa-Brito
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Eva Carro
- Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| |
Collapse
|
32
|
Freitas CS, Lage DP, Machado AS, Vale DL, Martins VT, Cardoso JMO, Oliveira-da-Silva JA, Reis TAR, Tavares GSV, Ramos FF, Ludolf F, Pereira IAG, Bandeira RS, Fujiwara RT, Bueno LL, Roatt BM, Chávez-Fumagalli MA, Coelho EAF. Exploring drug repositioning for leishmaniasis treatment: Ivermectin plus polymeric micelles induce immunological response and protection against tegumentary leishmaniasis. Cytokine 2023; 164:156143. [PMID: 36774730 DOI: 10.1016/j.cyto.2023.156143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Leishmania amazonensis can cause a wide spectrum of the clinical manifestations of leishmaniasis in humans. The development of new therapeutics is a long and expensive task; in this context, drug repositioning could be considered a strategy to identify new biological actions of known products. In the present study, ivermectin (IVE) was tested against distinct Leishmania species able to cause disease in humans. In vitro experiments showed that IVE was effective to reduce the infection degree and parasite load in Leishmania donovani- and L. amazonensis-infected macrophages that were treated with it. In addition, using the culture supernatant of treated macrophages, higher production of IFN-γ and IL-12 and lower levels of IL-4 and IL-10 were found. Then, IVE was used in a pure form or incorporated into Poloxamer 407-based polymeric micelles (IVE/M) for the treatment of L. amazonensis-infected BALB/c mice. Animals (n = 16 per group) were infected and later received saline, empty micelles, amphotericin B (AmpB), IVE, or IVE/M. They were euthanized at one (n = 8 per group) and 30 (n = 8 per group) days after treatment and, in both endpoints, immunological, parasitological, and biochemical evaluations were performed. Results showed that both IVE and IVE/M induced higher levels of IFN-γ, IL-12, GM-CSF, nitrite, and IgG2a antibodies, as well as higher IFN-γ expression evaluated by RT-qPCR in spleen cell cultures. Such animals showed low organic toxicity, as well as significant reductions in the lesion's average diameter and parasite load in their infected tissue, spleen, liver, and draining lymph node. The efficacy was maintained 30 days post-therapy, while control mice developed a polarized Th2-type response and high parasite load. In this context, IVE could be considered as a new candidate to be applied in future studies for the treatment against distinct Leishmania species.
Collapse
Affiliation(s)
- Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Jamille M O Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Thiago A R Reis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Ricardo T Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Lílian L Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa 04000, Peru
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
33
|
Heidary S, Awasthi N, Page N, Allnutt T, Lewis RS, Liongue C, Ward AC. A zebrafish model of growth hormone insensitivity syndrome with immune dysregulation 1 (GHISID1). Cell Mol Life Sci 2023; 80:109. [PMID: 36995466 PMCID: PMC10063521 DOI: 10.1007/s00018-023-04759-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/03/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Signal transducer and activator of transcription (STAT) proteins act downstream of cytokine receptors to facilitate changes in gene expression that impact a range of developmental and homeostatic processes. Patients harbouring loss-of-function (LOF) STAT5B mutations exhibit postnatal growth failure due to lack of responsiveness to growth hormone as well as immune perturbation, a disorder called growth hormone insensitivity syndrome with immune dysregulation 1 (GHISID1). This study aimed to generate a zebrafish model of this disease by targeting the stat5.1 gene using CRISPR/Cas9 and characterising the effects on growth and immunity. The zebrafish Stat5.1 mutants were smaller, but exhibited increased adiposity, with concomitant dysregulation of growth and lipid metabolism genes. The mutants also displayed impaired lymphopoiesis with reduced T cells throughout the lifespan, along with broader disruption of the lymphoid compartment in adulthood, including evidence of T cell activation. Collectively, these findings confirm that zebrafish Stat5.1 mutants mimic the clinical impacts of human STAT5B LOF mutations, establishing them as a model of GHISID1.
Collapse
Affiliation(s)
- Somayyeh Heidary
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Nagendra Awasthi
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Nicole Page
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Theo Allnutt
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Rowena S Lewis
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
- IMPACT, Deakin University, Geelong, VIC, 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.
- IMPACT, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
34
|
Recombinant endonuclease III protein from Leishmania infantum associated with Th1-type adjuvants is immunogenic and induces protection against visceral leishmaniasis. Mol Immunol 2023; 155:79-90. [PMID: 36731193 DOI: 10.1016/j.molimm.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Vaccination against visceral leishmaniasis (VL) should be considered as a safe and effective measure to disease control; however, few vaccines are available against canine VL and there is no an approved human vaccine. In this context, in the present study, we evaluated the endonuclease III (ENDO) protein, which was recently showed to be antigenic for human disease, as a vaccine candidate against Leishmania infantum infection. The recombinant protein (rENDO) was administered in BALB/c mice alone or associated with saponin (rENDO/Sap) or micelles (rENDO/Mic) as adjuvants. Controls received saline, saponin or empty micelles. Results showed that both rENDO/Sap and rENDO/Mic compositions induced higher levels of IFN-γ, IL-12, TNF-α, and GM-CSF cytokines, besides nitrite and IgG2a isotype antibodies, before and after challenge infection, which were related to both CD4+ and CD8+ T cell subtypes. The immunological results contributed to significant reductions in the parasite load found in the spleens, livers, bone marrows and draining lymph nodes of the vaccinated animals. In general, mice immunized with rENDO/Mic presented a slightly higher Th1-type cellular and humoral immune response, as compared to those receiving rENDO/Sap. In addition, saponin caused a slight to moderate inflammatory edema in their vaccinated footpads, which was not observed when micelles were used with rENDO. In addition, a preliminary analysis showed that the recombinant protein was immunogenic to human cells cultures, since PBMCs from treated VL patients and healthy subjects showed higher lymphoproliferation and IFN-γ production in the culture supernatants. In conclusion, data suggest that rENDO could be considered as a candidate to be evaluated in future studies as vaccine to protect against VL.
Collapse
|
35
|
de Andrade STQ, Guidugli TI, Borrego A, Rodrigues BLC, Fernandes NCCDA, Guerra JM, de Sousa JG, Starobinas N, Jensen JR, Cabrera WHK, De Franco M, Ibañez OM, Massa S, Ribeiro OG. Slc11a1 gene polymorphism influences dextran sulfate sodium (DSS)-induced colitis in a murine model of acute inflammation. Genes Immun 2023; 24:71-80. [PMID: 36792680 PMCID: PMC10110460 DOI: 10.1038/s41435-023-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Ulcerative Colitis (UC) is an inflammatory disease characterized by colonic mucosal lesions associated with an increased risk of carcinogenesis. UC pathogenesis involves environmental and genetic factors. Genetic studies have indicated the association of gene variants coding for the divalent metal ion transporter SLC11A1 protein (formerly NRAMP1) with UC susceptibility in several animal species. Two mouse lines were genetically selected for high (AIRmax) or low (AIRmin) acute inflammatory responses (AIR). AIRmax is susceptible, and AIRmin is resistant to DSS-induced colitis and colon carcinogenesis. Furthermore, AIRmin mice present polymorphism of the Slc11a1 gene. Here we investigated the possible modulating effect of the Slc11a1 R and S variants in DSS-induced colitis by using AIRmin mice homozygous for Slc11a1 R (AIRminRR) or S (AIRminSS) alleles. We evaluated UC by the disease activity index (DAI), considering weight loss, diarrhea, blood in the anus or feces, cytokines, histopathology, and cell populations in the distal colon epithelium. AIRminSS mice have become susceptible to DSS effects, with higher DAI, IL6, G-CSF, and MCP-1 production and morphological and colon histopathological alterations than AIRminRR mice. The results point to a role of the Slc11a1 S allele in DSS colitis induction in the genetic background of AIRmin mice.
Collapse
Affiliation(s)
| | | | - Andrea Borrego
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | - Nancy Starobinas
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | - Solange Massa
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
36
|
Immunotherapy Using Immunogenic Mimotopes Selected by Phage Display plus Amphotericin B Inducing a Therapeutic Response in Mice Infected with Leishmania amazonensis. Pathogens 2023; 12:pathogens12020314. [PMID: 36839586 PMCID: PMC9964457 DOI: 10.3390/pathogens12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Leishmania amazonensis can cause cutaneous and visceral clinical manifestations of leishmaniasis in infected hosts. Once the treatment against disease is toxic, presents high cost, and/or there is the emergence of parasite-resistant strains, alternative means through which to control the disease must be developed. In this context, immunotherapeutics combining known drugs with immunogens could be applied to control infections and allow hosts to recover from the disease. In this study, immunotherapeutics protocols associating mimotopes selected by phage display and amphotericin B (AmpB) were evaluated in L. amazonensis-infected mice. Immunogens, A4 and A8 phages, were administered alone or associated with AmpB. Other animals received saline, AmpB, a wild-type phage (WTP), or WTP/AmpB as controls. Evaluations performed one and thirty days after the application of immunotherapeutics showed that the A4/AmpB and A8/AmpB combinations induced the most polarized Th1-type immune responses, which reflected in significant reductions in the lesion's average diameter and in the parasite load in the infected tissue and distinct organs of the animals. In addition, the combination also reduced the drug toxicity, as compared to values found using it alone. In this context, preliminary data presented here suggest the potential to associate A4 and A8 phages with AmpB to be applied in future studies for treatment against leishmaniasis.
Collapse
|
37
|
Jiang D, Lu X, Zhang L, Tang F. Enhancement of Pathogen Toxicity by Feeding Reticulitermes chinensis Snyder Sonicated Bacteria Expressing Double-Stranded RNA That Interferes with Olfaction. INSECTS 2023; 14:140. [PMID: 36835709 PMCID: PMC9965219 DOI: 10.3390/insects14020140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Reticulitermes chinensis Snyder is a serious pest in China, and the odorant receptor co-receptor gene RcOrco plays a crucial role in olfaction. However, the function of RcOrco in the resistance of termites to entomopathogens has not been reported. We constructed dsRcOrco-HT115 engineered bacteria based on the RcOrco sequence from the full-length transcriptome data of R. chinensis. The engineered bacteria expressed dsRNA of RcOrco. Sonication was used to inactivate the dsRNA-HT115 strain and obtain a large amount of dsRcOrco. The dsRcOrco produced using this method overcame the problem that genetically engineered bacteria could not be applied directly and improved its effectiveness against termites. Bioassays using the dsRcOrco generated using this method showed that dsRcOrco significantly increased the toxicity of the bacterial and fungal pathogens to R. chinensis. The present study showed, for the first time, the function of Orco in termite resistance to pathogens, and the results provide a theoretical basis for the development and application of termite RNA biopesticides.
Collapse
Affiliation(s)
- Dabao Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
38
|
Salmonella-mediated oral delivery of multiple-target vaccine constructs with conserved and variable regions of SARS-CoV-2 protect against the Delta and Omicron variants in hamster. Microbes Infect 2023; 25:105101. [PMID: 36657635 PMCID: PMC9841750 DOI: 10.1016/j.micinf.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Since the emergence of the pandemic COVID19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of vaccines has been the prime strategy to control the disease transmission. Most of the developed vaccines target the spike protein, however, the emerging variants have alterations, particularly at the same region which may pose resistance to neutralizing antibodies. In this study, we explored the variable and conserved regions of SARS-CoV-2 as a potential inclusion in a multiple-target vaccine with the exploitation of Salmonella-based vector for oral mRNA vaccine against Delta and Omicron variants. Increased IgG and IgA levels imply the induction of humoral response and the CD4+, CD8+ and IFN-γ+ sub-population level exhibits cell-mediated immune responses. The degree of CD44+ cells indicates the induction of memory cells corresponding to long-term immune responses. Furthermore, we assessed the protective efficacy of the vaccines against the Delta and Omicron variants in the hamster model. The vaccine constructs induced neutralizing antibodies and protected the viral-challenged hamsters with significant decrease in lung viral load and reduced histopathological lesions. These results reinforce the use of the conserved and variable regions as potential antigen targets of SARS-CoV-2 as well as the exploitation of bacteria-mediated delivery for oral mRNA vaccine development.
Collapse
|
39
|
Bulleeraz V, Goy M, Basheer F, Liongue C, Ward AC. Leukemia-associated truncation of granulocyte colony-stimulating factor receptor impacts granulopoiesis throughout the life-course. Front Immunol 2023; 13:1095453. [PMID: 36703974 PMCID: PMC9871641 DOI: 10.3389/fimmu.2022.1095453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction The granulocyte colony-stimulating factor receptor (G-CSFR), encoded by the CSF3R gene, is involved in the production and function of neutrophilic granulocytes. Somatic mutations in CSF3R leading to truncated G-CSFR forms are observed in acute myeloid leukemia (AML), particularly those subsequent to severe chronic neutropenia (SCN), as well as in a subset of patients with other leukemias. Methods This investigation introduced equivalent mutations into the zebrafish csf3r gene via genome editing and used a range of molecular and cellular techniques to understand the impact of these mutations on immune cells across the lifespan. Results Zebrafish harboring truncated G-CSFRs showed significantly enhanced neutrophil production throughout successive waves of embryonic hematopoiesis and a neutrophil maturation defect in adults, with the mutations acting in a partially dominant manner. Discussion This study has elucidated new insights into the impact of G-CSFR truncations throughout the life-course and created a bone fide zebrafish model for further investigation.
Collapse
Affiliation(s)
| | - Michelle Goy
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC, Australia,Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia,Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia,Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia,*Correspondence: Alister C. Ward,
| |
Collapse
|
40
|
Feng K, Jiang D, Luo J, Tang F. OfGNBP silencing enhances the toxicity of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105306. [PMID: 36549813 DOI: 10.1016/j.pestbp.2022.105306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The immunity of insects plays a vital role in their survival. Our experiments found that lipopolysaccharide (LPS) and glucono-δ-lactone (GDL) could influence the virulence of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki) by affecting the immunity. Gram-negative binding proteins (GNBPs) are an important pattern recognition proteins that play a crucial role in the innate immune system. Therefore, two OfGNBPs were cloned in O. formosanus. The expression of OfGNBPs was significantly changed by LPS,SM1 and GDL, not prick. In addition, the immune-related gene expression, the phenoloxidase activity and antibacterial activity of donor termites and recipient termites were significantly induced by SM1. Furthermore, the knockdown of OfGNBP by RNA interference reduced not only individual immunity but also social immunity in O. formosanus, which increased the virulence of SM1 to O. formosanus. Importantly, dsOfGNBP alone also had good control effect on O. formosanus. In summary, we concluded that dsOfGNBPs are important termite immunosuppressants.
Collapse
Affiliation(s)
- Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dabao Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
41
|
Américo MF, Freitas ADS, da Silva TF, de Jesus LCL, Barroso FAL, Campos GM, Santos RCV, Gomes GC, Assis R, Ferreira Ê, Mancha-Agresti P, Laguna JG, Chatel JM, Carvalho RDDO, Azevedo V. Growth differentiation factor 11 delivered by dairy Lactococcus lactis strains modulates inflammation and prevents mucosal damage in a mice model of intestinal mucositis. Front Microbiol 2023; 14:1157544. [PMID: 37138633 PMCID: PMC10149842 DOI: 10.3389/fmicb.2023.1157544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Mucositis is an inflammation of the gastrointestinal mucosa that debilitate the quality of life of patients undergoing chemotherapy treatments. In this context, antineoplastic drugs, such as 5-fluorouracil, provokes ulcerations in the intestinal mucosa that lead to the secretion of pro-inflammatory cytokines by activating the NF-κB pathway. Alternative approaches to treat the disease using probiotic strains show promising results, and thereafter, treatments that target the site of inflammation could be further explored. Recently, studies reported that the protein GDF11 has an anti-inflammatory role in several diseases, including in vitro and in vivo results in different experimental models. Hence, this study evaluated the anti-inflammatory effect of GDF11 delivered by Lactococcus lactis strains NCDO2118 and MG1363 in a murine model of intestinal mucositis induced by 5-FU. Our results showed that mice treated with the recombinant lactococci strains presented improved histopathological scores of intestinal damage and a reduction of goblet cell degeneration in the mucosa. It was also observed a significant reduction of neutrophil infiltration in the tissue in comparison to positive control group. Moreover, we observed immunomodulation of inflammatory markers Nfkb1, Nlrp3, Tnf, and upregulation of Il10 in mRNA expression levels in groups treated with recombinant strains that help to partially explain the ameliorative effect in the mucosa. Therefore, the results found in this study suggest that the use of recombinant L. lactis (pExu:gdf11) could offer a potential gene therapy for intestinal mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- INRAE, Institut Agro Rennes-Angers, STLO, Rennes, France
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rhayane Cristina Viegas Santos
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Camargos Gomes
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Assis
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ênio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Marc Chatel
- INRAE, AgroParisTech, MICALIS, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Vasco Azevedo,
| |
Collapse
|
42
|
Qian F, Huang Z, Zhong H, Lei Q, Ai Y, Xie Z, Zhang T, Jiang B, Zhu W, Sheng Y, Hu J, Brinker CJ. Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS NANO 2022; 16:19980-20001. [PMID: 36475625 DOI: 10.1021/acsnano.2c11298] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) can facilitate essential communication among cells in a range of pathophysiological conditions including cancer metastasis and progression, immune regulation, and neuronal communication. EVs are membrane-enclosed vesicles generated through endocytic origin and contain many cellular components, including proteins, lipids, nucleic acids, and metabolites. Over the past few years, the intravesicular content of EVs has proven to be a valuable biomarker for disease diagnostics, involving cancer, cardiovascular diseases, and central nervous system diseases. This review aims to provide insight into EV biogenesis, composition, function, and isolation, present a comprehensive overview of emerging techniques for EV cargo analysis, highlighting their major technical features and limitations, and summarize the potential role of EV cargos as biomarkers in disease diagnostics. Further, progress and remaining challenges will be discussed for clinical diagnostic outlooks.
Collapse
Affiliation(s)
- Feiyang Qian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, P.R. China
| | - Hankang Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yiru Ai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zihui Xie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Tenghua Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Bowen Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yan Sheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Jiaming Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
43
|
Zheng X, Vanrompay D, Van Stappen G, Feyaerts AF, Van Dijck P, Bossier P. Selected essential oil components fail to induce an immunological response in Artemia but still protect against vibriosis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1343-1351. [PMID: 36216228 DOI: 10.1016/j.fsi.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
In the present research, in order to screen out the best candidates from 12 different EOCs, we proposed three in vivo screening methods, namely the screening method of bioluminescence of V. campbellii associated with brine shrimp, regrowth performance of V. campbellii, and immune gene expression of brine shrimp without challenge. Our result showed that challenged with V. campbellii at 107 cells/mL, the survival of the brine shrimp at 48 h was significantly increased after treatment with the EOCs (at 0.0005%, v/v) of 4-allylanisole, R-(+)-limonene, S-(-)-limonene, (-)-terpinen-4-ol, (±)-citronellal, citral, trans-cinnamaldehyde and (+)-carvone, compared to the positive control group. Also, it was observed that the EOCs- of 4-allylanisloe, R-(+)-limonene, S-(-)-limonene, (-)-β-pinene, geraniol, (±)-citronellal, citral, trans-cinnamaldehyde and (+)-carvone decreased significantly the in vivo bioluminescence of V. campbellii at 36 h after Vibrio exposure. The regrowth assay showed that independently from incubation time (1, 12 or 24 h), no difference was observed in the regrowth curve in all EOC treatment groups compared to the positive control group. The dscam gene expression in the (±)-citronellal group, and the sod gene in the citral group were observed to be significantly higher than in the negative control at 24 h, respectively. However, most of the immune genes were down-regulated in the EOC groups. Combining the survival data at 48 h with the bioluminescence result at 36 h, it was noted that the survival rate of brine shrimp was moderately correlated with in vivo bioluminescence of V. campbellii. The results indicate that the approach of determining in vivo bioluminescence of V. campbellii is a moderately reliable, fastest, and cheapest screening method for EOCs. As the regrowth performance assay of V. campbellii, and the immune genes expression assay of brine shrimp without challenge cannot predict Artemia survival properly, they cannot be used as screening methods for EOCs. Moreover, the immune genes expression assay is relatively slow, time-consuming and costly.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, PR China.
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Gilbert Van Stappen
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Adam F Feyaerts
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001, Leuven, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
44
|
Jonckheere AC, Steelant B, Seys SF, Cremer J, Dilissen E, Boon L, Liston A, Schrijvers R, Breynaert C, Vanoirbeek JAJ, Ceuppens JL, Bullens DMA. Peribronchial Inflammation Resulting from Regulatory T Cell Deficiency Damages the Respiratory Epithelium and Disturbs Barrier Function. THE JOURNAL OF IMMUNOLOGY 2022; 209:1595-1605. [DOI: 10.4049/jimmunol.2200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Regulatory T cells (Tregs) that express the transcription factor Foxp3 have a critical role in limiting inflammatory processes and tissue damage. Whether Tregs are functional in maintaining epithelial barriers and in control of tight junction expression has not yet been explored. In this study, we investigated the effect of Treg deficiency on the airway epithelial barrier in an experimental murine model in which diphtheria toxin was repeatedly injected in Foxp3-diphtheria toxin receptor (DTR) mice to deplete Tregs. This resulted in spontaneous peribronchial inflammation and led to a systemic and local increase of IL-4, IL-5, CCL3, IFN-γ, and IL-10 and a local (lung) increase of IL-6 and IL-33 and decreased amphiregulin levels. Moreover, Treg depletion increased airway permeability and decreased epithelial tight junction (protein and mRNA) expression. CTLA4-Ig treatment of Treg-depleted mice almost completely prevented barrier dysfunction together with suppression of lung inflammation and cytokine secretion. Treatment with anti–IL-4 partly reversed the effects of Treg depletion on tight junction expression, whereas neutralization of IL-6 of IFN-γ had either no effect or only a limited effect. We conclude that Tregs are essential to protect the epithelial barrier at the level of tight junctions by restricting spontaneous T cell activation and uncontrolled secretion of cytokines, in particular IL-4, in the bronchi.
Collapse
Affiliation(s)
- Anne-Charlotte Jonckheere
- *KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Brecht Steelant
- *KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Sven F. Seys
- *KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Jonathan Cremer
- *KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Ellen Dilissen
- *KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Louis Boon
- †Polpharma Biologics, Utrecht, the Netherlands
| | - Adrian Liston
- ‡KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, Leuven, Belgium
| | - Rik Schrijvers
- *KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Christine Breynaert
- *KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Jeroen A. J. Vanoirbeek
- §KU Leuven, Department of Public Health and Primary Care, Centre for Environment and Health, Leuven, Belgium; and
| | - Jan L. Ceuppens
- *KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Dominique M. A. Bullens
- *KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- ¶UZ Leuven, Clinical Division of Pediatrics, Leuven, Belgium
| |
Collapse
|
45
|
Decaesteker T, Jonckheere AC, Vanhoffelen E, Schauvaerts J, Verhalle T, Cremer J, Dilissen E, Rodewald HR, Dupont L, Bullens DMA, Vanoirbeek JAJ. Chlorine exposure and intensive exercise induces airway hyperreactivity in a 3-week murine exercise model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157046. [PMID: 35779717 DOI: 10.1016/j.scitotenv.2022.157046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Exercise-induced bronchoconstriction (EIB) is defined as acute narrowing of the airways during or immediately after exercise. EIB has a high prevalence in elite swimmers probably due to the high ventilation rate and exposure to the chlorine by-products. It is still puzzling which pathophysiological mechanisms drive EIB. OBJECTIVE In this study, we evaluated airway hyperreactivity, permeability, integrity and inflammation in a murine swimmers EIB model with and without chlorine exposure. METHODS Mice performed a 3-week swimming protocol in a swimming pool with counter current. Three hours after the last swimming session, airway hyperreactivity to methacholine was assessed. Cytokine levels and cellular differential analysis was performed in BAL fluid. Airway permeability and tight junction expression was measured in serum and lung tissue. T-, B-, dendritic and innate lymphoid cells were determined in lung tissue via flow cytometry. RESULTS A significant higher airway resistance (Rn; P < 0.0001) was observed in mice swimming in chlorinated water (mean Rn = 1.26 cmH2O.s/ml) compared to mice swimming in tap water (mean Rn = 0.76 cmH2O.s/ml) and both inhalation groups in the absence of cellular inflammation. No significant differences were found in lung immune cell populations or in lung tight junction mRNA expression. Experiments in SCID, Rag2-/-γc-/- or Cpa3cre/+ mice showed a limited involvement of the innate, adaptive immune system or the mast cells. CONCLUSION Our 3-week swimming murine model mimics intensive swimming in chlorinated water with the presence of airway hyperreactivity in mice swimming in chlorinated water in the absence of airway inflammation and airway epithelial damage.
Collapse
Affiliation(s)
- Tatjana Decaesteker
- KU Leuven, Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, Herestraat 49 box 706, 3000 Leuven, Belgium
| | - Anne-Charlotte Jonckheere
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology research group, Herestraat 49 box 811, 3000 Leuven, Belgium
| | - Eliane Vanhoffelen
- KU Leuven, Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, Herestraat 49 box 505, 3000 Leuven, Belgium
| | - Jens Schauvaerts
- KU Leuven, Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, Herestraat 49 box 706, 3000 Leuven, Belgium
| | - Tulasi Verhalle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology research group, Herestraat 49 box 811, 3000 Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology research group, Herestraat 49 box 811, 3000 Leuven, Belgium
| | - Ellen Dilissen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology research group, Herestraat 49 box 811, 3000 Leuven, Belgium
| | - Hans-Reimer Rodewald
- German Cancer Research Center, Division of Cellular Immunology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lieven Dupont
- KU Leuven, Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, Herestraat 49 box 706, 3000 Leuven, Belgium; UZ Leuven, Clinical division of Respiratory Medicine, Herestraat 49, 3000 Leuven, Belgium
| | - Dominique M A Bullens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology research group, Herestraat 49 box 811, 3000 Leuven, Belgium; UZ Leuven, Clinical division of Paediatrics, Herestraat 49, 3000 Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- KU Leuven, Department of Public Health and Primary Care, Centre for Environment and Health, Herestraat 49 box 952, 3000 Leuven, Belgium.
| |
Collapse
|
46
|
Ma S, Wang K, Jiang Y, Guo Y, Zhang Y, Gao Y, Wu W. Development of a low-cost multi-channel nucleic acid detection PCR instrument and clinical detection application of COVID-19. Anal Chim Acta 2022; 1229:340338. [PMID: 36156217 PMCID: PMC9472591 DOI: 10.1016/j.aca.2022.340338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Since the COVID-19 outbreak at the end of December 2019, a variety of novel Coronavirus nucleic acid detection methods have been proposed at home and abroad. Because of the disadvantages of most existing PCR instruments on the market such as long reaction time and high cost, this study developed a more timesaving and cheaper two-channel real-time quantitative PCR instrument. In this instrument, a PCR system combining a thermal cycle system and real-time fluorescence quantitative technology was designed. The software system and data processing, optical system, thermal cycle module, and hardware module of the PCR instrument were studied. The low-cost, portable real-time quantitative PCR system has been validated with consistent results compared to Bio-rad CFX Connect. At the same time, the same samples were used for the contract experiment with the hospital instrument, and the amplification result was better than the existing instrument in the hospital.
Collapse
Affiliation(s)
- Shuang Ma
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, PR China
| | - Kangning Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, PR China
| | - Yangyang Jiang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, PR China
| | - Yu Guo
- School of Mechanical and Electrical Engineering, Guangdong University of Technology, PR China
| | - Yipeng Zhang
- School of Biomedical Engineering, Southern Medical University, PR China
| | - YingJun Gao
- School of Biotechnology and Health Sciences, Wuyi University, PR China
| | - Wenming Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, PR China; Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
47
|
Aganja RP, Sivasankar C, Hewawaduge C, Lee JH. Safety assessment of compliant, highly invasive, lipid A-altered, O-antigen-defected Salmonella strains as prospective vaccine delivery systems. Vet Res 2022; 53:76. [PMID: 36183131 PMCID: PMC9526937 DOI: 10.1186/s13567-022-01096-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
In the present study, two prospective Salmonella delivery strains, JOL2782 and JOL2837, were developed by gene deletions of lon and cpxR, which are related to cellular adhesion and intracellular survival. Additionally, sifA deletion was introduced for JOL2782, which confers immune susceptibility and improves antigen delivery. Similarly, the rfaL deletion and lpxE substitution for pagL were accomplished in JOL2837 to reduce virulence and endotoxicity. Thus, enhanced adhesion and invasion and reduced intracellular survival were attained. Furthermore, aspartic acid auxotrophic (asd) was deleted to impose Darwinian selection on retention of the foreign antigen-expressing plasmid. Both delivery strains induced sufficient cytokine expression, but the level was significantly lower than that of the wild-type strain; the lowest cytokine expression was induced by the JOL2837 strain, indicating reduced endotoxicity. In parallel, IgG production was significantly enhanced by both delivery strains. Thus, the innate and adaptive immunogenicity of the strains was ensured. The environmental safety of these strains was ascertained through faecal dissemination assays. The nonpathogenicity of these strains to the host was confirmed by body weight monitoring, survival assays, and morphological and histological assessments of the vital organs. The in vitro assay in murine and human cell lines and in vivo safety assessments in mice suggest that these novel strains possess safety, invasiveness, and immunogenicity, making them ideal delivery strains. Overall, the results clearly showed that strain JOL2782 with sifA deletion had higher invasiveness, demonstrating superior vaccine deliverability, while JOL2837 with lpxE substitution for pagL and rfaL deletion had outstanding safety potential with drastically abridged endotoxicity.
Collapse
Affiliation(s)
- Ram Prasad Aganja
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Chandran Sivasankar
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Chamith Hewawaduge
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
48
|
Gui Q, Yang Z, Chen C, Yang F, Wang S, Dong R. Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1017869. [PMID: 36212300 PMCID: PMC9541535 DOI: 10.3389/fpls.2022.1017869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Numerous studies have shown that plant long noncoding RNAs (lncRNAs) play an important regulatory role in the plant response to environmental stress. However, there are no reports on lncRNAs regulating and enhancing aluminum (Al) stress tolerance in legumes. This study analyzed the role of lncRNAs in response to Al stress in the legume model plant Medicago truncatula. A total of 219.49 Gb clean data were generated: 3,284 lncRNA genes were identified, of which 515 were differentially expressed, and 1,254 new genes were functionally annotated through database alignment. We further predicted and classified putative targets of these lncRNAs and found that they were enriched in biological processes and metabolic pathways such as plant hormone signal transduction, cell wall modification and the tricarboxylic acid (TCA) cycle. Finally, we characterized the functions of 2 Al-activated-malate-transporter-related lncRNAs in yeast. The recombinant plasmids of MSTRG.12506.5 and MSTRG.34338.20 were transformed into yeast, and these yeast exhibited better growth than those carrying empty vectors on medium supplemented with 10 μM AlCl3 and showed that they have biological functions affording Al stress tolerance. These findings suggest that lncRNAs are involved in regulating plant responses to Al stress. Our findings help to understand the role of lncRNAs in the response to Al stress in legumes and provide candidate lncRNAs for further studies.
Collapse
Affiliation(s)
- Qihui Gui
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhengyu Yang
- Guizhou Technological College of Machinery and Electricity, Duyun, China
| | - Chao Chen
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Feng Yang
- Grassland Technology Experiment and Extension Station, Guiyang, China
| | - Song Wang
- Grassland Technology Experiment and Extension Station, Guiyang, China
| | - Rui Dong
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
49
|
Influenza B Virus (IBV) Immune-Mediated Disease in C57BL/6 Mice. Vaccines (Basel) 2022; 10:vaccines10091440. [PMID: 36146518 PMCID: PMC9504307 DOI: 10.3390/vaccines10091440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza B viruses (IBV) primarily infect humans, causing seasonal epidemics. The absence of an animal reservoir limits pandemic concern, but IBV infections may cause severe respiratory disease, predominantly in young children and the elderly. The IBV disease burden is largely controlled by seasonal influenza vaccination; however, immunity due to vaccination is sometimes incomplete, a feature linked to antigenic mismatches. Thus, understanding the features that contribute to disease pathogenesis is important, particularly immune-mediated versus virus-mediated outcomes. Unexpectedly, C57BL/6 (B6) mice intranasally infected with a low multiplicity of infection of B/Florida/04/2006 developed substantial morbidity and mortality. To address the cause, B6 mice were treated daily with dexamethasone to dampen the immune and pro-inflammatory response to IBV infection, allowing the determination of whether the responses were immune- and/or virus-associated. As expected, dexamethasone (DEX)-treated mice had a lower pro-inflammatory response and reduced lung pathology despite the presence of high viral lung titers, but mortality was comparable to PBS-treated mice, indicating that mortality may be linked to lung virus replication. The results showed that the immune response to IBV is the major cause of morbidity, mortality, lung pathology, and viral clearance. Importantly, the results suggest that a robust lung CTL response and associated leukocyte influx contribute to disease.
Collapse
|
50
|
Zhang Y, Feng K, Mei R, Li W, Tang F. Analysis of the Antennal Transcriptome and Identification of Tissue-specific Expression of Olfactory-related Genes in Micromelalopha troglodyta (Lepidoptera: Notodontidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:8. [PMID: 36165424 PMCID: PMC9513789 DOI: 10.1093/jisesa/ieac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Micromelalopha troglodyta (Graeser) has been one of the most serious pests on poplars in China. We used Illumina HiSeq 2000 sequencing to construct an antennal transcriptome and identify olfactory-related genes. In total, 142 transcripts were identified, including 74 odorant receptors (ORs), 32 odorant-binding proteins (OBPs), 13 chemosensory proteins (CSPs), 20 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). The genetic relationships were obtained by the phylogenetic tree, and the tissue-specific expression of important olfactory-related genes was determined by quantitative real-time PCR (qRT-PCR). The results showed that most of these genes are abundantly expressed in the antennae and head. In most insects, olfaction plays a key role in foraging, host localization, and searching for mates. Our research lays the foundation for future research on the molecular mechanism of the olfactory system in M. troglodyta. In addition, this study provides a theoretical basis for exploring the relationship between M. troglodyta and their host plants, and for the biological control of M. troglodyta using olfactory receptor as targets.
Collapse
Affiliation(s)
| | | | - Ruolan Mei
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei Province, China
| | | |
Collapse
|