1
|
Chen X, Zhang S, Dong S, Meng Q, Xu P, Chu Q, Huang D, Luo C. Investigating visual perception abilities in flight cadets: the crucial role of the lingual gyrus and precuneus. Front Neurosci 2025; 19:1519870. [PMID: 40078710 PMCID: PMC11897578 DOI: 10.3389/fnins.2025.1519870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction In aviation, exceptional visual perception is crucial for pilots to monitor flight instruments and respond swiftly to deviations, as well as make rapid judgments regarding environmental changes, ensuring aviation safety. However, existing research on pilots' visual perception has predominantly focused on behavioral observations, with limited exploration of the neurophysiological mechanisms involved. Methods This study aimed to investigate the brain activity associated with the visual perception capabilities of flight cadets. Data were collected from 25 flying cadets and 24 ground students under two conditions: a resting-state functional magnetic resonance imaging session conducted in 2022 and a change-detection task. The data were analyzed using RESTplus software. Results The analysis revealed that degree centrality values in the right precuneus and left lingual gyrus showed significantly positive correlations with task reaction time and accuracy, respectively, in the pilot group. These brain regions were found to be significantly associated with the visual perception abilities of the pilots. Discussion The findings suggest that alterations in the left precuneus and right lingual gyrus in pilots are linked to their visual perception capabilities, which may play a crucial role in mission performance. These results provide a foundation for improving flight training programs and selecting suitable flight trainees based on neurophysiological markers of visual perception.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Shicong Zhang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Shipeng Dong
- Aviation Health Department, Southwest Regional Administration of Civil Aviation Administration of China, Chengdu, China
| | - Qingbin Meng
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Peiran Xu
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Qi Chu
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Donglin Huang
- Hospital of Civil Aviation Flight University of China, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Santos-Mayo A, Moratti S. How fear conditioning affects the visuocortical processing of context cues in humans. Evidence from steady state visual evoked responses. Cortex 2025; 183:21-37. [PMID: 39608048 DOI: 10.1016/j.cortex.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
Previous research has focused on how different environments modulate fear learning and the accompanying prioritization of acquired threat cues in sensory cortices. Here, we focus on the other side of the coin and show how the acquisition of threat relevance influences the sensory processing of the environment and an associated context cue. Thereby, we observed that spatial suppression surrounding the focus of threat relevant cues extended by threat learning. By recording frequency-tagged steady-state visual evoked fields (ssVEFs) from 35 healthy participants using Magnetoencephalography (MEG), we replicate earlier findings that centrally presented acquired threat-relevant cues (CS+) evoke greater ssVEF responses, whereas visuocortical engagement during the processing of threat-irrelevant cues (CS-) is inhibited. Critically, as predicted by early computational models of threat learning such as the Rescorla-Wagner model, ssVEF responses to an inter-trial peripheral background flicker (context cue), when no CS was shown, increased linearly during learning. In contrast, visuocortical engagement in the early-tier visual cortex during the processing of the background flicker was strongly reduced during CS presentation in the last learning block. This effect was observed during maximal CS+ and CS- discrimination. However, in more anterior ventral visual cortex, the inhibition of oscillatory responses of the context cue occurred only during CS + trials, whereas during CS- trials, background ssVEF responses were increased. These results are in line with the notion that attentional resources are reallocated flexibly between cues of different threat relevance and that the spatial extension of center surround neuronal competition can be modulated by threat learning.
Collapse
Affiliation(s)
| | - Stephan Moratti
- Department of Experimental Psychology, Complutense University of Madrid, Spain; Center of Cognitive and Computational Neuroscience (C3N), Complutense University of Madrid, Spain.
| |
Collapse
|
3
|
Tong Y, Wen Z, Huang X. Impaired interhemispheric synchrony in patients with iridocyclitis and classification using machine learning: an fMRI study. Front Immunol 2024; 15:1474988. [PMID: 39737192 PMCID: PMC11683089 DOI: 10.3389/fimmu.2024.1474988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Background This study examined the interhemispheric integration function pattern in patients with iridocyclitis utilizing the voxel-mirrored homotopic connectivity (VMHC) technique. Additionally, we investigated the ability of VMHC results to distinguish patients with iridocyclitis from healthy controls (HCs), which may contribute to the development of objective biomarkers for early diagnosis and intervention in clinical set. Methods Twenty-six patients with iridocyclitis and twenty-six matched HCs, in terms of sex, age, and education level, underwent resting-state functional magnetic resonance imaging (fMRI) examinations. The study employed the voxel-mirrored homotopic connectivity (VMHC) technique to evaluate interhemispheric integration functional connectivity indices at a voxel-wise level. The diagnostic efficacy of VMHC was evaluated using a support vector machine (SVM) classifier, with classifier performance assessed through permutation test analysis. Furthermore, correlation analyses was conducted to investigate the associations between mean VMHC values in various brain regions and clinical features. Results Patients with iridocyclitis exhibited significantly reduced VMHC signal values in the bilateral inferior temporal gyrus, calcarine, middle temporal gyrus, and precuneus compared to HCs (voxel-level P < 0.01, Gaussian Random Field correction; cluster-level P < 0.05). Furthermore, the extracted resting-state zVMHC features effectively classified patients with iridocyclitis and HCs, achieving an area under the receiver operating characteristic curve (AUC) of 0.74 and an overall accuracy of 0.673 (P < 0.001, non-parametric permutation test). Conclusion Our findings reveal disrupted interhemispheric functional organization in patients with iridocyclitis, offering insight into the pathophysiological mechanisms associated with vision loss and cognitive dysfunction in this patient population. This study also highlights the potential of machine learning in ophthalmology and the importance of establishing objective biomarkers to address diagnostic heterogeneity.
Collapse
Affiliation(s)
- Yan Tong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Huang
- Department of ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
4
|
Aashat S, D'Angelo MC, Rosenbaum RS, Ryan JD. Effects of extended practice and unitization on relational memory in older adults and neuropsychological lesion cases. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:1070-1105. [PMID: 38415694 DOI: 10.1080/13825585.2024.2319892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
Unitization - the fusion of objects into a single unit through an action/consequence sequence - can mitigate relational memory impairments, but the circumstances under which unitization is effective are unclear. Using transverse patterning (TP), we compared unitization (and its component processes of fusion, motion, and action/consequence) with extended practice on relational learning and transfer in older adults and neuropsychological cases with lesions (to varying extents) in the medial prefrontal cortex (mPFC) or hippocampus/medial temporal lobe (HC/MTL). The latter included a person with bilateral HC lesions primarily within the dentate gyrus. For older adults, TP accuracy increased, and transfer benefits were observed, with extended practice and unitization. Broadly, the lesion cases did not benefit from either extended practice or unitization, suggesting the mPFC and dentate gyrus play important roles in relational memory and in unitization. The results suggest that personalized strategy interventions must align with the cognitive and neural profiles of the user.
Collapse
Affiliation(s)
- Supreet Aashat
- The Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Maria C D'Angelo
- The Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
| | - R Shayna Rosenbaum
- The Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Department of Psychology, York University, Toronto, Canada
| | - Jennifer D Ryan
- The Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Güldener L, Pollmann S. Behavioral Bias for Exploration Is Associated with Enhanced Signaling in the Lateral and Medial Frontopolar Cortex. J Cogn Neurosci 2024; 36:1156-1171. [PMID: 38437186 DOI: 10.1162/jocn_a_02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Should we keep doing what we know works for us, or should we risk trying something new as it could work even better? The exploration-exploitation dilemma is ubiquitous in daily life decision-making, and balancing between the two is crucial for adaptive behavior. Yet, we only have started to unravel the neurocognitive mechanisms that help us to find this balance in practice. Analyzing BOLD signals of healthy young adults during virtual foraging, we could show that a behavioral tendency for prolonged exploitation was associated with weakened signaling during exploration in central node points of the frontoparietal attention network, plus the frontopolar cortex. These results provide an important link between behavioral heuristics that we use to balance between exploitation and exploration and the brain function that supports shifts from one tendency to the other. Importantly, they stress that interindividual differences in behavioral strategies are reflected in differences in brain activity during exploration and should thus be more in the focus of basic research that aims at delineating general laws governing visual attention.
Collapse
|
6
|
Zhao G, Yu L, Chen P, Zhu K, Yang L, Lin W, Luo Y, Dou Z, Xu H, Zhang P, Zhu T, Yu S. Neural mechanisms of attentional bias to emotional faces in patients with chronic insomnia disorder. J Psychiatr Res 2024; 169:49-57. [PMID: 38000184 DOI: 10.1016/j.jpsychires.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE This study used event-related potential (ERP) and resting-state functional connectivity (rs-FC) approaches to investigate the neural mechanisms underlying the emotional attention bias in patients with chronic insomnia disorder (CID). METHODS Twenty-five patients with CID and thirty-three demographically matched healthy controls (HCs) completed clinical questionnaires and underwent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) scans. EEG analysis examined the group differences in terms of reaction times, P3 amplitudes, event-related spectral perturbations, and inter-trial phase synchrony. Subsequently, seed-based rs-FC analysis of the amygdala nuclei (including the central-medial amygdala [CMA] and basolateral amygdala [BLA]) was performed. The relationship between P3 amplitude, rs-FC and clinical symptom severity in patients with CID was further investigated by correlation analysis. RESULTS CID patients exhibited shorter reaction times than HCs in both standard and deviant stimuli, with the abnormalities becoming more pronounced as attention allocation increased. Compared to HCs, ERP analysis revealed increased P3 amplitude, theta wave power, and inter-trial synchrony in CID patients. The rs-FC analysis showed increased connectivity of the BLA-occipital pole, CMA-precuneus, and CMA-angular gyrus and decreased connectivity of the CMA-thalamus in CID patients. Notably, correlation analysis of the EEG and fMRI measurements showed a significant positive correlation between the P3 amplitude and the rs-FC of the CMA-PCU. CONCLUSION This study confirms an emotional attention bias in CID, specifically in the neural mechanisms of attention processing that vary depending on the allocation of attentional resources. Abnormal connectivity in the emotion-cognition networks may constitute the neural basis of the abnormal scalp activation pattern.
Collapse
Affiliation(s)
- Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peixin Chen
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keli Zhu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Xu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Center of Interventional Medicine, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Pan Zhang
- Nervous System Disease Treatment Center, Traditional Chinese Medicine Hospital of Meishan, Meishan, China.
| | - Tianmin Zhu
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Mora Álvarez MG, Hölzel BK, Bremer B, Wilhelm M, Hell E, Tavacioglu EE, Koch K, Torske A. Effects of web-based mindfulness training on psychological outcomes, attention, and neuroplasticity. Sci Rep 2023; 13:22635. [PMID: 38114554 PMCID: PMC10730881 DOI: 10.1038/s41598-023-48706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Mindfulness meditation training (MMT) reliably reduces stress and anxiety while also improving attention. The primary aim of this study was to investigate the relationship between MMT, stress and anxiety reduction, and its impact upon improvements in attention on the behavioral and neuronal levels. As a second aim, we sought to explore any relationship between MMT, attention, and modified states of mind such as flow. 118 healthy, meditation-naïve, participants were either assigned to a 31-day, web-based, MMT or an active control, health training (HT). Participants underwent functional magnetic resonance imaging while performing the attention network test (ANT) to assess functional and behavioural attentional changes, diffusion tensor imaging (DTI) to assess microstructural neuronal changes and completed relevant questionnaires to explore changes in psychological outcomes. Results confirmed a reduction in perceived stress and anxiety levels in the MMT group and significant improvements in the overall reaction time during the ANT, albeit no specific effects on the attentional components were observed. No statistically significant changes were found in the HT group. Interestingly, a significant group-by-time interaction was seen in flow experience. Functional data exhibited an increased activity in the superior frontal gyrus, posterior cingulate cortex, and right hippocampus during the alerting condition of the ANT after the MMT; decreased stress and trait anxiety were significantly correlated with the activation in the right hippocampus, and increased flow was also significantly correlated with all the aforementioned areas. DTI data showed increased fractional anisotropy values in the right uncinate fasciculus indicating white matter microarchitecture improvement between the right hippocampus and frontal areas of the brain. This study, therefore, demonstrates the effectiveness of web-based MMT on overall well-being and attentional performance, while also providing insight into the relationship between psychological outcomes, attention, and neuroplastic changes.
Collapse
Affiliation(s)
- María Guadalupe Mora Álvarez
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.
- TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Britta Karen Hölzel
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benno Bremer
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Wilhelm
- Center for Psychotherapy Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Elena Hell
- Department of Psychology, Ludwig Maximilians Universität München, Munich, Germany
| | - Ebru Ecem Tavacioglu
- TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychology, Ludwig Maximilians Universität München, Munich, Germany
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| | - Alyssa Torske
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| |
Collapse
|
8
|
Tolomeo S, Lau S, Ragunath BL, Setoh P, Esposito G. A voxel-based morphometry study on gray matter correlates of need for cognition and exploratory information seeking. Brain Behav 2023; 13:e3138. [PMID: 37491807 PMCID: PMC10498082 DOI: 10.1002/brb3.3138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Need for cognition (NFC) represents interindividual differences in tendencies to engage and enjoy cognitive endeavors. Exploratory information seeking (EIS) refers to individual tendencies to attain cognitive stimulation through acquiring information related to consumer products or services out of curiosity. METHODS The current study aims to provide an in-depth investigation of the relationship between NFC and EIS and extend this relation to determine neuroanatomical correlates of NFC and EIS. This study proposed two central hypotheses: (1) NFC and EIS scores are positively correlated and (2) the gray matter volume (GMV) of brain regions implicated in motivation, valuation, and reward systems are positively associated with both NFC and EIS. Self-report and structural MRI data of 91 Singaporean Chinese participants were utilized for the study. RESULTS No statistically significant correlation was revealed between NFC and EIS scores. Neuroanatomical associations of the GMV of brain regions implicated in visuospatial, attentional, and reward processing with individual constructs of interest were explored. When examining NFC and EIS scores, larger GMV in the right pallidum and left fusiform gyrus was found in participants that reported higher levels of NFC (vs. lower NFC levels), larger GMV in the left precuneus in those with greater tendencies to engage in EIS (vs. lower EIS levels), and larger GMV of the left fusiform gyrus associated with greater endorsement of both NFC and EIS. When investigating the exploratory factor analysis-generated factors of NFC and EIS, similar patterns of associations were found between self-reported levels of agreement against factors and GMV of brain regions implicated. CONCLUSIONS Correlational analysis and exploratory factor analysis indicated the absence of a relationship between NFC and EIS. Additionally, voxel-based morphometry whole-brain analysis revealed neuroanatomical correlates of the GMV of brain regions implicated in visuospatial, attentional, and reward processing with NFC and EIS.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Institute of High Performance ComputingAgency for Science, Technology and ResearchSingaporeSingapore
| | - Shermine Lau
- Psychology Program, School of Social SciencesNanyang Technological UniversitySingapore
| | - Bindiya L. Ragunath
- Psychology Program, School of Social SciencesNanyang Technological UniversitySingapore
| | - Peipei Setoh
- Psychology Program, School of Social SciencesNanyang Technological UniversitySingapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive ScienceUniversity of TrentoRoveretoItaly
| |
Collapse
|
9
|
Nie Z, Xie X, Kang L, Wang W, Xu S, Chen M, Yao L, Gong Q, Zhou E, Li M, Wang H, Bu L, Liu Z. A Cross-Sectional Study: Structural and Related Functional Connectivity Changes in the Brain: Stigmata of Adverse Parenting in Patients with Major Depressive Disorder? Brain Sci 2023; 13:brainsci13040694. [PMID: 37190659 DOI: 10.3390/brainsci13040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Background: There is a high correlation between the risk of major depressive disorder (MDD) and adverse childhood experiences (ACEs) such as adverse parenting (AP). While there appears to be an association between ACEs and changes in brain structure and function, there have yet to be multimodal neuroimaging studies of associations between parenting style and brain developmental changes in MDD patients. To explore the effect of AP on brain structure and function. Methods: In this cross-sectional study, 125 MDD outpatients were included in the study and divided into the AP group and the optimal parenting (OP) group. Participants completed self-rating scales to assess depressive severity, symptoms, and their parents' styles. They also completed magnetic resonance imaging within one week of filling out the instruments. The differences between groups of gender, educational level, and medications were analyzed using the chi-squared test and those of age, duration of illness, and scores on scales using the independent samples t-test. Differences in gray matter volume (GMV) and resting-state functional connectivity (RS-FC) were assessed between groups. Results: AP was associated with a significant increase in GMV in the right superior parietal lobule (SPL) and FC between the right SPL and the bilateral medial superior frontal cortex in MDD patients. Limitations: The cross-cultural characteristics of AP will result in the lack of generalizability of the findings. Conclusions: The results support the hypothesis that AP during childhood may imprint the brain and affect depressive symptoms in adulthood. Parents should pay attention to the parenting style and avoid a style that lacks warmth.
Collapse
Affiliation(s)
- Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mianmian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Li
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Schönecker S, Palleis C, Franzmeier N, Katzdobler S, Ferschmann C, Schuster S, Finze A, Scheifele M, Prix C, Fietzek U, Weidinger E, Nübling G, Vöglein J, Patt M, Barthel H, Sabri O, Danek A, Höglinger GU, Brendel M, Levin J. Symptomatology in 4-repeat tauopathies is associated with data-driven topology of [ 18F]-PI-2620 tau-PET signal. Neuroimage Clin 2023; 38:103402. [PMID: 37087820 PMCID: PMC10300609 DOI: 10.1016/j.nicl.2023.103402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/05/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
In recent years in vivo visualization of tau deposits has become possible with various PET radiotracers. The tau tracer [18F]PI-2620 proved high affinity both to 3-repeat/4-repeat tau in Alzheimer's disease as well as to 4-repeat tau in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). However, to be clinically relevant, biomarkers should not only correlate with pathological changes but also with disease stage and progression. Therefore, we aimed to investigate the correlation between topology of [18F]PI-2620 uptake and symptomatology in 4-repeat tauopathies. 72 patients with possible or probable 4-repeat tauopathy, i.e. 31 patients with PSP-Richardson's syndrome (PSP-RS), 30 with amyloid-negative CBS and 11 with PSP-non-RS/CBS, underwent [18F]PI-2620-PET. Principal component analysis was performed to identify groups of similar brain regions based on 20-40 min p.i. regional standardized uptake value ratio z-scores. Correlations between component scores and the items of the PSP Rating Scale were explored. Motor signs like gait, arising from chair and postural instability showed a positive correlation with tracer uptake in mesial frontoparietal lobes and the medial superior frontal gyrus and adjacent anterior cingulate cortex. While the signs disorientation and bradyphrenia showed a positive correlation with tracer uptake in the parietooccipital junction, the signs disorientation and arising from chair were negatively correlated with tau-PET signal in the caudate nucleus and thalamus. Total PSP Rating Scale Score showed a trend towards a positive correlation with mesial frontoparietal lobes and a negative correlation with caudate nucleus and thalamus. While in CBS patients, the main finding was a negative correlation of tracer binding in the caudate nucleus and thalamus and a positive correlation of tracer binding in medial frontal cortex with gait and motor signs, in PSP-RS patients various correlations of clinical signs with tracer binding in specific cerebral regions could be detected. Our data reveal [18F]PI-2620 tau-PET topology to correlate with symptomatology in 4-repeat tauopathies. Longitudinal studies will be needed to address whether a deterioration of signs and symptoms over time can be monitored by [18F]PI-2620 in 4-repeat tauopathies and whether [18F]PI-2620 may serve as a marker of disease progression in future therapeutic trials. The detected negative correlation of tracer binding in the caudate nucleus and thalamus with the signs disorientation and arising from chair may be due to an increasing atrophy in these regions leading to partial volume effects and a relative decrease of tracer uptake in the disease course. As cerebral regions correlating with symptomatology differ depending on the clinical phenotype, a precise knowledge of clinical signs and symptoms is necessary when interpreting [18F]PI-2620 PET results.
Collapse
Affiliation(s)
- Sonja Schönecker
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicolai Franzmeier
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität München, LMU München, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Ferschmann
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Sebastian Schuster
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Catharina Prix
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Urban Fietzek
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Department of Neurology and Clinical Neurophysiology, Schön Klinik München Schwabing, Munich, Germany
| | - Endy Weidinger
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; European Reference Network for Rare Neurological Diseases (ERN-RND), Munich, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; European Reference Network for Rare Neurological Diseases (ERN-RND), Munich, Germany.
| |
Collapse
|
11
|
Sun M, Xin X, Ying H, Hu L, Zhang X. Categorical encoding of moving colors during location tracking. Perception 2023; 52:195-212. [PMID: 36596275 DOI: 10.1177/03010066221147120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Categorical perception (CP) describes our tendency to perceive the visual world in a categorical manner, suggesting that high-level cognition may affect perception. While most studies are conducted in static visual scenes, Sun and colleagues found CP effects of color in multiple object tracking (MOT). This study used functional magnetic resonance imaging to investigate the neural mechanism behind the categorical effects of color in MOT. Categorical effects were associated with activities in a broad range of brain regions, including both the ventral (V4, middle temporal gyrus) and dorsal pathways (MT + /V5, inferior parietal lobule) of feature processing, as well as frontal regions (middle frontal gyrus, medial superior frontal gyrus). We proposed that these regions are hierarchically organized and responsible for distinct functions. The color-selective V4 encodes color categories, making cross-category colors more discriminable than within-category colors. Meanwhile, the language and/or semantic regions encode the verbal information of the colors. Both visual and nonvisual codes of color categories then modulate the activities of motion-sensitive MT + areas and frontal areas responsible for attentional processes.
Collapse
Affiliation(s)
| | | | | | - Luming Hu
- 47836Beijing Normal University, China
| | | |
Collapse
|
12
|
Hu Y, Liu T, Song S, Qin K, Chan W. The specific brain activity of dual task coordination: a theoretical conflict-control model based on a qualitative and quantitative review. JOURNAL OF COGNITIVE PSYCHOLOGY 2022. [DOI: 10.1080/20445911.2022.2143788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yue Hu
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Tianliang Liu
- Department of Psychology, The Southwest University, Chongqing, People’s Republic of China
| | - Sensen Song
- Department of Psychology, School of Humanities, Tongji University, Shanghai, People’s Republic of China
| | - Kaiyang Qin
- Social, Health & Organizational Psychology, Utrecht University, Utrecht, Netherlands
| | - Wai Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
13
|
Scheliga S, Schwank R, Scholle R, Habel U, Kellermann T. A neural mechanism underlying predictive visual motion processing in patients with schizophrenia. Psychiatry Res 2022; 318:114934. [PMID: 36347125 DOI: 10.1016/j.psychres.2022.114934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Psychotic symptoms may be traced back to sensory sensitivity. Thereby, visual motion (VM) processing particularly has been suggested to be impaired in schizophrenia (SCZ). In healthy brains, VM underlies predictive processing within hierarchically structured systems. However, less is known about predictive VM processing in SCZ. Therefore, we performed fMRI during a VM paradigm with three conditions of varying predictability, i.e., Predictable-, Random-, and Arbitrary motion. The study sample comprised 17 SCZ patients and 23 healthy controls. We calculated general linear model (GLM) analysis to assess group differences in VM processing across motion conditions. Here, we identified significantly lower activity in right temporoparietal junction (TPJ) for SCZ patients. Therefore, right TPJ was set as seed for connectivity analyses. For patients, across conditions we identified increased connections to higher regions, namely medial prefrontal cortex, or paracingulate gyrus. Healthy subjects activated sensory regions as area V5, or superior parietal lobule. Reduced TPJ activity may reflect both a failure in the bottom-up flow of visual information and a decrease of signal processing as consequence of increased top-down input from frontal areas. In sum, these altered neural patterns provide a framework for future studies focusing on predictive VM processing to identify potential biomarkers of psychosis.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Rosalie Schwank
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ruben Scholle
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
14
|
Altered functional connectivity: A possible reason for reduced performance during visual cognition involving scene incongruence and negative affect. IBRO Neurosci Rep 2022; 13:533-542. [DOI: 10.1016/j.ibneur.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
|
15
|
Du H, Feng X, Qian X, Zhang J, Liu B, Li A, Huang Z, Gao X. Recent-onset and persistent tinnitus: Uncovering the differences in brain activities using resting-state functional magnetic resonance imaging technologies. Front Neurosci 2022; 16:976095. [PMID: 36340775 PMCID: PMC9627982 DOI: 10.3389/fnins.2022.976095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022] Open
Abstract
Objective This study aimed to investigate the differences in intra-regional brain activity and inter-regional functional connectivity between patients with recent-onset tinnitus (ROT) and persistent tinnitus (PT) using resting-state functional magnetic resonance imaging (rs-fMRI), including the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and voxel-wise functional connectivity (FC). Method We acquired rs-fMRI scans from 82 patients (25 without recent-onset tinnitus, 28 with persistent tinnitus, and 29 healthy controls). Age, sex, and years of education were matched across the three groups. We performed ALFF, ReHo, and voxel-wise FC analyses for all patients. Results Compared with the control group, participants with ROT and PT manifested significantly reduced ALFF and ReHo activity within the left and right dorsolateral superior frontal gyrus (SFG) and gyrus rectus (GR). Additional voxel-wise FC revealed decreased connectivity between the dorsolateral SFG (left and right) and the right superior parietal gyrus (SPG), right middle frontal gyrus (MFG), and left medial superior frontal gyrus (mSFG) within these two groups. Significant differences were observed between the ROT and PT groups, with the ROT group demonstrating reduced FC. Conclusion Our data suggest that patients with PT have more difficulty monitoring external stimuli and reorienting attention than patients with ROT. In addition, patients who perceive higher levels of disruption from tinnitus are more likely to develop persistent and debilitating tinnitus once the tinnitus lasts longer than six months. Therefore, we strongly recommend that clinicians implement effective tinnitus management strategies in patients with ROT as soon as possible.
Collapse
Affiliation(s)
- Haoliang Du
- Jiangsu Provincial Key Laboratory Medical Discipline, Department of Otolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xu Feng
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiaoyun Qian
- Jiangsu Provincial Key Laboratory Medical Discipline, Department of Otolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian Zhang
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Liu
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ao Li
- Jiangsu Provincial Key Laboratory Medical Discipline, Department of Otolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhichun Huang
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- *Correspondence: Zhichun Huang,
| | - Xia Gao
- Jiangsu Provincial Key Laboratory Medical Discipline, Department of Otolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Xia Gao,
| |
Collapse
|
16
|
Prany W, Patrice C, Franck D, Fabrice W, Mahdi M, Pierre D, Christian M, Jean-Marc G, Fabian G, Francis E, Jean-Marc B, Bérengère GG. EEG resting-state functional connectivity: evidence for an imbalance of external/internal information integration in autism. J Neurodev Disord 2022; 14:47. [PMID: 36030210 PMCID: PMC9419397 DOI: 10.1186/s11689-022-09456-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/04/2022] [Indexed: 01/12/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is associated with atypical neural activity in resting state. Most of the studies have focused on abnormalities in alpha frequency as a marker of ASD dysfunctions. However, few have explored alpha synchronization within a specific interest in resting-state networks, namely the default mode network (DMN), the sensorimotor network (SMN), and the dorsal attention network (DAN). These functional connectivity analyses provide relevant insight into the neurophysiological correlates of multimodal integration in ASD. Methods Using high temporal resolution EEG, the present study investigates the functional connectivity in the alpha band within and between the DMN, SMN, and the DAN. We examined eyes-closed EEG alpha lagged phase synchronization, using standardized low-resolution brain electromagnetic tomography (sLORETA) in 29 participants with ASD and 38 developing (TD) controls (age, sex, and IQ matched). Results We observed reduced functional connectivity in the ASD group relative to TD controls, within and between the DMN, the SMN, and the DAN. We identified three hubs of dysconnectivity in ASD: the posterior cingulate cortex, the precuneus, and the medial frontal gyrus. These three regions also presented decreased current source density in the alpha band. Conclusion These results shed light on possible multimodal integration impairments affecting the communication between bottom-up and top-down information. The observed hypoconnectivity between the DMN, SMN, and DAN could also be related to difficulties in switching between externally oriented attention and internally oriented thoughts. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09456-8.
Collapse
Affiliation(s)
- Wantzen Prany
- Normandie univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France.,Université de Paris, LaPsyDÉ, CNRS, F-75005, Paris, France
| | - Clochon Patrice
- Normandie univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Doidy Franck
- Normandie univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Wallois Fabrice
- INSERM UMR-S 1105, GRAMFC, Université de Picardie-Jules Verne, CHU Sud, 80025, Amiens, France
| | - Mahmoudzadeh Mahdi
- INSERM UMR-S 1105, GRAMFC, Université de Picardie-Jules Verne, CHU Sud, 80025, Amiens, France
| | - Desaunay Pierre
- Normandie univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Mille Christian
- Centre Ressources Autisme Picardie, Service de Psychopathologie Enfants et Adolescents, CHU, 4 rue Grenier et Bernard, 80000, Amiens, France
| | - Guilé Jean-Marc
- INSERM UMR-S 1105, GRAMFC, Université de Picardie-Jules Verne, CHU Sud, 80025, Amiens, France.,Centre Ressources Autisme Picardie, Service de Psychopathologie Enfants et Adolescents, CHU, 4 rue Grenier et Bernard, 80000, Amiens, France
| | - Guénolé Fabian
- Normandie univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Eustache Francis
- Normandie univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Baleyte Jean-Marc
- Normandie univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France.,Service de Psychiatrie de l'enfant et de l'adolescent, Centre Hospitalier Interuniversitaire de Créteil, 94000, Créteil, France
| | - Guillery-Girard Bérengère
- Normandie univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France.
| |
Collapse
|
17
|
Hu XQ, Shi YD, Chen J, You Z, Pan YC, Ling Q, Wei H, Zou J, Ying P, Liao XL, Su T, Wang YX, Shao Y. Children with strabismus and amblyopia presented abnormal spontaneous brain activities measured through fractional amplitude of low-frequency fluctuation (fALFF). Front Neurol 2022; 13:967794. [PMID: 36034279 PMCID: PMC9413152 DOI: 10.3389/fneur.2022.967794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeBased on fMRI technology, we explored whether children with strabismus and amblyopia (SA) showed significant change in fractional amplitude of low-frequency fluctuation (fALFF) values in specific brain regions compared with healthy controls and whether this change could point to the clinical manifestations and pathogenesis of children with strabismus to a certain extent.MethodsWe enrolled 23 children with SA and the same number matched healthy controls in the ophthalmology department of the First Affiliated Hospital of Nanchang University, and the whole brain was scanned by rs-fMRI. The fALFF value of each brain area was derived to examine whether there is a statistical difference between the two groups. Meanwhile, the ROC curve was made in a view to evaluate whether this difference proves useful as a diagnostic index. Finally, we analyzed whether changes in the fALFF value of some specific brain regions are related to clinical manifestations.ResultsCompared with HCs, children with SA presented decreased fALFF values in the left temporal pole: the superior temporal gyrus, right middle temporal gyrus, right superior frontal gyrus, and right supplementary motor area. Meanwhile, they also showed higher fALFF values in specific brain areas, which included the left precentral gyrus, left inferior parietal, and left precuneus.ConclusionChildren with SA showed abnormal fALFF values in different brain regions. Most of these regions were allocated to the visual formation pathway, the eye movement-related pathway, or other visual-related pathways, suggesting the pathological mechanism of the patient.
Collapse
Affiliation(s)
- Xiao-Qin Hu
- Department of Strabismus and Amblyopia, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yi-Dan Shi
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Zhipeng You
- Department of Strabismus and Amblyopia, Affiliated Eye Hospital of Nanchang University, Nanchang, China
- Zhipeng You
| | - Yi-Cong Pan
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Ling
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Wei
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Zou
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Yi-Xin Wang
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yi Shao
| |
Collapse
|
18
|
Chen F, Kang Y, Yu T, Lin Y, Dai L, Yu L, Wang D, Sun X, Kang D. Altered functional connectivity within default mode network after rupture of anterior communicating artery aneurysm. Front Aging Neurosci 2022; 14:905453. [PMID: 35959287 PMCID: PMC9357996 DOI: 10.3389/fnagi.2022.905453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Rupture of anterior communicating artery (ACoA) aneurysm often leads to cognitive impairment, especially memory complaints. The medial superior frontal gyrus (SFGmed), a node of the default mode network (DMN), has been extensively revealed to participate in various cognitive processes. However, the functional connectivity (FC) characteristics of SFGmed and its relationship with cognitive performance remain unknown after the rupture of the ACoA aneurysm. Methods Resting-state functional MRI (fMRI) and cognitive assessment were acquired in 27 eligible patients and 20 controls. Seed-based FC between unilateral SFGmed and the rest of the brain was calculated separately, and then compared their intensity differences between the two groups. Furthermore, we analyzed the correlation between abnormal FC and cognitive function in patients with ruptured ACoA aneurysm. Results Cognitive impairment was confirmed in 51.9% of the patients. Compared with the controls, patients suffering from ruptured ACoA aneurysm exhibited a similar FC decline between each side of SFGmed and predominant nodes within DMN, including the precuneus, angular gyrus, cingulate cortex, left hippocampus, left amygdala, left temporal pole (TPO), and left medial orbitofrontal cortex (mOFC). Besides, significantly decreased FC of left SFGmed and left insula, right middle temporal gyrus (MTG), as well as right mOFC, were also found. In addition, only enhanced insular connectivity with right SFGmed was determined, whereas increased FC of the left SFGmed was not observed. Correlation analyses showed that lower total cognitive performance or stronger subjective memory complaints were related to reduced connectivity in the SFGmed and several cortical regions such as the angular gyrus and middle cingulate cortex (MCC). Conclusion Our results suggest that patients with ruptured ACoA aneurysm exist long-term cognitive impairment and intrinsic hypoconnectivity of cognition-related brain regions within DMN. Deactivation of DMN may be a potential neural mechanism leading to cognitive deficits in these patients.
Collapse
Affiliation(s)
- Fuxiang Chen
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Yaqing Kang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ting Yu
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Linsun Dai
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Lianghong Yu
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Dengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Xi Sun
- School of Information Engineering, Nanyang Institute of Technology, Nanyang, China
- *Correspondence: Xi Sun,
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
- Dezhi Kang,
| |
Collapse
|
19
|
Lü W, Wu Q, Liu Y, Wang Y, Wei Z, Li Y, Fan C, Wang AL, Borland R, Zhang X. No smoking signs with strong smoking symbols induce weak cravings: an fMRI and EEG study. Neuroimage 2022; 252:119019. [PMID: 35202814 DOI: 10.1016/j.neuroimage.2022.119019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/12/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
No smoking signs (NSSs) that combine smoking symbols (SSs) and prohibition symbols (PSs) represent common examples of reward and prohibition competition. To evaluate how SSs within NSSs influence their effectiveness in guiding reward vs. prohibition, we studied 93 male smokers. We collected self-reported craving ratings (N=30), cue reactivity under fMRI/EEG (N=33), and smoking-behavior anticipation for paired NSSs and SSs (N=30). We found that NSS-induced cravings were negatively correlated with SS-induced cravings and PS-induced inhibition. fMRI indicated that both correlations were mediated by activation of the inferior frontal gyrus and precuneus, suggesting that the effects of SSs and PSs interact with each other. EEG revealed that the prohibition response occurs after the cigarette response, indicating that the cigarette response might be precluded by the prohibition, supporting the effect of SSs in discouraging smoking. Moreover, stronger SSs induced stronger slow positive waves and late positive potentials, and the stronger the late positive potentials, the stronger the late positive potentials. Both the amplitudes of late positive potentials and slow positive waves were positively correlated with the amplitude of N2, which was positively correlated with the attention grabbed score by the NSS. In addition, the weaker the NSS-induced craving, the greater the smoking behavior anticipation reduction, indicating the capability of NSSs to decrease smoking behavior. Our study provides empirical evidence for selecting the most effective NSSs: those combining strong SS and PS, offering insights about competition between cigarette reward and prohibition and providing neural evidence on how cigarette reward and prohibition interact.
Collapse
Affiliation(s)
- Wanwan Lü
- Department of Radiology, the First Affiliated Hospital of USTC, School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Qichao Wu
- Department of Radiology, the First Affiliated Hospital of USTC, School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Ying Liu
- Department of Radiology, the First Affiliated Hospital of USTC, School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China.
| | - Ying Wang
- Department of Radiology, the First Affiliated Hospital of USTC, School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Zhengde Wei
- Department of Radiology, the First Affiliated Hospital of USTC, School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Yu Li
- Department of Radiology, the First Affiliated Hospital of USTC, School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Chuan Fan
- Department of Radiology, the First Affiliated Hospital of USTC, School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China; Department of Psychiatry, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - An-Li Wang
- Addiction Institute at Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ron Borland
- School of Psychological Sciences, University of Melbourne and Cancer Council Victoria, Australia
| | - Xiaochu Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China; Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Hefei, Anhui 230026, China; Hefei Medical Research Center on Alcohol Addiction, Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei 230017, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China.
| |
Collapse
|
20
|
Lei Y, Zhang D, Qi F, Gao J, Tang M, Ai K, Yan X, Lei X, Shao Z, Su Y, Zhang X. Dysfunctional Interaction Between the Dorsal Attention Network and the Default Mode Network in Patients With Type 2 Diabetes Mellitus. Front Hum Neurosci 2022; 15:796386. [PMID: 35002661 PMCID: PMC8741406 DOI: 10.3389/fnhum.2021.796386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
The risk of cognitive impairment in patients with type 2 diabetes mellitus (T2DM) is significantly higher than that in the general population, but the exact neurophysiological mechanism underlying this is still unclear. An abnormal change in the intrinsic anticorrelation of the dorsal attention network (DAN) and the default mode network (DMN) is thought to be the mechanism underlying cognitive deficits that occur in many psychiatric disorders, but this association has rarely been tested in T2DM. This study explored the relationship between the interaction patterns of the DAN-DMN and clinical/cognitive variables in patients with T2DM. Forty-four patients with T2DM and 47 sex-, age-, and education-matched healthy controls (HCs) underwent neuropsychological assessments, independent component analysis (ICA), and functional network connection analysis (FNC). The relationship of DAN-DMN anticorrelation with the results of a battery of neuropsychological tests was also assessed. Relative to the HC group, the DMN showed decreased functional connectivity (FC) in the right precuneus, and the DAN showed decreased FC in the left inferior parietal lobule (IPL) in patients with T2DM. Subsequent FNC analysis revealed that, compared with the HC group, the T2DM patients displayed significantly increased inter-network connectivity between the DAN and DMN. These abnormal changes were correlated with the scores of multiple neuropsychological assessments (P < 0.05). These findings indicate abnormal changes in the interaction patterns of the DAN-DMN may be involved in the neuropathology of attention and general cognitive dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Yumeng Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fei Qi
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhirong Shao
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Yu Su
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
21
|
Resting-state neuroimaging in social anxiety disorder: a systematic review. Mol Psychiatry 2022; 27:164-179. [PMID: 34035474 DOI: 10.1038/s41380-021-01154-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
There has been a growing interest in resting-state brain alterations in people with social anxiety disorder. However, the evidence has been mixed and contested and further understanding of the neurobiology of this disorder may aid in informing methods to increase diagnostic accuracy and treatment targets. With this systematic review, we aimed to synthesize the findings of the neuroimaging literature on resting-state functional activity and connectivity in social anxiety disorder, and to summarize associations between brain and social anxiety symptoms to further characterize the neurobiology of the disorder. We systematically searched seven databases for empirical research studies. Thirty-five studies met the inclusion criteria, with a total of 1611 participants (795 people with social anxiety disorder and 816 controls). Studies involving resting-state seed-based functional connectivity analyses were the most common. Individuals with social anxiety disorder (vs. controls) displayed both higher and lower connectivity between frontal-amygdala and frontal-parietal regions. Frontal regions were the most consistently implicated across other analysis methods, and most associated with social anxiety symptoms. Small sample sizes and variation in the types of analyses used across studies may have contributed to the inconsistencies in the findings of this review. This review provides novel insights into established neurobiological models of social anxiety disorder and provides an update on what is known about the neurobiology of this disorder in the absence of any overt tasks (i.e., resting state). The knowledge gained from this body of research enabled us to also provide recommendations for a more standardized imaging pre-processing approach to examine resting-state brain activity and connectivity that could help advance knowledge in this field. We believe this is warranted to take the next step toward clinical translation in social anxiety disorder that may lead to better treatment outcomes by informing the identification of neurobiological targets for treatment.
Collapse
|
22
|
Yamashita M, Suzuki M, Kawagoe T, Asano K, Futada M, Nakai R, Abe N, Sekiyama K. Impact of Early-Commenced and Continued Sports Training on the Precuneus in Older Athletes. Front Hum Neurosci 2021; 15:766935. [PMID: 34955788 PMCID: PMC8692267 DOI: 10.3389/fnhum.2021.766935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023] Open
Abstract
Intervention studies on sedentary older adults have demonstrated that commencing physical exercise at an older age has a positive effect on brain structure. Although this suggests that older athletes with lifelong sports training have larger gray matter volume (GMV) in some brain regions compared to age-matched non-athletes, evidence in the literature is scarce. Moreover, it remains unclear whether a larger GMV is associated with training intensity or period of training in life. To address these gaps in the literature, we compared regional brain GMV between 24 older athletes (mean age, 71.4 years; age at the commencement of sports training, 31.2 years, continuous sports training, 40.0 years; current training time, 7.9 h/week) and 24 age-matched non-athletes (mean age, 71.0 years). The period of sports training and the current training time of the athletes were assessed. Both groups were evaluated for physical activity intensity as well as cognitive and motor performance. Although no group differences were noted in cognitive and motor performance, athletes reported higher physical activity intensity than non-athletes. Whole-brain structural analysis revealed a significantly larger GMV in several brain regions in athletes. Notably, the GMV of the precuneus in athletes was positively correlated with earlier commencement of sports training and training duration but was negatively correlated with current training time. Our findings demonstrate that early-commenced and continued sports training predicts structural maintenance of the precuneus in old age. Our results also suggest that excessive training time in old age may have a negative impact on the GMV of the precuneus; thereby delineating how the precuneus is associated with lifelong sports training in older athletes.
Collapse
Affiliation(s)
- Masatoshi Yamashita
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Maki Suzuki
- Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Osaka, Japan.,Faculty of Letters, Kumamoto University, Kumamoto, Japan
| | - Toshikazu Kawagoe
- Faculty of Letters, Kumamoto University, Kumamoto, Japan.,Liberal Arts Education Center, Kyushu Campuses, Tokai University, Kumamoto, Japan
| | - Kohei Asano
- Faculty of Child Care and Education, Osaka University of Comprehensive Children Education, Osaka, Japan.,Kokoro Research Center, Kyoto University, Kyoto, Japan
| | | | - Ryusuke Nakai
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Nobuhito Abe
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan.,Faculty of Letters, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
23
|
Chen C, Lou Y, Li H, Yuan J, Yang J, Winskel H, Qin S. Distinct neural-behavioral correspondence within face processing and attention networks for the composite face effect. Neuroimage 2021; 246:118756. [PMID: 34848297 DOI: 10.1016/j.neuroimage.2021.118756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
The composite face effect (CFE) is recognized as a hallmark for holistic face processing, but our knowledge remains sparse about its cognitive and neural loci. Using functional magnetic resonance imaging with independent localizer and complete composite face task, we here investigated its neural-behavioral correspondence within face processing and attention networks. Complementing classical comparisons, we adopted a dimensional reduction approach to explore the core cognitive constructs of the behavioral CFE measurement. Our univariate analyses found an alignment effect in regions associated with both the extended face processing network and attention networks. Further representational similarity analyses based on the Euclidian distances among all experimental conditions were used to identify cortical regions with reliable neural-behavioral correspondences. Multidimensional scaling and hierarchical clustering analyses for neural-behavioral correspondence data revealed two principal components underlying the behavioral CFE effect, which fit best to the neural responses in the bilateral insula and medial frontal gyrus. These findings highlight the distinct neurocognitive contributions of both face processing and attentional networks to the behavioral CFE outcome, which bridge the gaps between face recognition and attentional control models.
Collapse
Affiliation(s)
- Changming Chen
- School of Education, Chongqing Normal University, Chongqing 401331, China
| | - Yixue Lou
- Department of Psychology, Faculty of Education and Psychology, University of Jyvaskyla, Jyväskylä 40014, Finland; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hong Li
- School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China.
| | - Jiajin Yuan
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China.
| | - Jiemin Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Heather Winskel
- Psychology, James Cook University, Singapore Campus, 387380, Singapore
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
24
|
He X, Hong J, Wang Q, Guo Y, Li T, Qu X, Liu J, Li W, Zhang L, Fu J, Liu Z. Altered Spontaneous Brain Activity Patterns and Functional Connectivity in Adults With Intermittent Exotropia: A Resting-State fMRI Study. Front Neurosci 2021; 15:746882. [PMID: 34776850 PMCID: PMC8586526 DOI: 10.3389/fnins.2021.746882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/29/2021] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study is to investigate brain functional changes in patients with intermittent exotropia (IXT) by analyzing the amplitude of low-frequency fluctuation (ALFF) of brain activity and functional connectivity (FC) using resting-state functional magnetic resonance imaging (rs-fMRI). There were 26 IXT patients and 22 age-, sex-, education-, and handedness-matched healthy controls (HCs) enrolled who underwent rs-fMRI. The ALFF, fractional ALFF (fALFF) values in the slow 4 and slow 5 bands, and FC values were calculated and compared. The correlations between ALFF/fALFF values in discrepant brain regions and clinical features were evaluated. Compared with HCs, ALFF/fALFF values were significantly increased in the right angular gyrus (ANG), supramarginal gyrus (SMG), inferior parietal lobule (IPL), precentral gyrus (PreCG), and the bilateral inferior frontal gyri (IFG), and decreased in the right precuneus gyrus (PCUN), left middle occipital gyrus (MOG), and postcentral gyrus (PoCG) in IXT patients. The Newcastle Control Test score was negatively correlated with ALFF values in the right IFG (r = −0.738, p < 0.001). The duration of IXT was negatively correlated with ALFF values in the right ANG (r = −0.457, p = 0.049). Widespread increases in FC were observed between brain regions, mainly including the right cuneus (CUN), left superior parietal lobule (SPL), right rolandic operculum (ROL), left middle temporal gyrus (MTG), left IFG, left median cingulate gyrus (DCG), left PoCG, right PreCG, and left paracentral gyrus (PCL) in patients with IXT. No decreased FC was observed. Patients with IXT exhibited aberrant intrinsic brain activities and FC in vision- and eye movement-related brain regions, which extend current understanding of the neuropathological mechanisms underlying visual and oculomotor impairments in IXT patients.
Collapse
Affiliation(s)
- Xueying He
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Hong
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qian Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yanan Guo
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ting Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Liu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lirong Zhang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Fu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Liu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Impact of Long-Rope Jumping on Monoamine and Attention in Young Adults. Brain Sci 2021; 11:brainsci11101347. [PMID: 34679411 PMCID: PMC8534060 DOI: 10.3390/brainsci11101347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Previous research has shown that rope jumping improves physical health; however, little is known about its impact on brain-derived monoamine neurotransmitters associated with cognitive regulation. To address these gaps in the literature, the present study compared outcomes between 15 healthy participants (mean age, 23.1 years) after a long-rope jumping exercise and a control condition. Long-rope jumping also requires co-operation between people, attention, spatial cognition, and rhythm sensation. Psychological questionnaires were administered to both conditions, and Stroop task performance and monoamine metabolite levels in the saliva and urine were evaluated. Participants performing the exercise exhibited lower anxiety levels than those in the control condition. Saliva analyses showed higher 3-methoxy-4-hydroxyphenylglycol (a norepinephrine metabolite) levels, and urine analyses revealed higher 3-methoxy-4-hydroxyphenylglycol and 5-hydroxyindoleacetic acid (a serotonin metabolite) levels in the exercise condition than in the control. Importantly, urinary 5-hydroxyindoleacetic acid level correlated with salivary and urinary 3-methoxy-4-hydroxyphenylglycol levels in the exercise condition. Furthermore, cognitive results revealed higher Stroop performance in the exercise condition than in the control condition; this performance correlated with salivary 3-methoxy-4-hydroxyphenylglycol levels. These results indicate an association between increased 3-methoxy-4-hydroxyphenylglycol and attention in long-rope jumping. We suggest that long-rope jumping predicts central norepinephrinergic activation and related attention maintenance.
Collapse
|
26
|
Jie J, Fan M, Yang Y, Luo P, Wang Y, Li J, Chen W, Zhuang M, Zheng X. Establishing a Counter-Empathy Processing Model: Evidence from Functional Magnetic Resonance Imaging. Soc Cogn Affect Neurosci 2021; 17:nsab097. [PMID: 34415030 PMCID: PMC8881639 DOI: 10.1093/scan/nsab097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/27/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022] Open
Abstract
Counter-empathy significantly affects people's social lives. Previous evidence indicates that the degree of counter-empathy can be either strong or weak. Strong counter-empathy easily occurs when empathizers are prejudiced against the targets of empathy (e.g., prejudice against outgroup members) and activates brain regions that are opposite to those activated by empathy. Weak counter-empathy may have different neural processing paths from strong one, but its underlying neural mechanisms remain unclear. In this work, we used an unfair distribution paradigm, which can reduce participants' prejudice against persons empathized with, and functional magnetic resonance imaging (fMRI) to explore the neural mechanisms underlying counter-empathy. Here, empathy and counter-empathy shared a common neural mechanism, induced by unfair distribution, in the right middle temporal gyrus. Counter-empathy activated distinct brain regions that differed from those of empathic responses in different situations. The functions of these brain regions, which included the middle frontal, middle temporal and left medial superior gyri, were similar and mostly related to emotional regulation and cognitive processing. Here, we propose a process model of counter-empathy, involving two processing paths according to whether or not prejudice exists. This study has theoretical significance and broadens our understanding of the cognitive neural mechanisms underlying empathy and counter-empathy.
Collapse
Affiliation(s)
- Jing Jie
- School of Psychology, South China Normal University, Guangzhou 510631, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Min Fan
- School of Psychology, South China Normal University, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Yong Yang
- School of Psychology, South China Normal University, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
- School of Educational Science, Xinyang Normal University, Xinyang 414000, China
| | - Pinchao Luo
- School of Psychology, South China Normal University, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Yijing Wang
- School of Psychology, South China Normal University, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Junjiao Li
- School of Psychology, South China Normal University, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
- College of Teacher’s Education, Guangdong University of Education, Guangzhou 510303, China
| | - Wei Chen
- School of Psychology, South China Normal University, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Mengdi Zhuang
- School of Psychology, South China Normal University, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xifu Zheng
- School of Psychology, South China Normal University, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
27
|
Popescu M, Popescu EA, DeGraba TJ, Hughes JD. Post-traumatic stress disorder is associated with alterations in evoked cortical activation during visual recognition of scenes. NEUROIMAGE-CLINICAL 2021; 31:102752. [PMID: 34284337 PMCID: PMC8313740 DOI: 10.1016/j.nicl.2021.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022]
Abstract
PTSD is associated with impaired performance in the recognition of scene images. PTSD is associated with lower activity in frontal, parietal and lateral temporal cortex. Difficulties with elaboration on visual cues may lead to impaired recognition in PTSD.
We recorded magnetoencephalography data during a visual recognition task in participants with combat exposure (n = 40, age: 41.2 ± 7.2 years) to investigate the relationship between the evoked brain activity, behavioral performance, and the severity of their post-traumatic stress symptoms assessed using the PTSD Check List for DSM V version (PCL-5). In an initial study session, participants were presented with a series of images of outdoor scenes and were instructed to study the images for an upcoming recognition test. In a subsequent session, the original images were shown intermixed with novel images while participants performed the recognition task. PCL-5 scores were negatively correlated with discrimination performance and with the recognition accuracy for original images. During the recognition session, higher PCL-5 scores were associated with reduced relative power of the evoked response to original images from 100 ms to 300 ms following the image onset over a distributed brain network including the bilateral inferior frontal gyri, left middle frontal gyrus, left supramarginal gyrus, right precuneus and the bilateral superior temporal gyri. These findings indicate that the lower recognition performance in participants with higher PTSD symptom severity is associated with altered cortical activity in brain regions that are known to play a role in the elaboration on visual cues that supports recollection.
Collapse
Affiliation(s)
- Mihai Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Elena-Anda Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas J DeGraba
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - John D Hughes
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA; Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
28
|
Duda BM, Sweet LH. Functional brain changes associated with cognitive training in healthy older adults: A preliminary ALE meta-analysis. Brain Imaging Behav 2021; 14:1247-1262. [PMID: 30900077 DOI: 10.1007/s11682-019-00080-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accumulating evidence suggests that cognitive training (CT) programs may provide healthy older adults (OAs) with cognitive benefits that are accompanied by alterations in neural activity. The current review offers the first quantitative synthesis of the available literature on the neural effects of CT in healthy aging. It was hypothesized that OAs would evidence increased and decreased neural activations across various challenging CTs, and that these effects would be observed as significantly altered clusters within regions of the frontoparietal network (FPN). Online databases and reference lists were searched to identify peer-reviewed publications that reported assessment of neural changes associated with CT programs in healthy OAs. Among the 2097 candidate studies identified, 14 studies with a total of 238 participants met inclusionary criteria. GingerALE software was used to quantify neural effects in a whole-brain analysis. The activation likelihood estimation technique revealed significant increases in activation following CT in the left hemisphere middle frontal gyrus, precentral gyrus, and posterior parietal cortex, extending to the superior occipital gyrus. Two clusters of diminished neural activity following CT were identified within the right hemisphere middle frontal gyrus and supramarginal gyrus, extending to the superior temporal gyrus. These results provide preliminary evidence of common neural effects of different CT interventions within regions of the FPN. Findings may inform future investigations of neuroplasticity across the lifespan, including clinical applications of CT, such as assessing treatment outcomes.
Collapse
Affiliation(s)
- Bryant M Duda
- Department of Psychology, University of Georgia, Athens, GA, 30602-3001, USA.
| | - Lawrence H Sweet
- Department of Psychology, University of Georgia, Athens, GA, 30602-3001, USA.,Department of Psychiatry & Human Behavior, Brown University Medical School, Providence, RI, USA
| |
Collapse
|
29
|
Jurgiel J, Miyakoshi M, Dillon A, Piacentini J, Makeig S, Loo SK. Inhibitory control in children with tic disorder: aberrant fronto-parietal network activity and connectivity. Brain Commun 2021; 3:fcab067. [PMID: 33977267 PMCID: PMC8093924 DOI: 10.1093/braincomms/fcab067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/03/2022] Open
Abstract
Chronic tic disorders, including Tourette syndrome, are typically thought to have deficits in cognitive inhibition and top down cognitive control due to the frequent and repetitive occurrence of tics, yet studies reporting task performance results have been equivocal. Despite similar behavioural performance, individuals with chronic tic disorder have exhibited aberrant patterns of neural activation in multiple frontal and parietal regions relative to healthy controls during inhibitory control paradigms. In addition to these top down attentional control regions, widespread alterations in brain activity across multiple neural networks have been reported. There is a dearth, however, of studies examining event-related connectivity during cognitive inhibitory paradigms among affected individuals. The goal of this study was to characterize neural oscillatory activity and effective connectivity, using a case–control design, among children with and without chronic tic disorder during performance of a cognitive inhibition task. Electroencephalogram data were recorded in a cohort of children aged 8–12 years old (60 with chronic tic disorder, 35 typically developing controls) while they performed a flanker task. While task accuracy did not differ by diagnosis, children with chronic tic disorder displayed significant cortical source-level, event-related spectral power differences during incongruent flanker trials, which required inhibitory control. Specifically, attenuated broad band oscillatory power modulation within the anterior cingulate cortex was observed relative to controls. Whole brain effective connectivity analyses indicated that children with chronic tic disorder exhibit greater information flow between the anterior cingulate and other fronto-parietal network hubs (midcingulate cortex and precuneus) relative to controls, who instead showed stronger connectivity between central and posterior nodes. Spectral power within the anterior cingulate was not significantly correlated with any connectivity edges, suggesting lower power and higher connectivity are independent (versus resultant) neural mechanisms. Significant correlations between clinical features, task performance and anterior cingulate spectral power and connectivity suggest this region is associated with tic impairment (r = −0.31, P = 0.03) and flanker task incongruent trial accuracy (r’s = −0.27 to −0.42, P’s = 0.0008–0.04). Attenuated activation of the anterior cingulate along with dysregulated information flow between and among nodes within the fronto-parietal attention network may be neural adaptations that result from frequent engagement of neural pathways needed for inhibitory control in chronic tic disorder.
Collapse
Affiliation(s)
- Joseph Jurgiel
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Makoto Miyakoshi
- Swartz Center for Neural Computation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrea Dillon
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Piacentini
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Scott Makeig
- Swartz Center for Neural Computation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sandra K Loo
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Zacharia AA, Ahuja N, Kaur S, Sharma R. Frontal activation as a key for deciphering context congruity and valence during visual perception: An electrical neuroimaging study. Brain Cogn 2021; 150:105711. [PMID: 33774336 DOI: 10.1016/j.bandc.2021.105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
The object-context associations and the valence are two important stimulus attributes that influence visual perception. The current study investigates the neural sources associated with schema congruent and incongruent object-context associations within positive, negative, and neutral valence during an intermittent binocular rivalry task with simultaneous high-density EEG recording. Cortical sourceswere calculated using the sLORETA algorithm in 150 ms after stimulus onset (Stim + 150) and 400 ms before response (Resp-400) time windows. No significant difference in source activity was found between congruent and incongruent associations in any of the valence categories in the Stim + 150 ms window indicating that immediately after stimulus presentation the basic visual processing remains the same for both. In the Resp-400 ms window, different frontal regions showed higher activity for incongruent associations with different valence such as the superior frontal gyrus showed significantly higher activations for negative while the middle and medial frontal gyrus showed higher activations for neutral and finally, the inferior frontal gyrus showed higher activations for positive valence. Besides replicating the previous knowledge of frontal activations in response to context congruity, the current study provides further evidence for the sensitivity of the frontal lobe to the valence associated with the incongruent stimuli.
Collapse
Affiliation(s)
- Angel Anna Zacharia
- Stress and Cognitive Electroimaging Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Navdeep Ahuja
- Stress and Cognitive Electroimaging Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Simran Kaur
- Stress and Cognitive Electroimaging Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
31
|
Peng ZY, Liu YX, Li B, Ge QM, Liang RB, Li QY, Shi WQ, Yu YJ, Shao Y. Altered spontaneous brain activity patterns in patients with neovascular glaucoma using amplitude of low-frequency fluctuations: A functional magnetic resonance imaging study. Brain Behav 2021; 11:e02018. [PMID: 33386699 PMCID: PMC7994689 DOI: 10.1002/brb3.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/14/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neovascular glaucoma (NVG) can cause irreversible visual impairment and abnormal spontaneous changes in brain's visual system and other systems. There is little research on this aspect at present. However, amplitude of low-frequency fluctuations (ALFFs) can be used as an rs-fMRI analysis technique for testing changes in spontaneous brain activity patterns. PURPOSE The aim of this study was to probe the local characteristics of spontaneous brain activity in NVG patients and analyze their correlation with clinical behaviors. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) scans were obtained from eighteen patients with NVG (8 males, 10 females) and eighteen healthy controls (HCs; 8 males and 10 females) who were matched in age, gender, and education level. We evaluated spontaneous brain activity with the ALFF method. A receiver operating characteristic (ROC) curve was used to compare the average ALFF values for altered brain regions of NVG patients with those of HCs. RESULTS Compared with HCs, NVG patients had lower ALFF values in the right cuneus, right middle occipital gyrus, left cingulate gyrus, right precuneus, and left medial frontal gyrus (p < 0.001). Higher ALFF values were observed in the right superior frontal gyrus and left middle frontal gyrus (p < 0.001). Analysis of the ROC curves of the brain regions showed that the specificity and accuracy of ALFF values between NVG and HCs in the area under the curve were acceptable (p < 0.001). CONCLUSION The patients with NVG exhibited anomalous spontaneous activity in different brain regions; these finding should establish the foundation for a more comprehensive understanding of the pathological mechanisms of NVG. Furthermore, these abnormal variations in specific brain regions can be considered possible clinical indices of NVG.
Collapse
Affiliation(s)
- Zhi-You Peng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Yu-Xin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Ya-Jie Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, China
| |
Collapse
|
32
|
Lin Q, Zhu FY, Shu YQ, Zhu PW, Ye L, Shi WQ, Min YL, Li B, Yuan Q, Shao Y. Altered brain network centrality in middle-aged patients with retinitis pigmentosa: A resting-state functional magnetic resonance imaging study. Brain Behav 2021; 11:e01983. [PMID: 33295117 PMCID: PMC7882161 DOI: 10.1002/brb3.1983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE The purpose of this study is to explore the underlying functional network brain activity changes of patients in middle-aged with retinitis pigmentosa (RP) and the relationships with clinical features such as depression scale and visual functioning using voxel-wise degree centrality (DC) method. METHODS We included 16 patients with RP (11 men, 5 women) and 16 healthy controls (HCs; 11 men, 5 women). Participants were matched in terms of age, weight, gender and handedness (age and weight between the two groups were compared using independent sample t-tests, gender and handedness were compared using chi-square test). We use the voxel-wise DC method to assess spontaneous brain activity. Receiver operating characteristic (ROC) curve analysis was performed to distinguish between RP patients and HCs. Correlation analysis was used to examine the relationships between mean DC values in various brain regions and clinical features (such as depression scale and visual functioning) in RP patients. RESULTS Compared with HCs, the DC values of patients with RP were reduced in the right medial frontal gyrus, bilateral cuneus, bilateral precuneus, and bilateral superior frontal gyrus, and increased in the right cerebellum posterior lobe, left inferior temporal gyrus, and right fusiform gyrus. The mean DC values in the bilateral cuneus negatively correlated with the depression scale, and those in the bilateral precuneus positively correlated with the Visual Functioning Questionnaire-25. CONCLUSIONS Middle-aged patients with RP exhibit abnormal brain network activity in various brain regions, and this may underlie the pathological mechanism of RP.
Collapse
Affiliation(s)
- Qi Lin
- Department of Ophthalmology, Jiangxi Province Ocular Disease Clinical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei-Ying Zhu
- Department of Ophthalmology, Jiangxi Province Ocular Disease Clinical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong-Qiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, Jiangxi Province Ocular Disease Clinical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Ye
- Department of Ophthalmology, Jiangxi Province Ocular Disease Clinical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Qing Shi
- Department of Ophthalmology, Jiangxi Province Ocular Disease Clinical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - You-Lan Min
- Department of Ophthalmology, Jiangxi Province Ocular Disease Clinical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Li
- Department of Ophthalmology, Jiangxi Province Ocular Disease Clinical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Yuan
- Department of Ophthalmology, Jiangxi Province Ocular Disease Clinical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Province Ocular Disease Clinical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Remington RW, Vromen JMG, Becker SI, Baumann O, Mattingley JB. The Role of Frontoparietal Cortex across the Functional Stages of Visual Search. J Cogn Neurosci 2020; 33:63-76. [PMID: 32985948 DOI: 10.1162/jocn_a_01632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Areas in frontoparietal cortex have been shown to be active in a range of cognitive tasks and have been proposed to play a key role in goal-driven activities (Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., et al. Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, U.S.A., 104, 11073-11078, 2007; Duncan, J. The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behavior. Trends in Cognitive Sciences, 14, 172-179, 2010). Here, we examine the role this frontoparietal system plays in visual search. Visual search, like many complex tasks, consists of a sequence of operations: target selection, stimulus-response (SR) mapping, and response execution. We independently manipulated the difficulty of target selection and SR mapping in a novel visual search task that involved identical stimulus displays. Enhanced activity was observed in areas of frontal and parietal cortex during both difficult target selection and SR mapping. In addition, anterior insula and ACC showed preferential representation of SR-stage information, whereas the medial frontal gyrus, precuneus, and inferior parietal sulcus showed preferential representation of target selection-stage information. A connectivity analysis revealed dissociable neural circuits underlying visual search. We hypothesize that these circuits regulate distinct mental operations associated with the allocation of spatial attention, stimulus decisions, shifts of task set from selection to SR mapping, and SR mapping. Taken together, the results show frontoparietal involvement in all stages of visual search and a specialization with respect to cognitive operations.
Collapse
Affiliation(s)
| | | | | | | | - Jason B Mattingley
- The University of Queensland.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
34
|
Xie K, Jin Z, Ni X, Zhang J, Li L. Distinct neural substrates underlying target facilitation and distractor suppression: A combined voxel-based morphometry and resting-state functional connectivity study. Neuroimage 2020; 221:117149. [PMID: 32659355 DOI: 10.1016/j.neuroimage.2020.117149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022] Open
Abstract
Selective attention, the ability to filter relevant from a sea of sensory information, relies on the prioritization of goal-relevant information (target facilitation) and the suppression of goal-irrelevant information (distractor suppression). Although several lines of evidence have shown that target facilitation and distractor suppression were mediated by distinct mechanisms, the underlying neural substrates remain unclear. To address this question, we acquired structural and resting-state magnetic resonance imaging scans, as well as behavioral data from a modified Posner cueing task. Specifically, the location of a target (Target Cue, TC) and a distractor (Distractor Cue, DC) was either cued in advance to separately trigger target facilitation and distractor suppression, or no predictive information was provided, serving as a baseline. We combined voxel-based morphometry (VBM) and resting-state functional connectivity (rsFC) analyses to explore the neural correlates of behavioral benefits, yielding the following results. First, behavioral data showed faster responses to TC and DC conditions compared to baseline, the benefits of which were named TC-benefit and DC-benefit. Second, the VBM analysis revealed that the gray matter volume (GMV) in the superior frontal (SFG) and postcentral gyrus inversely correlated with individual TC-benefit, while the GMV in the superior parietal lobe, middle frontal gyrus, and angular gyrus inversely correlated with individual DC-benefit, indicating that target facilitation and distractor suppression was associated with the GMV of distinct and distributed regions in the frontoparietal cortex. Third, the rsFC analysis with the SFG as a seed region further found distinct patterns of rsFC for target facilitation and distractor suppression. Specifically, individual TC-benefit were positively correlated with distributed connections between the SFG and brain regions, mainly within the ventral attention and somato-motor network; but individual DC-benefit were positively correlated with centralized connections between the SFG and brain regions, mainly within the frontoparietal, dorsal attention and ventral attention network. Finally, a multiple linear regression analysis showed that the GMV and rsFC could jointly explain individual differences in TC- and DC-benefit. Taken together, these results provided neural evidence for different structural and functional substrates underlying target facilitation and distractor suppression.
Collapse
Affiliation(s)
- Ke Xie
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Xuejin Ni
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
35
|
Mihailov A, Philippe C, Gloaguen A, Grigis A, Laidi C, Piguet C, Houenou J, Frouin V. Cortical signatures in behaviorally clustered autistic traits subgroups: a population-based study. Transl Psychiatry 2020; 10:207. [PMID: 32594096 PMCID: PMC7320967 DOI: 10.1038/s41398-020-00894-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Extensive heterogeneity in autism spectrum disorder (ASD) has hindered the characterization of consistent biomarkers, which has led to widespread negative results. Isolating homogenized subtypes could provide insight into underlying biological mechanisms and an overall better understanding of ASD. A total of 1093 participants from the population-based "Healthy Brain Network" cohort (Child Mind Institute in the New York City area, USA) were selected based on score availability in behaviors relevant to ASD, aged 6-18 and IQ >= 70. All participants underwent an unsupervised clustering analysis on behavioral dimensions to reveal subgroups with ASD traits, identified by the presence of social deficits. Analysis revealed three socially impaired ASD traits subgroups: (1) high in emotionally dysfunctional traits, (2) high in ADHD-like traits, and (3) high in anxiety and depressive symptoms. 527 subjects had good quality structural MRI T1 data. Site effects on cortical features were adjusted using the ComBat method. Neuroimaging analyses compared cortical thickness, gyrification, and surface area, and were controlled for age, gender, and IQ, and corrected for multiple comparisons. Structural neuroimaging analyses contrasting one combined heterogeneous ASD traits group against controls did not yield any significant differences. Unique cortical signatures, however, were observed within each of the three individual ASD traits subgroups versus controls. These observations provide evidence of ASD traits subtypes, and confirm the necessity of applying dimensional approaches to extract meaningful differences, thus reducing heterogeneity and paving the way to better understanding ASD traits.
Collapse
Affiliation(s)
- Angeline Mihailov
- Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191, France.
| | - Cathy Philippe
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France
| | - Arnaud Gloaguen
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France ,CNRS-Centrale Supélec, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France
| | - Antoine Grigis
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France
| | - Charles Laidi
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France ,APHP, Mondor Univ. Hospitals, DMU IMPACT, INSERM, U955, Translational Neuropsychiatry Team, University of Paris-Est Créteil, 94000 Créteil, France
| | - Camille Piguet
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France ,grid.8591.50000 0001 2322 4988Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Josselin Houenou
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France ,APHP, Mondor Univ. Hospitals, DMU IMPACT, INSERM, U955, Translational Neuropsychiatry Team, University of Paris-Est Créteil, 94000 Créteil, France
| | - Vincent Frouin
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France
| |
Collapse
|
36
|
Halbertsma HN, Elshout JA, Bergsma DP, Norris DG, Cornelissen FW, van den Berg AV, Haak KV. Functional connectivity of the Precuneus reflects effectiveness of visual restitution training in chronic hemianopia. Neuroimage Clin 2020; 27:102292. [PMID: 32554320 PMCID: PMC7303670 DOI: 10.1016/j.nicl.2020.102292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 01/10/2023]
Abstract
Visual field defects in chronic hemianopia can improve through visual restitution training, yet not all patients benefit equally from this long and exhaustive procedure. Here, we asked if resting-state functional connectivity prior to visual restitution could predict training success. In two training sessions of eight weeks each, 20 patients with chronic hemianopia performed a visual discrimination task by directing spatial selective attention towards stimuli presented in either hemifield, while suppressing eye movements. We examined two effects: a sensitivity change in the attended (trained) minus the unattended (control) hemifield (i.e., a training-specific improvement), and an overall improvement (i.e., a total change in sensitivity after both sessions). We then identified five visual resting-state networks and evaluated their functional connectivity in relation to both training effects. We found that the functional connectivity strength between the anterior Precuneus and the Occipital Pole Network was positively related to the attention modulated (i.e., training-specific) improvement. No such relationship was found for the overall improvement or for the other visual networks of interest. Our finding suggests that the anterior Precuneus plays a role in attention-modulated visual field improvements. The resting-state functional connectivity between the anterior Precuneus and the Occipital Pole Network may thus serve as an imaging-based biomarker that quantifies a patient's potential capacity to direct spatial attention. This may help to identify hemianopia patients that are most likely to benefit from visual restitution training.
Collapse
Affiliation(s)
- Hinke N Halbertsma
- Laboratory for Experimental Ophthalmology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Joris A Elshout
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Douwe P Bergsma
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans W Cornelissen
- Laboratory for Experimental Ophthalmology, University Medical Center Groningen, Groningen, the Netherlands
| | - Albert V van den Berg
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
37
|
Geissler Geißler CF, Hofmann MJ, Frings C. It is more than Interference: Examining the neurohemodynamic correlates of the flanker task with functional near-infrared spectroscopy. Eur J Neurosci 2020; 52:3022-3031. [PMID: 32090396 DOI: 10.1111/ejn.14708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022]
Abstract
Previous functional near-infrared spectroscopy studies using the Eriksen flanker task, in contrast to functional magnetic resonance imaging studies, revealed the quite puzzling finding of an inverted conflict effect, that is, greater middle and superior frontal activation in response compatible than in response incompatible trials. However, since neither prior functional near-infrared spectroscopy studies nor most previous functional magnetic resonance imaging studies separated between an identical and a compatible condition, it is hard to pinpoint whether this discrepancy occurs on the level of stimulus processing or response generation. By assigning two letters to both left (D, F) and right (J, K) hand reactions, we were able to separate identical (e.g., JJJ) and compatible (e.g., JKJ) conditions that solely differ in their stimulus congruency. Replicating prior functional magnetic resonance imaging findings, we found the standard conflict effect at the transition of superior and middle frontal gyrus, when comparing the activation in compatible trials to that in incompatible trials. Both changes in oxygenated and deoxygenated hemoglobin thus pointed to more effortful processing in incompatible trials. Interestingly, however, identical trials showed the highest activation in this region, according to both changes in oxygenated and deoxygenated blood. A finding that mirrors and extends prior functional near-infrared spectroscopy findings, which only regarded oxygenated blood. We argue that this pattern of results does not reflect the standard conflict effect. We rather assume that other processes like perceptual familiarity or strategic readjustment might be at play.
Collapse
|
38
|
Tang F, Yang H, Li L, Ji E, Fu Z, Zhang Z. Fusion analysis of gray matter and white matter in bipolar disorder by multimodal CCA-joint ICA. J Affect Disord 2020; 263:80-88. [PMID: 31818800 DOI: 10.1016/j.jad.2019.11.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/24/2019] [Accepted: 11/28/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Bipolar disorder (BD) patients show morphological abnormalities in gray matter (GM) and white matter (WM), which can be revealed by structure MRI (sMRI) and diffusion tensor imaging (DTI) respectively. However, previous studies on BD mainly relied on separated analysis of single neuroimaging modality, and it remains unclear how GM and WM covary to the abnormal brain structures of BD patients. METHODS We recorded multimodal sMRI-DTI data of 35 BD patients and 30 healthy controls (HC) and used multimodal canonical component analysis and joint independent component analysis (mCCA-jICA) to identify altered covariant structures in GM and WM of BD. Group-discriminative and joint group-discriminative independent components (ICs) were identified between BD and HC. Correlation analysis was performed between the mixing coefficients and behavioral index. RESULTS For BD patients, experiments results revealed that the GM atrophy in inferior frontal gyrus, right anterior cingulate gyrus and left superior frontal gyrus are associated with the WM integrity reduction in corticospinal tract and superior longitudinal fasciculus. Further, compared with HC, different correlation between mixing coefficients of ICs and age was observed for BD patients. LIMITATIONS The number of participants needs to be increased to more rigorously validate the results of this study, ideally from multiple sites. Functional imaging data could be utilized to explore structural-functional covariant pattern in BD. Possible confounding effect of medication. CONCLUSIONS We performed fusion analysis of sMRI and DTI and revealed covariant (GM-WM) structural patterns of BD patients. This study could be useful for developing more reliable neural biomarkers of BD.
Collapse
Affiliation(s)
- Fei Tang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Haichen Yang
- Department for Affective Disorders, Shenzhen Mental Health Centre, Shenzhen Key Lab for Psychological Healthcare, Shenzhen 518020, China
| | - Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Erni Ji
- Department for Affective Disorders, Shenzhen Mental Health Centre, Shenzhen Key Lab for Psychological Healthcare, Shenzhen 518020, China
| | - Zening Fu
- The Mind Research Network, University of New Mexico, Albuquerque, NM 87106, USA
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China; Peng Cheng Laboratory, Shenzhen 518055, China.
| |
Collapse
|
39
|
Schwarzmeier H, Kleint NI, Wittchen HU, Ströhle A, Hamm AO, Lueken U. Characterizing the nature of emotional-associative learning deficits in panic disorder: An fMRI study on fear conditioning, extinction training and recall. Eur Neuropsychopharmacol 2019; 29:306-318. [PMID: 30497840 DOI: 10.1016/j.euroneuro.2018.11.1108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
Emotional-associative learning represents a translational model for the development, maintenance and treatment of anxiety disorders such as panic disorder (PD). The exact nature of the underlying fear learning and extinction deficits however, remains under debate. Using a three-day paradigm to separate the distinct learning and consolidation processes, we aimed to gain insights into the neurofunctional substrates of altered fear conditioning, extinction training and recall in PD. In contrast to studies employing one-session fear conditioning paradigms, a differential fear conditioning and delayed extinction task was conducted for the purpose of disentangling neural networks involved in fear acquisition, extinction training and recall of extinction memories. Using functional magnetic resonance imaging (fMRI), quality-controlled datasets from 10 patients with PD and 10 healthy controls were available from three consecutive days (day 1: acquisition; day 2: extinction training; day 3: extinction recall) with neutral faces serving as CSs and an aversive auditory stimulus (panic scream) as US. PD patients showed heightened fear circuitry (e.g. right amygdala and left insula) activation during early acquisition and prolonged activation in the right insula, left inferior frontal operculum and left inferior frontal gyrus during extinction recall compared to healthy controls. Stronger neural activation in structures conferring defensive reactivity during early acquisition and extinction recall may indicate the accelerated acquisition of conditioned responses, while extinction recall may be attenuated as a function of PD pathophysiology. Future studies should investigate the predictive value of experimental measures of extinction recall for clinical relapse.
Collapse
Affiliation(s)
- H Schwarzmeier
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany.
| | - N I Kleint
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - H U Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Clinical Psychology & Psychotherapy RG, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - A Ströhle
- Dept. of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - A O Hamm
- Dept. of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald , Germany
| | - U Lueken
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany; Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Dept. of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
40
|
Mason NL, Theunissen EL, Hutten NRPW, Tse DHY, Toennes SW, Stiers P, Ramaekers JG. Cannabis induced increase in striatal glutamate associated with loss of functional corticostriatal connectivity. Eur Neuropsychopharmacol 2019; 29:247-256. [PMID: 30553697 DOI: 10.1016/j.euroneuro.2018.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Cannabis is the most commonly used illicit drug and is known to alter state of consciousness and impair neurocognitive function. However, the mechanisms underlying these effects have yet to be fully elucidated. Rodent studies suggest that Δ9-tetrahydrocannabinol (THC) activates dopaminergic neurons in the limbic system, subsequently enhancing dopamine, which is implicated in the rewarding effects of cannabis. Additional evidence suggests that THC may act indirectly on dopamine firing by modulating GABA and glutamate release. This double-blind, placebo-controlled study assessed the acute influence of two doses of THC on brain kinetics of glutamate, GABA, and dopamine, in relation to behavioral outcomes, by using magnetic resonance spectroscopy and functional magnetic resonance imaging. Twenty occasional cannabis users received acute doses of cannabis (300 µg/kg THC) and placebo, in one of two dose regimes (full dose and divided dose), during two separate testing days. Administration of THC increased striatal glutamate concentrations, and dopamine as indicated by a reduction in functional connectivity (FC) between the nucleus accumbens (NAc) and cortical areas. Alterations in glutamate and FC were dose dependent and evident in the full dose group where THC serum concentrations exceeded 2 ng/ml at T-max. Average glutamate changes correlated strongly with FC alterations. Additionally, THC induced changes in FC correlated with feelings of subjective high and decreased performance on an attention task. Taken together, this suggests that THC elicits subjective and cognitive alterations via increased striatal dopaminergic activity and loss of corticostriatal connectivity, which is associated with an increase in striatal glutamate.
Collapse
Affiliation(s)
- Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Nadia R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Desmond H Y Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Stefan W Toennes
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, D-60596, Frankfurt/Main, Germany
| | - Peter Stiers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
41
|
Jung W, Jang KI, Lee SH. Heart and Brain Interaction of Psychiatric Illness: A Review Focused on Heart Rate Variability, Cognitive Function, and Quantitative Electroencephalography. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:459-474. [PMID: 31671483 PMCID: PMC6852682 DOI: 10.9758/cpn.2019.17.4.459] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
Heart rate variability (HRV) reflects beat-to-beat variability in the heart rate due to the dynamic interplay of the sympathetic and parasympathetic nervous systems. HRV is considered an index of the functional status of the autonomic nervous system. A decrease in HRV is thus observed in individuals with autonomic dysfunction. Abnormal HRV has been reported in a range of mental disorders. In this review, we give an overview of HRV in patients with major depressive disorder (MDD), schizophrenia, and posttraumatic stress disorder (PTSD), one of whose core symptoms is cognitive dysfunction. The association between HRV and cognitive function is highlighted in this review. This review consists of three main sections. In the first section, we examine how HRV in patients with MDD, schizophrenia, and PTSD is characterized, and how it is different when compared to that in healthy controls. In the second section, beyond the heart itself, we discuss the intimate connection between the heart and the brain, focusing on how HRV interacts with quantitative electroencephalography (qEEG) in the context of physiological changes in the sleep cycle. Lastly, we finish the review with the examination of the association between HRV and cognitive function. The overall findings indicate that the reduction in HRV is one of main manifestations in MDD, schizophrenia, and PTSD, and also more generally HRV is closely linked to the change in qEEG and also to individual differences in cognitive performance.
Collapse
Affiliation(s)
- Wookyoung Jung
- Department of Psychology, Keimyung University, Daegu, Korea
| | - Kuk-In Jang
- 2Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Korea.,Institute of Biomedical Industry, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Lee
- Department of Psychiatry,Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea.,Clinical Emotion and Cognition Research Laboratory, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
42
|
Xiao Q, Zhao X, Bi G, Wu L, Zhang H, Liu R, Zhong J, Wu S, Zeng Y, Cui L, Chen Y, Wu K, Chen Z. Alterations of Regional Homogeneity and Functional Connectivity Following Short-Term Mindfulness Meditation in Healthy Volunteers. Front Hum Neurosci 2019; 13:376. [PMID: 31680921 PMCID: PMC6813410 DOI: 10.3389/fnhum.2019.00376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/03/2019] [Indexed: 01/22/2023] Open
Abstract
Mindfulness is described as the non-judgmental awareness of experiences in the present moment. The sustained practice of mindfulness may also have beneficial effects on an individual's well-being. For instance, mindfulness meditation is an effective approach for improving emotion regulation. Specifically, the early stage of mindfulness meditation training enhances emotional monitoring systems related to attention regulation and executive function. Reduced activity in the default mode network (DMN) would probably be observed corresponding to the attenuated mind wandering. In the present study, we hypothesized that alterations in functional activity in the frontal-parietal cortex and DMN may be induced by short-term mindfulness meditation. In this study, before and after 8 weeks of weekly Mindfulness-Based Stress Reduction (MBSR) training, healthy participants were evaluated using a mindfulness questionnaire and an affect schedule, as well as via resting-state functional magnetic resonance imaging. Sixteen right-handed non-meditators were enrolled. Another 16 demographically matched healthy adults without any meditation experience were recruited as controls. Pre- and post-MBSR assessments were compared. Increased regional homogeneity in the right superior parietal lobule and left postcentral gyrus (PoCG), as well as altered functional connectivity in PoCG-related networks, were observed post-MBSR. The mindfulness questionnaire scores also improved and negative affect was significantly decreased after MBSR. Together with reduced involvement of the posterior brain, our results suggest a tendency toward stronger involvement of the parietal cortex in mindfulness beginners. This study provides novel evidence regarding the optimization of emotional processing with short-term mindfulness meditation.
Collapse
Affiliation(s)
- Qin Xiao
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Xingrong Zhao
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guoli Bi
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Department of Magnetic Resonance Image, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lisha Wu
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Hongjiang Zhang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Department of Magnetic Resonance Image, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ruixiang Liu
- Department of Clinical Psychology, The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Jingmei Zhong
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shaoyuan Wu
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yong Zeng
- Department of Clinical Psychology, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Liqian Cui
- Department of Clinical Psychology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanmei Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Kunhua Wu
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Department of Magnetic Resonance Image, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zhuangfei Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
43
|
Liu J, Zhang B, Wilson G, Kong J. New Perspective for Non-invasive Brain Stimulation Site Selection in Mild Cognitive Impairment: Based on Meta- and Functional Connectivity Analyses. Front Aging Neurosci 2019; 11:228. [PMID: 31551754 PMCID: PMC6736566 DOI: 10.3389/fnagi.2019.00228] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Background Non-invasive brain stimulation (NIBS) has been widely used to treat mild cognitive impairment (MCI). However, there exists no consensus on the best stimulation sites. Objective To explore potential stimulation locations for NIBS treatment in patients with MCI, combining meta- and resting state functional connectivity (rsFC) analyses. Methods The meta-analysis was conducted to identify brain regions associated with MCI. Regions of interest (ROIs) were extracted based on this meta-analysis. The rsFC analysis was applied to 45 MCI patients to determine brain surface regions that are functionally connected with the above ROIs. Results We found that the dorsolateral prefrontal cortex (DLPFC) and inferior frontal gyrus (IFG) were the overlapping brain regions between our results and those of previous studies. In addition, we recommend that the temporoparietal junction (including the angular gyrus), which was found in both the meta- and rsFC analysis, should be considered in NIBS treatment of MCI. Furthermore, the bilateral orbital prefrontal gyrus, inferior temporal gyrus, medial superior frontal gyrus, and right inferior occipital gyrus may be potential brain stimulation sites for NIBS treatment of MCI. Conclusion Our results provide several potential sites for NIBS, such as the DLFPC and IFG, and may shed light on the locations of NIBS sites in the treatment of patients with MCI.
Collapse
Affiliation(s)
- Jiao Liu
- Author Affiliations: UC San Francisco; University of Southern California; UC San Francisco University of Southern California Mayo Clinic, Rochester Mayo Clinic, Rochester; UC Berkeley; U Pennsylvania; USC; UC Davis; Brigham and Women's Hospital/Harvard Medical School Indiana University Washington University St. Louis University of Pennsylvania; Prevent Alzheimer's Disease 2020 (Chair) Siemens; Alzheimer's Association University of Pittsburgh Washington University St. Louis Cornell University; Albert Einstein College of Medicine of Yeshiva University; AD Drug Discovery Foundation; Acumen Pharmaceuticals; Washington University St. Louis; Northwestern University; National Institute of Mental Health; Brown University; Eli Lilly (Chair); BWH/HMS (Chair); University of Washington (Chair); Mayo Clinic, Rochester (Core PI) University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC Davis (Core PI); UC Davis; UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; University of London; UCLA School of Medicine; UCSF MRI; UC Davis; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; University of Pittsburgh; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; UC San Diego; Prevent Alzheimer's Disease 2020; UC San Diego; National Institute on Aging; UC San Francisco; Brown University; National Institute of Mental Health; Cornell University; Johns Hopkins University; Richard Frank Consulting; Prevent Alzheimer's Disease 2020; National Institute on Aging; Oregon Health & Science University; University of Southern California; University of California - San Diego; University of Michigan; Mayo Clinic, Rochester; Baylor College of Medicine; Columbia University Medical Center; Washington University, St. Louis; University of Alabama - Birmingham; Mount Sinai School of Medicine; Rush University Medical Center; Wien Center; Johns Hopkins University; New York University; Duke University Medical Center; University of Pennsylvania; University of Kentucky; University of Pittsburgh; University of Rochester Medical Center; University of California, Irvine; University of Texas Southwestern Medical School; Emory University; University of Kansas, Medical Center; University of California, Los Angeles; Mayo Clinic, Jacksonville; Indiana University; Yale University School of Medicine; McGill Univ., Montreal-Jewish General Hospital; Sunnybrook Health Sciences, Ontario; U.B.C. Clinic for AD & Related Disorders; Cognitive Neurology - St. Joseph's, Ontario; Cleveland Clinic Lou Ruvo Center for Brain Health; Northwestern University; Premiere Research Inst (Palm Beach Neurology); Georgetown University Medical Center; Brigham and Women's Hospital; Stanford University; Banner Sun Health Research Institute; Boston University; Howard University; Case Western Reserve University; University of California, Davis - Sacramento; Neurological Care of CNY; Parkwood Hospital; University of Wisconsin; University of California, Irvine - BIC; Banner Alzheimer's Institute; Dent Neurologic Institute; Ohio State University; Albany Medical College; Hartford Hospital, Olin Neuropsychiatry Research Center; Dartmouth-Hitchcock Medical Center; Wake Forest University Health Sciences; Rhode Island Hospital; Butler Hospital; UC San Francisco; Medical University South Carolina; St. Joseph's Health Care; Nathan Kline Institute; University of Iowa College of Medicine; Cornell University; University of South Florida: USF Health Byrd Alzheimer's Institute; University of California, San Francisco; University of Southern California; UC San Francisco; University of Southern California; Mayo Clinic, Rochester; Brigham and Women's Hospital/ Harvard Medical School; UC Davis; Mayo Clinic, Rochester; UC Berkeley; Washington University St. Louis; Indiana University; Perelman School of Medicine, UPenn; USC; Perelman School of Medicine, University of Pennsylvania; UC San Francisco; Rehabilitation Institute of Chicago, Feinberg School of Medicine, Northwestern University; BWH/HMS (Chair); University of Washington (Chair); Core PI; Mayo Clinic, Rochester (Core PI); University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Francisco; UC San Francisco; UC San Francisco; UC Davis (Core PI); UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; Department of Defense (retired); University of Southern California; University of California, San Diego; Columbia University Medical Center; Rush University Medical Center; Wien Center; Duke University Medical Center; University of Rochester Medical Center; University of California, Irvine; Medical University South Carolina; Premiere Research Inst (Palm Beach Neurology); University of California, San Francisco; Georgetown University Medical Center; Brigham and Women's Hospital; Banner Sun Health Research Institute; Howard University; University of Wisconsin; University of Washington; Stanford University; Cornell University.,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Binlong Zhang
- Author Affiliations: UC San Francisco; University of Southern California; UC San Francisco University of Southern California Mayo Clinic, Rochester Mayo Clinic, Rochester; UC Berkeley; U Pennsylvania; USC; UC Davis; Brigham and Women's Hospital/Harvard Medical School Indiana University Washington University St. Louis University of Pennsylvania; Prevent Alzheimer's Disease 2020 (Chair) Siemens; Alzheimer's Association University of Pittsburgh Washington University St. Louis Cornell University; Albert Einstein College of Medicine of Yeshiva University; AD Drug Discovery Foundation; Acumen Pharmaceuticals; Washington University St. Louis; Northwestern University; National Institute of Mental Health; Brown University; Eli Lilly (Chair); BWH/HMS (Chair); University of Washington (Chair); Mayo Clinic, Rochester (Core PI) University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC Davis (Core PI); UC Davis; UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; University of London; UCLA School of Medicine; UCSF MRI; UC Davis; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; University of Pittsburgh; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; UC San Diego; Prevent Alzheimer's Disease 2020; UC San Diego; National Institute on Aging; UC San Francisco; Brown University; National Institute of Mental Health; Cornell University; Johns Hopkins University; Richard Frank Consulting; Prevent Alzheimer's Disease 2020; National Institute on Aging; Oregon Health & Science University; University of Southern California; University of California - San Diego; University of Michigan; Mayo Clinic, Rochester; Baylor College of Medicine; Columbia University Medical Center; Washington University, St. Louis; University of Alabama - Birmingham; Mount Sinai School of Medicine; Rush University Medical Center; Wien Center; Johns Hopkins University; New York University; Duke University Medical Center; University of Pennsylvania; University of Kentucky; University of Pittsburgh; University of Rochester Medical Center; University of California, Irvine; University of Texas Southwestern Medical School; Emory University; University of Kansas, Medical Center; University of California, Los Angeles; Mayo Clinic, Jacksonville; Indiana University; Yale University School of Medicine; McGill Univ., Montreal-Jewish General Hospital; Sunnybrook Health Sciences, Ontario; U.B.C. Clinic for AD & Related Disorders; Cognitive Neurology - St. Joseph's, Ontario; Cleveland Clinic Lou Ruvo Center for Brain Health; Northwestern University; Premiere Research Inst (Palm Beach Neurology); Georgetown University Medical Center; Brigham and Women's Hospital; Stanford University; Banner Sun Health Research Institute; Boston University; Howard University; Case Western Reserve University; University of California, Davis - Sacramento; Neurological Care of CNY; Parkwood Hospital; University of Wisconsin; University of California, Irvine - BIC; Banner Alzheimer's Institute; Dent Neurologic Institute; Ohio State University; Albany Medical College; Hartford Hospital, Olin Neuropsychiatry Research Center; Dartmouth-Hitchcock Medical Center; Wake Forest University Health Sciences; Rhode Island Hospital; Butler Hospital; UC San Francisco; Medical University South Carolina; St. Joseph's Health Care; Nathan Kline Institute; University of Iowa College of Medicine; Cornell University; University of South Florida: USF Health Byrd Alzheimer's Institute; University of California, San Francisco; University of Southern California; UC San Francisco; University of Southern California; Mayo Clinic, Rochester; Brigham and Women's Hospital/ Harvard Medical School; UC Davis; Mayo Clinic, Rochester; UC Berkeley; Washington University St. Louis; Indiana University; Perelman School of Medicine, UPenn; USC; Perelman School of Medicine, University of Pennsylvania; UC San Francisco; Rehabilitation Institute of Chicago, Feinberg School of Medicine, Northwestern University; BWH/HMS (Chair); University of Washington (Chair); Core PI; Mayo Clinic, Rochester (Core PI); University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Francisco; UC San Francisco; UC San Francisco; UC Davis (Core PI); UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; Department of Defense (retired); University of Southern California; University of California, San Diego; Columbia University Medical Center; Rush University Medical Center; Wien Center; Duke University Medical Center; University of Rochester Medical Center; University of California, Irvine; Medical University South Carolina; Premiere Research Inst (Palm Beach Neurology); University of California, San Francisco; Georgetown University Medical Center; Brigham and Women's Hospital; Banner Sun Health Research Institute; Howard University; University of Wisconsin; University of Washington; Stanford University; Cornell University.,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Georgia Wilson
- Author Affiliations: UC San Francisco; University of Southern California; UC San Francisco University of Southern California Mayo Clinic, Rochester Mayo Clinic, Rochester; UC Berkeley; U Pennsylvania; USC; UC Davis; Brigham and Women's Hospital/Harvard Medical School Indiana University Washington University St. Louis University of Pennsylvania; Prevent Alzheimer's Disease 2020 (Chair) Siemens; Alzheimer's Association University of Pittsburgh Washington University St. Louis Cornell University; Albert Einstein College of Medicine of Yeshiva University; AD Drug Discovery Foundation; Acumen Pharmaceuticals; Washington University St. Louis; Northwestern University; National Institute of Mental Health; Brown University; Eli Lilly (Chair); BWH/HMS (Chair); University of Washington (Chair); Mayo Clinic, Rochester (Core PI) University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC Davis (Core PI); UC Davis; UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; University of London; UCLA School of Medicine; UCSF MRI; UC Davis; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; University of Pittsburgh; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; UC San Diego; Prevent Alzheimer's Disease 2020; UC San Diego; National Institute on Aging; UC San Francisco; Brown University; National Institute of Mental Health; Cornell University; Johns Hopkins University; Richard Frank Consulting; Prevent Alzheimer's Disease 2020; National Institute on Aging; Oregon Health & Science University; University of Southern California; University of California - San Diego; University of Michigan; Mayo Clinic, Rochester; Baylor College of Medicine; Columbia University Medical Center; Washington University, St. Louis; University of Alabama - Birmingham; Mount Sinai School of Medicine; Rush University Medical Center; Wien Center; Johns Hopkins University; New York University; Duke University Medical Center; University of Pennsylvania; University of Kentucky; University of Pittsburgh; University of Rochester Medical Center; University of California, Irvine; University of Texas Southwestern Medical School; Emory University; University of Kansas, Medical Center; University of California, Los Angeles; Mayo Clinic, Jacksonville; Indiana University; Yale University School of Medicine; McGill Univ., Montreal-Jewish General Hospital; Sunnybrook Health Sciences, Ontario; U.B.C. Clinic for AD & Related Disorders; Cognitive Neurology - St. Joseph's, Ontario; Cleveland Clinic Lou Ruvo Center for Brain Health; Northwestern University; Premiere Research Inst (Palm Beach Neurology); Georgetown University Medical Center; Brigham and Women's Hospital; Stanford University; Banner Sun Health Research Institute; Boston University; Howard University; Case Western Reserve University; University of California, Davis - Sacramento; Neurological Care of CNY; Parkwood Hospital; University of Wisconsin; University of California, Irvine - BIC; Banner Alzheimer's Institute; Dent Neurologic Institute; Ohio State University; Albany Medical College; Hartford Hospital, Olin Neuropsychiatry Research Center; Dartmouth-Hitchcock Medical Center; Wake Forest University Health Sciences; Rhode Island Hospital; Butler Hospital; UC San Francisco; Medical University South Carolina; St. Joseph's Health Care; Nathan Kline Institute; University of Iowa College of Medicine; Cornell University; University of South Florida: USF Health Byrd Alzheimer's Institute; University of California, San Francisco; University of Southern California; UC San Francisco; University of Southern California; Mayo Clinic, Rochester; Brigham and Women's Hospital/ Harvard Medical School; UC Davis; Mayo Clinic, Rochester; UC Berkeley; Washington University St. Louis; Indiana University; Perelman School of Medicine, UPenn; USC; Perelman School of Medicine, University of Pennsylvania; UC San Francisco; Rehabilitation Institute of Chicago, Feinberg School of Medicine, Northwestern University; BWH/HMS (Chair); University of Washington (Chair); Core PI; Mayo Clinic, Rochester (Core PI); University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Francisco; UC San Francisco; UC San Francisco; UC Davis (Core PI); UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; Department of Defense (retired); University of Southern California; University of California, San Diego; Columbia University Medical Center; Rush University Medical Center; Wien Center; Duke University Medical Center; University of Rochester Medical Center; University of California, Irvine; Medical University South Carolina; Premiere Research Inst (Palm Beach Neurology); University of California, San Francisco; Georgetown University Medical Center; Brigham and Women's Hospital; Banner Sun Health Research Institute; Howard University; University of Wisconsin; University of Washington; Stanford University; Cornell University.,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Jian Kong
- Author Affiliations: UC San Francisco; University of Southern California; UC San Francisco University of Southern California Mayo Clinic, Rochester Mayo Clinic, Rochester; UC Berkeley; U Pennsylvania; USC; UC Davis; Brigham and Women's Hospital/Harvard Medical School Indiana University Washington University St. Louis University of Pennsylvania; Prevent Alzheimer's Disease 2020 (Chair) Siemens; Alzheimer's Association University of Pittsburgh Washington University St. Louis Cornell University; Albert Einstein College of Medicine of Yeshiva University; AD Drug Discovery Foundation; Acumen Pharmaceuticals; Washington University St. Louis; Northwestern University; National Institute of Mental Health; Brown University; Eli Lilly (Chair); BWH/HMS (Chair); University of Washington (Chair); Mayo Clinic, Rochester (Core PI) University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC Davis (Core PI); UC Davis; UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; University of London; UCLA School of Medicine; UCSF MRI; UC Davis; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; University of Pittsburgh; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; UPenn School of Medicine; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; UC San Diego; Prevent Alzheimer's Disease 2020; UC San Diego; National Institute on Aging; UC San Francisco; Brown University; National Institute of Mental Health; Cornell University; Johns Hopkins University; Richard Frank Consulting; Prevent Alzheimer's Disease 2020; National Institute on Aging; Oregon Health & Science University; University of Southern California; University of California - San Diego; University of Michigan; Mayo Clinic, Rochester; Baylor College of Medicine; Columbia University Medical Center; Washington University, St. Louis; University of Alabama - Birmingham; Mount Sinai School of Medicine; Rush University Medical Center; Wien Center; Johns Hopkins University; New York University; Duke University Medical Center; University of Pennsylvania; University of Kentucky; University of Pittsburgh; University of Rochester Medical Center; University of California, Irvine; University of Texas Southwestern Medical School; Emory University; University of Kansas, Medical Center; University of California, Los Angeles; Mayo Clinic, Jacksonville; Indiana University; Yale University School of Medicine; McGill Univ., Montreal-Jewish General Hospital; Sunnybrook Health Sciences, Ontario; U.B.C. Clinic for AD & Related Disorders; Cognitive Neurology - St. Joseph's, Ontario; Cleveland Clinic Lou Ruvo Center for Brain Health; Northwestern University; Premiere Research Inst (Palm Beach Neurology); Georgetown University Medical Center; Brigham and Women's Hospital; Stanford University; Banner Sun Health Research Institute; Boston University; Howard University; Case Western Reserve University; University of California, Davis - Sacramento; Neurological Care of CNY; Parkwood Hospital; University of Wisconsin; University of California, Irvine - BIC; Banner Alzheimer's Institute; Dent Neurologic Institute; Ohio State University; Albany Medical College; Hartford Hospital, Olin Neuropsychiatry Research Center; Dartmouth-Hitchcock Medical Center; Wake Forest University Health Sciences; Rhode Island Hospital; Butler Hospital; UC San Francisco; Medical University South Carolina; St. Joseph's Health Care; Nathan Kline Institute; University of Iowa College of Medicine; Cornell University; University of South Florida: USF Health Byrd Alzheimer's Institute; University of California, San Francisco; University of Southern California; UC San Francisco; University of Southern California; Mayo Clinic, Rochester; Brigham and Women's Hospital/ Harvard Medical School; UC Davis; Mayo Clinic, Rochester; UC Berkeley; Washington University St. Louis; Indiana University; Perelman School of Medicine, UPenn; USC; Perelman School of Medicine, University of Pennsylvania; UC San Francisco; Rehabilitation Institute of Chicago, Feinberg School of Medicine, Northwestern University; BWH/HMS (Chair); University of Washington (Chair); Core PI; Mayo Clinic, Rochester (Core PI); University of Southern California; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Diego; UC San Francisco; UC San Francisco; UC San Francisco; UC Davis (Core PI); UC San Diego; Mayo Clinic, Rochester (Core PI); Mayo Clinic, Rochester; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; Mayo Clinic; UC Berkeley (Core PI); University of Michigan; University of Utah; Banner Alzheimer's Institute; Banner Alzheimer's Institute; UC Berkeley; Washington University St. Louis; Washington University St. Louis; Washington University St. Louis; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; Perelman School of Medicine, UPenn; USC (Core PI); USC; USC; Indiana University; Indiana University; UC Irvine; Indiana University; Indiana University; Indiana University; Indiana University; UC San Francisco; Department of Defense (retired); University of Southern California; University of California, San Diego; Columbia University Medical Center; Rush University Medical Center; Wien Center; Duke University Medical Center; University of Rochester Medical Center; University of California, Irvine; Medical University South Carolina; Premiere Research Inst (Palm Beach Neurology); University of California, San Francisco; Georgetown University Medical Center; Brigham and Women's Hospital; Banner Sun Health Research Institute; Howard University; University of Wisconsin; University of Washington; Stanford University; Cornell University.,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
44
|
Compensatory Neural Recruitment for Error-Related Cerebral Activity in Patients with Moderate-To-Severe Obstructive Sleep Apnea. J Clin Med 2019; 8:jcm8071077. [PMID: 31336598 PMCID: PMC6678110 DOI: 10.3390/jcm8071077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 01/14/2023] Open
Abstract
(1) Background: Although it is known that obstructive sleep apnea (OSA) impairs action-monitoring function, there is only limited information regarding the associated cerebral substrate underlying this phenomenon. (2) Methods: The modified Flanker task, error-related event-related potentials (ERPs), namely, error-related negativity (ERN) and error positivity (Pe), and functional magnetic resonance imaging (fMRI) were used to evaluate neural activities and the functional connectivity underlying action-monitoring dysfunction in patients with different severities of OSA. (3) Results: A total of 14 control (Cont) subjects, 17 patients with moderate OSA (mOSA), and 10 patients with severe OSA (sOSA) were enrolled. A significant decline in posterror correction rate was observed in the modified Flanker task when patients with mOSA were compared with Cont subjects. Comparison between patients with mOSA and sOSA did not reveal any significant difference. In the analysis of ERPs, ERN and Pe exhibited declined amplitudes in patients with mOSA compared with Cont subjects, which were found to increase in patients with sOSA. Results of fMRI revealed a decreased correlation in multiple anterior cingulate cortex functional-connected areas in patients with mOSA compared with Cont subjects. However, these areas appeared to be reconnected in patients with sOSA. (4) Conclusions: The behavioral, neurophysiological, and functional image findings obtained in this study suggest that mOSA leads to action-monitoring dysfunction; however, compensatory neural recruitment might have contributed to the maintenance of the action-monitoring function in patients with sOSA.
Collapse
|
45
|
Tramonti Fantozzi MP, Diciotti S, Tessa C, Castagna B, Chiesa D, Barresi M, Ravenna G, Faraguna U, Vignali C, De Cicco V, Manzoni D. Unbalanced Occlusion Modifies the Pattern of Brain Activity During Execution of a Finger to Thumb Motor Task. Front Neurosci 2019; 13:499. [PMID: 31156377 PMCID: PMC6533560 DOI: 10.3389/fnins.2019.00499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
In order to assess possible influences of occlusion on motor performance, we studied by functional magnetic resonance imaging (fMRI) the changes in the blood oxygenation level dependent (BOLD) signal induced at brain level by a finger to thumb motor task in a population of subjects characterized by an asymmetric activation of jaw muscles during clenching (malocclusion). In these subjects, appropriate occlusal correction by an oral orthotic (bite) reduced the masticatory asymmetry. The finger to thumb task was performed while the subject's dental arches were touching, in two conditions: (a) with the teeth in direct contact (Bite OFF) and (b) with the bite interposed between the arches (Bite ON). Both conditions required only a very slight activation of masticatory muscles. Maps of the BOLD signal recorded during the movement were contrasted with the resting condition (activation maps). Between conditions comparison of the activation maps (Bite OFF/Bite ON) showed that, in Bite OFF, the BOLD signal was significantly higher in the trigeminal sensorimotor region, the premotor cortex, the cerebellum, the inferior temporal and occipital cortex, the calcarine cortex, the precuneus on both sides, as well as in the right posterior cingulate cortex. These data are consistent with the hypothesis that malocclusion makes movement performance more difficult, leading to a stronger activation of (a) sensorimotor areas not dealing with the control of the involved body part, (b) regions planning the motor sequence, and (c) the cerebellum, which is essential in motor coordination. Moreover, the findings of a higher activation of temporo-occipital cortex and precuneus/cingulus, respectively, suggest that, during malocclusion, the movement occurs with an increased visual imagery activity, and requires a stronger attentive effort.
Collapse
Affiliation(s)
| | - Stefano Diciotti
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi," University of Bologna, Cesena, Italy
| | - Carlo Tessa
- Department of Radiology, Versilia Hospital, Azienda USL Toscana Nord Ovest, Camaiore, Italy
| | | | - Daniele Chiesa
- Department of Orthopedics, University of Genoa, Genoa, Italy
| | - Massimo Barresi
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
| | - Giulio Ravenna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Claudio Vignali
- Department of Radiology, Versilia Hospital, Azienda USL Toscana Nord Ovest, Camaiore, Italy
| | - Vincenzo De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Diego Manzoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
46
|
Altered cognitive control network is related to psychometric and biochemical profiles in covert hepatic encephalopathy. Sci Rep 2019; 9:6580. [PMID: 31036843 PMCID: PMC6488566 DOI: 10.1038/s41598-019-42957-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
The cognitive control network (CCN) is a network responsible for multiple executive functions, which are impaired in covert hepatic encephalopathy (CHE). We aimed to use functional connectivity (FC) magnetic resonance imaging to test the hypothesis that CHE manifested with disconnection within the CCN, which is associated with impaired neuropsychiatric and biochemical profiles. CHE was detected with abnormally low psychometric hepatic encephalopathy scores (PHES) (total cut-off score <−4). Two seeds in the dorsal anterior cingulate cortex (dACC) and the dorsolateral prefrontal cortex (DLPFC) were used to calculate the FC map within the CCN. Pearson correlation analysis was performed between the CCN and psychometric, biochemical profiles including ammonia, Interleukin (IL)-6, and tumor necrosis factor (TNF)-α. Eighteen CHE, 36 non-HE (NHE) cirrhotic patients and 36 controls were studied. Significant differences in FC were noted among groups, which revealed CHE patients had a lower FC in the bilateral lateral occipital cortex (seed in the bilateral dACC) and in the right lateral occipital and precuneus cortices (seed in the left DLPFC) (P < 0.05, corrected) compared with NHE. Progressively decreased FC in the left precentral gyrus within the CCN was noted from control, NHE to CHE. PHES positively and biochemistry negatively correlated with FC in the CCN. In conclusion, CHE patients showed aberrant FC within the CCN which is correlated with both cognitive dysfunction and biochemical profiles. Ammonia and pro-inflammatory cytokines may contribute to the occurrence of aberrant connectivity. Impaired FC within the CCN may serve as a complementary biomarker for CHE.
Collapse
|
47
|
FDG PET Findings according to Wandering Patterns of Patients with Drug-naïve Alzheimer's Disease. Dement Neurocogn Disord 2019; 17:90-99. [PMID: 30906398 PMCID: PMC6428009 DOI: 10.12779/dnd.2018.17.3.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose To explore anatomic substrate of specific wandering patterns in patients with Alzheimer's disease (AD) by performing positron emission tomography with 18F fluorodeoxyglucose positron emission tomography (FDG PET). Methods Drug-naïve AD patients with wandering (n=80) and without wandering (n=262) were recruited. First, the specific pattern of wandering type was operationally classified according to specific wandering score and clinical assessment. Second, brain FDG PET was performed and fluorodeoxyglucose (FDG) uptake differences of specific brain regions according to wandering patterns were compared to those of non-wanderers. Results In patients with pacing pattern, FDG PET showed significant lower FDG uptake in both middle cingulum and left putamen cluster compared to non-wanderers. The right precuneus and supplementary motor area in patients with random pattern and left calcarine sulcus, right calcarine sulcus, right middle cingulum, and right post central gyrus in patients with lapping pattern had significantly lower FDG uptake compared to non-wanderers. Conclusions This study showed that wandering in patients with AD had three distinct patterns. These specific patterns showed significant lower FDG uptake in specific brain areas compared to non-wanderers.
Collapse
|
48
|
Dretsch MN, Rangaprakash D, Katz JS, Daniel TA, Goodman AM, Denney TS, Deshpande G. Strength and Temporal Variance of the Default Mode Network to Investigate Chronic Mild Traumatic Brain Injury in Service Members with Psychological Trauma. J Exp Neurosci 2019; 13:1179069519833966. [PMID: 30911222 PMCID: PMC6423682 DOI: 10.1177/1179069519833966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/05/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND There is a significant number of military personnel with a history of mild traumatic brain injury (mTBI) who suffer from comorbid posttraumatic stress symptoms (PTS). Although there is evidence of disruptions of the default mode network (DMN) associated with PTS and mTBI, previous studies have only studied static connectivity while ignoring temporal variability of connectivity. OBJECTIVE To assess DMN disrupted or dysregulated neurocircuitry, cognitive functioning, and psychological health of active-duty military with mTBI and PTS. METHOD U.S. Army soldiers with PTS (n = 14), mTBI + PTS (n = 25), and healthy controls (n = 21) voluntarily completed a cognitive and symptom battery. In addition, participants had magnetic resonance imaging (MRI) to assess both static functional connectivity (SFC) and variance of dynamic functional connectivity (vDFC) of the DMN. RESULTS Both the PTS and mTBI + PTS groups had significant symptoms, but only the comorbid group had significant decrements in cognitive functioning. Both groups showed less stable and disrupted neural signatures of the DMN, mainly constituting the cingulate-frontal-temporal-parietal attention network. Specifically, the PTS group showed a combination of both reduced contralateral strength and reduced unilateral variability of frontal-cingulate-temporal connectivities, as well as increased variability of frontal-parietal connectivities. The mTBI + PTS group had fewer abnormal connectives than the PTS group, all of which included reduced strength of frontal-temporal regions and reduced variability frontal-cingulate-temporal regions. Greater SFC and vDFC connectivity of the left dorsolateral prefrontal cortex (dlPFC) ↔ precuneus was associated with higher cognitive scores and lower symptom scores. CONCLUSIONS Findings suggest that individuals with PTS and mTBI + PTS have a propensity for accentuated generation of thoughts, feelings, sensations, and/or images while in a resting state. Compared with controls, only the PTS group was associated with accentuated variability of the frontal-parietal attention network. While there were no significant differences in DMN connectivity strength between the mTBI + PTS and PTS groups, variability of connectivity was able to distinguish them.
Collapse
Affiliation(s)
- Michael N Dretsch
- U.S. Army Aeromedical Research
Laboratory, Fort Rucker, AL, USA
- Department of Psychology, Auburn
University, Auburn, AL, USA
- U.S. Army Medical Research
Directorate-West, Walter Reed Army Institute for Research, Joint Base Lewis-McChord,
WA, USA
| | - D Rangaprakash
- Department of Psychiatry and
Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA,
USA
- AU MRI Research Center, Department of
Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Jeffrey S Katz
- Department of Psychology, Auburn
University, Auburn, AL, USA
- AU MRI Research Center, Department of
Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
- Alabama Advanced Imaging Consortium,
Auburn University and The University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Thomas A Daniel
- Department of Psychology, Auburn
University, Auburn, AL, USA
| | - Adam M Goodman
- Department of Psychology, Auburn
University, Auburn, AL, USA
- Alabama Advanced Imaging Consortium,
Auburn University and The University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Thomas S Denney
- AU MRI Research Center, Department of
Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
- Alabama Advanced Imaging Consortium,
Auburn University and The University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of
Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
- Alabama Advanced Imaging Consortium,
Auburn University and The University of Alabama at Birmingham, Birmingham, AL,
USA
| |
Collapse
|
49
|
Patrick F, Kempton MJ, Marwood L, Williams SCR, Young AH, Perkins AM. Brain activation during human defensive behaviour: A systematic review and preliminary meta-analysis. Neurosci Biobehav Rev 2019; 98:71-84. [PMID: 30611801 DOI: 10.1016/j.neubiorev.2018.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
The neural underpinnings of defensive behaviour have implications for both basic research and clinical translation. This review systematically collates published research on neural response during simple avoidance of threat and approach-avoidance behaviour during goal-conflicting situations and presents an exploratory meta-analysis of available whole-brain data. Scopus, PsychInfo and Web of Science databases were searched for the period up to March 2018. 1348 simple avoidance and 1910 goal-conflict publications were initially identified; following review, 8 simple avoidance and 11 goal-conflict studies were included, with 5 datasets used in a preliminary meta-analysis. A move from forebrain-to-midbrain activation as threat becomes more pertinent was noted, indicating support for the Reinforcement Sensitivity Theory of behaviour and general compatibility with animal work. However, these findings were not reflected in the subsequent preliminary meta-analysis. This review highlights the considerable heterogeneity in currently available defensive behaviour paradigms and the lack of research in clinically relevant populations.
Collapse
Affiliation(s)
- Fiona Patrick
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| | - Lindsey Marwood
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| | - Adam M Perkins
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
50
|
Zink N, Bensmann W, Arning L, Beste C, Stock AK. Apolipoprotein ε4 is associated with better cognitive control allocation in healthy young adults. Neuroimage 2018; 185:274-285. [PMID: 30342978 DOI: 10.1016/j.neuroimage.2018.10.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 11/20/2022] Open
Abstract
Many gene variants may impair our health and cognitive abilities at old age, but some of them paradoxically improve the same or similar functions at much younger age (antagonistic pleiotropy hypothesis). Such a diametric pattern may also hold true for the ancestral Apolipoprotein E (APOE) ε4 allele, which increases the risk for Alzheimer's disease and cognitive decline in old age, but may benefit (pre)frontal (executive) functions in young carriers. We therefore investigated potential cognitive benefits of the risk allele on cognitive control capacities and top-down control allocation ("metacontrol") in n = 190 healthy young adults. On a behavioral level, we found young APOE ε4 carriers to better adapt to different degrees of cognitive control requirements, with superior performance in case of high control demands. On a neurophysiological level, these group differences were reflected by modulations of the N450 component, which were rooted in activation differences of the superior frontal gyrus (SFG, BA8). Taken together, our results suggest that young ε4 carriers are more efficient than non-carriers at allocating cognitive control resources based on the actual task requirements (i.e. metacontrol), as they seem to experience less conflict/exert less effort and recruit fewer additional prefrontal areas when task set complexity increases. We further found that ε2 carriers processed implicit spatial stimulus features to a stronger degree than ε3 and ε4 carriers, but failed to benefit from this, as the additional information likely increased response selection conflicts. This finding should however be treated with ample caution as the group of ε2 carriers was comparatively small.
Collapse
Affiliation(s)
- Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany.
| |
Collapse
|