1
|
Corrigan F, Arulsamy A, Teng J, Collins-Praino LE. Pumping the Brakes: Neurotrophic Factors for the Prevention of Cognitive Impairment and Dementia after Traumatic Brain Injury. J Neurotrauma 2016; 34:971-986. [PMID: 27630018 DOI: 10.1089/neu.2016.4589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death worldwide, affecting as many as 54,000,000-60,000,000 people annually. TBI is associated with significant impairments in brain function, impacting cognitive, emotional, behavioral, and physical functioning. Although much previous research has focused on the impairment immediately following injury, TBI may have much longer-lasting consequences, including neuropsychiatric disorders and cognitive impairment. TBI, even mild brain injury, has also been recognized as a significant risk factor for the later development of dementia and Alzheimer's disease. Although the link between TBI and dementia is currently unknown, several proposed mechanisms have been put forward, including alterations in glucose metabolism, excitotoxicity, calcium influx, mitochondrial dysfunction, oxidative stress, and neuroinflammation. A treatment for the devastating long-term consequences of TBI is desperately needed. Unfortunately, however, no such treatment is currently available, making this a major area of unmet medical need. Increasing the level of neurotrophic factor expression in key brain areas may be one potential therapeutic strategy. Of the neurotrophic factors, granulocyte-colony stimulating factor (G-CSF) may be particularly effective for preventing the emergence of long-term complications of TBI, including dementia, because of its ability to reduce apoptosis, stimulate neurogenesis, and increase neuroplasticity.
Collapse
Affiliation(s)
- Frances Corrigan
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Alina Arulsamy
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Jason Teng
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| |
Collapse
|
2
|
Hashimoto T, Sano T, Ito W, Kanazawa K, Danno GI, Ashida H. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole Induces Apoptosis and Necrosis with Activation of Different Caspases in Rat Splenocytes. Biosci Biotechnol Biochem 2014; 68:964-7. [PMID: 15118336 DOI: 10.1271/bbb.68.964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A dietary carcinogen, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) at 20 microM activates caspase-3-like proteases as an apoptotic marker in rat splenocytes. The present study demonstrated 100 microM Trp-P-1 induced necrosis with activation of caspase-3-like proteases. The activation in necrosis and apoptosis resulted from the activation of caspase-9 and caspase-8, respectively. Thus, Trp-P-1 induces apoptosis and necrosis with the activation of different caspases.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, USA
| | | | | | | | | | | |
Collapse
|
3
|
Rajaram A, Chen XB, Schreyer DJ. Strategic Design and Recent Fabrication Techniques for Bioengineered Tissue Scaffolds to Improve Peripheral Nerve Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:454-67. [DOI: 10.1089/ten.teb.2012.0006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ajay Rajaram
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Xiong-Biao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - David J. Schreyer
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
4
|
Malik SZ, Motamedi S, Royo NC, LeBold D, Watson DJ. Identification of potentially neuroprotective genes upregulated by neurotrophin treatment of CA3 neurons in the injured brain. J Neurotrauma 2011; 28:415-30. [PMID: 21083427 DOI: 10.1089/neu.2010.1487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Specific neurotrophic factors mediate histological and/or functional improvement in animal models of traumatic brain injury (TBI). In previous work, several lines of evidence indicated that the mammalian neurotrophin NT-4/5 is neuroprotective for hippocampal CA3 pyramidal neurons after experimental TBI. We hypothesized that NT-4/5 neuroprotection is mediated by changes in the expression of specific sets of genes, and that NT-4/5-regulated genes are potential therapeutic targets for blocking delayed neuronal death after TBI. In this study, we performed transcription profiling analysis of CA3 neurons to identify genes regulated by lateral fluid percussion injury, or by treatment with the trkB ligands NT-4/5 or brain-derived neurotrophic factor (BDNF). The results indicate extensive overlap between genes upregulated by neurotrophins and genes upregulated by injury, suggesting that the mechanism behind neurotrophin neuroprotection may mimic the brain's endogenous protective response. A subset of genes selected for further study in vitro exhibited neuroprotection against glutamate excitotoxicity. The neuroprotective genes identified in this study were upregulated at 30 h post-injury, and are thus expected to act during a clinically useful time frame of hours to days after injury. Modulation of these factors and pathways by genetic manipulation or small molecules may confer hippocampal neuroprotection in vivo in preclinical models of TBI.
Collapse
Affiliation(s)
- Saafan Z Malik
- Department of Neurosurgery and Center for Brain Injury and Repair, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
5
|
Lee JK, Shin JH, Suh J, Choi IS, Ryu KS, Gwag BJ. Tissue inhibitor of metalloproteinases-3 (TIMP-3) expression is increased during serum deprivation-induced neuronal apoptosis in vitro and in the G93A mouse model of amyotrophic lateral sclerosis: a potential modulator of Fas-mediated apoptosis. Neurobiol Dis 2008; 30:174-85. [PMID: 18316197 DOI: 10.1016/j.nbd.2008.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 12/01/2007] [Accepted: 01/08/2008] [Indexed: 01/16/2023] Open
Abstract
Cortical neurons deprived of serum undergo apoptosis that is sensitive to inhibitors of macromolecule synthesis. Proteomic analysis revealed differential expression of 49 proteins in cortical neurons 8 h after serum deprivation. Tissue inhibitor of metalloproteinases-3 (TIMP-3), a pro-apoptotic protein in various cancer cells, was increased during serum deprivation-induced apoptosis (SDIA), but not during necrosis induced by excitotoxicity or oxidative stress. Levels of TIMP-3 were markedly increased in degenerating motor neurons in a transgenic model of familial amyotrophic lateral sclerosis. The TIMP-3 expression was accompanied by increase in Fas-FADD interaction, activated caspase-8, and caspase-3 during SDIA and in vulnerable spinal cord of the ALS mouse. SDIA and activation of the Fas pathway were prevented by addition of an active MMP-3. Timp-3 deletion by RNA interference attenuated SDIA in N2a cells. These findings provide evidence that TIMP-3 is an upstream mediator of neuronal apoptosis and likely contributes to neuronal loss in neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jae Keun Lee
- Research Institute for Neural Science and Technology, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
6
|
Shin JH, Cho SI, Lim HR, Lee JK, Lee YA, Noh JS, Joo IS, Kim KW, Gwag BJ. Concurrent Administration of Neu2000 and Lithium Produces Marked Improvement of Motor Neuron Survival, Motor Function, and Mortality in a Mouse Model of Amyotrophic Lateral Sclerosis. Mol Pharmacol 2006; 71:965-75. [PMID: 17105868 DOI: 10.1124/mol.106.030676] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Fas pathway and oxidative stress mediate neuronal death in stroke and may contribute to neurodegenerative disease. We tested the hypothesis that these two factors synergistically produce spinal motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Levels of reactive oxygen species were increased in motor neurons from ALS mice compared with wild-type mice at age 10 weeks, before symptom onset. The proapoptotic proteins Fas, Fas-associated death domain, caspase 8, and caspase 3 were also elevated. Oral administration of 2-hydroxy-5-(2,3,5,6-tetrafluoro-4-trifluoromethyl-benzylamino)-benzoic acid (Neu2000), a potent antioxidant, blocked the increase in reactive oxygen species but only slightly reduced activation of proapoptotic proteins. Administration of lithium carbonate (Li(+)), a mood stabilizer that prevents apoptosis, blocked the apoptosis machinery without preventing oxidative stress. Neu2000 or Li(+) alone significantly enhanced survival time and motor function and together had an additive effect. These findings provide evidence that jointly targeting oxidative stress and Fas-mediated apoptosis can prevent neuronal loss and motor dysfunction in ALS.
Collapse
Affiliation(s)
- Jin Hee Shin
- Department of Pharmacology, Ajou University School of Medicine, Sawon, Korea 442-749
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Royo NC, Conte V, Saatman KE, Shimizu S, Belfield CM, Soltesz KM, Davis JE, Fujimoto ST, McIntosh TK. Hippocampal vulnerability following traumatic brain injury: a potential role for neurotrophin-4/5 in pyramidal cell neuroprotection. Eur J Neurosci 2006; 23:1089-102. [PMID: 16553773 DOI: 10.1111/j.1460-9568.2006.04642.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) causes selective hippocampal cell death, which is believed to be associated with cognitive impairment observed both in clinical and experimental settings. Although neurotrophin administration has been tested as a strategy to prevent cell death following TBI, the potential neuroprotective role of neurotrophin-4/5 (NT-4/5) in TBI remains unknown. We hypothesized that NT-4/5 would offer neuroprotection for selectively vulnerable hippocampal neurons following TBI. Measurements of NT-4/5 in rats subjected to lateral fluid percussion (LFP) TBI revealed two-threefold increases in the injured cortex and hippocampus in the acute period (1-3 days) following brain injury. Subsequently, the response of NT-4/5 knockout (NT-4/5(-/-)) mice to controlled-cortical impact TBI was investigated. NT-4/5(-/-) mice were more susceptible to selective pyramidal cell loss in Ahmon's corn (CA) subfields of the hippocampus following TBI, and showed impaired motor recovery when compared with their brain-injured wild-type controls (NT-4/5(wt)). Additionally, we show that acute, prolonged administration of recombinant NT-4/5 (5 microg/kg/day) prevented up to 50% of the hippocampal CA pyramidal cell death following LFP TBI in rats. These results suggest that post-traumatic increases in endogenous NT-4/5 may be part of an adaptive neuroprotective response in the injured brain, and that administration of this neurotrophic factor may be useful as a therapeutic strategy following TBI.
Collapse
Affiliation(s)
- N C Royo
- Laboratory for Traumatic Brain Injury, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Suh J, Lee YA, Gwag BJ. Induction and attenuation of neuronal apoptosis by proteasome inhibitors in murine cortical cell cultures. J Neurochem 2005; 95:684-94. [PMID: 16144541 DOI: 10.1111/j.1471-4159.2005.03393.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Evidence has accumulated showing that pharmacological inhibition of proteasome activity can both induce and prevent neuronal apoptosis. We tested the hypothesis that these paradoxical effects of proteasome inhibitors depend on the degree of reduced proteasome activity and investigated underlying mechanisms. Murine cortical cell cultures exposed to 0.1 microM MG132 underwent widespread neuronal apoptosis and showed partial inhibition of proteasome activity down to 30-50%. Interestingly, administration of 1-10 microM MG132 almost completely blocked proteasome activity but resulted in reduced neuronal apoptosis. Similar results were produced in cortical cultures exposed to other proteasome inhibitors, proteasome inhibitor I and lactacystin. Administration of 0.1 microM MG132 led to activation of a mitochondria-dependent apoptotic signaling cascade involving cytochrome c, caspase-9, caspase-3 and degradation of tau protein; such activation was markedly reduced with 10 microM MG132. High doses of MG132 prevented the degradation of inhibitor of apoptosis proteins (IAPs) cIAP and X chromosome-linked IAP, suggesting that complete blockade of proteasome activity interferes with progression of apoptosis. In support of this, addition of high doses of proteasome inhibitors attenuated apoptosis of cortical neurons deprived of serum. Taken together, the present results indicate that inhibition of proteasome activity can induce or prevent neuronal cell apoptosis through regulation of mitochondria-mediated apoptotic pathways and IAPs.
Collapse
Affiliation(s)
- Jaehong Suh
- Department of Neuroscience and Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | | | | |
Collapse
|
9
|
Kang HJ, Yoon WJ, Moon GJ, Kim DY, Sohn S, Kwon HJ, Gwag BJ. Caspase-3-mediated cleavage of PHF-1 tau during apoptosis irrespective of excitotoxicity and oxidative stress: an implication to Alzheimer's disease. Neurobiol Dis 2005; 18:450-8. [PMID: 15755671 DOI: 10.1016/j.nbd.2004.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 11/13/2004] [Accepted: 12/10/2004] [Indexed: 11/23/2022] Open
Abstract
Excitotoxicity, oxidative stress, and apoptosis have been recognized as routes to neuronal death in various neurological diseases. We examined the possibility that PHF-1 tau, a substrate for various proteases, would be selectively cleaved depending upon routes of neuronal death. Cleavage form of PHF-1 tau was not observed in cortical cell cultures exposed to excitotoxins or oxidative stress that cause neuronal cell necrosis. PHF-1 tau was cleaved within 8 h following exposure of cortical cell cultures to apoptosis-inducing agents. This cleavage was blocked by inclusion of zDEVD-fmk, an inhibitor of caspase-3, and accompanied by activation of caspase-3. Levels and cleavage of PHF-1 tau were markedly increased in AD brain compared with control. Moreover, PHF-1 tau and active caspase-3 were colocalized mostly in tangle-bearing neurons. The current findings suggest that PHF-1 tau is cleaved by caspase-3 during apoptosis and neurodegenerative process in AD.
Collapse
Affiliation(s)
- Hyo Jung Kang
- Department of Neuroscience, Ajou University School of Medicine, Suwon, Kyungkido, Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Kim SH, Won SJ, Mao XO, Jin K, Greenberg DA. Involvement of protein kinase A in cannabinoid receptor-mediated protection from oxidative neuronal injury. J Pharmacol Exp Ther 2004; 313:88-94. [PMID: 15626718 DOI: 10.1124/jpet.104.079509] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CB1 cannabinoid receptors (CB1Rs) are involved in protecting the brain from ischemia and related disorders. However, the underlying protective mechanisms are incompletely understood. We investigated the effect of CB1R activation on oxidative injury, which has been implicated in neuronal death after cerebral ischemia and neurodegenerative disorders, in mouse cortical neuron cultures. The CB1R agonist Win 55212-2 [R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate] reduced neuronal death, measured by lactate dehydrogenase release, in cultures treated with 50 microM FeCl2, and its protective effect was attenuated by the CB1R antagonist SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-cichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride]. The endocannabinoid anandamide reproduced the effect of Win 55212-2, as did the antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Neuronal injury was more severe after in vitro or in vivo administration of FeCl2 to CB1R-knockout compared with wild-type mice. Win 55212-2 reduced the formation of reactive oxidative species in cortical neuron cultures treated with FeCl2, consistent with an antioxidant action. Pertussis toxin reduced CB1R-mediated protection, which points to a protective mechanism that involves signaling through G(i/o) proteins. Since CB1R-activated G protein signaling inhibits protein kinase A but activates phosphatidylinositol 3-kinase (PI3K), we tested the involvement of these pathways in CB1R-mediated neuroprotection. Dibutyryl-cyclic adenosine monophosphate (dbcAMP) blocked protection by Win 55212-2, whereas the PI3K inhibitor wortmannin did not, and the effect of dbcAMP was inhibited by the protein kinase A inhibitor H89 [N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide] (> or =10 nM). CB1R-induced, SR141716A-, pertussis toxin-, and dbcAMP-sensitive protection was also observed for two other oxidative insults, exposure to H2O2 or buthionine sulfoximine. Therefore, receptor-stimulated inhibition of protein kinase A seems to be required for the neuroprotective effect of CB1R activation against oxidative neuronal injury.
Collapse
Affiliation(s)
- Sun Hee Kim
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
Neurotrophic factors have been proposed for the treatment of a variety of neurological diseases. However, to this point they have failed in clinical trials. One potential problem is that while neurotrophic factors attenuate apoptosis, they have the potential to enhance necrosis. In this study we show that neurotrophin-4 (NT-4) attenuated apoptotic neuronal death while potentiating necrotic neuronal death in cortical cultures. The protective effects of NT-4 were not blocked by the mitogen-activated protein kinase kinase (MEK) inhibitors PD098059 or U0126, while the injury potentiation by NT-4 was blocked by these inhibitors. NT-4 stimulated the phosphorylation of ERK1/2 and this phosphorylation was attenuated by U0126 and PD098059. The results indicate a disassociation between the pathway by which NT-4 potentiates necrosis, and that by which it attenuates apoptosis, and suggest that addition of a MEK inhibitor may enhance the beneficial effects of NT-4 in treating complex injuries such as occur in vivo.
Collapse
Affiliation(s)
- Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | | |
Collapse
|
12
|
Arvidsson A, Kirik D, Lundberg C, Mandel RJ, Andsberg G, Kokaia Z, Lindvall O. Elevated GDNF levels following viral vector-mediated gene transfer can increase neuronal death after stroke in rats. Neurobiol Dis 2003; 14:542-56. [PMID: 14678770 DOI: 10.1016/j.nbd.2003.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies have indicated that administration of glial cell line-derived neurotrophic factor (GDNF) counteracts neuronal death after stroke. However, in these studies damage was evaluated at most a few days after the insult. Here, we have explored the long-term consequences of two routes of GDNF delivery to the rat striatum prior to stroke induced by 30 min of middle cerebral artery occlusion (MCAO): striatal transduction with a recombinant lentiviral vector or transduction of the substantia nigra with a recombinant adeno-associated viral vector and subsequent anterograde transport of GDNF to striatum. Despite high GDNF levels, stereological quantification of striatal neuron numbers revealed no protection at 5 or 8 weeks after MCAO. In fact, anterograde GDNF delivery exacerbated neuronal loss. Moreover, supply of GDNF did not alleviate the striatum-related behavioral deficits. Thus, we demonstrate that the actions of GDNF after stroke are more complex than previously believed and that high levels of this factor, which are neuroprotective in models of Parkinson's disease, can increase ischemic damage. Our findings also underscore the need for quantitative assessment of long-term neuronal survival and behavioral changes to evaluate the therapeutic potential of factors such as GDNF.
Collapse
Affiliation(s)
- Andreas Arvidsson
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A11 SE-221 84, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Neurotrophins promote the differentiation, growth, and survival of neurons in the nervous system. Specifically, neurotrophins promote neuronal survival by interfering with programmed cell death or apoptosis. In addition to roles of neurotrophins as survival factors, neurotrophins can act as risk factors of neuronal injury under various pathological conditions. Neurotrophins markedly potentiate neuronal cell necrosis induced by activation of N-methyl-D-aspartate receptors, deprivation of oxygen and glucose, and free radicals. Moreover, prolonged exposure to neurotrophins results in widespread neuronal necrosis through free radical-mediated mechanisms. Whereas cellular and molecular mechanisms underlying antiapoptosis action of neurotrophins have been well documented, extensive study will be needed to delineate mechanisms for the neurotrophin-induced neuronal necrosis through activation of Trk tyrosine kinase receptors.
Collapse
Affiliation(s)
- Byoung J Gwag
- Department of Neuroscience, Center for the Interventional Therapy of Stroke and Alzheimer's Disease, Ajou University, Suwon, Kyungkido, Korea.
| | | |
Collapse
|
14
|
Mcdonald JW, Stefovska VG, Liu XZ, Shin H, Liu S, Choi DW. Neurotrophin potentiation of iron-induced spinal cord injury. Neuroscience 2003; 115:931-9. [PMID: 12435430 DOI: 10.1016/s0306-4522(02)00342-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that pretreatment with neurotrophins can potentiate the vulnerability of cultured neurons to excitotoxic and free radical-induced necrosis, in contrast to their well known neuroprotective effects against apoptosis. Here we tested the hypothesis that this unexpected injury-potentiating effect of neurotrophins would also take place in the adult rat spinal cord. Fe(3+)-citrate was injected stereotaxically into spinal cord gray matter in adult rats in amounts sufficient to produce minimal tissue injury 24 h later. Twenty-four-hour pretreatment with brain-derived neurotrophic factor, neurotrophin-3, or neurotrophin-4/5, but not nerve growth factor, markedly enhanced tissue injury in the gray matter as evidenced by an increase in the damaged area, as well as the loss of neurons and oligodendrocytes. Consistent with maintained free radical mediation, the neurotrophin-potentiated iron-induced spinal cord damage was blocked by co-application of the antioxidant N-tert-butyl-(2-sulfophenyl)-nitrone. These data support the hypothesis that the overall neuroprotective properties of neurotrophins in models of acute injury to the spinal cord may be limited by an underlying potentiation of free radical-mediated necrosis.
Collapse
Affiliation(s)
- J W Mcdonald
- Department of Neurology, Washington University School of Medicine, PO Box 8111, 660 S Euclid Avenue, St Louis, MO 63110-1093, , USA
| | | | | | | | | | | |
Collapse
|
15
|
Yoon WJ, Won SJ, Ryu BR, Gwag BJ. Blockade of ionotropic glutamate receptors produces neuronal apoptosis through the Bax-cytochrome C-caspase pathway: the causative role of Ca2+ deficiency. J Neurochem 2003; 85:525-33. [PMID: 12675929 DOI: 10.1046/j.1471-4159.2003.01724.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blockade of ionotropic glutamate receptors induces neuronal cell apoptosis. We investigated if mitochondria-mediated death signals would contribute to neuronal apoptosis following administration of glutamate antagonists. The administration of MK-801 and CNQX (MK-801/CNQX), the selective antagonists of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors, produced widespread neuronal death in neonatal rat brain and cortical cell cultures. MK-801/CNQX-induced neuronal apoptosis was prevented by zVAD-fmk, a broad inhibitor of caspases, but insensitive to inhibitors of calpain or cathepsin D. Activation of caspase-3 was observed within 6-12 h and sustained over 36 h after exposure to MK-801/CNQX, which cleaved PHF-1 tau, the substrate for caspase-3. Activation of caspase-3 was blocked by high K+ and mimicked by BAPTA-AM, a selective Ca2+ chelator. Reducing extracellular Ca2+, but not Na+, activated caspase-3, suggesting an essential role of Ca2+ deficiency in MK-801/CNQX-induced activation of caspases. Cortical neurons treated with MK-801/CNQX triggered activation of caspase-9, release of cytochrome c from mitochondria, and translocation of Bax into mitochondria. The present study suggests that blockade of ionotropic glutamate receptors causes caspase-3-mediated neuronal apoptosis due to Ca2+ deficiency that is coupled to the sequential mitochondrial death pathway.
Collapse
Affiliation(s)
- W J Yoon
- Department of Neuroscience and Pharmacology, and Center for the Interventional Therapy of Stroke and Alzheimer's Disease, Ajou University School of Medicine, Suwon, Kyungkido, Korea
| | | | | | | |
Collapse
|
16
|
Kim SH, Won SJ, Sohn S, Kwon HJ, Lee JY, Park JH, Gwag BJ. Brain-derived neurotrophic factor can act as a pronecrotic factor through transcriptional and translational activation of NADPH oxidase. J Cell Biol 2002; 159:821-31. [PMID: 12460985 PMCID: PMC2173377 DOI: 10.1083/jcb.200112131] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several lines of evidence suggest that neurotrophins (NTs) potentiate or cause neuronal injury under various pathological conditions. Since NTs enhance survival and differentiation of cultured neurons in serum or defined media containing antioxidants, we set out experiments to delineate the patterns and underlying mechanisms of brain-derived neurotrophic factor (BDNF)-induced neuronal injury in mixed cortical cell cultures containing glia and neurons in serum-free media without antioxidants, where the three major routes of neuronal cell death, oxidative stress, excitotoxicity, and apoptosis, have been extensively studied. Rat cortical cell cultures, after prolonged exposure to NTs, underwent widespread neuronal necrosis. BDNF-induced neuronal necrosis was accompanied by reactive oxygen species (ROS) production and was dependent on the macromolecular synthesis. cDNA microarray analysis revealed that BDNF increased the expression of cytochrome b558, the plasma membrane-spanning subunit of NADPH oxidase. The expression and activation of NADPH oxidase were increased after exposure to BDNF. The selective inhibitors of NADPH oxidase prevented BDNF-induced ROS production and neuronal death without blocking antiapoptosis action of BDNF. The present study suggests that BDNF-induced expression and activation of NADPH oxidase cause oxidative neuronal necrosis and that the neurotrophic effects of NTs can be maximized under blockade of the pronecrotic action.
Collapse
Affiliation(s)
- Sun H Kim
- Department of Pharmacology, Center for the Interventional Therapy of Stroke and Alzheimer's Disease, School of Medicine, Ajou University, Suwon, Kyungkido, South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The effects of neurotrophic factors on necrotic neuronal death are controversial. In this study we found that both neurotrophin-4 (NT-4) and basic fibroblast growth factor (bFGF) potentiated necrotic neuronal death caused by exposure to oxygen-glucose deprivation or iron-citrate (Fe) in cortical cultures. However, there were significant differences in the actions of the two neurotrophic factors. Neurotrophin-4 protected against apoptotic neuronal death, while bFGF had no effect on apoptotic death in these cultures. Furthermore, potentiation of oxygen-glucose deprivation induced necrotic death by NT-4 required pretreatment (24 h), while pretreatment with bFGF had no effect. However, acute treatment with bFGF during oxygen-glucose deprivation did potentiate neuronal death. Both neurotrophic factors potentiated free radical mediated necrotic neuronal death induced by exposure to Fe. However, the RNA synthesis inhibitor, actinomycin-D, blocked the injury potentiation by NT-4, but not that caused by bFGF. Also, NT-4, but not bFGF, potentiated Fe induced necrotic death in pure neuronal cultures. Expression of mRNA for FGF receptors FGFR1 and FGFR2 was observed at high levels in astrocytes. The results indicate that the injury enhancing effects of bFGF are acute, while those of NT-4 require prolonged exposure and new protein synthesis. Furthermore, the effects of bFGF appear to be mediated through actions on astrocytes, while NT-4 appears to act directly on neurons. The fact that neurotrophic factors from two distinct families can potentiate neuronal death by two different mechanisms suggests that such injury potentiation may be a common concern regarding the use of neurotrophic factors.
Collapse
Affiliation(s)
- Doug Lobner
- Department of Biomedical Sciences and Integrative Neuroscience Research Center, Marquette University, 561 N. 15th Street, Rm 426, Milwaukee, WI 53233, USA.
| | | |
Collapse
|
18
|
Kang SH, Lee YA, Won SJ, Rhee KH, Gwag BJ. Caffeine-induced neuronal death in neonatal rat brain and cortical cell cultures. Neuroreport 2002; 13:1945-50. [PMID: 12395097 DOI: 10.1097/00001756-200210280-00023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We examined the potential neurotoxicity of caffeine and. Intraperitoneal administration of caffeine (50 mg/kg, 3 times a day) produced neuronal death in various brain areas of neonatal rats 24 h later. Caffeine at doses > 300 microM was also neurotoxic in murine cortical cell cultures. Caffeine-induced neuronal death was accompanied by cell body shrinkage and attenuated by anti-apoptotic drugs including cycloheximide, high potassium, and growth factors. Two necrotic pathways, excitotoxicity and oxidative stress, did not mediate caffeine neurotoxicity. The pro-apoptotic protease caspase-3 was activated to mediate neuronal death following exposure to caffeine. The present findings suggest that caffeine may cause caspase-3-dependent neuronal cell apoptosis in neonatal rat as well as.
Collapse
Affiliation(s)
- Sang Hwan Kang
- Department of Neuroscience, Ajou University School of Medicine, San 5, Wonchon-dong, Paldal-gu, Suwon, Kyungki-do 442-749, Korea
| | | | | | | | | |
Collapse
|
19
|
Küst BM, Copray JCVM, Brouwer N, Troost D, Boddeke HWGM. Elevated levels of neurotrophins in human biceps brachii tissue of amyotrophic lateral sclerosis. Exp Neurol 2002; 177:419-27. [PMID: 12429188 DOI: 10.1006/exnr.2002.8011] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies suggest that neurotrophins support regeneration and survival of injured motoneurons. Based on these findings, brain-derived neurotrophic factor (BDNF) has been clinically investigated for its therapeutic potential in amyotrophic lateral sclerosis (ALS), a rapidly progressing and fatal motoneuronal disease. We questioned whether imbalances of neurotrophic levels are indeed involved in the pathology of ALS. Therefore the expression of nerve growth factor (NGF), BDNF, neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) was investigated in postmortem muscle tissue of the biceps from 15 patients with neuropathologically confirmed sporadic ALS and 15 age-matched controls. Using mRNA analysis techniques and quantitative protein measurements, we have demonstrated that both mRNA and protein levels of all four neurotrophins are increased in muscle tissue of ALS patients. The production levels displayed a disease duration dependency and different expression patterns emerged for the four neurotrophins. Whereas the early phase of the disease was characterized by a strong upregulation of BDNF, levels of NGF, NT-3, and NT-4/5 gradually increased in the course of the disorder, peaking at later stages. We conclude that decreased neurotrophic support from muscle tissue is most likely not the cause of motoneuron degeneration in ALS. On the contrary, our results suggest that degenerating motoneurons in ALS are exposed to elevated levels of muscle-derived neurotrophins.
Collapse
Affiliation(s)
- B M Küst
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Kim DY, Won SJ, Gwag BJ. Analysis of mitochondrial free radical generation in animal models of neuronal disease. Free Radic Biol Med 2002; 33:715-23. [PMID: 12208358 DOI: 10.1016/s0891-5849(02)00968-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondria, the power plant of all eukaryotic cells, produce cellular energy in the form of ATP via electron transport and oxidative phosphorylation. However, the mitochondria leak electrons that can act as major sources of oxidative stress, and their dysfunction, have been proposed as causative events underlying neurodegeneration in stroke and neurodegenerative diseases. We examined whether MitoTracker Red CM-H(2)XRos, a rosamine derivative used to detect mitochondrial free radicals in vitro, would be applied to analyze the mitochondrial free radicals in various models of neurological diseases in vivo. The injections of MitoTracker Red CM-H(2)XRos revealed generation of mitochondrial free radicals primarily in vulnerable neurons following focal cerebral ischemia as well as administration of Fe(2+) or 3-nitropropionic acid. MitoTracker Red CM-H(2)XRos was retained after fixation, compatible with immunocytochemistry or nuclear staining, and can be applied to study roles of mitochondrial free radicals in the process of neurodegeneration in vivo.
Collapse
Affiliation(s)
- Doo Yeon Kim
- Center for the Interventional Therapy of Stroke and Alzheimer's Disease, Ajou University School of Medicine, Suwon, Korea
| | | | | |
Collapse
|