1
|
Liu D, Wang N, Song M, Chai X, He Q, Cao T, Kong D, Song Z, Zhang G, Liu L, Wang X, Chen G, Yin S, Yang Y, Zhao J. Global glucose metabolism rate as diagnostic marker for disorder of consciousness of patients: quantitative FDG-PET study. Front Neurol 2025; 15:1425271. [PMID: 39830198 PMCID: PMC11739340 DOI: 10.3389/fneur.2024.1425271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This study was to employ 18F-flurodeoxyglucose (FDG-PET) to evaluate the resting-state brain glucose metabolism in a sample of 46 patients diagnosed with disorders of consciousness (DoC). The aim was to identify objective quantitative metabolic indicators and predictors that could potentially indicate the level of awareness in these patients. Methods A cohort of 46 patients underwent Coma Recovery Scale-Revised (CRS-R) assessments in order to distinguish between the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS). Additionally, resting-state FDG-PET data were acquired from both the patient group and a control group consisting of 10 healthy individuals. The FDG-PET data underwent reorientation, spatial normalization to a stereotaxic space, and smoothing. The normalization procedure utilized a customized template following the methodology outlined by Phillips et al. Mean cortical metabolism of the overall sample was utilized for distinguishing between UWS and MCS, as well as for predicting the outcome at a 1-year follow-up through the application of receiver operating characteristic (ROC) analysis. Results We used Global Glucose Metabolism as the Diagnostic Marker. A one-way ANOVA revealed that there was a statistically significant difference in cortical metabolic index between two groups (F(2, 53) = 7.26, p < 0.001). Multiple comparisons found that the mean of cortical metabolic index was significantly different between MCS (M = 4.19, SD = 0.64) and UWS group (M = 2.74, SD = 0.94,p < 0.001). Also, the mean of cortical metabolic index was significantly different between MCS and healthy group (M = 7.88, SD = 0.80,p < 0.001). Using the above diagnostic criterion, the diagnostic accuracy yielded an area under the curve (AUC) of 0.89 across the pooled cohort (95%CI 0.79-0.99). There was an 85% correct classification between MCS and UWS, with 88% sensitivity and 81% specificity for MCS. The best classification rate in the derivation cohort was achieved at a metabolic index of 3.32 (41% of the mean cortical metabolic index in healthy controls). Conclusion Our findings demonstrate that conscious awareness requires a minimum of 41% of normal cortical activity, as indicated by metabolic rates.
Collapse
Affiliation(s)
- Dongsheng Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoke Chai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqing Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dawei Kong
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Zhuhuan Song
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Guangming Zhang
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Lei Liu
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Xiaosong Wang
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Guoqiang Chen
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Shaoya Yin
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain-Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
- National Research Center for Rehabilitation Technical Aids, Beijing, China
- Chinese Institute for Brain Research Beijing, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
2
|
Sala A, Gosseries O, Laureys S, Annen J. Advances in neuroimaging in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:97-127. [PMID: 39986730 DOI: 10.1016/b978-0-443-13408-1.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Disorders of consciousness (DoC) are a heterogeneous spectrum of clinical conditions, including coma, unresponsive wakefulness syndrome, and minimally conscious state. DoC are clinically defined on the basis of behavioral cues expressed by the patients, on the assumption that such behavioral responses of the patient are representative of the patient's degree of consciousness impairment. However, many studies have highlighted the issues arising from formulating a DoC diagnosis merely on behavioral assessment. Overcoming the limitations of behavioral assessment, neuroimaging provides a direct window on the cerebral activity of the patient, bypassing the motor, perceptual, or cognitive deficits that might hamper the patient's ability to produce an appropriate behavioral response. This chapter provides an overview of available molecular, functional, and structural neuroimaging evidence in patients with DoC. This chapter introduces the neuroimaging tools available in the clinical settings of nuclear medicine and neuroradiology and presents the evidence on the role of neuroimaging tools to improve the clinical management of DoC patients, from the standpoint of differential diagnosis and prognosis. Last, we outline the open questions in the field, and point at actions that are urgently needed to fully exploit neuroimaging tools to advance scientific understanding and clinical management of DoC.
Collapse
Affiliation(s)
- Arianna Sala
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium; Department of Data Analysis, University of Ghent, Ghent, Belgium
| |
Collapse
|
3
|
Dekundy A, Pichler G, El Badry R, Scheschonka A, Danysz W. Amantadine for Traumatic Brain Injury-Supporting Evidence and Mode of Action. Biomedicines 2024; 12:1558. [PMID: 39062131 PMCID: PMC11274811 DOI: 10.3390/biomedicines12071558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Traumatic brain injury (TBI) is an important global clinical issue, requiring not only prevention but also effective treatment. Following TBI, diverse parallel and intertwined pathological mechanisms affecting biochemical, neurochemical, and inflammatory pathways can have a severe impact on the patient's quality of life. The current review summarizes the evidence for the utility of amantadine in TBI in connection to its mechanism of action. Amantadine, the drug combining multiple mechanisms of action, may offer both neuroprotective and neuroactivating effects in TBI patients. Indeed, the use of amantadine in TBI has been encouraged by several clinical practice guidelines/recommendations. Amantadine is also available as an infusion, which may be of particular benefit in unconscious patients with TBI due to immediate delivery to the central nervous system and the possibility of precise dosing. In other situations, orally administered amantadine may be used. There are several questions that remain to be addressed: can amantadine be effective in disorders of consciousness requiring long-term treatment and in combination with drugs approved for the treatment of TBI? Do the observed beneficial effects of amantadine extend to disorders of consciousness due to factors other than TBI? Well-controlled clinical studies are warranted to ultimately confirm its utility in the TBI and provide answers to these questions.
Collapse
Affiliation(s)
- Andrzej Dekundy
- Merz Therapeutics GmbH, Eckenheimer Landstraße 100, 60318 Frankfurt am Main, Germany; (A.D.); (A.S.)
| | - Gerald Pichler
- Department of Neurology, Albert-Schweitzer-Hospital Graz, Albert-Schweitzer-Gasse 36, 8020 Graz, Austria;
| | - Reda El Badry
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University Hospital, Assiut University, Assiut 71526, Egypt;
| | - Astrid Scheschonka
- Merz Therapeutics GmbH, Eckenheimer Landstraße 100, 60318 Frankfurt am Main, Germany; (A.D.); (A.S.)
| | - Wojciech Danysz
- Danysz Pharmacology Consulting, Vor den Gärten 16, 61130 Nidderau, Germany
| |
Collapse
|
4
|
Ihalainen R, Annen J, Gosseries O, Cardone P, Panda R, Martial C, Thibaut A, Laureys S, Chennu S. Lateral frontoparietal effective connectivity differentiates and predicts state of consciousness in a cohort of patients with traumatic disorders of consciousness. PLoS One 2024; 19:e0298110. [PMID: 38968195 PMCID: PMC11226086 DOI: 10.1371/journal.pone.0298110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/13/2024] [Indexed: 07/07/2024] Open
Abstract
Neuroimaging studies have suggested an important role for the default mode network (DMN) in disorders of consciousness (DoC). However, the extent to which DMN connectivity can discriminate DoC states-unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS)-is less evident. Particularly, it is unclear whether effective DMN connectivity, as measured indirectly with dynamic causal modelling (DCM) of resting EEG can disentangle UWS from healthy controls and from patients considered conscious (MCS+). Crucially, this extends to UWS patients with potentially "covert" awareness (minimally conscious star, MCS*) indexed by voluntary brain activity in conjunction with partially preserved frontoparietal metabolism as measured with positron emission tomography (PET+ diagnosis; in contrast to PET- diagnosis with complete frontoparietal hypometabolism). Here, we address this gap by using DCM of EEG data acquired from patients with traumatic brain injury in 11 UWS (6 PET- and 5 PET+) and in 12 MCS+ (11 PET+ and 1 PET-), alongside with 11 healthy controls. We provide evidence for a key difference in left frontoparietal connectivity when contrasting UWS PET- with MCS+ patients and healthy controls. Next, in a leave-one-subject-out cross-validation, we tested the classification performance of the DCM models demonstrating that connectivity between medial prefrontal and left parietal sources reliably discriminates UWS PET- from MCS+ patients and controls. Finally, we illustrate that these models generalize to an unseen dataset: models trained to discriminate UWS PET- from MCS+ and controls, classify MCS* patients as conscious subjects with high posterior probability (pp > .92). These results identify specific alterations in the DMN after severe brain injury and highlight the clinical utility of EEG-based effective connectivity for identifying patients with potential covert awareness.
Collapse
Affiliation(s)
- Riku Ihalainen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- School of Computing, University of Kent, Canterbury, United Kingdom
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Department of Data Analysis, University of Ghent, Ghent, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- CERVO Brain Research Centre, de la Canardière, Québec, Canada
- Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Srivas Chennu
- School of Computing, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
5
|
Yin J, Xu G, Xie H, Liu Y, Dou Z, Shao B, Li Z. Effects of different frequencies music on cortical responses and functional connectivity in patients with minimal conscious state. JOURNAL OF BIOPHOTONICS 2024; 17:e202300427. [PMID: 38303080 DOI: 10.1002/jbio.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
The objective of this study was to investigate brain activation and functional network patterns during musical interventions in different frequency bands using functional near-infrared spectroscopy, and to provide a basis for more effective music therapy strategy selection for patients in minimally conscious state (MCS). Twenty six MCS patients and 20 healthy people were given music intervention with low frequency (31-180 Hz), medium frequency (180-4k Hz), and high frequency (4k-22k Hz) audio. In MCS patients, low frequency music intervention induced activation of left prefrontal cortex and left primary sensory cortex (S1), also a left-hemisphere lateralization effect of dorsolateral prefrontal cortex (DLPFC). And the functional connectivity of right DLPFC-right S1 was significantly improved by high frequency music intervention. The low frequency and high frequency music may contribute more than medium frequency music to the recovery of consciousness. This study also validated the effectiveness of fNIRS in studies of brain function in MCS patients.
Collapse
Affiliation(s)
- Jiahui Yin
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hui Xie
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ying Liu
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Shao
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| |
Collapse
|
6
|
Toplutaş E, Aydın F, Hanoğlu L. EEG Microstate Analysis in Patients with Disorders of Consciousness and Its Clinical Significance. Brain Topogr 2024; 37:377-387. [PMID: 36735192 DOI: 10.1007/s10548-023-00939-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Disorders of Consciousness are divided into two major categories such as vegetative and minimally conscious states. Objective measures that allow correct identification of patients with vegetative and minimally conscious state are needed. EEG microstate analysis is a promising approach that we believe has the potential to be effective in examining the resting state activities of the brain in different stages of consciousness by allowing the proper identification of vegetative and minimally conscious patients. As a result, we try to identify clinical evaluation scales and microstate characteristics with resting state EEGs from individuals with disorders of consciousness. Our prospective observational study included 28 individuals with a disorder of consciousness. Control group included 18 healthy subjects with proper EEG data. We made clinical evaluations using patient behavior scales. We also analyzed the EEGs using microstate analysis. In our study, microstate D coverage differed substantially between vegetative and minimally conscious state patients. Also, there was a strong connection between microstate D characteristics and clinical scale scores. Consequently, we have demonstrated that the most accurate parameter for representing consciousness level is microstate D. Microstate analysis appears to be a strong option for future use in the diagnosis, follow-up, and treatment response of patients with Disorders of Consciousness.
Collapse
Affiliation(s)
- Eren Toplutaş
- Department of Neurology, Istanbul Eyupsultan Public Hospital, Istanbul, Turkey.
- Program of Neuroscience Ph.D., Graduate School of Health Sciences,, Istanbul Medipol University, Istanbul, Turkey.
| | - Fatma Aydın
- Program of Neuroscience Ph.D., Graduate School of Health Sciences,, Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Neuroimaging and Neuromodulation Lab, Clinical Electrophysiology, REMER, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
7
|
Campora N, Princich JP, Nasimbera A, Cordisco S, Villanueva M, Oddo S, Giagante B, Kochen S. Stereo-EEG features of temporal and frontal lobe seizures with loss of consciousness. Neurosci Conscious 2024; 2024:niae003. [PMID: 38618487 PMCID: PMC11015893 DOI: 10.1093/nc/niae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
The loss of consciousness (LOC) during seizures is one of the most striking features that significantly impact the quality of life, even though the neuronal network involved is not fully comprehended. We analyzed the intracerebral patterns in patients with focal drug-resistant epilepsy, both with and without LOC. We assessed the localization, lateralization, stereo electroencephalography (SEEG) patterns, seizure duration, and the quantification of contacts exhibiting electrical discharge. The degree of LOC was quantified using the Consciousness Seizure Scale. Thirteen patients (40 seizures) with focal drug-resistant epilepsy underwent SEEG. In cases of temporal lobe epilepsy (TLE, 6 patients and 15 seizures), LOC occurred more frequently in seizures with mesial rather than lateral temporal lobe onset. On the other hand, in cases of frontal lobe epilepsy (7 patients; 25 seizures), LOC was associated with pre-frontal onset, a higher number of contacts with epileptic discharge compared to the onset count and longer seizure durations. Our study revealed distinct characteristics during LOC depending on the epileptogenic zone. For temporal lobe seizures, LOC was associated with mesial seizure onset, whereas in frontal lobe epilepsy, seizure with LOC has a significant increase in contact showing epileptiform discharge and a pre-frontal onset. This phenomenon may be correlated with the broad neural network required to maintain consciousness, which can be affected in different ways, resulting in LOC.
Collapse
Affiliation(s)
- Nuria Campora
- Neuroscience Department, El Cruce Hospital, Florencio Varela, Argentina
- Studies in Neuroscience and Complex Systems (ENyS), CONICET, Florencio Varela, Buenos Aires 1888, Argentina
| | - Juan Pablo Princich
- Neuroscience Department, El Cruce Hospital, Florencio Varela, Argentina
- Studies in Neuroscience and Complex Systems (ENyS), CONICET, Florencio Varela, Buenos Aires 1888, Argentina
| | - Alejandro Nasimbera
- Neuroscience Department, El Cruce Hospital, Florencio Varela, Argentina
- Studies in Neuroscience and Complex Systems (ENyS), CONICET, Florencio Varela, Buenos Aires 1888, Argentina
| | - Santiago Cordisco
- Studies in Neuroscience and Complex Systems (ENyS), CONICET, Florencio Varela, Buenos Aires 1888, Argentina
| | - Manuela Villanueva
- Studies in Neuroscience and Complex Systems (ENyS), CONICET, Florencio Varela, Buenos Aires 1888, Argentina
| | - Silvia Oddo
- Neuroscience Department, El Cruce Hospital, Florencio Varela, Argentina
- Studies in Neuroscience and Complex Systems (ENyS), CONICET, Florencio Varela, Buenos Aires 1888, Argentina
| | - Brenda Giagante
- Neuroscience Department, El Cruce Hospital, Florencio Varela, Argentina
| | - Silvia Kochen
- Neuroscience Department, El Cruce Hospital, Florencio Varela, Argentina
- Studies in Neuroscience and Complex Systems (ENyS), CONICET, Florencio Varela, Buenos Aires 1888, Argentina
| |
Collapse
|
8
|
Apablaza-Yevenes DE, Corsi-Cabrera M, Martinez-Guerrero A, Northoff G, Romaniello C, Farinelli M, Bertoletti E, Müller MF, Muñoz-Torres Z. Stationary stable cross-correlation pattern and task specific deviations in unresponsive wakefulness syndrome as well as clinically healthy subjects. PLoS One 2024; 19:e0300075. [PMID: 38489260 PMCID: PMC10942032 DOI: 10.1371/journal.pone.0300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Brain dynamics is highly non-stationary, permanently subject to ever-changing external conditions and continuously monitoring and adjusting internal control mechanisms. Finding stationary structures in this system, as has been done recently, is therefore of great importance for understanding fundamental dynamic trade relationships. Here we analyse electroencephalographic recordings (EEG) of 13 subjects with unresponsive wakefulness syndrome (UWS) during rest and while being influenced by different acoustic stimuli. We compare the results with a control group under the same experimental conditions and with clinically healthy subjects during overnight sleep. The main objective of this study is to investigate whether a stationary correlation pattern is also present in the UWS group, and if so, to what extent this structure resembles the one found in healthy subjects. Furthermore, we extract transient dynamical features via specific deviations from the stationary interrelation pattern. We find that (i) the UWS group is more heterogeneous than the two groups of healthy subjects, (ii) also the EEGs of the UWS group contain a stationary cross-correlation pattern, although it is less pronounced and shows less similarity to that found for healthy subjects and (iii) deviations from the stationary pattern are notably larger for the UWS than for the two groups of healthy subjects. The results suggest that the nervous system of subjects with UWS receive external stimuli but show an overreaching reaction to them, which may disturb opportune information processing.
Collapse
Affiliation(s)
- David E. Apablaza-Yevenes
- Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos, México
| | - María Corsi-Cabrera
- Unidad de Investigación en Neurodesarrollo, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, People’s Republic of China
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | | | | | | | - Markus F. Müller
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Morelos, México
- Centro Internacional de Ciencias A.C., Morelos, México
| | - Zeidy Muñoz-Torres
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México
- Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
9
|
Xu LB, Hampton S, Fischer D. Neuroimaging in Disorders of Consciousness and Recovery. Phys Med Rehabil Clin N Am 2024; 35:51-64. [PMID: 37993193 DOI: 10.1016/j.pmr.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
There is a clinical need for more accurate diagnosis and prognostication in patients with disorders of consciousness (DoC). There are several neuroimaging modalities that enable detailed, quantitative assessment of structural and functional brain injury, with demonstrated diagnostic and prognostic value. Additionally, longitudinal neuroimaging studies have hinted at quantifiable structural and functional neuroimaging biomarkers of recovery, with potential implications for the management of DoC.
Collapse
Affiliation(s)
- Linda B Xu
- Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Stephen Hampton
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, 1800 Lombard Street, Philadelphia, PA 19146, USA
| | - David Fischer
- Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Jin X, Liang Z, Wen X, Wang Y, Bai Y, Xia X, He J, Sleigh J, Li X. The Characteristics of Electroencephalogram Signatures in Minimally Conscious State Patients Induced by General Anesthesia. IEEE Trans Biomed Eng 2023; 70:3239-3247. [PMID: 37335799 DOI: 10.1109/tbme.2023.3287203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
OBJECTIVE General anesthesia (GA) is necessary for surgery, even for patients in a minimally conscious state (MCS). The characteristics of the electroencephalogram (EEG) signatures of the MCS patients under GA are still unclear. METHODS The EEG during GA were recorded from 10 MCS patients undergoing spinal cord stimulation surgery. The power spectrum, phase-amplitude coupling (PAC), the diversity of connectivity, and the functional network were investigated. Long term recovery was assessed by the Coma Recovery Scale-Revised at one year after the surgery, and the characteristics of the patients with good or bad prognosis status were compared. RESULTS For the four MCS patients with good prognostic recovery, slow oscillation (0.1-1 Hz) and the alpha band (8-12 Hz) in the frontal areas increased during the maintenance of a surgical state of anesthesia (MOSSA), and "peak-max" and "trough-max" patterns emerged in frontal and parietal areas. During MOSSA, the six MCS patients with bad prognosis demonstrated: increased modulation index, reduced diversity of connectivity (from mean±SD of 0.877 ± 0.003 to 0.776 ± 0.003, p < 0.001), reduced function connectivity significantly in theta band (from mean±SD of 1.032 ± 0.043 to 0.589 ± 0.036, p < 0.001, in prefrontal-frontal; and from mean±SD of 0.989 ± 0.043 to 0.684 ± 0.036, p < 0.001, in frontal-parietal) and reduced local and global efficiency of the network in delta band. CONCLUSIONS A bad prognosis in MCS patients is associated with signs of impaired thalamocortical and cortico-cortical connectivity - as indicated by inability to produce inter-frequency coupling and phase synchronization. These indices may have a role in predicting the long-term recovery of MCS patients.
Collapse
|
11
|
Marois C, Quirins M, Seassau M, Demeret S, Demoule A, Naccache L, Weiss N. Bedside video-oculography to assess the caloric vestibulo-ocular reflex in ICU patients, a preliminary study. Rev Neurol (Paris) 2023; 179:1030-1034. [PMID: 37479626 DOI: 10.1016/j.neurol.2023.02.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 07/23/2023]
Affiliation(s)
- C Marois
- Inserm U 1127, Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, Sorbonne Université, 75013 Paris, France; Département de Neurologie, Unité de médecine intensive - réanimation à orientation neurologique, Sorbonne Université, AP-HP.SorbonneSorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | - M Quirins
- Inserm U 1127, Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, Sorbonne Université, 75013 Paris, France; Département de Neurologie, Unité de médecine intensive - réanimation à orientation neurologique, Sorbonne Université, AP-HP.SorbonneSorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - M Seassau
- Suricog, 130, rue de Lourmel, 75015 Paris, France; Institut de neurosciences translationnelles IHU-A-ICM, Paris, France
| | - S Demeret
- Département de Neurologie, Unité de médecine intensive - réanimation à orientation neurologique, Sorbonne Université, AP-HP.SorbonneSorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - A Demoule
- Inserm, UMRS_1158 Neurophysiologie respiratoire expérimentale et clinique, Sorbonne Université, Paris, France; Service de Pneumologie, médecine intensive et réanimation (Département "R3S"), AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - L Naccache
- Inserm U 1127, Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, Sorbonne Université, 75013 Paris, France; Department of Neurophysiology, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Neurology, Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France; Institut de neurosciences translationnelles IHU-A-ICM, Paris, France
| | - N Weiss
- Inserm U 1127, Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, Sorbonne Université, 75013 Paris, France; Département de Neurologie, Unité de médecine intensive - réanimation à orientation neurologique, Sorbonne Université, AP-HP.SorbonneSorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France; Inserm UMR_S 938, Centre de recherche Saint-Antoine (CRSA), Maladies métaboliques, biliaires et fibro-inflammatoire du foie & Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, Paris, France
| |
Collapse
|
12
|
Örzsik B, Palombo M, Asllani I, Dijk DJ, Harrison NA, Cercignani M. Higher order diffusion imaging as a putative index of human sleep-related microstructural changes and glymphatic clearance. Neuroimage 2023; 274:120124. [PMID: 37084927 DOI: 10.1016/j.neuroimage.2023.120124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
The brain has a unique macroscopic waste clearance system, termed the glymphatic system which utilises perivascular tunnels surrounded by astroglia to promote cerebrospinal-interstitial fluid exchange. Rodent studies have demonstrated a marked increase in glymphatic clearance during sleep which has been linked to a sleep-induced expansion of the extracellular space and concomitant reduction in intracellular volume. However, despite being implicated in the pathophysiology of multiple human neurodegenerative disorders, non-invasive techniques for imaging glymphatic clearance in humans are currently limited. Here we acquired multi-shell diffusion weighted MRI (dwMRI) in twenty-one healthy young participants (6 female, 22.3 ± 3.2 years) each scanned twice, once during wakefulness and once during sleep induced by a combination of one night of sleep deprivation and 10 mg of the hypnotic zolpidem 30 min before scanning. To capture hypothesised sleep-associated changes in intra/extracellular space, dwMRI were analysed using higher order diffusion modelling with the prediction that sleep-associated increases in interstitial (extracellular) fluid volume would result in a decrease in diffusion kurtosis, particularly in areas associated with slow wave generation at the onset of sleep. In line with our hypothesis, we observed a global reduction in diffusion kurtosis (t15=2.82, p = 0.006) during sleep as well as regional reductions in brain areas associated with slow wave generation during early sleep and default mode network areas that are highly metabolically active during wakefulness. Analysis with a higher-order representation of diffusion (MAP-MRI) further indicated that changes within the intra/extracellular domain rather than membrane permeability likely underpin the observed sleep-associated decrease in kurtosis. These findings identify higher-order modelling of dwMRI as a potential new non-invasive method for imaging glymphatic clearance and extend rodent findings to suggest that sleep is also associated with an increase in interstitial fluid volume in humans.
Collapse
Affiliation(s)
- Balázs Örzsik
- Radiology, Leiden University Medical Center, Leiden, the Netherlands; CISC, Brighton and Sussex Medical School, Brighton, United Kingdom.
| | - Marco Palombo
- CUBRIC, Cardiff University, United Kingdom; School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Iris Asllani
- CISC, Brighton and Sussex Medical School, Brighton, United Kingdom; Rochester Institute of Technology, New York, United States
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford UK; UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford UK
| | | | | |
Collapse
|
13
|
Zamora E, Chun KJ, Zamora C. Neuroimaging in Coma, Brain Death, and Related Conditions. NEUROGRAPHICS 2023; 13:190-209. [DOI: 10.3174/ng.2200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coma is a state of unresponsiveness to external stimuli, which can be secondary to a variety of CNS alterations affecting essential neuronal pathways, particularly the ascending reticular activating system. A comprehensive clinical evaluation is necessary for assessment of motor function and brainstem reflexes but is often insufficient for determination of the underlying etiology and extent of injury. Diagnostic brain imaging is typically needed for management and decision-making, particularly in acute settings where prompt diagnosis of reversible/treatable conditions is essential, as well as for prognostication. Understanding the pathophysiologic mechanisms leading to coma and comalike states and their imaging manifestations will enable selection of appropriate modalities and facilitate a clinically relevant interpretation. For evaluation of brain death, diagnostic imaging has a supportive role, and when indicated, selection of an ancillary diagnostic test is based on multiple factors, including susceptibility to confounding factors and specificity, in addition to safety, convenience, and availability.Learning objective: To describe the pathophysiology of alterations of consciousness and discuss the role of neuroimaging modalities in the evaluation of coma, brain death, and associated conditions
Collapse
|
14
|
Zheng RZ, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward. Neurosci Bull 2023; 39:138-162. [PMID: 35804219 PMCID: PMC9849546 DOI: 10.1007/s12264-022-00909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Han J, Chen C, Zheng S, Yan X, Wang C, Wang K, Hu Y. High-Definition Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex Modulates the Electroencephalography Rhythmic Activity of Parietal Occipital Lobe in Patients With Chronic Disorders of Consciousness. Front Hum Neurosci 2022; 16:889023. [PMID: 35712532 PMCID: PMC9196904 DOI: 10.3389/fnhum.2022.889023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDisorders of consciousness (DOC) are a spectrum of pathologies affecting one’s ability to interact with the external world. At present, High-Definition Transcranial Direct Current Stimulation (HD-tDCS) is used in many patients with DOC as a non-invasive treatment, but electrophysiological research on the effect of HD-tDCS on patients with DOC is limited.ObjectivesTo explore how HD-tDCS affects the cerebral cortex and examine the possible electrophysiological mechanisms underlying the effects of HD-tDCS on the cerebral cortex.MethodsA total of 19 DOC patients were assigned to HD-tDCS stimulation. Each of them underwent 10 anodal HD-tDCS sessions of the left dorsolateral prefrontal cortex (DLPFC) over 5 consecutive days. Coma Recovery Scale-Revision (CRS-R) scores were recorded to evaluate the consciousness level before and after HD-tDCS, while resting-state electroencephalography (EEG) recordings were obtained immediately before and after single and multiple HD-tDCS stimuli. Depending on whether the CRS-R score increased after stimulation, we classified the subjects into responsive (RE) and non-responsive (N-RE) groups and compared the differences in power spectral density (PSD) between the groups in different frequency bands and brain regions, and also examined the relationship between PSD values and CRS-R scores.ResultsFor the RE group, the PSD value of the parieto-occipital region increased significantly in the 6–8 Hz frequency band after multiple stimulations by HD-tDCS. After a single stimulation, an increase in PSD was observed at 10–13 and 13–30 Hz. In addition, for all subjects, a positive correlation was observed between the change in PSD value in the parieto-occipital region at 10–13 and 6–8 Hz frequency band and the change in CRS-R score after a single stimulation.ConclusionRepeated anodal HD-tDCS of the left DLPFC can improve clinical outcomes in patients with DOC, and HD-tDCS-related increased levels of consciousness were associated with increased parieto-occipital PSD.
Collapse
Affiliation(s)
- Jinying Han
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Shuang Zheng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xiaoxiang Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changqing Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China
- *Correspondence: Kai Wang,
| | - Yajuan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Yajuan Hu,
| |
Collapse
|
16
|
Vetkas A, Germann J, Elias G, Loh A, Boutet A, Yamamoto K, Sarica C, Samuel N, Milano V, Fomenko A, Santyr B, Tasserie J, Gwun D, Jung HH, Valiante T, Ibrahim GM, Wennberg R, Kalia SK, Lozano AM. Identifying the neural network for neuromodulation in epilepsy through connectomics and graphs. Brain Commun 2022; 4:fcac092. [PMID: 35611305 PMCID: PMC9123846 DOI: 10.1093/braincomms/fcac092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/13/2021] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Deep brain stimulation is a treatment option for patients with drug-resistant epilepsy. The precise mechanism of neuromodulation in epilepsy is unknown, and biomarkers are needed for optimizing treatment. The aim of this study was to describe the neural network associated with deep brain stimulation targets for epilepsy and to explore its potential application as a novel biomarker for neuromodulation. Using seed-to-voxel functional connectivity maps, weighted by seizure outcomes, brain areas associated with stimulation were identified in normative resting state functional scans of 1000 individuals. To pinpoint specific regions in the normative epilepsy deep brain stimulation network, we examined overlapping areas of functional connectivity between the anterior thalamic nucleus, centromedian thalamic nucleus, hippocampus and less studied epilepsy deep brain stimulation targets. Graph network analysis was used to describe the relationship between regions in the identified network. Furthermore, we examined the associations of the epilepsy deep brain stimulation network with disease pathophysiology, canonical resting state networks and findings from a systematic review of resting state functional MRI studies in epilepsy deep brain stimulation patients. Cortical nodes identified in the normative epilepsy deep brain stimulation network were in the anterior and posterior cingulate, medial frontal and sensorimotor cortices, frontal operculum and bilateral insulae. Subcortical nodes of the network were in the basal ganglia, mesencephalon, basal forebrain and cerebellum. Anterior thalamic nucleus was identified as a central hub in the network with the highest betweenness and closeness values, while centromedian thalamic nucleus and hippocampus showed average centrality values. The caudate nucleus and mammillothalamic tract also displayed high centrality values. The anterior cingulate cortex was identified as an important cortical hub associated with the effect of deep brain stimulation in epilepsy. The neural network of deep brain stimulation targets shared hubs with known epileptic networks and brain regions involved in seizure propagation and generalization. Two cortical clusters identified in the epilepsy deep brain stimulation network included regions corresponding to resting state networks, mainly the default mode and salience networks. Our results were concordant with findings from a systematic review of resting state functional MRI studies in patients with deep brain stimulation for epilepsy. Our findings suggest that the various epilepsy deep brain stimulation targets share a common cortico-subcortical network, which might in part underpin the antiseizure effects of stimulation. Interindividual differences in this network functional connectivity could potentially be used as biomarkers in selection of patients, stimulation parameters and neuromodulation targets.
Collapse
Affiliation(s)
- Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Neurology clinic, Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Milano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jordy Tasserie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Dave Gwun
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hyun Ho Jung
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taufik Valiante
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - George M Ibrahim
- Division of Pediatric Neurosurgery, Sick Kids Toronto, University of Toronto, Toronto, ON, Canada
| | - Richard Wennberg
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
| |
Collapse
|
17
|
Farisco M, Pennartz C, Annen J, Cecconi B, Evers K. Indicators and criteria of consciousness: ethical implications for the care of behaviourally unresponsive patients. BMC Med Ethics 2022; 23:30. [PMID: 35313885 PMCID: PMC8935680 DOI: 10.1186/s12910-022-00770-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/13/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Assessing consciousness in other subjects, particularly in non-verbal and behaviourally disabled subjects (e.g., patients with disorders of consciousness), is notoriously challenging but increasingly urgent. The high rate of misdiagnosis among disorders of consciousness raises the need for new perspectives in order to inspire new technical and clinical approaches. MAIN BODY We take as a starting point a recently introduced list of operational indicators of consciousness that facilitates its recognition in challenging cases like non-human animals and Artificial Intelligence to explore their relevance to disorders of consciousness and their potential ethical impact on the diagnosis and healthcare of relevant patients. Indicators of consciousness mean particular capacities that can be deduced from observing the behaviour or cognitive performance of the subject in question (or from neural correlates of such performance) and that do not define a hard threshold in deciding about the presence of consciousness, but can be used to infer a graded measure based on the consistency amongst the different indicators. The indicators of consciousness under consideration offer a potential useful strategy for identifying and assessing residual consciousness in patients with disorders of consciousness, setting the theoretical stage for an operationalization and quantification of relevant brain activity. CONCLUSIONS Our heuristic analysis supports the conclusion that the application of the identified indicators of consciousness to its disorders will likely inspire new strategies for assessing three very urgent issues: the misdiagnosis of disorders of consciousness; the need for a gold standard in detecting consciousness and diagnosing its disorders; and the need for a refined taxonomy of disorders of consciousness.
Collapse
Affiliation(s)
- Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden.
- Science and Society Unit, Biogem, Biology and Molecular Genetics Research Institute, Ariano Irpino, AV, Italy.
| | - Cyriel Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Benedetta Cecconi
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Wang J, Zhang S, Liu W, Zhang Y, Hu Z, Sun Z, Di H. Olfactory Stimulation and the Diagnosis of Patients With Disorders of Consciousness: A Double-Blind, Randomized Clinical Trial. Front Neurosci 2022; 16:712891. [PMID: 35250440 PMCID: PMC8891647 DOI: 10.3389/fnins.2022.712891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The aim of this study was to determine whether behavioral responses elicited by olfactory stimulation are a predictor of conscious behavioral response and prognosis of patients with disorders of consciousness (DOC). METHODS Twenty-three DOC patients (8 unresponsive wakefulness syndrome [UWS]; 15 minimally conscious state [MCS]) were recruited for this study in which 1-Octen-3-ol (familiar neutral odor) and pyridine were used to test odor behavioral responses, and water was used as an odorless stimulus. One rater presented the three odors in front of each patient's nose randomly, and another one videotaped all behavioral responses (e.g., pouting, wrinkling nose, slightly shaking head, frowning, etc.). Two independent raters, blind to the stimuli and the patient's diagnosis, gave the behavioral results according to the recorded videos. One-, 3-, and 6-month follow-up evaluations were conducted to obtain a good prognostic value. RESULTS All MCS patients showed behavioral responses to the 1-Octen-3-ol stimulus; nine MCS and one UWS showed olfactory emotional responses to the pyridine, and two MCS showed olfactory emotional responses to the water stimulus. The incidence of behavioral response was significantly higher using 1-Octen-3-ol than it was for water by McNemar test (p < 0.001), significantly higher using pyridine than it was for water (p < 0.01). The χ2 test results indicated that there were significant differences between MCS and UWS to 1-Octen-3-ol (p < 0.001). For MCS patients, the incidence of behavioral response was no different between using 1-Octen-3-ol and pyridine (p > 0.05). There was no significant relationship between the olfactory behavioral response and the improvement of consciousness based on the χ2 test analysis (p > 0.05). CONCLUSION Olfactory stimuli, especially for the familiar neutral odor, might be effective for eliciting a conscious behavioral response and estimating the clinical diagnosis of DOC patients. CLINICAL TRIAL REGISTRATION [https://clinicaltrials.gov/ct2/show/NCT03732092], [identifier NCT03732092].
Collapse
Affiliation(s)
- Jing Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- Shanghai Yongci Rehabilitation Hospital, Shanghai, China
| | - Shaoming Zhang
- Shanghai Yongci Rehabilitation Hospital, Shanghai, China
| | - Wenbin Liu
- Shanghai Yongci Rehabilitation Hospital, Shanghai, China
| | - Yao Zhang
- Shanghai Yongci Rehabilitation Hospital, Shanghai, China
| | - Zhouyao Hu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Ziwei Sun
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
19
|
Regional Homogeneity Alterations in Patients with Impaired Consciousness. An Observational Resting-State fMRI Study. Neuroradiology 2022; 64:1391-1399. [PMID: 35107592 DOI: 10.1007/s00234-022-02911-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE It is always challenging to correctly differentiate between minimally conscious state (MCS) and vegetative state/unresponsive wakefulness syndrome (VS/UWS) among disorders of consciousness (DOC) patients. However, the underlying neural mechanisms of awareness identification remain incompletely understood. METHODS Using regional homogeneity (ReHo) analysis, we evaluated how regional connectivity of brain regions is disrupted in MCS and VS/UWS patients. Resting-state functional magnetic resonance imaging was conducted in 14 MCS patients, 25 VS/UWS patients, and 30 age-matched healthy individuals. RESULTS We found that MCS and VS/UWS patients demonstrated DOC-dependent reduced ReHo within widespread brain regions including posterior cingulate cortices (PCC), medial prefrontal cortices (mPFC), and bilateral fronto-parieto-temporal cortices and showed increased ReHo in limbic structures. Moreover, a positive correlation between Coma Recovery Scale-Revised (CRS-R) total scores and reduced ReHo in the left precuneus was observed in VS/UWS patients, despite the linear trend was not found in MCS patients. In addition, ReHo were also observed reduced in three mainly intrinsic connectivity networks (ICNs), including default mode network (DMN), executive control network (ECN), and salience network (SN). Notably, as the clinical symptoms of consciousness disorders worsen from MCS to VS/UWS, ReHo in dorsal DMN, left ECN, and posterior SN became significantly reduced. CONCLUSION These findings make a further understanding of the underlying neural mechanism of regional connectivity among DOC patients and provide additional neuroimaging-based biomarkers for the clinical diagnosis of MCS and VS/UWS patients.
Collapse
|
20
|
Qureshi AY, Stevens RD. Mapping the Unconscious Brain: Insights From Advanced Neuroimaging. J Clin Neurophysiol 2022; 39:12-21. [PMID: 34474430 DOI: 10.1097/wnp.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
SUMMARY Recent advances in neuroimaging have been a preeminent factor in the scientific effort to unravel mechanisms of conscious awareness and the pathophysiology of disorders of consciousness. In the first part of this review, we selectively discuss operational models of consciousness, the biophysical signal that is measured using different imaging modalities, and knowledge on disorders of consciousness that has been gleaned with each neuroimaging modality. Techniques considered include diffusion-weighted imaging, diffusion tensor imaging, different types of nuclear medicine imaging, functional MRI, magnetoencephalography, and the combined transcranial magnetic stimulation-electroencephalography approach. In the second part of this article, we provide an overview of how advanced neuroimaging can be leveraged to support neurological prognostication, the use of machine learning to process high-dimensional imaging data, potential applications in clinical practice, and future directions.
Collapse
Affiliation(s)
- Abid Y Qureshi
- Department of Neurology, University of Kansas Medical Center, Kansas City, Missouri, U.S.A.; and
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care, Neurology, Radiology, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| |
Collapse
|
21
|
Ona G, Sampedro F, Romero S, Valle M, Camacho V, Migliorelli C, Mañanas MÁ, Antonijoan RM, Puntes M, Coimbra J, Ballester MR, Garrido M, Riba J. The Kappa Opioid Receptor and the Sleep of Reason: Cortico-Subcortical Imbalance Following Salvinorin-A. Int J Neuropsychopharmacol 2021; 25:54-63. [PMID: 34537829 PMCID: PMC8756086 DOI: 10.1093/ijnp/pyab063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The mechanisms through which kappa opioid receptor (KOR) agonists induce psychotomimetic effects are largely unknown, although the modulation of this receptor has attracted attention for its clinical use. In this work, we characterize the neuropharmacological effects of salvinorin-A, a highly selective KOR agonist. METHODS Changes in multimodal electroencephalography, single-photon emission computed tomography, and subjective effects following the acute administration of salvinorin-A are reported. The study included 2 sub-studies that employed a double-blind, crossover, randomized, placebo-controlled design. RESULTS The electroencephalography measures showed a marked increase in delta and gamma waves and a decrease in alpha waves while subjects were under the effect of salvinorin-A. Regarding single-photon emission computed tomography measures, significant decreases in regional cerebral blood flow were detected in multiple regions of the frontal, temporal, parietal, and occipital cortices. Significant regional cerebral blood flow increases were observed in some regions of the medial temporal lobe, including the amygdala, the hippocampal gyrus, and the cerebellum. The pattern of subjective effects induced by salvinorin-A was similar to those observed in relation to other psychotomimetic drugs but with an evidently dissociative nature. No dysphoric effects were reported. CONCLUSION The salvinorin-A-mediated KOR agonism induced dramatic psychotomimetic effects along with a generalized decrease in cerebral blood flow and electric activity within the cerebral cortex.
Collapse
Affiliation(s)
- Genís Ona
- Human Neuropsychopharmacology Group, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain
| | - Frederic Sampedro
- Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain,Correspondence: Frederic Sampedro, PhD, Hospital de Sant Pau Research Institute, Sant Quintí Street number 77, 08041 Barcelona, Spain ()
| | - Sergio Romero
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Marta Valle
- Departament de Farmacologia i Terapèutica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valle Camacho
- Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carolina Migliorelli
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Miguel Ángel Mañanas
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Rosa Maria Antonijoan
- Departament de Farmacologia i Terapèutica, Universitat Autònoma de Barcelona, Barcelona, Spain,Centre d’Investigació de Medicaments, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain,Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Montserrat Puntes
- Centre d’Investigació de Medicaments, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain
| | - Jimena Coimbra
- Centre d’Investigació de Medicaments, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain
| | - Maria Rosa Ballester
- Centre d’Investigació de Medicaments, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain,Blanquerna School of Health Science, Universitat Ramon Llull, Barcelona, Spain
| | - Maite Garrido
- Centre d’Investigació de Medicaments, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain
| | - Jordi Riba
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht,the Netherlands
| |
Collapse
|
22
|
Music interventions and music therapy in disorders of consciousness – A systematic review of qualitative research. ARTS IN PSYCHOTHERAPY 2021. [DOI: 10.1016/j.aip.2021.101782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Coulborn S, Taylor C, Naci L, Owen AM, Fernández-Espejo D. Disruptions in Effective Connectivity within and between Default Mode Network and Anterior Forebrain Mesocircuit in Prolonged Disorders of Consciousness. Brain Sci 2021; 11:749. [PMID: 34200092 PMCID: PMC8227204 DOI: 10.3390/brainsci11060749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Recent research indicates prolonged disorders of consciousness (PDOC) result from structural and functional impairments to key cortical and subcortical networks, including the default mode network (DMN) and the anterior forebrain mesocircuit (AFM). However, the specific mechanisms which underpin such impairments remain unknown. It is known that disruptions in the striatal-pallidal pathway can result in the over inhibition of the thalamus and lack of excitation to the cortex that characterizes PDOC. Here, we used spectral dynamic causal modelling and parametric empirical Bayes on rs-fMRI data to assess whether DMN changes in PDOC are caused by disruptions in the AFM. PDOC patients displayed overall reduced coupling within the AFM, and specifically, decreased self-inhibition of the striatum, paired with reduced coupling from striatum to thalamus. This led to loss of inhibition from AFM to DMN, mostly driven by posterior areas including the precuneus and inferior parietal cortex. In turn, the DMN showed disruptions in self-inhibition of the precuneus and medial prefrontal cortex. Our results provide support for the anterior mesocircuit model at the subcortical level but highlight an inhibitory role for the AFM over the DMN, which is disrupted in PDOC.
Collapse
Affiliation(s)
- Sean Coulborn
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; (S.C.); (C.T.)
| | - Chris Taylor
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; (S.C.); (C.T.)
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | - Adrian M. Owen
- Brain and Mind Institute, Western University, London, ON N6A 5B7, Canada;
| | - Davinia Fernández-Espejo
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; (S.C.); (C.T.)
| |
Collapse
|
24
|
Kumral E, Bayam FE, Özdemir HN. Cognitive and Behavioral Disorders in Patients with Precuneal Infarcts. Eur Neurol 2021; 84:157-167. [PMID: 33827093 DOI: 10.1159/000513098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Ischemic stroke of the precuneal cortex (PC) alone is extremely rare. This study aimed to evaluate the clinical, neurocognitive, and behavioral characteristics of isolated PC infarcts. METHODS We assessed neuropsychological and behavioral findings in 12 patients with isolated PC infarct among 3,800 patients with ischemic stroke. To determine the most frequently affected brain locus in patients, we first overlapped the ischemic area of patients with specific cognitive disorders and patients without specific cognitive disorders. Second, we compared both overlap maps using the "subtraction plot" function of MRIcroGL. RESULTS Patients showed various types of cognitive disorders. All patients experienced more than 1 category of cognitive disorder, except for 2 patients with only 1 cognitive disorder. Lesion topographical analysis showed that damage within the anterior precuneal region might lead to consciousness disorders (25%), self-processing impairment (42%), visuospatial disorders (58%), and lesions in the posterior precuneal region caused episodic and semantic memory impairment (33%). The whole precuneus is involved in at least one body awareness disorder. The cause of stroke was cardioembolism in 5 patients (42%), large artery disease in 3 (25%), and unknown in 4 (33%). CONCLUSIONS This study showed a wide variety of neuropsychological and behavioral disorders in patients with precuneal infarct. Future studies are needed to achieve a proper definition of the function of the precuneus in relation to the extended cortical areas. PC region infarcts have been found to predict a source of embolism from the large arteries or heart.
Collapse
Affiliation(s)
- Emre Kumral
- Neurology Department, Ege University Medical School Hospital, İzmir, Turkey
| | | | | |
Collapse
|
25
|
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol 2021; 17:135-156. [PMID: 33318675 PMCID: PMC7734616 DOI: 10.1038/s41582-020-00428-x] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Substantial progress has been made over the past two decades in detecting, predicting and promoting recovery of consciousness in patients with disorders of consciousness (DoC) caused by severe brain injuries. Advanced neuroimaging and electrophysiological techniques have revealed new insights into the biological mechanisms underlying recovery of consciousness and have enabled the identification of preserved brain networks in patients who seem unresponsive, thus raising hope for more accurate diagnosis and prognosis. Emerging evidence suggests that covert consciousness, or cognitive motor dissociation (CMD), is present in up to 15-20% of patients with DoC and that detection of CMD in the intensive care unit can predict functional recovery at 1 year post injury. Although fundamental questions remain about which patients with DoC have the potential for recovery, novel pharmacological and electrophysiological therapies have shown the potential to reactivate injured neural networks and promote re-emergence of consciousness. In this Review, we focus on mechanisms of recovery from DoC in the acute and subacute-to-chronic stages, and we discuss recent progress in detecting and predicting recovery of consciousness. We also describe the developments in pharmacological and electrophysiological therapies that are creating new opportunities to improve the lives of patients with DoC.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
26
|
Liu B, Zhang X, Wang L, Li Y, Hou J, Duan G, Guo T, Wu D. Outcome Prediction in Unresponsive Wakefulness Syndrome and Minimally Conscious State by Non-linear Dynamic Analysis of the EEG. Front Neurol 2021; 12:510424. [PMID: 33692735 PMCID: PMC7937604 DOI: 10.3389/fneur.2021.510424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: This study aimed to investigate the role of non-linear dynamic analysis (NDA) of the electroencephalogram (EEG) in predicting patient outcome in unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS). Methods: This was a prospective longitudinal cohort study. A total of 98 and 64 UWS and MCS cases, respectively, were assessed. During admission, EEGs were acquired under eyes-closed and pain stimulation conditions. EEG nonlinear indices, including approximate entropy (ApEn) and cross-ApEn, were calculated. The modified Glasgow Outcome Scale (mGOS) was employed to assess functional prognosis 1 year following brain injury. Results: The mGOS scores were improved in 25 (26%) patients with UWS and 42 (66%) with MCS. Under the painful stimulation condition, both non-linear indices were lower in patients with UWS than in those with MCS. The frontal region, periphery of the primary sensory area (S1), and forebrain structure might be the key points modulating disorders of consciousness. The affected local cortical networks connected to S1 and unaffected distant cortical networks connecting S1 to the prefrontal area played important roles in mGOS score improvement. Conclusions: NDA provides an objective assessment of cortical excitability and interconnections of residual cortical functional islands. The impaired interconnection of the residual cortical functional island meant a poorer prognosis. The activation in the affected periphery of the S1 and the increase in the interconnection of affected local cortical areas around the S1 and unaffected S1 to the prefrontal and temporal areas meant a relatively favorable prognosis.
Collapse
Affiliation(s)
- Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Zhang
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijia Wang
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Yuanyuan Li
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Hou
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoping Duan
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongyu Wu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
How hot is the hot zone? Computational modelling clarifies the role of parietal and frontoparietal connectivity during anaesthetic-induced loss of consciousness. Neuroimage 2021; 231:117841. [PMID: 33577934 DOI: 10.1016/j.neuroimage.2021.117841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, specific cortical networks have been proposed to be crucial for sustaining consciousness, including the posterior hot zone and frontoparietal resting state networks (RSN). Here, we computationally evaluate the relative contributions of three RSNs - the default mode network (DMN), the salience network (SAL), and the central executive network (CEN) - to consciousness and its loss during propofol anaesthesia. Specifically, we use dynamic causal modelling (DCM) of 10 min of high-density EEG recordings (N = 10, 4 males) obtained during behavioural responsiveness, unconsciousness and post-anaesthetic recovery to characterise differences in effective connectivity within frontal areas, the posterior 'hot zone', frontoparietal connections, and between-RSN connections. We estimate - for the first time - a large DCM model (LAR) of resting EEG, combining the three RSNs into a rich club of interconnectivity. Consistent with the hot zone theory, our findings demonstrate reductions in inter-RSN connectivity in the parietal cortex. Within the DMN itself, the strongest reductions are in feed-forward frontoparietal and parietal connections at the precuneus node. Within the SAL and CEN, loss of consciousness generates small increases in bidirectional connectivity. Using novel DCM leave-one-out cross-validation, we show that the most consistent out-of-sample predictions of the state of consciousness come from a key set of frontoparietal connections. This finding also generalises to unseen data collected during post-anaesthetic recovery. Our findings provide new, computational evidence for the importance of the posterior hot zone in explaining the loss of consciousness, highlighting also the distinct role of frontoparietal connectivity in underpinning conscious responsiveness, and consequently, suggest a dissociation between the mechanisms most prominently associated with explaining the contrast between conscious awareness and unconsciousness, and those maintaining consciousness.
Collapse
|
28
|
Danysz W, Dekundy A, Scheschonka A, Riederer P. Amantadine: reappraisal of the timeless diamond-target updates and novel therapeutic potentials. J Neural Transm (Vienna) 2021; 128:127-169. [PMID: 33624170 PMCID: PMC7901515 DOI: 10.1007/s00702-021-02306-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
The aim of the current review was to provide a new, in-depth insight into possible pharmacological targets of amantadine to pave the way to extending its therapeutic use to further indications beyond Parkinson's disease symptoms and viral infections. Considering amantadine's affinities in vitro and the expected concentration at targets at therapeutic doses in humans, the following primary targets seem to be most plausible: aromatic amino acids decarboxylase, glial-cell derived neurotrophic factor, sigma-1 receptors, phosphodiesterases, and nicotinic receptors. Further three targets could play a role to a lesser extent: NMDA receptors, 5-HT3 receptors, and potassium channels. Based on published clinical studies, traumatic brain injury, fatigue [e.g., in multiple sclerosis (MS)], and chorea in Huntington's disease should be regarded potential, encouraging indications. Preclinical investigations suggest amantadine's therapeutic potential in several further indications such as: depression, recovery after spinal cord injury, neuroprotection in MS, and cutaneous pain. Query in the database http://www.clinicaltrials.gov reveals research interest in several further indications: cancer, autism, cocaine abuse, MS, diabetes, attention deficit-hyperactivity disorder, obesity, and schizophrenia.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Andrzej Dekundy
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Astrid Scheschonka
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department Psychiatry, University of Southern Denmark Odense, Vinslows Vey 18, 5000, Odense, Denmark.
| |
Collapse
|
29
|
Gruenbaum BF. Comparison of anaesthetic- and seizure-induced states of unconsciousness: a narrative review. Br J Anaesth 2021; 126:219-229. [PMID: 32951841 PMCID: PMC7844374 DOI: 10.1016/j.bja.2020.07.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022] Open
Abstract
In order to understand general anaesthesia and certain seizures, a fundamental understanding of the neurobiology of unconsciousness is needed. This review article explores similarities in neuronal and network changes during general anaesthesia and seizure-induced unconsciousness. Both seizures and anaesthetics cause disruption in similar anatomical structures that presumably lead to impaired consciousness. Despite differences in behaviour and mechanisms, both of these conditions are associated with disruption of the functionality of subcortical structures that mediate neuronal activity in the frontoparietal cortex. These areas are all likely to be involved in maintaining normal consciousness. An assessment of the similarities in the brain network disruptions with certain seizures and general anaesthesia might provide fresh insights into the mechanisms of the alterations of consciousness seen in these particular unconscious states, allowing for innovative therapies for seizures and the development of anaesthetic approaches targeting specific networks.
Collapse
|
30
|
He R, Fan J, Wang H, Zhong Y, Ma J. Differentiating Responders and Non-responders to rTMS Treatment for Disorder of Consciousness Using EEG After-Effects. Front Neurol 2020; 11:583268. [PMID: 33329325 PMCID: PMC7714935 DOI: 10.3389/fneur.2020.583268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background: It is controversial whether repetitive transcranial magnetic stimulation (rTMS) has potential benefits in improving the awareness of patients with disorder of consciousness (DOC). We hypothesized that rTMS could improve consciousness only in DOC patients who have measurable brain responses to rTMS. Objective: In this study, we aimed to investigate the EEG after-effects induced by rTMS in DOC patients and attempted to propose a prediction algorithm to discriminate between DOC patients who would respond to rTMS treatment from those who would not. Methods: Twenty-five DOC patients were enrolled in this study. Over 4 weeks, each patient received 20 sessions of 20 Hz rTMS that was applied over the left dorsolateral prefrontal cortex (DLPFC). For each patient, resting-state EEG was recorded before and immediately after one session of rTMS to assess the neurophysiologic modification induced by rTMS. The coma recovery scale revised (CRS-R) was used to define responders with improved consciousness. Results: Of the 25 DOC patients, 10 patients regained improved consciousness and were classified as responders. The responders were characterized by more preserved alpha power and a significant reduction of delta power induced by rTMS. The analysis of receiver operating characteristic (ROC) curves showed that the algorithm calculated from the relative alpha power and the relative delta power had a high accuracy in identifying DOC patients who were responders. Conclusions: DOC patients who had more preserved alpha power and a significant reduction in the delta band that was induced by rTMS are likely to regain improved consciousness, which provides a tool to identify DOC patients who may benefit in terms of therapeutic consciousness.
Collapse
Affiliation(s)
- Renhong He
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianzhong Fan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huijuan Wang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Portnova G, Girzhova I, Filatova D, Podlepich V, Tetereva A, Martynova O. Brain Oscillatory Activity during Tactile Stimulation Correlates with Cortical Thickness of Intact Areas and Predicts Outcome in Post-Traumatic Comatose Patients. Brain Sci 2020; 10:brainsci10100720. [PMID: 33053681 PMCID: PMC7601666 DOI: 10.3390/brainsci10100720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, we have reported a correlation between structural brain changes and electroencephalography (EEG) in response to tactile stimulation in ten comatose patients after severe traumatic brain injury (TBI). Structural morphometry showed a decrease in whole-brain cortical thickness, cortical gray matter volume, and subcortical structures in ten comatose patients compared to fifteen healthy controls. The observed decrease in gray matter volume indicated brain atrophy in coma patients induced by TBI. In resting-state EEG, the power of slow-wave activity was significantly higher (2–6 Hz), and the power of alpha and beta rhythms was lower in coma patients than in controls. During tactile stimulation, coma patients’ theta rhythm power significantly decreased compared to that in the resting state. This decrease was not observed in the control group and correlated positively with better coma outcome and the volume of whole-brain gray matter, the right putamen, and the insula. It correlated negatively with the volume of damaged brain tissue. During tactile stimulation, an increase in beta rhythm power correlated with the thickness of patients’ somatosensory cortex. Our results showed that slow-wave desynchronization, as a nonspecific response to tactile stimulation, may serve as a sensitive index of coma outcome and morphometric changes after brain injury.
Collapse
Affiliation(s)
- Galina Portnova
- Human High Nervous Activity Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, 5A Butlerova str., 117485 Moscow, Russia; (A.T.); (O.M.)
- Correspondence: ; Tel.: +7-9031256186
| | - Irina Girzhova
- Faculty of Medicine, Lomonosov Moscow State University, 27 Lomonosovsky pr-t., 119991 Moscow, Russia; (I.G.); (D.F.)
| | - Daria Filatova
- Faculty of Medicine, Lomonosov Moscow State University, 27 Lomonosovsky pr-t., 119991 Moscow, Russia; (I.G.); (D.F.)
| | - Vitaliy Podlepich
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16 4-ya Tverskaya-Yamskaya str., 125047 Moscow, Russia;
| | - Alina Tetereva
- Human High Nervous Activity Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, 5A Butlerova str., 117485 Moscow, Russia; (A.T.); (O.M.)
| | - Olga Martynova
- Human High Nervous Activity Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, 5A Butlerova str., 117485 Moscow, Russia; (A.T.); (O.M.)
| |
Collapse
|
32
|
da Silva PHR, Rondinoni C, Leoni RF. Non-classical behavior of the default mode network regions during an information processing task. Brain Struct Funct 2020; 225:2553-2562. [PMID: 32939584 DOI: 10.1007/s00429-020-02143-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023]
Abstract
The default mode network (DMN) efficient deactivation and suppressed functional connectivity (FC) during goal-directed tasks, which require attentional resources, have been considered essential to healthy brain cognition. However, recent studies have shown that DMN regions do not always show the expected behavior. Then, we aimed to investigate the functional activation and connectivity of DMN nodes in young, healthy controls during a goal-directed task. We used an adaptation of the symbol digit modalities test (SDMT) to evaluate the information processing speed (IPS). Twenty-four subjects (10 women, age: 29 ± 7 years) underwent two functional Magnetic Resonance Imaging experiments: one during resting-state and one during a block-designed SDMT paradigm. We superimposed the templates of the DMN on the group activation map and observed the reorganization of the network. For the posterior cingulate cortex (PCC) node of the DMN, which is spatially extensive, comprising the precuneus (dorsal portion) and the posterior cingulate gyrus (PCG, ventral portion), the extent of each region was different between conditions, suggesting different functional roles for them. Therefore, for the functional connectivity (FC) analysis, we split the DMN-PCC region into two regions: left precuneus (BA 7) and PCG. The left precuneus (BA 7) was positively correlated with the left lingual gyrus (BA 17), a task-positive region, and negatively associated with the DMN nodes when comparing task performance with the resting-state condition. The other DMN regions presented the classical antagonistic role during the attentional task. In conclusion, we found that the activation and functional connectivity of the DMN is, in general, suppressed during the information processing. However, the left precuneus BA 7 presented a context-dependent modulatory behavior, working as a transient in-between hub connecting the DMN to task-positive areas. Such findings support studies that show increased activation and excitatory functional connectivity of DMN portions during goal-directed tasks. Moreover, our results may contribute to defining more precise functional correlates of IPS deficits in a wide range of clinical and neurological diseases.
Collapse
Affiliation(s)
| | - Carlo Rondinoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| | - Renata F Leoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
33
|
Bai Y, Lin Y, Ziemann U. Managing disorders of consciousness: the role of electroencephalography. J Neurol 2020; 268:4033-4065. [PMID: 32915309 PMCID: PMC8505374 DOI: 10.1007/s00415-020-10095-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
Disorders of consciousness (DOC) are an important but still underexplored entity in neurology. Novel electroencephalography (EEG) measures are currently being employed for improving diagnostic classification, estimating prognosis and supporting medicolegal decision-making in DOC patients. However, complex recording protocols, a confusing variety of EEG measures, and complicated analysis algorithms create roadblocks against broad application. We conducted a systematic review based on English-language studies in PubMed, Medline and Web of Science databases. The review structures the available knowledge based on EEG measures and analysis principles, and aims at promoting its translation into clinical management of DOC patients.
Collapse
Affiliation(s)
- Yang Bai
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- Department of Neurology and Stroke, University of Tübingen, Hoppe‑Seyler‑Str. 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Yajun Lin
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Hoppe‑Seyler‑Str. 3, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
34
|
Cofré R, Herzog R, Mediano PA, Piccinini J, Rosas FE, Sanz Perl Y, Tagliazucchi E. Whole-Brain Models to Explore Altered States of Consciousness from the Bottom Up. Brain Sci 2020; 10:E626. [PMID: 32927678 PMCID: PMC7565030 DOI: 10.3390/brainsci10090626] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/16/2023] Open
Abstract
The scope of human consciousness includes states departing from what most of us experience as ordinary wakefulness. These altered states of consciousness constitute a prime opportunity to study how global changes in brain activity relate to different varieties of subjective experience. We consider the problem of explaining how global signatures of altered consciousness arise from the interplay between large-scale connectivity and local dynamical rules that can be traced to known properties of neural tissue. For this purpose, we advocate a research program aimed at bridging the gap between bottom-up generative models of whole-brain activity and the top-down signatures proposed by theories of consciousness. Throughout this paper, we define altered states of consciousness, discuss relevant signatures of consciousness observed in brain activity, and introduce whole-brain models to explore the biophysics of altered consciousness from the bottom-up. We discuss the potential of our proposal in view of the current state of the art, give specific examples of how this research agenda might play out, and emphasize how a systematic investigation of altered states of consciousness via bottom-up modeling may help us better understand the biophysical, informational, and dynamical underpinnings of consciousness.
Collapse
Affiliation(s)
- Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rubén Herzog
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360103, Chile;
| | - Pedro A.M. Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK;
| | - Juan Piccinini
- National Scientific and Technical Research Council, Buenos Aires C1033AAJ, Argentina; (J.P.); (Y.S.P.); (E.T.)
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London SW7 2DD, UK;
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Yonatan Sanz Perl
- National Scientific and Technical Research Council, Buenos Aires C1033AAJ, Argentina; (J.P.); (Y.S.P.); (E.T.)
- Departamento de Matemáticas y Ciencias, Universidad de San Andrés, Buenos Aires B1644BID, Argentina
| | - Enzo Tagliazucchi
- National Scientific and Technical Research Council, Buenos Aires C1033AAJ, Argentina; (J.P.); (Y.S.P.); (E.T.)
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
35
|
Blundon EG, Gallagher RE, Ward LM. Electrophysiological evidence of preserved hearing at the end of life. Sci Rep 2020; 10:10336. [PMID: 32587364 PMCID: PMC7316981 DOI: 10.1038/s41598-020-67234-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
This study attempts to answer the question: “Is hearing the last to go?” We present evidence of hearing among unresponsive actively dying hospice patients. Individual ERP (MMN, P3a, and P3b) responses to deviations in auditory patterns are reported for conscious young, healthy control participants, as well as for hospice patients, both when the latter were conscious, and again when they became unresponsive to their environment. Whereas the MMN (and perhaps too the P3a) is considered an automatic response to auditory irregularities, the P3b is associated with conscious detection of oddball targets. All control participants, and most responsive hospice patients, evidenced a “local” effect (either a MMN, a P3a, or both) and some a “global” effect (P3b) to deviations in tone, or deviations in auditory pattern. Importantly, most unresponsive patients showed evidence of MMN responses to tone changes, and some showed a P3a or P3b response to either tone or pattern changes. Thus, their auditory systems were responding similarly to those of young, healthy controls just hours from end of life. Hearing may indeed be one of the last senses to lose function as humans die.
Collapse
Affiliation(s)
| | - Romayne E Gallagher
- Department of Family Medicine, Vancouver, Canada.,Department of Family and Community Medicine, Providence Health Care, Vancouver, Canada
| | - Lawrence M Ward
- Department of Psychology, Vancouver, Canada. .,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
36
|
Crone JS, Lutkenhoff ES, Vespa PM, Monti MM. A systematic investigation of the association between network dynamics in the human brain and the state of consciousness. Neurosci Conscious 2020; 2020:niaa008. [PMID: 32551138 PMCID: PMC7293819 DOI: 10.1093/nc/niaa008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
An increasing amount of studies suggest that brain dynamics measured with resting-state functional magnetic resonance imaging (fMRI) are related to the state of consciousness. However, the challenge of investigating neuronal correlates of consciousness is the confounding interference between (recovery of) consciousness and behavioral responsiveness. To address this issue, and validate the interpretation of prior work linking brain dynamics and consciousness, we performed a longitudinal fMRI study in patients recovering from coma. Patients were assessed twice, 6 months apart, and assigned to one of two groups. One group included patients who were unconscious at the first assessment but regained consciousness and improved behavioral responsiveness by the second assessment. The other group included patients who were already conscious and improved only behavioral responsiveness. While the two groups were matched in terms of the average increase in behavioral responsiveness, only one group experienced a categorical change in their state of consciousness allowing us to partially dissociate consciousness and behavioral responsiveness. We find the variance in network metrics to be systematically different across states of consciousness, both within and across groups. Specifically, at the first assessment, conscious patients exhibited significantly greater variance in network metrics than unconscious patients, a difference that disappeared once all patients had recovered consciousness. Furthermore, we find a significant increase in dynamics for patients who regained consciousness over time, but not for patients who only improved responsiveness. These findings suggest that changes in brain dynamics are indeed linked to the state of consciousness and not just to a general level of behavioral responsiveness.
Collapse
Affiliation(s)
- Julia S Crone
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Evan S Lutkenhoff
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul M Vespa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Wu M, Li F, Wu Y, Zhang T, Gao J, Xu P, Luo B. Impaired Frontoparietal Connectivity in Traumatic Individuals with Disorders of Consciousness: A Dynamic Brain Network Analysis. Aging Dis 2020; 11:301-314. [PMID: 32257543 PMCID: PMC7069467 DOI: 10.14336/ad.2019.0606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022] Open
Abstract
Recent advances in neuroimaging have demonstrated that patients with disorders of consciousness (DOC) may retain residual consciousness through activation of a complex functional brain network. However, an understanding of the hierarchy of residual consciousness and dynamic network connectivity in DOC patients is lacking. This study aimed to investigate residual consciousness and the dynamics of neural processing in DOC patients. We included 42 patients with DOC, categorized by aetiology. Event-related potentials combined with time-varying electroencephalography networks were used to probe affective consciousness in DOC and examine the related network mechanisms. The results showed an obvious frontal P3a component among patients in minimally conscious state (MCS), while a prominent N1 was observed in unresponsive wakefulness syndrome (UWS). No late positive potential (LPP) was detected in these patients. Next, we divided the results by aetiology. Patients with nontraumatic injury presented an obvious frontal P3a response compared to those with traumatic injury. With respect to the dynamic network mechanism, patients with UWS, both with and without trauma, exhibited impaired frontoparietal network connectivity during the middle to late emotion processing period (P3a and LPP). Surprisingly, unconscious post-traumatic patients had an evident deficit in top-down connectivity. This, it appears that early automatic sensory identification is preserved in UWS and that exogenous attention was preserved even in MCS. However, high-level cognitive abilities were severely attenuated in unconscious patients. We also speculate that reduced frontoparietal connectivity may be useful as a biomarker to distinguish patients in an MCS from those with UWS given the same aetiology.
Collapse
Affiliation(s)
- Min Wu
- 1Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fali Li
- 2The Clinical Hospital of Chengdu Brain Science Institute, Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuehao Wu
- 1Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tieying Zhang
- 1Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Gao
- 3Department of Rehabilitation, Hangzhou Hospital of Zhejiang Armed Police Corps, Hangzhou, China
| | - Peng Xu
- 2The Clinical Hospital of Chengdu Brain Science Institute, Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benyan Luo
- 1Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Liang Z, Shao S, Lv Z, Li D, Sleigh JW, Li X, Zhang C, He J. Constructing a Consciousness Meter Based on the Combination of Non-Linear Measurements and Genetic Algorithm-Based Support Vector Machine. IEEE Trans Neural Syst Rehabil Eng 2020; 28:399-408. [PMID: 31940541 DOI: 10.1109/tnsre.2020.2964819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Constructing a framework to evaluate consciousness is an important issue in neuroscience research and clinical practice. However, there is still no systematic framework for quantifying altered consciousness along the dimensions of both level and content. This study builds a framework to differentiate the following states: coma, general anesthesia, minimally conscious state (MCS), and normal wakefulness. METHODS This study analyzed electroencephalography (EEG) recorded from frontal channels in patients with disorders of consciousness (either coma or MCS), patients under general anesthesia, and healthy participants in normal waking consciousness (NWC). Four non-linear methods-permutation entropy (PE), sample entropy (SampEn), permutation Lempel-Ziv complexity (PLZC), and detrended fluctuation analysis (DFA)-as well as relative power (RP), extracted features from the EEG recordings. A genetic algorithm-based support vector machine (GA-SVM) classified the states of consciousness based on the extracted features. A multivariable linear regression model then built EEG indices for level and content of consciousness. RESULTS The PE differentiated all four states of consciousness (p<0.001). Altered contents of consciousness for NWC, MCS, coma, and general anesthesia were best differentiated by the SampEn, and PLZC. In contrast, the levels of consciousness for these four states were best differentiated by RP of Gamma and PE. A multi-dimensional index, combined with the GA-SVM, showed that the integration of PE, PLZC, SampEn, and DFA had the highest classification accuracy (92.3%). The GA-SVM was better than random forest and neural networks at differentiating these four states. The 'coordinate value' in the dimensions of level and content were constructed by the multivariable linear regression model and the non-linear measures PE, PLZC, SampEn, and DFA. CONCLUSIONS Multi-dimensional measurements, especially the PE, SampEn, PLZC, and DFA, when combined with GA-SVM, are promising methods for constructing a framework to quantify consciousness.
Collapse
|
39
|
Wang Y, Bai Y, Xia X, Yang Y, He J, Li X. Spinal cord stimulation modulates complexity of neural activities in patients with disorders of consciousness. Int J Neurosci 2019; 130:662-670. [PMID: 31847650 DOI: 10.1080/00207454.2019.1702543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yong Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Yang Bai
- Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyu Xia
- Department of Neurosurgery, The Seventh Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, The Seventh Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, The Seventh Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, Normal University, Beijing, China
| |
Collapse
|
40
|
Level of Consciousness Is Dissociable from Electroencephalographic Measures of Cortical Connectivity, Slow Oscillations, and Complexity. J Neurosci 2019; 40:605-618. [PMID: 31776211 PMCID: PMC6961988 DOI: 10.1523/jneurosci.1910-19.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Leading neuroscientific theories posit a central role for the functional integration of cortical areas in conscious states. Considerable evidence supporting this hypothesis is based on network changes during anesthesia, but it is unclear whether these changes represent state-related (conscious vs unconscious) or drug-related (anesthetic vs no anesthetic) effects. We recently demonstrated that carbachol delivery to prefrontal cortex (PFC) restored wakefulness despite continuous administration of the general anesthetic sevoflurane. By contrast, carbachol delivery to parietal cortex, or noradrenaline delivery to either prefrontal or parietal cortices, failed to restore wakefulness. Thus, carbachol-induced reversal of sevoflurane anesthesia represents a unique state that combines wakefulness with clinically relevant anesthetic concentrations in the brain. To differentiate the state-related and drug-related associations of cortical connectivity and dynamics, we analyzed the electroencephalographic data gathered from adult male Sprague Dawley rats during the aforementioned experiments for changes in functional cortical gamma connectivity (25–155 Hz), slow oscillations (0.5–1 Hz), and complexity (<175 Hz). We show that higher gamma (85–155 Hz) connectivity is decreased (p ≤ 0.02) during sevoflurane anesthesia, an expected finding, but was not restored during wakefulness induced by carbachol delivery to PFC. Conversely, for rats in which wakefulness was not restored, the functional gamma connectivity remained reduced, but there was a significant decrease (p < 0.001) in the power of slow oscillations and increase (p < 0.001) in cortical complexity, which was similar to that observed during wakefulness induced after carbachol delivery to PFC. We conclude that the level of consciousness can be dissociated from cortical connectivity, oscillations, and dynamics. SIGNIFICANCE STATEMENT Numerous theories of consciousness suggest that functional connectivity across the cortex is characteristic of the conscious state and is reduced during anesthesia. However, it is unknown whether the observed changes are state-related (conscious vs unconscious) or drug-related (drug vs no drug). We used a novel rat model in which cholinergic stimulation of PFC produced wakefulness despite continuous exposure to a general anesthetic. We demonstrate that, as expected, general anesthesia reduces connectivity. Surprisingly, the connectivity remains suppressed despite pharmacologically induced wakefulness in the presence of anesthetic, with restoration occurring only after the anesthetic is discontinued. Thus, whether an animal exhibits wakefulness or not can be dissociated from cortical connectivity, prompting a reevaluation of the role of connectivity in level of consciousness.
Collapse
|
41
|
Bensaid S, Modolo J, Merlet I, Wendling F, Benquet P. COALIA: A Computational Model of Human EEG for Consciousness Research. Front Syst Neurosci 2019; 13:59. [PMID: 31798421 PMCID: PMC6863981 DOI: 10.3389/fnsys.2019.00059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/07/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding the origin of the main physiological processes involved in consciousness is a major challenge of contemporary neuroscience, with crucial implications for the study of Disorders of Consciousness (DOC). The difficulties in achieving this task include the considerable quantity of experimental data in this field, along with the non-intuitive, nonlinear nature of neuronal dynamics. One possibility of integrating the main results from the experimental literature into a cohesive framework, while accounting for nonlinear brain dynamics, is the use of physiologically-inspired computational models. In this study, we present a physiologically-grounded computational model, attempting to account for the main micro-circuits identified in the human cortex, while including the specificities of each neuronal type. More specifically, the model accounts for thalamo-cortical (vertical) regulation of cortico-cortical (horizontal) connectivity, which is a central mechanism for brain information integration and processing. The distinct neuronal assemblies communicate through feedforward and feedback excitatory and inhibitory synaptic connections implemented in a template brain accounting for long-range connectome. The EEG generated by this physiologically-based simulated brain is validated through comparison with brain rhythms recorded in humans in two states of consciousness (wakefulness, sleep). Using the model, it is possible to reproduce the local disynaptic disinhibition of basket cells (fast GABAergic inhibition) and glutamatergic pyramidal neurons through long-range activation of vasoactive intestinal-peptide (VIP) interneurons that induced inhibition of somatostatin positive (SST) interneurons. The model (COALIA) predicts that the strength and dynamics of the thalamic output on the cortex control the local and long-range cortical processing of information. Furthermore, the model reproduces and explains clinical results regarding the complexity of transcranial magnetic stimulation TMS-evoked EEG responses in DOC patients and healthy volunteers, through a modulation of thalamo-cortical connectivity that governs the level of cortico-cortical communication. This new model provides a quantitative framework to accelerate the study of the physiological mechanisms involved in the emergence, maintenance and disruption (sleep, anesthesia, DOC) of consciousness.
Collapse
Affiliation(s)
| | | | | | - Fabrice Wendling
- INSERM, Laboratoire Traitement du Signal et de l’Image (LTSI)—U1099, University of Rennes, Rennes, France
| | | |
Collapse
|
42
|
Modulation of the spontaneous hemodynamic response function across levels of consciousness. Neuroimage 2019; 200:450-459. [DOI: 10.1016/j.neuroimage.2019.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 01/06/2023] Open
|
43
|
Kerik-Rotenberg N, Diaz-Meneses I, Hernandez-Ramirez R, Muñoz-Casillas R, Reynoso-Mejia CA, Flores-Rivera J, Espinola-Nadurille M, Ramirez-Bermudez J, Aguilar-Palomeque C. A Metabolic Brain Pattern Associated With Anti-N-Methyl-D-Aspartate Receptor Encephalitis. PSYCHOSOMATICS 2019; 61:39-48. [PMID: 31611047 DOI: 10.1016/j.psym.2019.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis causes substantial neurological disability. Autoantibodies causing encephalitis directed against the neuronal cell surface or synapse are of diagnostic importance giving the possibility of successful immunotherapy. OBJECTIVE In this study, we aim to provide supporting evidence that brain 18F-FDG-PET may be helpful in identifying likely patterns of regional brain glucose metabolism. METHODS Thirty-three patients (18 men and 15 women; age range of 17-55 y) with positive NMDA receptor antibody encephalitis that underwent an 18F-FDG-PET imaging examination were prospectively selected and compared with a reference group of 14 brain 18F-FDG-PET scans from healthy volunteers using voxel-based statistical analysis. Clusters of hyper- and hypo-metabolism were reported for the whole sample of patients (FWE-corrected P < 0.05), and uncorrected at P < 0.005 for a group of relapsed patients. RESULTS Mixed metabolic patterns (focal/bilateral hypermetabolism in the temporal lobe, insula, and cerebellum; associated with severe bilateral hypometabolism in the occipital and parietal lobes) were found. CONCLUSIONS Our findings suggest that 18F-FDG-PET should be included as an imaging tool when assessing affected patients in the clinical workup to rule out anti-NMDA encephalitis and help determine the most effective treatment.
Collapse
Affiliation(s)
- Nora Kerik-Rotenberg
- PET/CT Molecular Imaging Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico.
| | - Ivan Diaz-Meneses
- PET/CT Molecular Imaging Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Rodrigo Hernandez-Ramirez
- PET/CT Molecular Imaging Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Rodrigo Muñoz-Casillas
- PET/CT Molecular Imaging Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Carlos A Reynoso-Mejia
- PET/CT Molecular Imaging Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Jose Flores-Rivera
- Department of Neurology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Mariana Espinola-Nadurille
- Department of Neuropsychiatry, Neuropsychiatry Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Jesus Ramirez-Bermudez
- Department of Neuropsychiatry, Neuropsychiatry Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Carlos Aguilar-Palomeque
- PET/CT Molecular Imaging Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| |
Collapse
|
44
|
Prefrontal neural dynamics in consciousness. Neuropsychologia 2019; 131:25-41. [DOI: 10.1016/j.neuropsychologia.2019.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|
45
|
Management of Severely Brain-Injured Patients Recovering from Coma in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Stimulation of the Angular Gyrus Improves the Level of Consciousness. Brain Sci 2019; 9:brainsci9050103. [PMID: 31064138 PMCID: PMC6562708 DOI: 10.3390/brainsci9050103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Navigated repetitive transcranial magnetic stimulation (rTMS) is a promising tool for neuromodulation. In previous studies it has been shown that the activity of the default mode network (DMN) areas, particularly of its key region—the angular gyrus—is positively correlated with the level of consciousness. Our study aimed to explore the effect of rTMS of the angular gyrus as a new approach for disorders of consciousness (DOC) treatment; Methods: A 10-session 2-week high-frequency rTMS protocol was delivered over the left angular gyrus in 38 DOC patients with repeated neurobehavioral assessments obtained at baseline and in 2 days after the stimulation course was complete; Results: 20 Hz-rTMS over left angular gyrus improved the coma recovery scale revised (CRS-R) total score in minimally conscious state (MCS) patients. We observed no effects in vegetative state (VS) patients; and Conclusions: The left angular gyrus is likely to be effective target for rTMS in patients with present signs of consciousness.
Collapse
|
47
|
Prediction of Minimally Conscious State With Brain Stem Reflexes in Unconscious Patients After Traumatic Brain Injury. J Craniofac Surg 2019; 30:1942-1945. [PMID: 30908437 DOI: 10.1097/scs.0000000000005404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To evaluate the predictive power of the brain stem reflexes (BSRs) for minimally conscious state in unconscious patients after traumatic brain injury. MATERIALS AND METHODS A total of 120 patients with duration of unconsciousness were enrolled in this study. BSRs were recorded 14 days after Traumatic brain injury, and classified into 3 grades. Predictors including BSRs, age, sex, Glasgow Coma Scale (GCS), and cause of injury were also analyzed, respectively. The outcome was divided into 2 groups including unconscious group and minimally conscious state (MCS) group. RESULTS Seventy-two of 120 were minimally conscious and 48 of 120 were unconscious at 6 months from the onset of injury. The BSRs outmatched the predictive accuracy of the GCS for outcome (AUROC, 0.853; 95% confidence interval, 0.753-0.953; and AUROC, 0.655; 95% confidence interval, 0.512-0.799, respectively). BSRs grade (P < 0.001) and GCS (P < 0.05) were significantly associated with the outcome. The accuracy of the whole regression model for predicting unconscious and MCS was 91.7% and 79.2%, respectively. CONCLUSION The BSRs grade shows a significantly higher accuracy for prediction of MCS compared with the GCS. BSRs grade is a simple, yet reliable and stratification tool for early decision making.
Collapse
|
48
|
Ferraro S, Nigri A, Nava S, Rosazza C, Sattin D, Sebastiano DR, Porcu L, Bruzzone MG, Marotta G, Benti R, Redolfi A, Matilde L, D'Incerti L. Interhemispherical Anatomical Disconnection in Disorders of Consciousness Patients. J Neurotrauma 2019; 36:1535-1543. [PMID: 30520674 DOI: 10.1089/neu.2018.5820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In patients with disorder of consciousness (DOC), the corpus callosum (CC) and subcortical white matter (SWM) integrity were shown to discriminate between diagnostic categories. The aims of the study were: (1) to clarify the link between the integrity of CC and of SWM and the clinical status in DOC patients, disentangling the role played by the different brain injuries (traumatic or hemorrhagic brain injury); (2) to investigate the relationship between the CC integrity and the brain metabolism. We assessed the diagnostic accuracy of the CC and SWM integrity, using diffusion tensor imaging (DTI) and structural magnetic resonance imaging (sMRI), in a sample of DOC individuals, well balanced for diagnosis and etiology. The CC DTI-derived measures were correlated with the brain metabolism, computed with fluorodeoxyglucose positron emission tomography. Our results showed that the CC macrostructural DTI-derived measures discriminate between diagnosis and correlate with the clinical status of DOC patients irrespective of the etiology. Moreover, the CC DTI-derived measures strongly correlate with the metabolism of the right hemisphere. No significant diagnostic accuracy emerged for the CC sMRI evaluation and the SWM measures. Our results indicate that: (1) the degree of the interhemispherical anatomical disconnection is a marker of the level of consciousness independent from the type of brain injury; (2) CC alterations might be the consequence of the reduced brain metabolism. Remarkably, our results suggest that the functional interplay between the two hemispheres is linked tightly to the level of consciousness.
Collapse
Affiliation(s)
| | - Anna Nigri
- 1 Neuroradiology Department, " Milan, Italy
| | | | | | - Davide Sattin
- 3 Neurology, Public Health, Disability Unit, and " Milan, Italy
| | - Davide Rossi Sebastiano
- 4 Neurophysiology Department of Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Luca Porcu
- 5 Laboratory of Methodology for Clinical Research, Oncology Department, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy
| | | | - Giorgio Marotta
- 6 Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore, Milan, Italy
| | - Riccardo Benti
- 6 Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore, Milan, Italy
| | | | | | | | | |
Collapse
|
49
|
Li J, Shen J, Liu S, Chauvel M, Yang W, Mei J, Lei L, Wu L, Gao J, Yang Y. Responses of Patients with Disorders of Consciousness to Habit Stimulation: A Quantitative EEG Study. Neurosci Bull 2018; 34:691-699. [PMID: 30019216 PMCID: PMC6060212 DOI: 10.1007/s12264-018-0258-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 01/20/2023] Open
Abstract
Whether habit stimulation is effective in DOC patient arousal has not been reported. In this paper, we analyzed the responses of DOC patients to habit stimulation. Nineteen DOC patients with alcohol consumption or smoking habits were recruited and 64-channel EEG signals were acquired both at the resting state and at three stimulation states. Wavelet transformation and nonlinear dynamics were used to extract the features of EEG signals and four brain lobes were selected to investigate the degree of EEG response to habit stimulation. Results showed that the highest degree of EEG response was from the call-name stimulation, followed by habit and music stimulations. Significant differences in EEG wavelet energy and response coefficient were found both between habit and music stimulation, and between habit and call-name stimulation. These findings prove that habit stimulation induces relatively more intense EEG responses in DOC patients than music stimulation, suggesting that it may be a relevant additional method for eliciting patient arousal.
Collapse
Affiliation(s)
- Jingqi Li
- Ming Zhou Nao Kang Rehabilitation Hospital, Hangzhou, 310000, China
| | - Jiamin Shen
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shiqin Liu
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Maelig Chauvel
- Paris Descartes University, 45 Rue des Saints-Peres, 75006, Paris, France
| | - Wenwei Yang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jian Mei
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Ling Lei
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Wu
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jian Gao
- Rehabilitation Center, Wu Jing Hospital, Hangzhou, 310051, China
| | - Yong Yang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
50
|
Song M, Zhang Y, Cui Y, Yang Y, Jiang T. Brain Network Studies in Chronic Disorders of Consciousness: Advances and Perspectives. Neurosci Bull 2018; 34:592-604. [PMID: 29916113 PMCID: PMC6060221 DOI: 10.1007/s12264-018-0243-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
Neuroimaging has opened new opportunities to study the neural correlates of consciousness, and provided additional information concerning diagnosis, prognosis, and therapeutic interventions in patients with disorders of consciousness. Here, we aim to review neuroimaging studies in chronic disorders of consciousness from the viewpoint of the brain network, focusing on positron emission tomography, functional MRI, functional near-infrared spectroscopy, electrophysiology, and diffusion MRI. To accelerate basic research on disorders of consciousness and provide a panoramic view of unconsciousness, we propose that it is urgent to integrate different techniques at various spatiotemporal scales, and to merge fragmented findings into a uniform "Brainnetome" (Brain-net-ome) research framework.
Collapse
Affiliation(s)
- Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Yujin Zhang
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Cui
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Yang
- Department of Neurosurgery, PLA Army General Hospital, Beijing, 100700, China
| | - Tianzi Jiang
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China.
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China.
- The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|