1
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
2
|
Al Aameri RFH, Alanisi EMA, Oluwatosin A, Al Sallami D, Sheth S, Alberts I, Patel S, Rybak LP, Ramkumar V. Targeting CXCL1 chemokine signaling for treating cisplatin ototoxicity. Front Immunol 2023; 14:1125948. [PMID: 37063917 PMCID: PMC10102581 DOI: 10.3389/fimmu.2023.1125948] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Cisplatin is chemotherapy used for solid tumor treatment like lung, bladder, head and neck, ovarian and testicular cancers. However, cisplatin-induced ototoxicity limits the utility of this agent in cancer patients, especially when dose escalations are needed. Ototoxicity is associated with cochlear cell death through DNA damage, the generation of reactive oxygen species (ROS) and the consequent activation of caspase, glutamate excitotoxicity, inflammation, apoptosis and/or necrosis. Previous studies have demonstrated a role of CXC chemokines in cisplatin ototoxicity. In this study, we investigated the role of CXCL1, a cytokine which increased in the serum and cochlea by 24 h following cisplatin administration. Adult male Wistar rats treated with cisplatin demonstrated significant hearing loss, assessed by auditory brainstem responses (ABRs), hair cell loss and loss of ribbon synapse. Immunohistochemical studies evaluated the levels of CXCL1 along with increased presence of CD68 and CD45-positive immune cells in cochlea. Increases in CXCL1 was time-dependent in the spiral ganglion neurons and organ of Corti and was associated with progressive increases in CD45, CD68 and IBA1-positive immune cells. Trans-tympanic administration of SB225002, a chemical inhibitor of CXCR2 (receptor target for CXCL1) reduced immune cell migration, protected against cisplatin-induced hearing loss and preserved hair cell integrity. We show that SB225002 reduced the expression of CXCL1, NOX3, iNOS, TNF-α, IL-6 and COX-2. Similarly, knockdown of CXCR2 by trans-tympanic administration of CXCR2 siRNA protected against hearing loss and loss of outer hair cells and reduced ribbon synapses. In addition, SB225002 reduced the expression of inflammatory mediators induced by cisplatin. These results implicate the CXCL1 chemokine as an early player in cisplatin ototoxicity, possibly by initiating the immune cascade, and indicate that CXCR2 is a relevant target for treating cisplatin ototoxicity.
Collapse
Affiliation(s)
- Raheem F. H. Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Entkhab M. A. Alanisi
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Adu Oluwatosin
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Dheyaa Al Sallami
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Ian Alberts
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Shree Patel
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Leonard P. Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Vickram Ramkumar,
| |
Collapse
|
3
|
Li P, Li S, Wang L, Li H, Wang Y, Liu H, Wang X, Zhu X, Liu Z, Ye F, Zhang Y. Mitochondrial dysfunction in hearing loss: Oxidative stress, autophagy and NLRP3 inflammasome. Front Cell Dev Biol 2023; 11:1119773. [PMID: 36891515 PMCID: PMC9986271 DOI: 10.3389/fcell.2023.1119773] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sensorineural deafness becomes an inevitable worldwide healthy problem, yet the current curative therapy is limited. Emerging evidences demonstrate mitochondrial dysfunction plays a vital role of in the pathogenesis of deafness. Reactive oxygen species (ROS)-induced mitochondrial dysfunction combined with NLRP3 inflammasome activation is involved in cochlear damage. Autophagy not only clears up undesired proteins and damaged mitochondria (mitophagy), but also eliminate excessive ROS. Appropriate enhancement of autophagy can reduce oxidative stress, inhibit cell apoptosis, and protect auditory cells. In addition, we further discuss the interplays linking ROS generation, NLRP3 inflammasome activation, and autophagy underlying the pathogenesis of deafness, including ototoxic drugs-, noise- and aging-related hearing loss.
Collapse
Affiliation(s)
- Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhu
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
5
|
Liu SS, Yang R. Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Front Neurosci 2022; 16:867453. [PMID: 35685768 PMCID: PMC9170894 DOI: 10.3389/fnins.2022.867453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Most therapies for treating sensorineural hearing loss are challenged by the delivery across multiple tissue barriers to the hard-to-access anatomical location of the inner ear. In this review, we will provide a recent update on various pharmacotherapy, gene therapy, and cell therapy approaches used in clinical and preclinical studies for the treatment of sensorineural hearing loss and approaches taken to overcome the drug delivery barriers in the ear. Small-molecule drugs for pharmacotherapy can be delivered via systemic or local delivery, where the blood-labyrinth barrier hinders the former and tissue barriers including the tympanic membrane, the round window membrane, and/or the oval window hinder the latter. Meanwhile, gene and cell therapies often require targeted delivery to the cochlea, which is currently achieved via intra-cochlear or intra-labyrinthine injection. To improve the stability of the biomacromolecules during treatment, e.g., RNAs, DNAs, proteins, additional packing vehicles are often required. To address the diverse range of biological barriers involved in inner ear drug delivery, each class of therapy and the intended therapeutic cargoes will be discussed in this review, in the context of delivery routes commonly used, delivery vehicles if required (e.g., viral and non-viral nanocarriers), and other strategies to improve drug permeation and sustained release (e.g., hydrogel, nanocarriers, permeation enhancers, and microfluidic systems). Overall, this review aims to capture the important advancements and key steps in the development of inner ear therapies and delivery strategies over the past two decades for the treatment and prophylaxis of sensorineural hearing loss.
Collapse
Affiliation(s)
- Sophie S. Liu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Rong Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci 2022; 15:814891. [PMID: 35069120 PMCID: PMC8766678 DOI: 10.3389/fncel.2021.814891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most prevalent sensory deficits in humans, and approximately 360 million people worldwide are affected. The current treatment option for severe to profound hearing loss is cochlear implantation (CI), but its treatment efficacy is related to the survival of spiral ganglion neurons (SGNs). SGNs are the primary sensory neurons, transmitting complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus. In mammals, SGNs have very limited regeneration ability, and SGN loss causes irreversible hearing loss. In most cases of SNHL, SGN damage is the dominant pathogenesis, and it could be caused by noise exposure, ototoxic drugs, hereditary defects, presbycusis, etc. Tremendous efforts have been made to identify novel treatments to prevent or reverse the damage to SGNs, including gene therapy and stem cell therapy. This review summarizes the major causes and the corresponding mechanisms of SGN loss and the current protection strategies, especially gene therapy and stem cell therapy, to promote the development of new therapeutic methods.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Szeto B, Valentini C, Aksit A, Werth EG, Goeta S, Brown LM, Olson ES, Kysar JW, Lalwani AK. Impact of Systemic versus Intratympanic Dexamethasone Administration on the Perilymph Proteome. J Proteome Res 2021; 20:4001-4009. [PMID: 34291951 DOI: 10.1021/acs.jproteome.1c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucocorticoids are the first-line treatment for sensorineural hearing loss, but little is known about the mechanism of their protective effect or the impact of route of administration. The recent development of hollow microneedles enables safe and reliable sampling of perilymph for proteomic analysis. Using these microneedles, we investigate the effect of intratympanic (IT) versus intraperitoneal (IP) dexamethasone administration on guinea pig perilymph proteome. Guinea pigs were treated with IT dexamethasone (n = 6), IP dexamethasone (n = 8), or untreated for control (n = 8) 6 h prior to aspiration. The round window membrane (RWM) was accessed via a postauricular approach, and hollow microneedles were used to perforate the RWM and aspirate 1 μL of perilymph. Perilymph samples were analyzed by liquid chromatography-mass spectrometry-based label-free quantitative proteomics. Mass spectrometry raw data files have been deposited in an international public repository (MassIVE proteomics repository at https://massive.ucsd.edu/) under data set # MSV000086887. In the 22 samples of perilymph analyzed, 632 proteins were detected, including the inner ear protein cochlin, a perilymph marker. Of these, 14 proteins were modulated by IP, and three proteins were modulated by IT dexamethasone. In both IP and IT dexamethasone groups, VGF nerve growth factor inducible was significantly upregulated compared to control. The remaining adjusted proteins modulate neurons, inflammation, or protein synthesis. Proteome analysis facilitated by the use of hollow microneedles shows that route of dexamethasone administration impacts changes seen in perilymph proteome. Compared to IT administration, the IP route was associated with greater changes in protein expression, including proteins involved in neuroprotection, inflammatory pathway, and protein synthesis. Our findings show that microneedles can mediate safe and effective intracochlear sampling and hold promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Chris Valentini
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeffrey W Kysar
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Tsai SCS, Lin FCF, Chang KH, Li MC, Chou RH, Huang MY, Chen YC, Kao CY, Cheng CC, Lin HC, Hsu YC. The intravenous administration of skin-derived mesenchymal stem cells ameliorates hearing loss and preserves cochlear hair cells in cisplatin-injected mice: SMSCs ameliorate hearing loss and preserve outer hair cells in mice. Hear Res 2021; 413:108254. [PMID: 34020824 DOI: 10.1016/j.heares.2021.108254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) can be isolated from different tissue origins, such as the bone marrow, the placenta, the umbilical cord, adipose tissues, and skin tissues. MSCs can secrete anti-inflammatory molecules and growth factors for tissue repair and remodeling. However, the ability of skin-derived MSCs (SMSCs) to repair cochlear damage and ameliorate hearing loss remains unclear. Cisplatin is a commonly used chemotherapeutic agent that has the side effect of ototoxicity due to inflammation and oxidative stress. This study investigated the effects of SMSCs on cisplatin-induced hearing loss in mice. Two independent experiments were designed for modeling cisplatin-induced hearing loss in mice, one for chronic toxicity (4 mg/kg intraperitoneal [IP] injection once per day for 5 consecutive days) and the other for acute toxicity (25 mg/kg IP injection once on day one). Three days after cisplatin injection, 1 × 106 or 3 × 106 SMSCs were injected through the tail vein. Data on auditory brain responses suggested that SMSCs could significantly reduce the hearing threshold of cisplatin-injected mice. Furthermore, immunohistochemical staining data suggested that SMSCs could significantly ameliorate the loss of cochlear hair cells, TUNEL-positive cells and cleaved caspase 3-positive cells in cisplatin-injected mice. Neuropathological gene analyses revealed that SMSCs treatment could downregulate the expression of cochlear genes involved in apoptosis, autophagy, chromatin modification, disease association, matrix remodeling, oxidative stress, tissue integrity, transcription, and splicing and unfolded protein responses. Additionally, SMSCs treatment could upregulate the expression of cochlear genes affecting the axon and dendrite structures, cytokines, trophic factors, the neuronal skeleton and those involved in carbohydrate metabolism, growth factor signaling, myelination, neural connectivity, neural transmitter release, neural transmitter response and reuptake, neural transmitter synthesis and storage, and vesicle trafficking. Results from TUNEL and caspase 3 staining further confirmed that cisplatin-induced apoptosis in cochlear tissues of cisplatin-injected mice could be reduced by SMSCs treatment. In conclusion, the evidence of the effects of SMSCs in favor of ameliorating ototoxicity-induced hearing loss suggests a potential clinical application.
Collapse
Affiliation(s)
- Stella Chin-Shaw Tsai
- Department of Otolaryngology, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | | | - Kuang-Hsi Chang
- Department of Medical Research, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Min-Chih Li
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Mei-Yue Huang
- Maria Von Med-Biotechnology Co. Ltd., Taipei, Taiwan
| | | | - Chien-Yu Kao
- Medical and Pharmaceutical Industry Technology and Development Center, Taipei, Taiwan
| | - Ching-Chang Cheng
- Laboratory Animal Service Center, Office of Research and Development, China Medical University, Taiwan
| | - Hung-Ching Lin
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan; Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Chao Hsu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan; Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
9
|
Tang Q, Wang X, Jin H, Mi Y, Liu L, Dong M, Chen Y, Zou Z. Cisplatin-induced ototoxicity: Updates on molecular mechanisms and otoprotective strategies. Eur J Pharm Biopharm 2021; 163:60-71. [PMID: 33775853 DOI: 10.1016/j.ejpb.2021.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Cisplatin is a highly effective antitumor drug generally used in the treatment of solid malignant tumors. However, cisplatin causes severe side effects such as bone marrow depression, nephrotoxicity, and ototoxicity, thus limiting its clinical application. The incidence of ototoxicity induced by cisplatin ranges from 20% to 70%, and it usually manifests as a progressive, bilateral and irreversible hearing loss. Although the etiology of cisplatin-induced ototoxicity remains unclear, an increasing body of evidence suggests that the ototoxicity of cisplatin is mainly related to the production of reactive oxygen species and activation of apoptotic pathway in cochlear tissues. Many drugs have been well proved to protect cisplatin-induced hearing loss in vitro and in vivo. However, the anti-tumor effect of cisplatin is also weakened by systemic administration of those drugs for hearing protection, especially antioxidants. Therefore, establishing a local administration strategy contributes to the otoprotection without affecting the effect of cisplatin. This review introduces the pathology of ototoxicity caused by cisplatin, and focuses on recent developments in the mechanisms and protective strategies of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xianren Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research and Thoracic Tumor Diagnosis & Treatment, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Lingfeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Mengyuan Dong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
10
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
11
|
Maguire CA, Corey DP. Viral vectors for gene delivery to the inner ear. Hear Res 2020; 394:107927. [PMID: 32199720 DOI: 10.1016/j.heares.2020.107927] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023]
Abstract
Gene therapy using virus vectors to treat hereditary diseases has made remarkable progress in the past decade. There are FDA-approved products for ex-vivo gene therapy for diseases such as immunodeficiencies (e.g., SCID), and in vivo gene therapy for a rare blindness and neuro-muscular disease. Gene therapy for hereditary hearing loss has picked up pace in the past five years due to progress in understanding disease gene function as well as the development of better technologies such as adeno-associated virus (AAV) vectors, to deliver nucleic acid to target cells in the inner ear. This review has two major goals. One is to review the state of the art for investigators already working in preclinical cochlear gene therapy. The other is to present the language of vectorology and important considerations for designing and using AAV vectors to inner ear neurobiologists who might use AAV vectors in the cochlea for either therapeutic or basic biological applications.
Collapse
Affiliation(s)
- Casey A Maguire
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, 149 13th Street, Charlestown, MA, 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Van De Water TR. Historical Aspects of Gene Therapy and Stem Cell Therapy in the Treatment of Hearing and Balance Disorder. Anat Rec (Hoboken) 2020; 303:390-407. [DOI: 10.1002/ar.24332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas R. Van De Water
- Cochlear Implant Research Program, Department of Otolaryngology, University of Miami Ear InstituteUniversity of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
13
|
Santos NAGD, Ferreira RS, Santos ACD. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 2019; 136:111079. [PMID: 31891754 DOI: 10.1016/j.fct.2019.111079] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Cisplatin has dramatically improved the survival rate of cancer patients, but it has also increased the prevalence of hearing and neurological deficits in this population. Cisplatin induces ototoxicity, peripheral (most prevalent) and central (rare) neurotoxicity. This review addresses the ototoxicity and the neurotoxicity associated with cisplatin-based chemotherapy, providing an integrated view of the potential protective agents that have been evaluated in vitro, in vivo and in clinical trials, their targets and mechanisms of protection and their effects on the antitumor activity of cisplatin. So far, the findings are insufficient to support the use of any oto- or neuroprotective agent before, during or after cisplatin chemotherapy. Despite their promising effects in vitro and in animal studies, many agents have not been evaluated in clinical trials. Additionally, the clinical trials have limitations concerning the sample size, controls, measurement, heterogeneous groups, several arms of treatment, short follow-up or no blinding. Besides that, for most agents, the effects on the antitumor activity of cisplatin have not been evaluated in tumor-bearing animals, which discourages clinical trials. Further well-designed randomized controlled clinical trials are necessary to definitely demonstrate the effectiveness of the oto- or neuroprotective agents proposed by animal and in vitro studies.
Collapse
Affiliation(s)
- Neife Aparecida Guinaim Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Scalco Ferreira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Cardozo Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Omichi R, Shibata SB, Morton CC, Smith RJH. Gene therapy for hearing loss. Hum Mol Genet 2019; 28:R65-R79. [PMID: 31227837 PMCID: PMC6796998 DOI: 10.1093/hmg/ddz129] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory disorder. Its underlying etiologies include a broad spectrum of genetic and environmental factors that can lead to hearing loss that is congenital or late onset, stable or progressive, drug related, noise induced, age related, traumatic or post-infectious. Habilitation options typically focus on amplification using wearable or implantable devices; however exciting new gene-therapy-based strategies to restore and prevent SNHL are actively under investigation. Recent proof-of-principle studies demonstrate the potential therapeutic potential of molecular agents delivered to the inner ear to ameliorate different types of SNHL. Correcting or preventing underlying genetic forms of hearing loss is poised to become a reality. Herein, we review molecular therapies for hearing loss such as gene replacement, antisense oligonucleotides, RNA interference and CRISPR-based gene editing. We discuss delivery methods, techniques and viral vectors employed for inner ear gene therapy and the advancements in this field that are paving the way for basic science research discoveries to transition to clinical trials.
Collapse
Affiliation(s)
- Ryotaro Omichi
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Seiji B Shibata
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M139NT, UK
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Guo J, Chai R, Li H, Sun S. Protection of Hair Cells from Ototoxic Drug-Induced Hearing Loss. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:17-36. [PMID: 30915699 DOI: 10.1007/978-981-13-6123-4_2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hair cells are specialized sensory epithelia cells that receive mechanical sound waves and convert them into neural signals for hearing, and these cells can be killed or damaged by ototoxic drugs, including many aminoglycoside antibiotics, platinum-based anticancer agents, and loop diuretics, leading to drug-induced hearing loss. Studies of therapeutic approaches to drug-induced hearing loss have been hampered by the limited understanding of the biological mechanisms that protect and regenerate hair cells. This review briefly discusses some of the most common ototoxic drugs and describes recent research concerning the mechanisms of ototoxic drug-induced hearing loss. It also highlights current developments in potential therapies and explores current clinical treatments for patients with hearing impairments.
Collapse
Affiliation(s)
- Jin Guo
- Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department, Shanghai Engineering Research Centre of Cochlear Implant, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Renjie Chai
- Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department, Shanghai Engineering Research Centre of Cochlear Implant, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Huawei Li
- Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department, Shanghai Engineering Research Centre of Cochlear Implant, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shan Sun
- Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department, Shanghai Engineering Research Centre of Cochlear Implant, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Fernandez K, Wafa T, Fitzgerald TS, Cunningham LL. An optimized, clinically relevant mouse model of cisplatin-induced ototoxicity. Hear Res 2019; 375:66-74. [PMID: 30827780 PMCID: PMC6416072 DOI: 10.1016/j.heares.2019.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Cisplatin-induced ototoxicity results in significant, permanent hearing loss in pediatric and adult cancer survivors. Elucidating the mechanisms underlying cisplatin-induced hearing loss as well as the development of therapies to reduce and/or reverse cisplatin ototoxicity have been impeded by suboptimal animal models. Clinically, cisplatin is most commonly administered in multi-dose, multi-cycle protocols. However, many animal studies are conducted using single injections of high-dose cisplatin, which is not reflective of clinical cisplatin administration protocols. Significant limitations of both high-dose, single-injection protocols and previous multi-dose protocols in rodent models include high mortality rates and relatively small changes in hearing sensitivity. These limitations restrict assessment of both long-term changes in hearing sensitivity and effects of potential protective therapies. Here, we present a detailed method for an optimized mouse model of cisplatin ototoxicity that utilizes a multi-cycle administration protocol that better approximates the type and degree of hearing loss observed clinically. This protocol results in significant hearing loss with very low mortality. This mouse model of cisplatin ototoxicity provides a platform for examining mechanisms of cisplatin-induced hearing loss as well as developing therapies to protect the hearing of cancer patients receiving cisplatin therapy.
Collapse
Affiliation(s)
- K Fernandez
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - T Wafa
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - T S Fitzgerald
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - L L Cunningham
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:409-428. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Seo Yule Jeong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Bin Na Hong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|
18
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
19
|
Guo JY, He L, Qu TF, Liu YY, Liu K, Wang GP, Gong SS. Canalostomy As a Surgical Approach to Local Drug Delivery into the Inner Ears of Adult and Neonatal Mice. J Vis Exp 2018. [PMID: 29889202 DOI: 10.3791/57351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Local delivery of therapeutic drugs into the inner ear is a promising therapy for inner ear diseases. Injection through semicircular canals (canalostomy) has been shown to be a useful approach to local drug delivery into the inner ear. The goal of this article is to describe, in detail, the surgical techniques involved in canalostomy in both adult and neonatal mice. As indicated by fast-green dye and adeno-associated virus serotype 8 with the green fluorescent protein gene, the canalostomy facilitated broad distribution of injected reagents in the cochlea and vestibular end-organs with minimal damage to hearing and vestibular function. The surgery was successfully implemented in both adult and neonatal mice; indeed, multiple surgeries could be performed if required. In conclusion, canalostomy is an effective and safe approach to drug delivery into the inner ears of adult and neonatal mice and may be used to treat human inner ear diseases in the future.
Collapse
Affiliation(s)
- Jing-Ying Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University
| | - Lu He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University
| | - Teng-Fei Qu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University
| | - Yu-Ying Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University
| | - Guo-Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University;
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University;
| |
Collapse
|
20
|
Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep 2017; 7:45524. [PMID: 28367981 PMCID: PMC5377419 DOI: 10.1038/srep45524] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/01/2017] [Indexed: 12/23/2022] Open
Abstract
The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a “designer” AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye &Ear Infirmary, Boston, MA 02114, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Ken Hashimoto
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye &Ear Infirmary, Boston, MA 02114, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Ru Xiao
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye &Ear Infirmary, Boston, MA 02114, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye &Ear Infirmary, Boston, MA 02114, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - M Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye &Ear Infirmary, Boston, MA 02114, USA
| |
Collapse
|
21
|
Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16052. [PMID: 27525291 PMCID: PMC4972090 DOI: 10.1038/mtm.2016.52] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 06/11/2016] [Indexed: 01/21/2023]
Abstract
Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing.
Collapse
|
22
|
Genetic Effects on Sensorineural Hearing Loss and Evidence-based Treatment for Sensorineural Hearing Loss. ACTA ACUST UNITED AC 2016; 30:179-88. [PMID: 26564418 DOI: 10.1016/s1001-9294(15)30044-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this article, the mechanism of inheritance behind inherited hearing loss and genetic susceptibility in noise-induced hearing loss are reviewed. Conventional treatments for sensorineural hearing loss (SNHL), i.e. hearing aid and cochlear implant, are effective for some cases, but not without limitations. For example, they provide little benefit for patients of profound SNHL or neural hearing loss, especially when the hearing loss is in poor dynamic range and with low frequency resolution. We emphasize the most recent evidence-based treatment in this field, which includes gene therapy and allotransplantation of stem cells. Their promising results have shown that they might be options of treatment for profound SNHL and neural hearing loss. Although some treatments are still at the experimental stage, it is helpful to be aware of the novel therapies and endeavour to explore the feasibility of their clinical application.
Collapse
|
23
|
Callejo A, Sedó-Cabezón L, Juan ID, Llorens J. Cisplatin-Induced Ototoxicity: Effects, Mechanisms and Protection Strategies. TOXICS 2015; 3:268-293. [PMID: 29051464 PMCID: PMC5606684 DOI: 10.3390/toxics3030268] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022]
Abstract
Cisplatin is a highly effective chemotherapeutic agent that is widely used to treat solid organ malignancies. However, serious side effects have been associated with its use, such as bilateral, progressive, irreversible, dose-dependent neurosensory hearing loss. Current evidence indicates that cisplatin triggers the production of reactive oxygen species in target tissues in the inner ear. A variety of agents that protect against cisplatin-induced ototoxicity have been successfully tested in cell culture and animal models. However, many of them interfere with the therapeutic effect of cisplatin, and therefore are not suitable for systemic administration in clinical practice. Consequently, local administration strategies, namely intratympanic administration, have been developed to achieve otoprotection, without reducing the antitumoral effect of cisplatin. While a considerable amount of pre-clinical information is available, clinical data on treatments to prevent cisplatin ototoxicity are only just beginning to appear. This review summarizes clinical and experimental studies of cisplatin ototoxicity, and focuses on understanding its toxicity mechanisms, clinical repercussions and prevention strategies.
Collapse
Affiliation(s)
- Angela Callejo
- Unitat Funcional d'Otorrinolaringologia i Al·lèrgia, Institut Universtiari Quirón Dexeus, 08028 Barcelona, Catalonia, Spain.
| | - Lara Sedó-Cabezón
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| | - Ivan Domènech Juan
- Unitat Funcional d'Otorrinolaringologia i Al·lèrgia, Institut Universtiari Quirón Dexeus, 08028 Barcelona, Catalonia, Spain.
- Servei d'Otorrinolaringologia, Hospital Universitario de Bellvitge, 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| | - Jordi Llorens
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| |
Collapse
|
24
|
Wan G, Corfas G. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hear Res 2015; 329:1-10. [PMID: 25937135 DOI: 10.1016/j.heares.2015.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 01/02/2023]
Abstract
Cochlear ribbon synapses are required for the rapid and precise neural transmission of acoustic signals from inner hair cells to the spiral ganglion neurons. Emerging evidence suggests that damage to these synapses represents an important form of cochlear neuropathy that might be highly prevalent in sensorineural hearing loss. In this review, we discuss our current knowledge on how ribbon synapses are damaged by noise and during aging, as well as potential strategies to promote ribbon synapse regeneration for hearing restoration.
Collapse
Affiliation(s)
- Guoqiang Wan
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Kim ES, Gustenhoven E, Mescher MJ, Pararas EEL, Smith KA, Spencer AJ, Tandon V, Borenstein JT, Fiering J. A microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control. LAB ON A CHIP 2014; 14:710-21. [PMID: 24302432 PMCID: PMC3902088 DOI: 10.1039/c3lc51105g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reciprocating microfluidic drug delivery, as compared to steady or pulsed infusion, has unique features which may be advantageous in many therapeutic applications. We have previously described a device, designed for wearable use in small animal models, that periodically infuses and then withdraws a sub-microliter volume of drug solution to and from the endogenous fluid of the inner ear. This delivery approach results in zero net volume of liquid transfer while enabling mass transport of compounds to the cochlea by means of diffusion and mixing. We report here on an advanced wearable delivery system aimed at further miniaturization and complex dosing protocols. Enhancements to the system include the incorporation of a planar micropump to generate reciprocating flow and a novel drug reservoir that maintains zero net volume delivery and permits programmable modulation of the drug concentration in the infused bolus. The reciprocating pump is fabricated from laminated polymer films and employs a miniature electromagnetic actuator to meet the size and weight requirements of a head-mounted in vivo guinea pig testing system. The reservoir comprises a long microchannel in series with a micropump, connected in parallel with the reciprocating flow network. We characterized in vitro the response and repeatability of the planar pump and compared the results with a lumped element simulation. We also characterized the performance of the reservoir, including repeatability of dosing and range of dose modulation. Acute in vivo experiments were performed in which the reciprocating pump was used to deliver a test compound to the cochlea of anesthetized guinea pigs to evaluate short-term safety and efficacy of the system. These advances are key steps toward realization of an implantable device for long-term therapeutic applications in humans.
Collapse
Affiliation(s)
- Ernest S Kim
- The Charles Stark Draper Laboratory, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Takada Y, Beyer LA, Swiderski DL, O'Neal AL, Prieskorn DM, Shivatzki S, Avraham KB, Raphael Y. Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hear Res 2013; 309:124-35. [PMID: 24333301 DOI: 10.1016/j.heares.2013.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/16/2013] [Accepted: 11/19/2013] [Indexed: 01/11/2023]
Abstract
Mutations in the connexin 26 gene (GJB2) are the most common genetic cause of deafness, leading to congenital bilateral non-syndromic sensorineural hearing loss. Here we report the generation of a mouse model for a connexin 26 (Cx26) mutation, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the auditory epithelium. We determined that these conditional knockout mice, designated Gjb2-CKO, have a severe hearing loss. Immunocytochemistry of the auditory epithelium confirmed absence of Cx26 in the non-sensory cells. Histology of the organ of Corti and the spiral ganglion neurons (SGNs) performed at ages 1, 3, or 6 months revealed that in Gjb2-CKO mice, the organ of Corti began to degenerate in the basal cochlear turn at an early stage, and the degeneration rapidly spread to the apex. In addition, the density of SGNs in Rosenthal's canal decreased rapidly along a gradient from the base of the cochlea to the apex, where some SGNs survived until at least 6 months of age. Surviving neurons often clustered together and formed clumps of cells in the canal. We then assessed the influence of brain derived neurotrophic factor (BDNF) gene therapy on the SGNs of Gjb2-CKO mice by inoculating Adenovirus with the BDNF gene insert (Ad.BDNF) into the base of the cochlea via the scala tympani or scala media. We determined that over-expression of BDNF beginning around 1 month of age resulted in a significant rescue of neurons in Rosenthal's canal of the cochlear basal turn but not in the middle or apical portions. This data may be used to design therapies for enhancing the SGN physiological status in all GJB2 patients and especially in a sub-group of GJB2 patients where the hearing loss progresses due to ongoing degeneration of the auditory nerve, thereby improving the outcome of cochlear implant therapy in these ears.
Collapse
Affiliation(s)
- Yohei Takada
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA; Department of Otolaryngology, Kansai Medical University, 2-3-1, Shinmachi, Hirakata, Osaka 573-1191, Japan
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Aubrey L O'Neal
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Shaked Shivatzki
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA.
| |
Collapse
|
27
|
Borkholder DA, Zhu X, Frisina RD. Round window membrane intracochlear drug delivery enhanced by induced advection. J Control Release 2013; 174:171-6. [PMID: 24291333 DOI: 10.1016/j.jconrel.2013.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 11/24/2022]
Abstract
Delivery of therapeutic compounds to the inner ear via absorption through the round window membrane (RWM) has advantages over direct intracochlear infusions; specifically, minimizing impact upon functional hearing measures. However, previous reports show that significant basal-to-apical concentration gradients occur, with the potential to impact treatment efficacy. Here we present a new approach to inner ear drug delivery with induced advection aiding distribution of compounds throughout the inner ear in the murine cochlea. Polyimide microtubing was placed near the RWM niche through a bullaostomy into the middle ear cavity allowing directed delivery of compounds to the RWM. We hypothesized that a posterior semicircular canalostomy would induce apical flow from the patent cochlear aqueduct to the canalostomy due to influx of cerebral spinal fluid. To test this hypothesis, young adult CBA/CaJ mice were divided into two groups: bullaostomy approach only (BA) and bullaostomy+canalostomy (B+C). Cochlear function was evaluated by distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) thresholds during and after middle ear infusion of salicylate in artificial perilymph (AP), applied near the RWM. The mice recovered for 1week, and were re-tested. The results demonstrate there was no significant impact on auditory function utilizing the RWM surgical procedure with or without the canalostomy, and DPOAE thresholds were elevated reversibly during the salicylate infusion. Comparing the threshold shifts for both methods, the B+C approach had more of a physiological effect than the BA approach, including at lower frequencies representing more apical cochlear locations. Unlike mouse cochleostomies, there was no deleterious auditory functional impact after 1week recovery from surgery. The B+C approach had more drug efficacy at lower frequencies, underscoring potential benefits for more precise control of delivery of inner ear therapeutic compounds.
Collapse
Affiliation(s)
- David A Borkholder
- Department of Electrical and Microelectronic Engineering, Rochester Institute of Technology, Rochester 14623, USA; Department of Microsystems Engineering, Rochester Institute of Technology, Rochester 14623, USA; Department of Otolaryngology, University of Rochester Medical School, Rochester 14642, USA; Department of Biomedical Engineering, University of Rochester Medical School, Rochester 14642, USA.
| | - Xiaoxia Zhu
- Department of Otolaryngology, University of Rochester Medical School, Rochester 14642, USA; International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester 14623, USA.
| | - Robert D Frisina
- Department of Otolaryngology, University of Rochester Medical School, Rochester 14642, USA; Department of Biomedical Engineering, University of Rochester Medical School, Rochester 14642, USA; Department of Neurobiology & Anatomy, University of Rochester Medical School, Rochester 14642, USA; International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester 14623, USA.
| |
Collapse
|
28
|
Kohrman DC, Raphael Y. Gene therapy for deafness. Gene Ther 2013; 20:1119-23. [PMID: 23864018 PMCID: PMC4113964 DOI: 10.1038/gt.2013.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 12/18/2022]
Abstract
Hearing loss is the most common sensory deficit in humans and can result from genetic, environmental or combined etiologies that prevent normal function of the cochlea, the peripheral sensory organ. Recent advances in understanding the genetic pathways that are critical for the development and maintenance of cochlear function, as well as the molecular mechanisms that underlie cell trauma and death, have provided exciting opportunities for modulating these pathways to correct genetic mutations, to enhance the endogenous protective pathways for hearing preservation and to regenerate lost sensory cells with the possibility of ameliorating hearing loss. A number of recent animal studies have used gene-based therapies in innovative ways toward realizing these goals. With further refinement, some of the protective and regenerative approaches reviewed here may become clinically applicable.
Collapse
Affiliation(s)
- D C Kohrman
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
29
|
Abstract
Animal studies on inner ear development, repair and regeneration provide understanding of molecular pathways that can be harnessed for treating inner ear disease. Use of transgenic mouse technology, in particular, has contributed knowledge of genes that regulate development of hair cells and innervation, and of molecular players that can induce regeneration, but this technology is not applicable for human treatment, for practical and ethical reasons. Therefore other means for influencing gene expression in the inner ear are needed. We describe several gene vectors useful for inner ear gene therapy and the practical aspects of introducing these vectors into the ear. We then review the progress toward using gene transfer for therapies in both auditory and balance systems, and discuss the technological milestones needed to advance to clinical application of these methods.
Collapse
Affiliation(s)
- Hideto Fukui
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | | |
Collapse
|
30
|
Gene therapy for cisplatin-induced ototoxicity: a systematic review of in vitro and experimental animal studies. Otol Neurotol 2012; 33:302-10. [PMID: 22388732 DOI: 10.1097/mao.0b013e318248ee66] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Ototoxicity is a frequent adverse event of cisplatin treatment. No therapy is currently available for cisplatin-induced ototoxicity. A systematic review of experimental animal studies and in vitro experiments was conducted to evaluate gene therapy as a potential future therapeutic option. DATA SOURCES Eligible studies were identified through searches of electronic databases Ovid MEDLINE, Ovid MEDLINE In-Process, Embase, PubMed, Biosis Previews, Scopus, ISI Web of Science, and The Cochrane Library. STUDY SELECTION Articles obtained from the search were independently reviewed by 2 authors using specific criteria to identify experimental animal studies and in vitro experiments conducted to evaluate gene therapy for cisplatin-induced ototoxicity. No restriction was applied to publication dates or languages. DATA EXTRACTION Data extracted included experiment type, cell type, species, targeted gene, gene expression, method, administration, inner ear site evaluated, outcome measures for cytotoxicity, and significant results. RESULTS Fourteen articles were included in this review. In vitro and in vivo experiments have been performed to evaluate the potential of gene expression manipulation for cisplatin-induced ototoxicity. Twelve different genes were targeted including NTF3, GDNF, HO-1, XIAP, Trpv1, BCL2, Otos, Nfe2l2, Nox1, Nox3, Nox4, and Ctr1. All of the included articles demonstrated a benefit of gene therapy on cytotoxicity caused by cisplatin. CONCLUSION Experimental animal studies and in vitro experiments have demonstrated the efficacy of gene therapy for cisplatin-induced ototoxicity. However, further investigation regarding safety, immunogenicity, and consequences of genetic manipulation in the inner ear tissues must be completed to develop future therapeutic options.
Collapse
|
31
|
Sacheli R, Delacroix L, Vandenackerveken P, Nguyen L, Malgrange B. Gene transfer in inner ear cells: a challenging race. Gene Ther 2012; 20:237-47. [PMID: 22739386 DOI: 10.1038/gt.2012.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in human genomics led to the identification of numerous defective genes causing deafness, which represent novel putative therapeutic targets. Future gene-based treatment of deafness resulting from genetic or acquired sensorineural hearing loss may include strategies ranging from gene therapy to antisense delivery. For successful development of gene therapies, a minimal requirement involves the engineering of appropriate gene carrier systems. Transfer of exogenous genetic material into the mammalian inner ear using viral or non-viral vectors has been characterized over the last decade. The nature of inner ear cells targeted, as well as the transgene expression level and duration, are highly dependent on the vector type, the route of administration and the strength of the promoter driving expression. This review summarizes and discusses recent advances in inner ear gene-transfer technologies aimed at examining gene function or identifying new treatment for inner ear disorders.
Collapse
Affiliation(s)
- R Sacheli
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
32
|
Jerusalinsky D, Baez MV, Epstein AL. Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases. ACTA ACUST UNITED AC 2011; 106:2-11. [PMID: 22108428 DOI: 10.1016/j.jphysparis.2011.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/11/2011] [Accepted: 11/04/2011] [Indexed: 12/24/2022]
Abstract
Somatic manipulation of the nervous system without the involvement of the germinal line appears as a powerful counterpart of the transgenic strategy. The use of viral vectors to produce specific, transient and localized knockout, knockdown, ectopic expression or overexpression of a gene, leads to the possibility of analyzing both in vitro and in vivo molecular basis of neural function. In this approach, viral particles engineered to carry transgenic sequences are delivered into discrete brain regions, to transduce cells that will express the transgenic products. Amplicons are replication-incompetent helper-dependent vectors derived from herpes simplex virus type 1 (HSV-1), with several advantages that potentiate their use in neurosciences: (1) minimal toxicity: amplicons do not encode any virus proteins, are neither toxic for the infected cells nor pathogenic for the inoculated animals and elicit low levels of adaptive immune responses; (2) extensive transgene capacity to carry up to 150-kb of foreign DNA; i.e., entire genes with regulatory sequences could be delivered; (3) widespread cellular tropism: amplicons can experimentally infect several cell types including glial cells, though naturally the virus infects mainly neurons and epithelial cells; (4) since the viral genome does not integrate into cellular chromosomes there is low probability to induce insertional mutagenesis. Recent investigations on gene transfer into the brain using these vectors, have focused on gene therapy of inherited genetic diseases affecting the nervous system, such as ataxias, or on neurodegenerative disorders using experimental models of Parkinson's or Alzheimer's disease. Another group of studies used amplicons to investigate complex neural functions such as neuroplasticity, anxiety, learning and memory. In this short review, we summarize recent data supporting the potential of HSV-1 based amplicon vector model for gene delivery and modulation of gene expression in primary cultures of neuronal cells and into the brain of living animals.
Collapse
Affiliation(s)
- Diana Jerusalinsky
- Instituto de Biología Celular y Neurociencia (IBCN), CONICET-UBA. Buenos Aires, Argentina.
| | | | | |
Collapse
|
33
|
Shibata SB, Budenz CL, Bowling SA, Pfingst BE, Raphael Y. Nerve maintenance and regeneration in the damaged cochlea. Hear Res 2011; 281:56-64. [PMID: 21596129 PMCID: PMC3196294 DOI: 10.1016/j.heares.2011.04.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/22/2011] [Accepted: 04/23/2011] [Indexed: 12/22/2022]
Abstract
Following the onset of sensorineural hearing loss, degeneration of mechanosensitive hair cells and spiral ganglion cells (SGCs) in humans and animals occurs to variable degrees, with a trend for greater neural degeneration with greater duration of deafness. Emergence of the cochlear implant prosthesis has provided much needed aid to many hearing impaired patients and has become a well-recognized therapy worldwide. However, ongoing peripheral nerve fiber regression and subsequent degeneration of SGC bodies can reduce the neural targets of cochlear implant stimulation and diminish its function. There is increasing interest in bio-engineering approaches that aim to enhance cochlear implant efficacy by preventing SGC body degeneration and/or regenerating peripheral nerve fibers into the deaf sensory epithelium. We review the advancements in maintaining and regenerating nerves in damaged animal cochleae, with an emphasis on the therapeutic capacity of neurotrophic factors delivered to the inner ear after an insult. Additionally, we summarize the histological process of neuronal degeneration in the inner ear and describe different animal models that have been employed to study this mechanism. Research on enhancing the biological infrastructure of the deafened cochlea in order to improve cochlear implant efficacy is of immediate clinical importance.
Collapse
Affiliation(s)
- Seiji B. Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Cameron L. Budenz
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Sara A. Bowling
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Bryan E. Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| |
Collapse
|
34
|
Li Y, Ding D, Jiang H, Fu Y, Salvi R. Co-administration of cisplatin and furosemide causes rapid and massive loss of cochlear hair cells in mice. Neurotox Res 2011; 20:307-19. [PMID: 21455790 DOI: 10.1007/s12640-011-9244-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/10/2011] [Accepted: 03/21/2011] [Indexed: 12/24/2022]
Abstract
The expanding arsenal of transgenic mice has created a powerful tool for investigating the biological mechanisms involved in ototoxicity. However, cisplatin ototoxicity is difficult to investigate in mice because of their small size and vulnerability to death by nephrotoxicity. To overcome this problem, we developed a strategy for promoting cisplatin-induced ototoxicity by coadministration of furosemide a loop diuretic. A dose-response study identified 200 mg/kg of furosemide as the optimal dose for disrupting the stria vascularis and opening the blood-ear barrier. Our analysis of stria pathology indicated that the optimal period for administering cisplatin was 1 h after furosemide treatment. Combined treatment with 0.5 mg/kg of cisplatin and 200 mg/kg furosemide resulted in only moderate loss of outer hair cells in the basal 20% of the cochlea, only mild threshold shifts and minimal loss of distortion product otoacoustic emission (DPOAE). In contrast, 1 mg/kg of cisplatin plus 200 mg/kg of furosemide resulted in a permanent 40-50 dB elevation of auditory brainstem response thresholds, almost complete elimination of DPOAE, and nearly total loss of outer hair cells. The widespread outer hair cell lesions that develop in mice treated with cisplatin plus furosemide could serve as extremely useful murine model for investigating techniques for regenerating outer hair cells, studying the mechanisms of cisplatin and furosemide ototoxicity and assessing the perceptual and electrophysiological consequences of outer hair cell loss on central auditory plasticity.
Collapse
Affiliation(s)
- Yongqi Li
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
35
|
Stöver T, Lenarz T. Biomaterials in cochlear implants. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 8:Doc10. [PMID: 22073103 PMCID: PMC3199815 DOI: 10.3205/cto000062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development.
Collapse
Affiliation(s)
- Timo Stöver
- Department of Otolaryngology, Goethe University Frankfurt, Frankfurt a.M., Germany
| | | |
Collapse
|
36
|
Staecker H, Garnham C. Neurotrophin therapy and cochlear implantation: translating animal models to human therapy. Exp Neurol 2010; 226:1-5. [PMID: 20654616 DOI: 10.1016/j.expneurol.2010.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 12/31/2022]
Abstract
Cochlear implantation is a highly successful intervention for the treatment of deafness that depends on electrical stimulation of the inner ear's surviving spiral ganglion neurons. It is thought that some of the variability in hearing outcomes that is seen in patients receiving implants may be a reflection of the number or health of surviving neurons. A variety of studies have demonstrated a relationship between hair cell loss and degeneration of the spiral ganglion. This has been attributed to the loss of neurotrophin production with destruction of the spiral ganglion's target, the hair cell. Delivery of neurotrophins either through a device or through gene therapy has been shown to improve spiral ganglion survival after hair cell loss and additionally improves the function of cochlear implants in animal models. Translation of these observations to human therapy will require a clear understanding of the relationship between human spiral ganglion health and cochlear implant outcomes as well as the development of novel pre- and post-implantation outcomes measures.
Collapse
Affiliation(s)
- Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas, Kansas City, KS 66160, USA.
| | | |
Collapse
|
37
|
Shibata SB, Raphael Y. Future approaches for inner ear protection and repair. JOURNAL OF COMMUNICATION DISORDERS 2010; 43:295-310. [PMID: 20430401 PMCID: PMC2905731 DOI: 10.1016/j.jcomdis.2010.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 05/29/2023]
Abstract
UNLABELLED Health care professionals tending to patients with inner ear disease face inquiries about therapy options, including treatments that are being developed for future use but not yet available. The devastating outcome of sensorineural hearing loss, combined with the permanent nature of the symptoms, make these inquiries demanding and frequent. The vast information accessible online and the publicity for breakthroughs in research add to patient requests for access to advanced and innovative therapies, even before these are available for clinical use. This can sometimes be taxing on the health care provider who is in contact with the patients. Here we aim to equip the provider with information about some of the progress made for protective and reparative approaches for treating inner ears. LEARNING OUTCOMES (1) Readers will be able to explain why hearing loss is irreversible and common, (2) readers will be able to explain the importance of protective measures and the progress made in discovery and design of novel biological protective molecules, (3) readers will be able to describe reparative approaches currently under investigation (such as tissue engineering), the main difficulties in the design of such therapies and the major hurdles that remain for making novel technologies clinically viable, and (4) readers will be able to explain to their patients some of the progress in developing new treatments without making the promise of imminent clinical use. With this information, readers will be able to guide patients to make better choices for their treatment and to guide students toward research in this exciting field.
Collapse
Affiliation(s)
- Seiji B. Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| |
Collapse
|
38
|
de Oliveira AP, Fraefel C. Herpes simplex virus type 1/adeno-associated virus hybrid vectors. Open Virol J 2010; 4:109-22. [PMID: 20811580 PMCID: PMC2930156 DOI: 10.2174/1874357901004030109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 11/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) amplicons can accommodate foreign DNA of any size up to 150 kbp and, therefore, allow extensive combinations of genetic elements. Genomic sequences as well as cDNA, large transcriptional regulatory sequences for cell type-specific expression, multiple transgenes, and genetic elements from other viruses to create hybrid vectors may be inserted in a modular fashion. Hybrid amplicons use genetic elements from HSV-1 that allow replication and packaging of the vector DNA into HSV-1 virions, and genetic elements from other viruses that either direct integration of transgene sequences into the host genome or allow episomal maintenance of the vector. Thus, the advantages of the HSV-1 amplicon system, including large transgene capacity, broad host range, strong nuclear localization, and availability of helper virus-free packaging systems are retained and combined with those of heterologous viral elements that confer genetic stability to the vector DNA. Adeno-associated virus (AAV) has the unique capability of integrating its genome into a specific site, designated AAVS1, on human chromosome 19. The AAV rep gene and the inverted terminal repeats (ITRs) that flank the AAV genome are sufficient for this process. HSV-1 amplicons have thus been designed that contain the rep gene and a transgene cassette flanked by AAV ITRs. These HSV/AAV hybrid vectors direct site-specific integration of transgene sequences into AAVS1 and support long-term transgene expression.
Collapse
Affiliation(s)
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Huang Q, Tang J. Age-related hearing loss or presbycusis. Eur Arch Otorhinolaryngol 2010; 267:1179-91. [DOI: 10.1007/s00405-010-1270-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 04/28/2010] [Indexed: 11/29/2022]
|
40
|
Poirrier A, Van den Ackerveken P, Kim T, Vandenbosch R, Nguyen L, Lefebvre P, Malgrange B. Ototoxic drugs: Difference in sensitivity between mice and guinea pigs. Toxicol Lett 2010; 193:41-9. [DOI: 10.1016/j.toxlet.2009.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/02/2009] [Accepted: 12/06/2009] [Indexed: 01/18/2023]
|
41
|
Shibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE, Raphael Y. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 2010; 223:464-72. [PMID: 20109446 DOI: 10.1016/j.expneurol.2010.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 12/26/2022]
Abstract
Sensory organs typically use receptor cells and afferent neurons to transduce environmental signals and transmit them to the CNS. When sensory cells are lost, nerves often regress from the sensory area. Therapeutic and regenerative approaches would benefit from the presence of nerve fibers in the tissue. In the hearing system, retraction of afferent innervation may accompany the degeneration of auditory hair cells that is associated with permanent hearing loss. The only therapy currently available for cases with severe or complete loss of hair cells is the cochlear implant auditory prosthesis. To enhance the therapeutic benefits of a cochlear implant, it is necessary to attract nerve fibers back into the cochlear epithelium. Here we show that forced expression of the neurotrophin gene BDNF in epithelial or mesothelial cells that remain in the deaf ear induces robust regrowth of nerve fibers towards the cells that secrete the neurotrophin, and results in re-innervation of the sensory area. The process of neurotrophin-induced neuronal regeneration is accompanied by significant preservation of the spiral ganglion cells. The ability to regrow nerve fibers into the basilar membrane area and protect the auditory nerve will enhance performance of cochlear implants and augment future cell replacement therapies such as stem cell implantation or induced transdifferentiation. This model also provides a general experimental stage for drawing nerve fibers into a tissue devoid of neurons, and studying the interaction between the nerve fibers and the tissue.
Collapse
Affiliation(s)
- Seiji B Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, 1150 W. Med. Cntr. Dr., Ann Arbor, MI 48109-5648, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Chiu YG, Bowers WJ, Lim ST, Ryan DA, Federoff HJ. Effects of herpes simplex virus amplicon transduction on murine dendritic cells. Hum Gene Ther 2010; 20:442-52. [PMID: 19199821 DOI: 10.1089/hum.2008.160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The herpes simplex virus (HSV)-based amplicon is a versatile vaccine platform that has been preclinically vetted as a gene-based immunotherapeutic for cancer, HIV, and neurodegenerative disorders. Although it is well known that injection of dendritic cells (DCs) transduced ex vivo with helper virus-free HSV amplicon vectors expressing disease-relevant antigens induces antigen-specific immune responses, the cellular receptor(s) by which the amplicon virion gains entry into DCs, as well as the effects that viral vector transduction impinges on the physiological status of these cells, is less understood. Herein, we examine the effects of amplicon transduction on mouse bone marrow-derived DCs. We demonstrate that HSV-1 cellular receptors HveC and HveA are expressed on the cell surface of murine DCs, and that HSV amplicons transduce DCs at high efficiency (>90%) with minimal effects on cell viability. Transduction of dendritic cells with amplicons induces a transient DC maturation phenotype as represented by self-limited upregulation of MHCII and CD11c markers. Mature DCs are less sensitive to HSV amplicon transduction than immature DCs regarding DC-related surface marker maintenance. From this and our previous work, we conclude that HSV amplicons transduce DCs efficiently, but impart differential and transient physiological effects on mature and immature DC pools, which will facilitate fine-tuning of this vaccination platform and further exploit its potential in immunotherapy.
Collapse
Affiliation(s)
- Yahui Grace Chiu
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Gene transfer into the cells of the cochlea is useful for both research and therapy. Bovine adeno-associated virus (BAAV) is a new viral vector with potential for long-term gene expression with little or no side effects. In this study, we assessed transgene expression using BAAV with beta-actin-GFP as a reporter gene, in the cochleae of normal and deafened guinea pigs. We used two different routes to inoculate the cochlea: scala media (SM) or scala tympani (ST). Auditory brainstem response assessments were carried out before inoculation, 7 days after inoculation and immediately before killing, to assess the functional consequences of the treatment. We observed threshold shifts because of the surgical invasion, but no apparent pathology associated with the virus. Fourteen days after the injection, animals were killed and cochleae assessed histologically. Epi-fluorescence showed that BAAV transduced the supporting cells of both normal and deafened animals through SM and ST inoculations. Transgene expression in cells of the membranous labyrinth after ST inoculation is an important outcome because of the greater feasibility of this route for future clinical application. BAAV facilitates efficient transduction of the membranous labyrinth epithelium with minimum pathogenicity and may become clinically applicable for inner ear gene therapy.
Collapse
|
44
|
Richardson RT, Wise AK, Andrew JK, O'Leary SJ. Novel drug delivery systems for inner ear protection and regeneration after hearing loss. Expert Opin Drug Deliv 2009; 5:1059-76. [PMID: 18817513 DOI: 10.1517/17425247.5.10.1059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND A cochlear implant, the only current treatment for restoring auditory perception after severe or profound sensorineural hearing loss (SNHL), works by electrically stimulating spiral ganglion neurons (SGNs). However, gradual degeneration of SGNs associated with SNHL can compromise the efficacy of the device. OBJECTIVE To review novel drug delivery systems for preserving and/or regenerating sensory cells in the cochlea after SNHL. METHODS The effectiveness of traditional cochlear drug delivery systems is compared to newer techniques such as cell, polymer and gene transfer technologies. Special requirements for local drug delivery to the cochlea are discussed, such as protecting residual hearing and site-specific drug delivery for cell preservation and regeneration. RESULTS/CONCLUSIONS Drug delivery systems with the potential for immediate clinical translation, as well as those that will contribute to the future of hearing preservation or cochlear cellular regeneration, are identified.
Collapse
Affiliation(s)
- Rachael T Richardson
- Bionic Ear Institute, 384 Albert Street, East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Treatment of auditory and vestibular dysfunction has become increasingly dependent on inner ear drug delivery. Recent advances in molecular therapy and nanotechnology have pushed development of alternate delivery methodologies involving both transtympanic and direct intracochlear infusions. This review examines recent developments in the field relevant to both clinical and animal research environments. RECENT FINDINGS Transtympanic delivery of gentamicin and corticosteroids for the treatment of Meniere's disease and sudden sensorineural hearing loss continues to be clinically relevant, with understanding of pharmacokinetics becoming more closely studied. Stabilizing matrices placed on the round window membrane for sustained passive delivery of compounds offer more controlled dosing profiles than transtympanic injections. Nanoparticles are capable of traversing the round window membrane and cochlear membranous partitions, and may become useful gene delivery platforms. Cochlear and vestibular hair cell regeneration has been demonstrated by vector delivery to the inner ear, offering promise for future advanced therapies. SUMMARY Optimal methods of inner ear drug delivery will depend on toxicity, therapeutic dose range, and characteristics of the agent to be delivered. Advanced therapy development will likely require direct intracochlear delivery with detailed understanding of associated pharmacokinetics.
Collapse
|
46
|
Swan EEL, Mescher MJ, Sewell WF, Tao SL, Borenstein JT. Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev 2008; 60:1583-99. [PMID: 18848590 PMCID: PMC2657604 DOI: 10.1016/j.addr.2008.08.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/21/2008] [Indexed: 02/07/2023]
Abstract
Many inner ear disorders cannot be adequately treated by systemic drug delivery. A blood-cochlear barrier exists, similar physiologically to the blood-brain barrier, which limits the concentration and size of molecules able to leave the circulation and gain access to the cells of the inner ear. However, research in novel therapeutics and delivery systems has led to significant progress in the development of local methods of drug delivery to the inner ear. Intratympanic approaches, which deliver therapeutics to the middle ear, rely on permeation through tissue for access to the structures of the inner ear, whereas intracochlear methods are able to directly insert drugs into the inner ear. Innovative drug delivery systems to treat various inner ear ailments such as ototoxicity, sudden sensorineural hearing loss, autoimmune inner ear disease, and for preserving neurons and regenerating sensory cells are being explored.
Collapse
Affiliation(s)
- Erin E Leary Swan
- Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
47
|
Chikar JA, Colesa DJ, Swiderski DL, Di Polo A, Raphael Y, Pfingst BE. Over-expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons. Hear Res 2008; 245:24-34. [PMID: 18768155 DOI: 10.1016/j.heares.2008.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/07/2008] [Accepted: 08/12/2008] [Indexed: 01/17/2023]
Abstract
The survival of the auditory nerve in cases of sensorineural hearing loss is believed to be a major factor in effective cochlear implant function. The current study assesses two measures of cochlear implant thresholds following a post-deafening treatment intended to halt auditory nerve degeneration. We used an adenoviral construct containing a gene insert for brain-derived neurotrophic factor (BDNF), a construct that has previously been shown to promote neuronal survival in a number of biological systems. We implanted ototoxically deafened guinea pigs with a multichannel cochlear implant and delivered a single inoculation of an adenovirus suspension coding for BDNF (Ad.BDNF) into the scala tympani at the time of implantation. Thresholds to electrical stimulation were assessed both psychophysically and electrophysiologically over a period of 80 days. Spiral ganglion cell survival was analyzed at the 80 days time point. Compared to the control group, the Ad.BDNF treated group had lower psychophysical and electrophysiological thresholds as well as higher survival of spiral ganglion cells. Electrophysiological, but not psychophysical, thresholds correlated well with the density of spiral ganglion cells. These results indicate that the changes in the anatomy of the auditory nerve induced by the combination of Ad.BDNF inoculation and the electrical stimulation used for testing improved functional measures of CI performance.
Collapse
Affiliation(s)
- Jennifer A Chikar
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, MI 48109-5616, United States.
| | | | | | | | | | | |
Collapse
|
48
|
Cuchet D, Epstein AL. Further improvements in the technology of HSV-1-based amplicon vectors. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.7.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Hendricks JL, Chikar JA, Crumling MA, Raphael Y, Martin DC. Localized cell and drug delivery for auditory prostheses. Hear Res 2008; 242:117-31. [PMID: 18573323 DOI: 10.1016/j.heares.2008.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/09/2008] [Accepted: 06/02/2008] [Indexed: 12/20/2022]
Abstract
Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness.
Collapse
Affiliation(s)
- Jeffrey L Hendricks
- Department of Biomedical Engineering, The University of Michigan, 1107 Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA.
| | | | | | | | | |
Collapse
|
50
|
Xia A, Wooltorton JRA, Palmer DJ, Ng P, Pereira FA, Eatock RA, Oghalai JS. Functional prestin transduction of immature outer hair cells from normal and prestin-null mice. J Assoc Res Otolaryngol 2008; 9:307-20. [PMID: 18506528 DOI: 10.1007/s10162-008-0121-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 04/04/2008] [Indexed: 10/22/2022] Open
Abstract
Prestin is a membrane protein in the outer hair cell (OHC) that has been shown to be essential for electromotility. OHCs from prestin-null mice do not express prestin, do not have a nonlinear capacitance (the electrical signature of electromotility), and are smaller in size than wild-type OHCs. We sought to determine whether prestin-null OHCs can be transduced to incorporate functional prestin protein in a normal fashion. A recombinant helper-dependent adenovirus expressing prestin and green fluorescent protein (HDAd-prestin-GFP) was created and tested in human embryonic kidney cells (HEK cells). Transduced HEK cells demonstrated membrane expression of prestin and nonlinear capacitance. HDAd-prestin-GFP was then applied to cochlear sensory epithelium explants harvested from wild-type and prestin-null mice at postnatal days 2-3, the age at which native prestin is just beginning to become functional in wild-type mice. At postnatal days 4-5, we investigated transduced OHCs for (1) their prestin expression pattern as revealed by immunofluorescence; (2) their cell surface area as measured by linear capacitance; and (3) their prestin function as indicated by nonlinear capacitance. HDAd-prestin-GFP efficiently transduced OHCs of both genotypes and prestin protein localized to the plasma membrane. Whole-cell voltage clamp studies revealed a nonlinear capacitance in transduced wild-type and prestin-null OHCs, but not in non-transduced cells of either genotype. Prestin transduction did not increase the linear capacitance (cell surface area) for either genotype. In peak nonlinear capacitance, voltage at peak nonlinear capacitance, charge density of the nonlinear capacitance, and shape of the voltage-capacitance curves, the transduced cells of the two genotypes resembled each other and previously reported data from adult wild-type mouse OHCs. Thus, prestin introduced into prestin-deficient OHCs segregates normally to the cell membrane and generates a normal nonlinear capacitance, indicative of normal prestin function.
Collapse
Affiliation(s)
- Anping Xia
- Bobby R. Alford Department of Otolaryngology, Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|