1
|
Chiu YT, Liang CC, Yu Cheng H, Lin CH, Chen JC. Alternating Hot-Cold Water Immersion Facilitates Motor Function Recovery in the Paretic Upper Limb After Stroke: A Pilot Randomized Controlled Trial. Arch Phys Med Rehabil 2024; 105:1642-1648. [PMID: 38734047 DOI: 10.1016/j.apmr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE To assess the effectiveness of alternating hot-cold water immersion (AHCWI) in patients with acute stroke. DESIGN A single-blind pilot randomized controlled trial. SETTING Department of Rehabilitation Medicine of a medical center. PARTICIPANTS Early stroke survivors (N=24) with moderate-to-severe arm paresis. INTERVENTIONS In addition to conventional rehabilitation, eligible patients were randomly assigned to an AHCWI group (n=12, for AHCWI) or a control group (n=12, for upper limb [UL] cycling exercises) 5 times per week for 6 weeks. MAIN OUTCOME MEASURES The Fugl-Meyer Assessment motor-UL (FMA-UL) score, Motricity Index-UL (MI-UL) score, modified Motor Assessment Scale (MMAS; including its UL sections, MMAS-UL) score, Berg Balance Scale score, Barthel Index (BI), and modified Ashworth Scale score were assessed by the same uninvolved physical therapist at baseline and after 4 and 6 weeks of intervention. RESULTS Compared with the control group, the AHCWI group performed better, with significant group effects (P<.05), and exhibited significant improvements in FMA-UL, MI-UL, and MMAS-UL scores at 4 and 6 weeks (P<.05). Although the remaining outcomes were not significantly different, they favored the AHCWI group. Notably, a significant difference was observed in the BI at 4 weeks (P=.032). Significant changes in the muscle tone or adverse effects were not observed in either group after the intervention. CONCLUSIONS AHCWI with stroke rehabilitation is feasible and may facilitate motor function recovery of the paretic UL after a stroke.
Collapse
Affiliation(s)
- Yu-Ting Chiu
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chung-Chao Liang
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hung- Yu Cheng
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Hsiang Lin
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Physical Therapy, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jia-Ching Chen
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Physical Therapy, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
2
|
Wang HC, Chou W, You YL, Wang YL, Hsu M, Yang CC, Yen CW, Guo LY. Effects of Thermal Stimulation and Transcutaneous Electrical Nerve Stimulation on Sensory and Motor Function of Upper Extremity in Acute Stroke Survivors: A Randomized Controlled Pilot Study. Cureus 2024; 16:e63375. [PMID: 39070415 PMCID: PMC11283809 DOI: 10.7759/cureus.63375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Upper-limb coordination is crucial for daily activities, especially among stroke survivors who may encounter obstacles during upper-limb rehabilitation. This study aimed to investigate the effects of thermal stimulation (TS) and transcutaneous electrical nerve stimulation (TENS) on sensory and motor function during recovery in acute stroke patients. Design This is a parallel study with a randomized controlled design. The experiment was conducted in the E-Da Hospital Rehabilitation Department, Kaohsiung, Taiwan. Intervention Thirty participants were in-patients with acute stroke at the E-Da Hospital. Participants were randomly assigned to three groups for a one-week intervention: exercise combined with TS, exercise combined with TENS, or conventional physical therapy with exercise alone. The Fugl-Meyer upper extremity scale, Brunnstrom stage, minimal current perception (MCP), and modified Ashworth scale were collected for the assessment. Results The outcomes demonstrated considerable improvement in MCP in all the groups after treatment. Specifically, the groups receiving TS and TENS showed significant improvements in the Brunnstrom stage, suggesting that both treatments improved distal motor recovery. Conclusion The results, following a one-week intervention period, suggested that both TS and TENS contributed to the improvement of motor and sensory function, with a significant impact on the Brunnstrom stage in the upper extremity, particularly in the distal region. The inclusion of TS or TENS in rehabilitation protocols improved distal motor function compared to baseline measures, suggesting these treatments as effective components in acute stroke rehabilitation.
Collapse
Affiliation(s)
- Hong-Chi Wang
- Sports Medicine, Kaohsiung Medical University, Kaohsiung, TWN
| | - Willy Chou
- Physical Medicine and Rehabilitation, Chi Mei Medical Center, Tainan, TWN
| | - Yu-Lin You
- Sports Medicine, China Medical University, Taichung, TWN
| | - Yu-Lin Wang
- Rehabilitation Medicine, Chi Mei Medical Center, Tainan, TWN
| | - Min Hsu
- Sports Medicine, Kaohsiung Medical University, Kaohsiung, TWN
| | - Chia-Chi Yang
- Master Program of Long-Term Care in Aging, Kaohsiung Medical University, Kaohsiung, TWN
| | - Chen-Wen Yen
- Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, TWN
| | - Lan-Yuen Guo
- Sports Medicine, Kaohsiung Medical University, Kaohsiung, TWN
| |
Collapse
|
3
|
Alhajri N, Boudreau SA, Graven-Nielsen T. Decreased Default Mode Network Connectivity Following 24 Hours of Capsaicin-induced Pain Persists During Immediate Pain Relief and Facilitation. THE JOURNAL OF PAIN 2022; 24:796-811. [PMID: 36521671 DOI: 10.1016/j.jpain.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Prolonged experimental pain models can help assess cortical mechanisms underlying the transition from acute to chronic pain such as resting-state functional connectivity (rsFC), especially in early stages. This crossover study determined the effects of 24-hour-capsaicin-induced pain on the default mode network rsFC, a major network in the dynamic pain connectome. Electroencephalographic rsFC measured by Granger causality was acquired from 24 healthy volunteers (12 women) at baseline, 1hour, and 24hours following the application of a control or capsaicin patch on the right forearm. The control patch was received maximum 1 week before the capsaicin patch. Following 24hours, the patch was cooled and later heated to assess rsFC changes in response to pain relief and facilitation, respectively. Compared to baseline, decreased rsFC at alpha oscillations (8-10Hz) was found following 1hour and 24hours of capsaicin application for connections projecting from medial prefrontal cortex (mPFC) and right angular gyrus (rAG) but not left angular gyrus (lAG) or posterior cingulate cortex (PCC): mPFC-PCC (1hour:P < .001, 24hours:P = .002), mPFC-rAG (1hour:P < .001, 24hours:P = .001), rAG-mPFC (1hour:P < .001, 24hours:P = .001), rAG-PCC (1hour:P < .001, 24hours:P = .004). Comparable decreased rsFC following 1hour and 24hours (P≤0.008) was found at beta oscillations, however, decreased projections from PCC were also found: PCC-rAG (P≤0.005) and PCC-lAG (P≤0.006). Pain NRS scores following 24hours (3.7±0.4) was reduced by cooling (0.3±0.1, P = .004) and increased by heating (4.8±0.6, P = .016). However, neither cooling nor heating altered rsFC. This study shows that 24hours of experimental pain induces a robust decrease in DMN connectivity that persists during pain relief or facilitation suggesting a possible shift to attentional and emotional processing in persistent pain. PERSPECTIVE: This article shows decreased DMN connectivity that might reflect possible attentional and emotional changes during acute and prolonged pain. Understanding these changes could potentially help clinicians in developing therapeutic methods that can better target these attentional and emotional processes before developing into more persistent states.
Collapse
Affiliation(s)
- Najah Alhajri
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Shellie Ann Boudreau
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
4
|
Ramos-Fresnedo A, Perez-Vega C, Domingo RA, Cheshire WP, Middlebrooks EH, Grewal SS. Motor Cortex Stimulation for Pain: A Narrative Review of Indications, Techniques, and Outcomes. Neuromodulation 2022; 25:211-221. [DOI: 10.1016/j.neurom.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
|
5
|
De Martino E, Gregoret L, Zandalasini M, Graven-Nielsen T. Slowing in Peak-Alpha Frequency Recorded After Experimentally-Induced Muscle Pain is not Significantly Different Between High and Low Pain-Sensitive Subjects. THE JOURNAL OF PAIN 2021; 22:1722-1732. [PMID: 34182105 DOI: 10.1016/j.jpain.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Peak alpha frequency (PAF) reduces during cutaneous pain, but no studies have investigated PAF during movement-related muscle pain. Whether high-pain sensitive (HPS) individuals exhibit a more pronounced PAF response to pain than low-pain sensitive (LPS) individuals is unclear. As a pain model, twenty-four participants received nerve growth factor injections into a wrist extensor muscle at Day 0, Day 2, and Day 4. At Day 4, a subgroup of twelve participants also undertook eccentric wrist exercise to induce additional pain. Pain numerical rating scale (NRS) scores and electroencephalography were recorded at Day 0 (before injection), Day 4, and Day 6 for 3 minutes (eyes closed) with wrist at rest (Resting-state) and extension (Contraction-state). The average pain NRS scores in contraction-state across Days were used to divide participants into HPS (NRS-scores≥2) and LPS groups. PAF was calculated by frequency decomposition of electroencephalographic recordings. Compared with Day 0, contraction NRS-scores only increased in HPS-group at Day 4 and Day 6 (P < .001). PAF in Contraction-state decreased in both groups at Day 6 compared with Day 0 (P = .011). Across days, HPS-group showed faster PAF than LPS-group during Resting-state and Contraction-state (P < .04). Average pain NRS-scores across days during Contraction-states correlated with PAF at Day 0 (P = .012). Pain NRS-scores were associated with PAF during Contraction-state at Day 4 and Day 6 (P < .05). PERSPECTIVE: PAF was slowed during long-lasting movement-related pain in both groups, suggesting a widespread change in cortical excitability independent of the pain sensitivity. Moreover, HPS individuals showed faster PAF than LPS individuals during muscle pain, which may reflect a different cognitive, emotional, or attentional response to muscle pain among individuals.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise & Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Luisina Gregoret
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Matteo Zandalasini
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; Department of Spinal Unit and Intensive Rehabilitation Medicine. A.U.S.L. Piacenza, Italy
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
6
|
Rohel A, Bouffard J, Patricio P, Mavromatis N, Billot M, Roy J, Bouyer L, Mercier C, Masse‐Alarie H. The effect of experimental pain on the excitability of the corticospinal tract in humans: A systematic review and meta‐analysis. Eur J Pain 2021; 25:1209-1226. [DOI: 10.1002/ejp.1746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Antoine Rohel
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
| | - Jason Bouffard
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
| | - Philippe Patricio
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
| | - Nicolas Mavromatis
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
| | - Maxime Billot
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
| | - Jean‐Sébastien Roy
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
- Department of Rehabilitation Faculty of Medicine Laval University Quebec City Quebec Canada
| | - Laurent Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
- Department of Rehabilitation Faculty of Medicine Laval University Quebec City Quebec Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
- Department of Rehabilitation Faculty of Medicine Laval University Quebec City Quebec Canada
| | - Hugo Masse‐Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration Quebec City Quebec Canada
- Department of Rehabilitation Faculty of Medicine Laval University Quebec City Quebec Canada
| |
Collapse
|
7
|
Impact of Somatosensory Training on Neural and Functional Recovery of Lower Extremity in Patients with Chronic Stroke: A Single Blind Controlled Randomized Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020583. [PMID: 33445588 PMCID: PMC7826555 DOI: 10.3390/ijerph18020583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Recovery of lower extremity (LE) function in chronic stroke patients is considered a barrier to community reintegration. An adequate training program is required to improve neural and functional performance of the affected LE in chronic stroke patients. The current study aimed to evaluate the effect of somatosensory rehabilitation on neural and functional recovery of LE in stroke patients. Thirty male and female patients were recruited and randomized to equal groups: control group (GI) and intervention group (GII). All patients were matched for age, duration of stroke, and degree of motor impairment of the affected LE. Both groups received standard program of physical therapy in addition to somatosensory rehabilitation for GII. The duration of treatment for both groups was eight consecutive weeks. Outcome measures used were Functional Independent Measure (FIM) and Quantitative Electroencephalography (QEEG), obtained pre- and post-treatment. A significant improvement was found in the FIM scores of the intervention group (GII), as compared to the control group (GI) (p < 0.001). Additionally, QEEG scores improved within the intervention group post-treatment. QEEG scores did not improve within the control group post-treatment, except for “Cz-AR”, compared to pretreatment, with no significant difference between groups. Adding somatosensory training to standard physical therapy program results in better improvement of neuromuscular control of LE function in chronic stroke patients.
Collapse
|
8
|
Müschenich FS, Sichtermann T, Di Francesco ME, Rodriguez-Raecke R, Heim L, Singer M, Wiesmann M, Freiherr J. Some like it, some do not: behavioral responses and central processing of olfactory-trigeminal mixture perception. Brain Struct Funct 2020; 226:247-261. [PMID: 33355693 PMCID: PMC7817597 DOI: 10.1007/s00429-020-02178-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Abstract
Exploring the potential of eucalyptol as a masking agent for aversive odors, we found that eucalyptol masks the olfactory but not the trigeminal sensation of ammonia in a previous study. Here, we further investigate the processing of a mixture consisting of eucalyptol and ammonia, two olfactory–trigeminal stimuli. We presented the two pure odors and a mixture thereof to 33 healthy participants. The nostrils were stimulated alternately (monorhinal application). We analyzed the behavioral ratings (intensity and pleasantness) and functional brain images. First, we replicated our previous finding that, within the mixture, the eucalyptol component suppressed the olfactory intensity of the ammonia component. Second, mixture pleasantness was rated differently by participants depending on which component dominated their mixture perception. Approximately half of the volunteers rated the eucalyptol component as more intense and evaluated the mixture as pleasant (pleasant group). The other half rated the ammonia component as more intense and evaluated the mixture as unpleasant (unpleasant group). Third, these individual differences were also found in functional imaging data. Contrasting the mixture either to eucalyptol or to both single odors, neural activation was found in the unpleasant group only. Activation in the anterior insula and SII was interpreted as evidence for an attentional shift towards the potentially threatening mixture component ammonia and for trigeminal enhancement. In addition to insula and SII, further regions of the pain matrix were involved when assessing all participant responses to the mixture. Both a painful sensation and an attentional shift towards the unpleasant mixture component complicates the development of an efficient mask because a pleasant perception is an important requirement for malodor coverage.
Collapse
Affiliation(s)
- Franziska S Müschenich
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Thorsten Sichtermann
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Maria Elisa Di Francesco
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Rea Rodriguez-Raecke
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lennart Heim
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | - Martin Wiesmann
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jessica Freiherr
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
9
|
Panchuelo RMS, Eldeghaidy S, Marshall A, McGlone F, Francis ST, Favorov O. A nociresponsive specific area of human somatosensory cortex within BA3a: BA3c? Neuroimage 2020; 221:117187. [PMID: 32711068 PMCID: PMC7762820 DOI: 10.1016/j.neuroimage.2020.117187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 01/03/2023] Open
Abstract
It is well recognized that in primates, including humans, noxious body stimulation evokes a neural response in the posterior bank of the central sulcus, in Brodmann cytoarchitectonic subdivisions 3b and 1 of the primary somatosensory cortex. This response is associated with the 1st/sharp pain and contributes to sensory discriminative aspects of pain perception and spatial localization of the noxious stimulus. However, neurophysiological studies in New World monkeys predict that in humans noxious stimulation also evokes a separate neural response-mediated by C-afferent drive and associated with the 2nd/burning pain-in the depth of the central sulcus in Brodmann area 3a (BA3a) at the transition between the somatosensory and motor cortices. To evoke such a response, it is necessary to use multi-second duration noxious stimulation, rather than brief laser pulses. Given the limited human pain-imaging literature on cortical responses induced by C-nociceptive input specifically within BA3a, here we used high spatial resolution 7T fMRI to study the response to thermonoxious skin stimulation. We observed the predicted response of BA3a in the depth of the central sulcus in five human volunteers. Review of the available evidence suggests that the nociresponsive region in the depth of the central sulcus is a structurally and functionally distinct cortical area that should not be confused with proprioceptive BA3a. It is most likely engaged in interoception and control of the autonomic nervous system, and contributes to the sympathetic response to noxious stimulation, arguably the most intolerable aspect of pain experience. Ablation of this region has been shown to reduce pain sensibility and might offer an effective means of ameliorating some pathological pain conditions.
Collapse
Affiliation(s)
- Rosa M Sanchez Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Sally Eldeghaidy
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK; Future Food Beacon, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Andrew Marshall
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Francis McGlone
- School of natural Science and Psychology, Liverpool John Moores University, Liverpool, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Oleg Favorov
- Department of Biomedical Engineering, University of North Carolina, CB #7575, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Cassady K, Ruitenberg MFL, Reuter-Lorenz PA, Tommerdahl M, Seidler RD. Neural Dedifferentiation across the Lifespan in the Motor and Somatosensory Systems. Cereb Cortex 2020; 30:3704-3716. [PMID: 32043110 DOI: 10.1093/cercor/bhz336] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/03/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Age-related declines in sensorimotor performance have been linked to dedifferentiation of neural representations (i.e., more widespread activity during task performance in older versus younger adults). However, it remains unclear whether changes in neural representations across the adult lifespan are related between the motor and somatosensory systems, and whether alterations in these representations are associated with age declines in motor and somatosensory performance. To investigate these issues, we collected functional magnetic resonance imaging and behavioral data while participants aged 19-76 years performed a visuomotor tapping task or received vibrotactile stimulation. Despite one finding indicative of compensatory mechanisms with older age, we generally observed that 1) older age was associated with greater activity and stronger positive connectivity within sensorimotor and LOC regions during both visuomotor and vibrotactile tasks; 2) increased activation and stronger positive connectivity were associated with worse performance; and 3) age differences in connectivity in the motor system correlated with those in the somatosensory system. Notwithstanding the difficulty of disentangling the relationships between age, brain, and behavioral measures, these results provide novel evidence for neural dedifferentiation across the adult lifespan in both motor and somatosensory systems and suggest that dedifferentiation in these two systems is related.
Collapse
Affiliation(s)
- Kaitlin Cassady
- Department of Psychology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Marit F L Ruitenberg
- Department of Experimental Psychology, Ghent University, Ghent 9000, Belgium.,Department of Health, Medical and Neuropsychology, Leiden University, Leiden 2300, The Netherlands
| | | | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27514, USA and
| | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Chen SCJ, Hsu MJ, Kuo YT, Lin RT, Lo SK, Lin JH. Immediate effects of noxious and innocuous thermal stimulation on brain activation in patients with stroke. Medicine (Baltimore) 2020; 99:e19386. [PMID: 32118788 PMCID: PMC7478460 DOI: 10.1097/md.0000000000019386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Case-control studies have shown that noxious thermal stimulation (TS) can improve arm function in patients with stroke. However, the neural mechanisms underlying this improvement are largely unknown. We explored functional neural activation due to noxious and innocuous TS intervention applied to the paretic arm of patients with stroke. Sixteen participants with unilateral cortical infarctions were allocated to one of two groups: noxious TS (8 patients; temperature combination: hot pain 46°C to 47°C, cold pain 7°C-8°C) or innocuous TS (n = 8; temperature combination: hot 40°C-41°C, cold 20°C-21°C). All subjects underwent fMRI scanning before and after 30 min TS intervention and performed a finger tapping task with the affected hand. Immediate brain activation effects were assessed according to thermal type (noxious vs. innocuous TS) and time (pre-TS vs post-TS). Regions activated by noxious TS relative to innocuous TS (P < .05, adjusted for multiple comparisons) were related to motor performance and sensory function in the bilateral primary somatosensory cortices, anterior cingulate cortex, insula, thalamus, hippocampus and unilateral primary motor cortex, secondary somatosensory cortex at the contralateral side of lesion, and unilateral supplementary motor area at the ipsilateral side of lesion. Greater activation responses were observed in the side contralateral to the lesion, suggesting a significant intervention effect. Our preliminary findings suggest that noxious TS may induce neuroplastic changes unconstrained to the local area.Trial registration: NCT01418404.
Collapse
Affiliation(s)
- Sharon Chia-Ju Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University
- Department of Medical Research, Kaohsiung Medical University Hospital
| | - Miao-Ju Hsu
- Department of Physical Therapy, Kaohsiung Medical University
| | - Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan
- Department of Medical Imaging, Kaohsiung Medical University Chung Ho Memorial Hospital
| | - Ruey-Tay Lin
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ROC
| | - Sing-Kai Lo
- Faculty of Liberal Arts and Social Sciences, Education University of Hong Kong, Hong Kong
| | - Jau-Hong Lin
- Department of Medical Research, Kaohsiung Medical University Hospital
- Department of Physical Therapy, Kaohsiung Medical University
| |
Collapse
|
12
|
Chen SCJ, Lin JH, Hsu JS, Shih CM, Lai JJ, Hsu MJ. Influence of Alternate Hot and Cold Thermal Stimulation in Cortical Excitability in Healthy Adults: An fMRI Study. J Clin Med 2019; 9:jcm9010018. [PMID: 31861675 PMCID: PMC7019540 DOI: 10.3390/jcm9010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022] Open
Abstract
Stroke rehabilitation using alternate hot and cold thermal stimulation (altTS) has been reported to improve motor function in hemiplegia; however, the influence of brain excitability induced by altTS remains unclear. This study examined cortical activation induced by altTS in healthy adults, focusing on motor-related areas. This involved a repeated crossover experimental design with two temperature settings (innocuous altTS with alternate heat-pain and cold-pain thermal and noxious altTS with alternate heat and cold thermal) testing both arms (left side and right side). Thirty-one healthy, right-handed participants received four episodes of altTS on four separate days. Functional magnetic resonance imaging scans were performed both before and after each intervention to determine whether altTS intervention affects cortical excitability, while participants performed a finger-tapping task during scanning. The findings revealed greater response intensity of cortical excitability in participants who received noxious altTS in the primary motor cortex, supplementary motor cortex, and somatosensory cortex than in those who received innocuous altTS. Moreover, there was more motor-related excitability in the contra-lateral brain when heat was applied to the dominant arm, and more sensory-associated excitability in the contra-lateral brain when heat was applied to the nondominant arm. The findings highlight the effect of heat on cortical excitability and provide insights into the application of altTS in stroke rehabilitation.
Collapse
Affiliation(s)
- Sharon Chia-Ju Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Jau-Hong Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Department of Physical Therapy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Jui-Sheng Hsu
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-S.H.); (C.-M.S.); (J.-J.L.)
| | - Chiu-Ming Shih
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-S.H.); (C.-M.S.); (J.-J.L.)
| | - Jui-Jen Lai
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-S.H.); (C.-M.S.); (J.-J.L.)
| | - Miao-Ju Hsu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Department of Physical Therapy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2673); Fax: +886-7-3215845
| |
Collapse
|
13
|
Zahr NM, Pohl KM, Pfefferbaum A, Sullivan EV. Central Nervous System Correlates of "Objective" Neuropathy in Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:2144-2152. [PMID: 31386216 PMCID: PMC6779503 DOI: 10.1111/acer.14162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Among the neurological consequences of alcoholism is peripheral neuropathy. Relative to human immunodeficiency virus (HIV) or diabetes-related neuropathies, neuropathy associated with alcohol use disorders (AUD) is understudied. In both the diabetes and HIV literature, emerging evidence supports a central nervous system (CNS) component to peripheral neuropathy. METHODS In seeking a central substrate for AUD-related neuropathy, the current study was conducted in 154 individuals with AUD (43 women, age 21 to 74 years) and 99 healthy controls (41 women, age 21 to 77 years) and explored subjective symptoms (self-report) and objective signs (perception of vibration, deep tendon ankle reflex, position sense, 2-point discrimination) of neuropathy separately. In addition to regional brain volumes, risk factors for AUD-related neuropathy, including age, sex, total lifetime ethanol consumed, nutritional indices (i.e., thiamine, folate), and measures of liver integrity (i.e., γ-glutamyltransferase), were evaluated. RESULTS The AUD group described more subjective symptoms of neuropathy and was more frequently impaired on bilateral perception of vibration. From 5 correlates, the number of AUD-related seizures was most significantly associated with subjective symptoms of neuropathy. There were 15 correlates of impaired perception of vibration among the AUD participants: Of these, age and volume of frontal precentral cortex were the most robust predictors. CONCLUSIONS This study supports CNS involvement in objective signs of neuropathy in AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Neuroscience Program, (NMZ, KMP, AP), SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| | - Kilian M Pohl
- Neuroscience Program, (NMZ, KMP, AP), SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| | - Adolf Pfefferbaum
- Neuroscience Program, (NMZ, KMP, AP), SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| |
Collapse
|
14
|
The "virtual lesion" approach to transcranial magnetic stimulation: studying the brain-behavioral relationships in experimental pain. Pain Rep 2019; 4:e760. [PMID: 31579852 PMCID: PMC6728008 DOI: 10.1097/pr9.0000000000000760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) can be used to create a temporary “virtual lesion” (VL) of a target cortical area, disrupting its function and associated behavior. Transcranial magnetic stimulation can therefore test the functional role of specific brain areas. This scoping review aims at investigating the current literature of the “online” TMS-evoked VL approach to studying brain–behavioral relationships during experimental pain in healthy subjects. Ovid-Medline, Embase, and Web of Science electronic databases were searched. Included studies tested different TMS-based VLs of various pain brain areas during continuous experimental pain or when time-locked to a noxious stimulus. Outcome measures assessed different pain measurements. Initial screening resulted in a total of 403 studies, of which 17 studies were included in the review. The VLs were directed to the prefrontal, primary and secondary somatosensory, primary motor, and parietal cortices through single/double/triple/sequence of five-TMS pulses or through repeated TMS during mechanical, electrical contact, radiant heat, or capsaicin-evoked noxious stimulation. Despite a wide variability among the VL protocols, outcome measures, and study designs, a behavioral VL effect (decrease or increase in pain responses) was achieved in the majority of the studies. However, such findings on the relationships between the modified brain activity and the manifested pain characteristics were often mixed. To conclude, TMS–elicited VLs during experimental pain empower our understanding of brain–behavior relationships at specific time points during pain processing. The mixed findings of these relationships call for an obligatory standard of all pain-related TMS protocols for clearly determining the magnitude and direction of TMS-induced behavioral effects.
Collapse
|
15
|
Abstract
Changes in brain function in chronic pain have been studied using paradigms that deliver acute pain-eliciting stimuli or assess the brain at rest. Although motor disability accompanies many chronic pain conditions, few studies have directly assessed brain activity during motor function in individuals with chronic pain. Using chronic jaw pain as a model, we assessed brain activity during a precisely controlled grip force task and during a precisely controlled pain-eliciting stimulus on the forearm. We used multivariate analyses to identify regions across the brain whose activity together best separated the groups. We report 2 novel findings. First, although the parameters of grip force production were similar between the groups, the functional activity in regions including the prefrontal cortex, insula, and thalamus best separated the groups. Second, although stimulus intensity and pain perception were similar between the groups, functional activity in brain regions including the dorsal lateral prefrontal cortex, rostral ventral premotor cortex, and inferior parietal lobule best separated the groups. Our observations suggest that chronic jaw pain is associated with changes in how the brain processes motor and pain-related information even when the effector producing the force or experiencing the pain-eliciting stimulus is distant from the jaw. We also demonstrate that motor tasks and multivariate analyses offer alternative approaches for studying brain function in chronic jaw pain.
Collapse
|
16
|
Lamp G, Goodin P, Palmer S, Low E, Barutchu A, Carey LM. Activation of Bilateral Secondary Somatosensory Cortex With Right Hand Touch Stimulation: A Meta-Analysis of Functional Neuroimaging Studies. Front Neurol 2019; 9:1129. [PMID: 30687211 PMCID: PMC6335946 DOI: 10.3389/fneur.2018.01129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Brain regions involved in processing somatosensory information have been well documented through lesion, post-mortem, animal, and more recently, structural and functional neuroimaging studies. Functional neuroimaging studies characterize brain activation related to somatosensory processing; yet a meta-analysis synthesis of these findings is currently lacking and in-depth knowledge of the regions involved in somatosensory-related tasks may also be confounded by motor influences. Objectives: Our Activation Likelihood Estimate (ALE) meta-analysis sought to quantify brain regions that are involved in the tactile processing of the right (RH) and left hands (LH) separately, with the exclusion of motor related activity. Methods: The majority of studies (n = 41) measured activation associated with RH tactile stimulation. RH activation studies were grouped into those which conducted whole-brain analyses (n = 29) and those which examined specific regions of interest (ROI; n = 12). Few studies examined LH activation, though all were whole-brain studies (N = 7). Results: Meta-analysis of brain activation associated with RH tactile stimulation (whole-brain studies) revealed large clusters of activation in the left primary somatosensory cortex (S1) and bilaterally in the secondary somatosensory cortex (S2; including parietal operculum) and supramarginal gyrus (SMG), as well as the left anterior cingulate. Comparison between findings from RH whole-brain and ROI studies revealed activation as expected, but restricted primarily to S1 and S2 regions. Further, preliminary analyses of LH stimulation studies only, revealed two small clusters within the right S1 and S2 regions, likely limited due to the small number of studies. Contrast analyses revealed the one area of overlap for RH and LH, was right secondary somatosensory region. Conclusions: Findings from the whole-brain meta-analysis of right hand tactile stimulation emphasize the importance of taking into consideration bilateral activation, particularly in secondary somatosensory cortex. Further, the right parietal operculum/S2 region was commonly activated for right and left hand tactile stimulation, suggesting a lateralized pattern of somatosensory activation in right secondary somatosensory region. Implications for further research and for possible differences in right and left hemispheric stroke lesions are discussed.
Collapse
Affiliation(s)
- Gemma Lamp
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| | - Peter Goodin
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Susan Palmer
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Essie Low
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Department of Neurology, Sunshine Hospital, Western Health, Melbourne, VIC, Australia
- Department of Psychology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Ayla Barutchu
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Balliol College, University of Oxford, Oxford, United Kingdom
| | - Leeanne M. Carey
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
17
|
Strategy-dependent modulation of cortical pain circuits for the attenuation of pain. Cortex 2019; 113:255-266. [PMID: 30711854 DOI: 10.1016/j.cortex.2018.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/13/2018] [Accepted: 12/13/2018] [Indexed: 01/08/2023]
Abstract
The effectiveness of cognitive strategies to attenuate pain has been reported in various behavioural studies, however the underlying neuronal mechanisms are only now beginning to be understood. Using a 7 T fMRI, we investigated three different pain attenuation strategies in 20 healthy subjects via: (a) non-imaginal distraction by counting backwards in steps of seven; (b) imaginal distraction by imagining a safe place; and (c) reinterpretation of the pain valence (reappraisal). Although we found considerable variability in the performances, all strategies exhibited a significant relief of pain compared to an unmodulated pain condition. Our finding argues against a subject's potential predisposition for a certain attenuation approach, as some of the subjects performed well on all attenuation tasks yet others performed low on all attenuation tasks. We further investigated the variability of performance within-subjects and explored the cortical regions that contribute to successful single attempts of pain attenuation at trial level. For each of the three tasks, we found a different pattern of brain activity that reflects the performance of pain attenuation. The more successful trials are related to reduced activity of different parts of the insular cortex. Behavioural data suggest that distraction is the preferable cognitive strategy to modulate pain perception. For three different cognitive strategies we revealed brain regions that are suggested to reliably modulate the perception of pain. The findings could be of utmost benefit for future attempts to integrate neuroscientific techniques into the treatment of pain. Further studies are necessary to investigate whether the present results are transferable to patients as an essential part of the multimodal therapy for chronic pain. These patients may also benefit from additional neurofeedback techniques by combining the strategies with the cortical feedback in order to modulate pain-related brain activity.
Collapse
|
18
|
Ansari Y, Remaud A, Tremblay F. Modulation of corticomotor excitability in response to distal focal cooling. PeerJ 2019; 6:e6163. [PMID: 30595991 PMCID: PMC6305122 DOI: 10.7717/peerj.6163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022] Open
Abstract
Background Thermal stimulation has been proposed as a modality to facilitate motor recovery in neurological populations, such as stroke. Recently (Ansari, Remaud & Tremblay, 2018), we showed that application of cold or warm stimuli distally to a single digit produced a variable and short lasting modulation in corticomotor excitability. Here, our goal was to extend these observations to determine whether an increase in stimulation area could elicit more consistent modulation. Methods Participants (n = 22) consisted of a subset who participated in our initial study. Participants were asked to come for a second testing session where the thermal protocol was repeated but with extending the stimulation area from single-digit (SD) to multi-digits (MD, four fingers, no thumb). As in the first session, skin temperature and motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation were measured at baseline (BL, neutral gel pack at 22 °C), at 1 min during the cooling application (pre-cooled 10 °C gel pack) and 5 and 10 min post-cooling (PC5 and PC10). The analysis combined the data obtained previously with single-SD cooling (Ansari, Remaud & Tremblay, 2018) with those obtained here for MD cooling. Results At BL, participants exhibited comparable measures of resting corticomotor excitability between testing sessions. MD cooling induced similar reductions in skin temperature as those recorded with SD cooling with a peak decline at C1 of respectively, -11.0 and -10.3 °C. For MEPs, the primary analysis revealed no main effect attributable to the stimulation area. A secondary analysis of individual responses to MD cooling revealed that half of the participants exhibited delayed MEP facilitation (11/22), while the other half showed delayed inhibition (10/22); which was sustained in the post-cooling phase. More importantly, a correlation between variations in MEP amplitude recorded during the SD cooling session with those recorded in the second session with MD cooling, revealed a very good degree of correspondence between the two at the individual level. Conclusion These results indicate that increasing the cooling area in the distal hand, while still eliciting variable responses, did produce more sustained modulation in MEP amplitude in the post-cooling phase. Our results also highlight that responses to cooling in terms of either depression or facilitation of corticomotor excitability tend to be fairly consistent in a given individual with repeated applications.
Collapse
Affiliation(s)
- Yekta Ansari
- School of Rehabilitation Sciences, Faculty of Heath Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Anthony Remaud
- Clinical Neuroscience Lab, Bruyère Research Institute, Ottawa, ON, Canada
| | - François Tremblay
- School of Rehabilitation Sciences, Faculty of Heath Sciences, University of Ottawa, Ottawa, ON, Canada.,Clinical Neuroscience Lab, Bruyère Research Institute, Ottawa, ON, Canada
| |
Collapse
|
19
|
Law LLF, Fong KNK, Li RKF. Multisensory stimulation to promote upper extremity motor recovery in stroke: A pilot study. Br J Occup Ther 2018. [DOI: 10.1177/0308022618770141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction Occupational therapists have been using various preparatory methods as part of the treatment sessions to prepare clients for occupational performance and participation in occupation. Studies have shown sensory stimulation both activates brain areas inducing cortical reorganization and modulates motor cortical excitability for the stimulated afferents, hence re-establishing the disrupted sensorimotor loop due to stroke. This pilot investigates the potential effects of using multisensory stimulation as a preparatory method prior to conventional training (CT) on upper-extremity motor recovery and self-care function in stroke patients. Method This was a quasi-randomized controlled pilot. Twelve participants (age in years = 67.17 + /−11.29) with upper extremity motor deficits were randomly allocated to multisensory therapy (n = 6) or conventional (n = 6) groups for 12-week training. Assessments were conducted at baseline and post-intervention using Fugl-Meyer Assessment of Motor Recovery after Stroke (FMA), Manual Muscle Testing (MMT), Functional Test for the Hemiplegic Upper Extremity (Hong Kong version FTHUE-HK) and Modified Barthel Index (MBI). Results Significant between-group differences were shown in FMA ( p = 0.003), FTHUE-HK ( p = 0.028) and MMT ( p = 0.034). Conclusion Multisensory stimulation could be used as a preparatory method prior to CT in improving upper extremity motor recovery in stroke rehabilitation. Further well-designed larger scale studies are needed to validate the potential benefits of this application.
Collapse
Affiliation(s)
- Lawla LF Law
- Assistant Professor, School of Medical and Health Sciences, Tung Wah College, Hong Kong SAR; Adjunct Senior Lecturer, Occupational Therapy Department, James Cook University, Australia
| | - Kenneth NK Fong
- Associate Professor, Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Ray KF Li
- Adjunct Lecturer, School of Medical and Health Sciences, Tung Wah College, Hong Kong SAR
| |
Collapse
|
20
|
Corbet T, Iturrate I, Pereira M, Perdikis S, Millán JDR. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance. Neuroimage 2018; 176:268-276. [DOI: 10.1016/j.neuroimage.2018.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023] Open
|
21
|
Kisler LB, Gurion I, Granovsky Y, Sinai A, Sprecher E, Shamay-Tsoory S, Weissman-Fogel I. Can a single pulse transcranial magnetic stimulation targeted to the motor cortex interrupt pain processing? PLoS One 2018; 13:e0195739. [PMID: 29630681 PMCID: PMC5891059 DOI: 10.1371/journal.pone.0195739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/28/2018] [Indexed: 01/06/2023] Open
Abstract
The modulatory role of the primary motor cortex (M1), reflected by an inhibitory effect of M1-stimulation on clinical pain, motivated us to deepen our understanding of M1’s role in pain modulation. We used Transcranial Magnetic Stimulation (TMS)-induced virtual lesion (VL) to interrupt with M1 activity during noxious heat pain. We hypothesized that TMS-VL will effect experimental pain ratings. Three VL protocols were applied consisting of single-pulse TMS to transiently interfere with right M1 activity: (1) VLM1- TMS applied to 11 subjects, 20 msec before the individual’s first pain-related M1 peak activation, as determined by source analysis (sLORETA), (2) VL-50 (N = 16; TMS applied 50 ms prior to noxious stimulus onset), and (3) VL+150 (N = 16; TMS applied 150 ms after noxious stimulus onset). Each protocol included 3 conditions ('pain-alone', ' TMS-VL', and ‘SHAM-VL’), each consisted of 30 noxious heat stimuli. Pain ratings were compared, in each protocol, for TMS-VL vs. SHAM-VL and vs. pain-alone conditions. Repeated measures analysis of variance, corrected for multiple comparisons revealed no significant differences in the pain ratings between the different conditions within each protocol. Therefore, our results from this exploratory study suggest that a single pulse TMS-induced VL that is targeted to M1 failed to interrupt experimental pain processing in the specific three stimulation timing examined here.
Collapse
Affiliation(s)
- Lee-Bareket Kisler
- Department of Psychology, University of Haifa, Haifa, Israel
- Laboratory of Clinical Neurophysiology, Technion Faculty of Medicine, Haifa, Israel
| | - Ilan Gurion
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Yelena Granovsky
- Laboratory of Clinical Neurophysiology, Technion Faculty of Medicine, Haifa, Israel
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
- Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | | | - Irit Weissman-Fogel
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- * E-mail:
| |
Collapse
|
22
|
Borhani K, Làdavas E, Fotopoulou A, Haggard P. "Lacking warmth": Alexithymia trait is related to warm-specific thermal somatosensory processing. Biol Psychol 2017; 128:132-140. [PMID: 28735971 PMCID: PMC5595273 DOI: 10.1016/j.biopsycho.2017.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/16/2017] [Accepted: 07/16/2017] [Indexed: 01/24/2023]
Abstract
Alexithymia is a personality trait involving deficits in emotional processing. The personality construct has been extensively validated, but the underlying neural and physiological systems remain controversial. One theory suggests that low-level somatosensory mechanisms act as somatic markers of emotion, underpinning cognitive and affective impairments in alexithymia. In two separate samples (total N=100), we used an established Quantitative Sensory Testing (QST) battery to probe multiple neurophysiological submodalities of somatosensation, and investigated their associations with the widely-used Toronto Alexithymia Scale (TAS-20). Experiment one found reduced sensitivity to warmth in people with higher alexithymia scores, compared to individuals with lower scores, without deficits in other somatosensory submodalities. Experiment two replicated this result in a new group of participants using a full-sample correlation between threshold for warm detection and TAS-20 scores. We discuss the relations between low-level thermoceptive function and cognitive processing of emotion.
Collapse
Affiliation(s)
- Khatereh Borhani
- Institute of Cognitive Neuroscience, University College London, London, UK; Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy; CSRNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, 47521 Cesena, Italy; Institute of Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Elisabetta Làdavas
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy; CSRNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, 47521 Cesena, Italy
| | | | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK.
| |
Collapse
|
23
|
Bi-phasic activation of the primary motor cortex by pain and its relation to pain-evoked potentials − an exploratory study. Behav Brain Res 2017; 328:209-217. [DOI: 10.1016/j.bbr.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 01/09/2023]
|
24
|
Misra G, Ofori E, Chung JW, Coombes SA. Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement. Cereb Cortex 2017; 27:2592-2606. [PMID: 26965905 DOI: 10.1093/cercor/bhw061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased beta oscillations over sensorimotor cortex are antikinetic. Motor- and pain-related processes separately suppress beta oscillations over sensorimotor cortex leading to the prediction that ongoing pain should facilitate movement. In the current study, we used a paradigm in which voluntary movements were executed during an ongoing pain-eliciting stimulus to test the hypothesis that a pain-related suppression of beta oscillations would facilitate the initiation of a subsequent voluntary movement. Using kinematic measures, electromyography, and high-density electroencephalography, we demonstrate that ongoing pain leads to shorter reaction times without affecting the kinematics or accuracy of movement. Reaction time was positively correlated with beta power prior to movement in contralateral premotor areas. Our findings corroborate the view that beta-band oscillations are antikinetic and provide new evidence that pain primes the motor system for action. Our observations provide the first evidence that a pain-related suppression of beta oscillations over contralateral premotor areas leads to shorter reaction times for voluntary movement.
Collapse
Affiliation(s)
- Gaurav Misra
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Edward Ofori
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Jae Woo Chung
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Misra G, Wang WE, Archer DB, Roy A, Coombes SA. Automated classification of pain perception using high-density electroencephalography data. J Neurophysiol 2016; 117:786-795. [PMID: 27903639 DOI: 10.1152/jn.00650.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/28/2016] [Indexed: 11/22/2022] Open
Abstract
The translation of brief, millisecond-long pain-eliciting stimuli to the subjective perception of pain is associated with changes in theta, alpha, beta, and gamma oscillations over sensorimotor cortex. However, when a pain-eliciting stimulus continues for minutes, regions beyond the sensorimotor cortex, such as the prefrontal cortex, are also engaged. Abnormalities in prefrontal cortex have been associated with chronic pain states, but conventional, millisecond-long EEG paradigms do not engage prefrontal regions. In the current study, we collected high-density EEG data during an experimental paradigm in which subjects experienced a 4-s, low- or high-intensity pain-eliciting stimulus. EEG data were analyzed using independent component analyses, EEG source localization analyses, and measure projection analyses. We report three novel findings. First, an increase in pain perception was associated with an increase in gamma and theta power in a cortical region that included medial prefrontal cortex. Second, a decrease in lower beta power was associated with an increase in pain perception in a cortical region that included the contralateral sensorimotor cortex. Third, we used machine learning for automated classification of EEG data into low- and high-pain classes. Theta and gamma power in the medial prefrontal region and lower beta power in the contralateral sensorimotor region served as features for classification. We found a leave-one-out cross-validation accuracy of 89.58%. The development of biological markers for pain states continues to gain traction in the literature, and our findings provide new information that advances this body of work.NEW & NOTEWORTHY The development of a biological marker for pain continues to gain traction in literature. Our findings show that high- and low-pain perception in human subjects can be classified with 89% accuracy using high-density EEG data from prefrontal cortex and contralateral sensorimotor cortex. Our approach represents a novel neurophysiological paradigm that advances the literature on biological markers for pain.
Collapse
Affiliation(s)
- Gaurav Misra
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Arnab Roy
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
Wang J, Yu P, Zeng M, Gu X, Liu Y, Xiao M. Reduction in spasticity in stroke patient with paraffin therapy. Neurol Res 2016; 39:36-44. [PMID: 27876449 DOI: 10.1080/01616412.2016.1248169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jing Wang
- Department of Rehabilitation Medicine, Beijing United Family Rehabilitation Hospital , Beijing, China
- Department of Rehabilitation Medicine, Taikang Yanyuan Rehabilitation Hospital , Beijing, China
| | - Peng Yu
- Department of Anethesiology, Beijing Puhua international hospital , Beijing, China
- Department of Pain Medicine, Kunming LiH Skycity Rehabilitation Hospital , Kunming, China
| | - Ming Zeng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University , Jiaxing, China
| | - Xudong Gu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University , Jiaxing, China
| | - Yan Liu
- Department of Rehabilitation Medicine, Beijing United Family Rehabilitation Hospital , Beijing, China
| | - Mingyue Xiao
- Department of Rehabilitation Medicine, Beijing United Family Rehabilitation Hospital , Beijing, China
| |
Collapse
|
27
|
Wenger E, Kühn S, Verrel J, Mårtensson J, Bodammer NC, Lindenberger U, Lövdén M. Repeated Structural Imaging Reveals Nonlinear Progression of Experience-Dependent Volume Changes in Human Motor Cortex. Cereb Cortex 2016; 27:2911-2925. [DOI: 10.1093/cercor/bhw141] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Effect of thermal stimulation on corticomotor excitability in patients with stroke. Am J Phys Med Rehabil 2015; 93:801-8. [PMID: 24800718 DOI: 10.1097/phm.0000000000000105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study examined the immediate effects of noxious and innocuous thermal stimulation intervention on corticomotor excitability for the paretic arm in patients with stroke. DESIGN Sixteen patients with stroke for more than 3 mos were randomly assigned into the experimental and control groups. All participants received the thermal stimulation protocol on the affected arm for 30 mins. The experimental group received noxious heat (46°C-47°C) and cold (7°C-8°C) stimuli, and the control group received innocuous heat (40°C-41°C) and cold (20°C-21°C) stimuli. Corticomotor excitability was assessed to measure the motor threshold, size of cortical motor output map, and mean motor evoked potentials for the abductor pollicis brevis by focal transcranial magnetic stimulation before and after 30 mins of thermal stimulation intervention program. RESULTS The findings of transcranial magnetic stimulation revealed a significant increase in map size of the affected hemisphere and mean motor evoked potentials in the experimental group. Moreover, significant differences in the change values of map size (7.0 [7.9] for the experimental group vs. -1.7 [2.9] for the control group, P = 0.03) and mean (SD) motor evoked potentials (0.4 [8.9] mV for the experimental group vs. -0.1 [0.1] mV for the control group, P = 0.03) were found. CONCLUSIONS The preliminary results suggest that the noxious 30 mins of thermal stimulation intervention induced neurophysiologic changes in the motor cortex of the lesioned hemisphere.
Collapse
|
29
|
On the importance of being vocal: saying "ow" improves pain tolerance. THE JOURNAL OF PAIN 2015; 16:326-34. [PMID: 25622894 DOI: 10.1016/j.jpain.2015.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 01/30/2023]
Abstract
UNLABELLED Vocalizing is a ubiquitous pain behavior. The present study investigated whether it helps alleviate pain and sought to discern potential underlying mechanisms. Participants were asked to immerse one hand in painfully cold water. On separate trials, they said "ow," heard a recording of them saying "ow," heard a recording of another person saying "ow," pressed a button, or sat passively. Compared to sitting passively, saying "ow" increased the duration of hand immersion. Although on average, participants predicted this effect, their expectations were uncorrelated with pain tolerance. Like vocalizing, button pressing increased the duration of hand immersion, and this increase was positively correlated with the vocalizing effect. Hearing one's own or another person's "ow" was not analgesic. Together, these results provide first evidence that vocalizing helps individuals cope with pain. Moreover, they suggest that motor more than other processes contribute to this effect. PERSPECTIVE Participants immersed their hand in painfully cold water longer when saying "ow" than when doing nothing. Whereas button pressing had a similar effect, hearing one's own or another person's "ow" did not. Thus, vocalizing in pain is not only communicative. Like other behaviors, it helps cope with pain.
Collapse
|
30
|
Yosipovitch G, Mochizuki H. Neuroimaging of itch as a tool of assessment of chronic itch and its management. Handb Exp Pharmacol 2015; 226:57-70. [PMID: 25861774 DOI: 10.1007/978-3-662-44605-8_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic itch is a multidimensional physical state strongly associated with emotional and cognitive aspects of suffering that causes the urge to scratch. Pathophysiology, psychological stress, and social milieu can influence itch. Here, we review brain neuroimaging research in humans that detects functional and anatomic changes in health and disease states. New data are emerging that are shaping our understanding of itch mechanisms and scratching-the behavioral response as well as the effect of treatments and brain dynamics during itch. Future developments will continue to expand our knowledge of itch mechanisms, allowing translation to clinical assessment and novel therapies focused on the brain, the final relay of itch transmission.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Department of Dermatology and Temple Itch Center, Temple University Medical Center, 3322 North Broad Street, Suite 212, Philadelphia, PA, 19140, USA,
| | | |
Collapse
|
31
|
A cognitive framework for explaining serial processing and sequence execution strategies. Psychon Bull Rev 2014; 22:54-77. [PMID: 25421407 DOI: 10.3758/s13423-014-0773-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Sitaram R, Caria A, Veit R, Gaber T, Ruiz S, Birbaumer N. Volitional control of the anterior insula in criminal psychopaths using real-time fMRI neurofeedback: a pilot study. Front Behav Neurosci 2014; 8:344. [PMID: 25352793 PMCID: PMC4196629 DOI: 10.3389/fnbeh.2014.00344] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/12/2014] [Indexed: 11/29/2022] Open
Abstract
This pilot study aimed to explore whether criminal psychopaths can learn volitional regulation of the left anterior insula with real-time fMRI neurofeedback. Our previous studies with healthy volunteers showed that learned control of the blood oxygenation-level dependent (BOLD) signal was specific to the target region, and not a result of general arousal and global unspecific brain activation, and also that successful regulation modulates emotional responses, specifically to aversive picture stimuli but not neutral stimuli. In this pilot study, four criminal psychopaths were trained to regulate the anterior insula by employing negative emotional imageries taken from previous episodes in their lives, in conjunction with contingent feedback. Only one out of the four participants learned to increase the percent differential BOLD in the up-regulation condition across training runs. Subjects with higher Psychopathic Checklist-Revised (PCL:SV) scores were less able to increase the BOLD signal in the anterior insula than their lower PCL:SV counterparts. We investigated functional connectivity changes in the emotional network due to learned regulation of the successful participant, by employing multivariate Granger Causality Modeling (GCM). Learning to up-regulate the left anterior insula not only increased the number of connections (causal density) in the emotional network in the single successful participant but also increased the difference between the number of outgoing and incoming connections (causal flow) of the left insula. This pilot study shows modest potential for training psychopathic individuals to learn to control brain activity in the anterior insula.
Collapse
Affiliation(s)
- Ranganatha Sitaram
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany ; Department of Biomedical Engineering, University of Florida Gainesville, FL, USA ; Sri Chitra Tirunal Institute of Medical Sciences and Technology Thiruvananthapuram, Kerala, India
| | - Andrea Caria
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Ralf Veit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Tilman Gaber
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Sergio Ruiz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany ; Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany ; Ospedale San Camillo, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Venezia, Italy
| |
Collapse
|
33
|
Chen JC, Shaw FZ. Progress in sensorimotor rehabilitative physical therapy programs for stroke patients. World J Clin Cases 2014; 2:316-326. [PMID: 25133141 PMCID: PMC4133420 DOI: 10.12998/wjcc.v2.i8.316] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 02/05/2023] Open
Abstract
Impaired motor and functional activity following stroke often has negative impacts on the patient, the family and society. The available rehabilitation programs for stroke patients are reviewed. Conventional rehabilitation strategies (Bobath, Brunnstrom, proprioception neuromuscular facilitation, motor relearning and function-based principles) are the mainstream tactics in clinical practices. Numerous advanced strategies for sensory-motor functional enhancement, including electrical stimulation, electromyographic biofeedback, constraint-induced movement therapy, robotics-aided systems, virtual reality, intermittent compression, partial body weight supported treadmill training and thermal stimulation, are being developed and incorporated into conventional rehabilitation programs. The concept of combining valuable rehabilitative procedures into “a training package”, based on the patient’s functional status during different recovery phases after stroke is proposed. Integrated sensorimotor rehabilitation programs with appropriate temporal arrangements might provide great functional benefits for stroke patients.
Collapse
|
34
|
Central pain processing in chronic chemotherapy-induced peripheral neuropathy: a functional magnetic resonance imaging study. PLoS One 2014; 9:e96474. [PMID: 24821182 PMCID: PMC4018287 DOI: 10.1371/journal.pone.0096474] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/08/2014] [Indexed: 12/01/2022] Open
Abstract
Life expectancy in multiple myeloma has significantly increased. However, a high incidence of chemotherapy induced peripheral neuropathy (CIPN) can negatively influence quality of life during this period. This study applied functional magnetic resonance imaging (fMRI) to compare areas associated with central pain processing in patients with multiple myeloma who had chemotherapy induced peripheral neuropathy (MM-CIPN) with those from healthy volunteers (HV). Twenty-four participants (n = 12 MM-CIPN, n = 12 HV) underwent Blood Oxygen Level-Dependent (BOLD) fMRI at 3T whilst noxious heat-pain stimuli were applied to the foot and then thigh. Patients with MM-CIPN demonstrated greater activation during painful stimulation in the precuneus compared to HV (p = 0.014, FWE-corrected). Patients with MM-CIPN exhibited hypo-activation of the right superior frontal gyrus compared to HV (p = 0.031, FWE-corrected). Significant positive correlation existed between the total neuropathy score (reduced version) and activation in the frontal operculum (close to insular cortex) during foot stimulation in patients with MM-CIPN (p = 0.03, FWE-corrected; adjusted R2 = 0.87). Painful stimuli delivered to MM-CIPN patients evoke differential activation of distinct cortical regions, reflecting a unique pattern of central pain processing compared with healthy volunteers. This characteristic activation pattern associated with pain furthers the understanding of the pathophysiology of painful chemotherapy induced peripheral neuropathy. Functional MRI provides a tool for monitoring cerebral changes during anti-cancer and analgesic treatment.
Collapse
|
35
|
Menon S, Stanley AA, Zhu J, Okamura AM, Khatib O. Mapping stiffness perception in the brain with an fMRI-compatible particle-jamming haptic interface. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2014:2051-2056. [PMID: 25570387 DOI: 10.1109/embc.2014.6944019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate reliable neural responses to changes in haptic stiffness perception using a functional magnetic resonance imaging (fMRI) compatible particle-jamming haptic interface. Our haptic interface consists of a silicone tactile surface whose stiffness we can control by modulating air-pressure in a sub-surface pouch of coarsely ground particles. The particles jam together as the pressure decreases, which stiffens the surface. During fMRI acquisition, subjects performed a constant probing task, which involved continuous contact between the index fingertip and the interface and rhythmic increases and decreases in fingertip force (1.6 Hz) to probe stiffness. Without notifying subjects, we randomly switched the interface's stiffness (switch time, 300-500 ms) from soft (200 N/m) to hard (1400 N/m). Our experiment design's constant motor activity and cutaneous tactile sensation helped disassociate neural activation for both from stiffness perception, which helped localized it to a narrow region in somatosensory cortex near the supra-marginal gyrus. Testing different models of neural activation, we found that assuming indepedent stiffness-change responses at both soft-hard and hard-soft transitions provides the best explanation for observed fMRI measurements (three subjects; nine four-minute scan runs each). Furthermore, we found that neural activation related to stiffness-change and absolute stiffness can be localized to adjacent but disparate anatomical locations. We also show that classical finger-tapping experiments activate a swath of cortex and are not suitable for localizing stiffness perception. Our results demonstrate that decorrelating motor and sensory neural activation is essential for characterizing somatosensory cortex, and establish particle-jamming haptics as an attractive low-cost method for fMRI experiments.
Collapse
|
36
|
Markman T, Liu CC, Chien JH, Crone NE, Zhang J, Lenz FA. EEG analysis reveals widespread directed functional interactions related to a painful cutaneous laser stimulus. J Neurophysiol 2013; 110:2440-9. [PMID: 23945784 PMCID: PMC3841864 DOI: 10.1152/jn.00246.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022] Open
Abstract
During attention to a painful cutaneous laser stimulus, event-related causality (ERC) has been detected in recordings from subdural electrodes implanted directly over cortical modules for the treatment of epilepsy. However, these studies afforded limited sampling of modules and did not examine interactions with a nonpainful stimulus as a control. We now sample scalp EEG to test the hypothesis that attention to the laser stimulus is associated with poststimulus ERC interactions that are different from those with attention to a nonpainful stimulus. Subjects attended to (counted) either a painful laser stimulus (laser attention task) or a nonpainful electrical cutaneous stimulus that produced distraction from the laser (laser distraction task). Both of these stimuli were presented in random order in a single train. The intensities of both stimuli were adjusted to produce similar baseline salience and sensations in the same cutaneous territory. The results demonstrated that EEG channels with poststimulus ERC interactions were consistently different during the laser stimulus versus the electric stimulus. Poststimulus ERC interactions for the laser attention task were different from the laser distraction task. Furthermore, scalp EEG frontal channels play a driver role while parietal temporal channels play a receiver role during both tasks, although this does not prove that these channels are connected. Sites at which large numbers of ERC interactions were found for both laser attention and distraction tasks (critical sites) were located at Cz, Pz, and C3. Stimulation leading to disruption of sites of these pain-related interactions may produce analgesia for acute pain.
Collapse
Affiliation(s)
- T. Markman
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - C. C. Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - J. H. Chien
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - N. E. Crone
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland; and
| | - J. Zhang
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, Beijing, China
| | - F. A. Lenz
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
37
|
Khan B, Hodics T, Hervey N, Kondraske G, Stowe AM, Alexandrakis G. Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:116003. [PMID: 24193947 PMCID: PMC3817936 DOI: 10.1117/1.jbo.18.11.116003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/02/2013] [Indexed: 05/05/2023]
Abstract
Transcranial direct current stimulation (tDCS) of the human sensorimotor cortex during physical rehabilitation induces plasticity in the injured brain that improves motor performance. Bi-hemispheric tDCS is a noninvasive technique that modulates cortical activation by delivering weak current through a pair of anodal-cathodal (excitation-suppression) electrodes, placed on the scalp and centered over the primary motor cortex of each hemisphere. To quantify tDCS-induced plasticity during motor performance, sensorimotor cortical activity was mapped during an event-related, wrist flexion task by functional near-infrared spectroscopy (fNIRS) before, during, and after applying both possible bi-hemispheric tDCS montages in eight healthy adults. Additionally, torque applied to a lever device during isometric wrist flexion and surface electromyography measurements of major muscle group activity in both arms were acquired concurrently with fNIRS. This multiparameter approach found that hemispheric suppression contralateral to wrist flexion changed resting-state connectivity from intra-hemispheric to inter-hemispheric and increased flexion speed (p<0.05). Conversely, exciting this hemisphere increased opposing muscle output resulting in a decrease in speed but an increase in accuracy (p<0.05 for both). The findings of this work suggest that tDCS with fNIRS and concurrent multimotor measurements can provide insights into how neuroplasticity changes muscle output, which could find future use in guiding motor rehabilitation.
Collapse
Affiliation(s)
- Bilal Khan
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Graduate Program in Biomedical Engineering, 500 UTA Boulevard, Arlington, Texas 76010
- Address all correspondence to: Bilal Khan, University of Texas at Arlington, Joint Graduate Program in Biomedical Engineering, 500 UTA Boulevard, Arlington, Texas 76010. Tel: +1-817-223-5518; Fax: +1-817-272-2251; E-mail:
| | - Timea Hodics
- University of Texas Southwestern Medical Center at Dallas, Department of Neurology and Neurotherapeutics, 5151 Harry Hines Boulevard, Dallas, Texas 75390
| | - Nathan Hervey
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Graduate Program in Biomedical Engineering, 500 UTA Boulevard, Arlington, Texas 76010
| | - George Kondraske
- University of Texas at Arlington, Human Performance Institute, P.O. Box 19180, Arlington, Texas 76019
| | - Ann M. Stowe
- University of Texas Southwestern Medical Center at Dallas, Department of Neurology and Neurotherapeutics, 5151 Harry Hines Boulevard, Dallas, Texas 75390
| | - George Alexandrakis
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Graduate Program in Biomedical Engineering, 500 UTA Boulevard, Arlington, Texas 76010
| |
Collapse
|
38
|
McKay DR, Kochunov P, Cykowski MD, Kent JW, Laird AR, Lancaster JL, Blangero J, Glahn DC, Fox PT. Sulcal depth-position profile is a genetically mediated neuroscientific trait: description and characterization in the central sulcus. J Neurosci 2013; 33:15618-25. [PMID: 24068828 PMCID: PMC3782630 DOI: 10.1523/jneurosci.1616-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/30/2013] [Accepted: 08/27/2013] [Indexed: 11/21/2022] Open
Abstract
Genetic and environmental influences on brain morphology were assessed in an extended-pedigree design by extracting depth-position profiles (DPP) of the central sulcus (CS). T1-weighted magnetic resonance images were used to measure CS length and depth in 467 human subjects from 35 extended families. Three primary forms of DPPs were observed. The most prevalent form, present in 70% of subjects, was bimodal, with peaks near hand and mouth regions. Trimodal and unimodal configurations accounted for 15 and 8%, respectively. Genetic control accounted for 56 and 66% of between-subject variance in average CS depth and length, respectively, and was not significantly influenced by environmental factors. Genetic control over CS depth ranged from 1 to 50% across the DPP. Areas of peak heritability occurred at locations corresponding to hand and mouth areas. Left and right analogous CS depth measurements were strongly pleiotropic. Shared genetic influence lessened as the distance between depth measurements was increased. We argue that DPPs are powerful phenotypes that should inform genetic influence of more complex brain regions and contribute to gene discovery efforts.
Collapse
Affiliation(s)
- D. Reese McKay
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas 78229
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut 06106
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Matthew D. Cykowski
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78245
| | - Jack W. Kent
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, Florida 33199, and
| | - Jack L. Lancaster
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas 78229
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78245
| | - David C. Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut 06106
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas 78229
- South Texas Veterans Health System, San Antonio, Texas 78229
| |
Collapse
|
39
|
Martin L, Borckardt JJ, Reeves ST, Frohman H, Beam W, Nahas Z, Johnson K, Younger J, Madan A, Patterson D, George M. A pilot functional MRI study of the effects of prefrontal rTMS on pain perception. PAIN MEDICINE 2013; 14:999-1009. [PMID: 23647651 DOI: 10.1111/pme.12129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) has been shown to effectively treat depression, and its potential value in pain management is emphasized by recent studies. Transcranial magnetic stimulation (TMS)-evoked activity in the prefrontal cortex may be associated with corticolimbic inhibitory circuits capable of decreasing pain perception. The present exploratory pilot study used functional magnetic resonance imaging (fMRI) to examine the effects of left prefrontal rTMS on brain activity and pain perception. DESIGN AND INTERVENTION Twenty-three healthy adults with no history of depression or chronic pain underwent an 8-minute thermal pain protocol with fMRI before and after a single rTMS session. Participants received 15 minutes of either real (N = 12) or sham (N = 11) 10 Hz rTMS over the left prefrontal cortex (110% of resting motor threshold; 5 seconds on, 10 seconds off). RESULTS TMS was associated with a 13.30% decrease in pain ratings, while sham was associated with an 8.61% decrease (P = 0.04). TMS was uniquely associated with increased activity in the posterior cingulate gyrus, precuneous, right superior frontal gyrus, right insula, and bilateral postcentral gyrus. Activity in the right superior prefrontal gyrus was negatively correlated with pain ratings (r = -0.65, P = 0.02) in the real TMS group. CONCLUSIONS Findings suggest that prefrontal rTMS may be capable of activating inhibitory circuits involved with pain reduction.
Collapse
Affiliation(s)
- Laura Martin
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hsu HW, Lee CL, Hsu MJ, Wu HC, Lin R, Hsieh CL, Lin JH. Effects of Noxious Versus Innocuous Thermal Stimulation on Lower Extremity Motor Recovery 3 Months After Stroke. Arch Phys Med Rehabil 2013. [DOI: 10.1016/j.apmr.2012.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Zheng W, Ackley ES, Martínez-Ramón M, Posse S. Spatially aggregated multiclass pattern classification in functional MRI using optimally selected functional brain areas. Magn Reson Imaging 2012; 31:247-61. [PMID: 22902471 DOI: 10.1016/j.mri.2012.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/16/2012] [Accepted: 07/18/2012] [Indexed: 11/27/2022]
Abstract
In previous works, boosting aggregation of classifier outputs from discrete brain areas has been demonstrated to reduce dimensionality and improve the robustness and accuracy of functional magnetic resonance imaging (fMRI) classification. However, dimensionality reduction and classification of mixed activation patterns of multiple classes remain challenging. In the present study, the goals were (a) to reduce dimensionality by combining feature reduction at the voxel level and backward elimination of optimally aggregated classifiers at the region level, (b) to compare region selection for spatially aggregated classification using boosting and partial least squares regression methods and (c) to resolve mixed activation patterns using probabilistic prediction of individual tasks. Brain activation maps from interleaved visual, motor, auditory and cognitive tasks were segmented into 144 functional regions. Feature selection reduced the number of feature voxels by more than 50%, leaving 95 regions. The two aggregation approaches further reduced the number of regions to 30, resulting in more than 75% reduction of classification time and misclassification rates of less than 3%. Boosting and partial least squares (PLS) were compared to select the most discriminative and the most task correlated regions, respectively. Successful task prediction in mixed activation patterns was feasible within the first block of task activation in real-time fMRI experiments. This methodology is suitable for sparsifying activation patterns in real-time fMRI and for neurofeedback from distributed networks of brain activation.
Collapse
Affiliation(s)
- Weili Zheng
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | |
Collapse
|
42
|
Liang CC, Hsieh TC, Lin CH, Wei YC, Hsiao J, Chen JC. Effectiveness of thermal stimulation for the moderately to severely paretic leg after stroke: serial changes at one-year follow-up. Arch Phys Med Rehabil 2012; 93:1903-10. [PMID: 22766450 DOI: 10.1016/j.apmr.2012.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/12/2012] [Accepted: 06/24/2012] [Indexed: 01/12/2023]
Abstract
UNLABELLED Liang C-C, Hsieh T-C, Lin C-H, Wei Y-C, Hsiao J, Chen J-C. Effectiveness of thermal stimulation for the moderately to severely paretic leg after stroke: serial changes at one-year follow-up. OBJECTIVE To evaluate the serial changes of long-term effects of thermal stimulation (TS) on acute stroke patients. DESIGN A prospective study with follow-up at 3, 6, and 12 months after TS to assess motor and balance function of the paretic leg of acute stroke patients. SETTING A general hospital rehabilitation department. PARTICIPANTS Poststroke patients (N=30) with moderate to severe impairment of leg function. INTERVENTIONS In addition to receiving standard rehabilitation, eligible patients were randomly assigned to a TS group (5 thermal stimulations per week for 6wk) or a control group (3 consultations per week for 6wk). MAIN OUTCOME MEASURES Fugl-Meyer lower extremity score, Medical Research Council Scale for the Lower Extremity, Berg Balance Scale, Modified Motor Assessment Scale, Functional Ambulation Classification, and Barthel Index were administered at baseline, after 4 and 6 weeks of treatment, and at the 3-, 6-, and 12-month follow-up. RESULTS No significant differences were found between the 2 groups at baseline. After TS, the Fugl-Meyer lower extremity score, Medical Research Council Scale for the Lower Extremity, Modified Motor Assessment Scale, and Functional Ambulation Classification were significantly better in the TS group, and the effects persisted for 3 months (P<.05). Significant differences were found between the 2 groups for the Berg Balance Scale and Barthel Index only at the 3-month follow-up (P<.05). However, all the effects except for the Fugl-Meyer lower extremity score had disappeared at the 6-month follow-up (P>.05). CONCLUSIONS The long-term benefits of TS for patients with acute stroke may be sustained for 3 months but disappear by the 6-month and 1-year follow-up.
Collapse
Affiliation(s)
- Chung-Chao Liang
- Department of Rehabilitation Medicine, Tzu Chi Buddhist General Hospital, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
43
|
Frot M, Magnin M, Mauguière F, Garcia-Larrea L. Cortical representation of pain in primary sensory-motor areas (S1/M1)--a study using intracortical recordings in humans. Hum Brain Mapp 2012; 34:2655-68. [PMID: 22706963 DOI: 10.1002/hbm.22097] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/06/2022] Open
Abstract
Intracortical evoked potentials to nonnoxious Aβ (electrical) and noxious Aδ (laser) stimuli within the human primary somatosensory (S1) and motor (M1) areas were recorded from 71 electrode sites in 9 epileptic patients. All cortical sites responding to specific noxious inputs also responded to nonnoxious stimuli, while the reverse was not always true. Evoked responses in S1 area 3b were systematic for nonnoxious inputs, but seen in only half of cases after nociceptive stimulation. Nociceptive responses were systematically recorded when electrode tracks reached the crown of the postcentral gyrus, consistent with an origin in somatosensory areas 1-2. Sites in the precentral cortex also exhibited noxious and nonnoxious responses with phase reversals indicating a local origin in area 4 (M1). We conclude that a representation of thermal nociceptive information does exist in human S1, although to a much lesser extent than the nonnociceptive one. Notably, area 3b, which responds massively to nonnoxious Aβ activation was less involved in the processing of noxious heat. S1 and M1 responses to noxious heat occurred at latencies comparable to those observed in the supra-sylvian opercular region of the same patients, suggesting a parallel, rather than hierarchical, processing of noxious inputs in S1, M1 and opercular cortex. This study provides the first direct evidence for a spinothalamic related input to the motor cortex in humans.
Collapse
Affiliation(s)
- Maud Frot
- Central Integration of Pain, INSERM, U1028, Lyon Neuroscience Research Center, Lyon, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France
| | | | | | | |
Collapse
|
44
|
Hayes DJ, Northoff G. Common brain activations for painful and non-painful aversive stimuli. BMC Neurosci 2012; 13:60. [PMID: 22676259 PMCID: PMC3464596 DOI: 10.1186/1471-2202-13-60] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/18/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identification of potentially harmful stimuli is necessary for the well-being and self-preservation of all organisms. However, the neural substrates involved in the processing of aversive stimuli are not well understood. For instance, painful and non-painful aversive stimuli are largely thought to activate different neural networks. However, it is presently unclear whether there is a common aversion-related network of brain regions responsible for the basic processing of aversive stimuli. To help clarify this issue, this report used a cross-species translational approach in humans (i.e. meta-analysis) and rodents (i.e. systematic review of functional neuroanatomy). RESULTS Animal and human data combined to show a core aversion-related network, consisting of similar cortical (i.e. MCC, PCC, AI, DMPFC, RTG, SMA, VLOFC; see results section or abbreviation section for full names) and subcortical (i.e. Amyg, BNST, DS, Hab, Hipp/Parahipp, Hyp, NAc, NTS, PAG, PBN, raphe, septal nuclei, Thal, LC, midbrain) regions. In addition, a number of regions appeared to be more involved in pain-related (e.g. sensory cortex) or non-pain-related (e.g. amygdala) aversive processing. CONCLUSIONS This investigation suggests that aversive processing, at the most basic level, relies on similar neural substrates, and that differential responses may be due, in part, to the recruitment of additional structures as well as the spatio-temporal dynamic activity of the network. This network perspective may provide a clearer understanding of why components of this circuit appear dysfunctional in some psychiatric and pain-related disorders.
Collapse
Affiliation(s)
- Dave J Hayes
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, K1Z 7K4, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, K1Z 7K4, Canada
| |
Collapse
|
45
|
Narayana S, Laird AR, Tandon N, Franklin C, Lancaster JL, Fox PT. Electrophysiological and functional connectivity of the human supplementary motor area. Neuroimage 2012; 62:250-65. [PMID: 22569543 DOI: 10.1016/j.neuroimage.2012.04.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 04/16/2012] [Accepted: 04/21/2012] [Indexed: 11/26/2022] Open
Abstract
Neuro-imaging methods for detecting functional and structural inter-regional connectivity are in a rapid phase of development. While reports of regional connectivity patterns based on individual methods are becoming common, studies comparing the results of two or more connectivity-mapping methods remain rare. In this study, we applied transcranial magnetic stimulation during PET imaging (TMS/PET), a stimulation-based method, and meta-analytic connectivity modeling (MACM), a task-based method to map the connectivity patterns of the supplementary motor area (SMA). Further, we drew upon the behavioral domain meta-data of the BrainMap® database to characterize the behavioral domain specificity of two maps. Both MACM and TMS/PET detected multi-synaptic connectivity patterns, with the MACM-detected connections being more extensive. Both MACM and TMS/PET detected connections belonging to multiple behavioral domains, including action, cognition and perception. Finally, we show that the two connectivity-mapping methods are complementary in that, the MACM informed on the functional nature of SMA connections, while TMS/PET identified brain areas electrophysiologically connected with the SMA. Thus, we demonstrate that integrating multimodal database and imaging techniques can derive comprehensive connectivity maps of brain areas.
Collapse
Affiliation(s)
- Shalini Narayana
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Linnman C, Appel L, Söderlund A, Frans Ö, Engler H, Furmark T, Gordh T, Långström B, Fredrikson M. Chronic whiplash symptoms are related to altered regional cerebral blood flow in the resting state. Eur J Pain 2012; 13:65-70. [DOI: 10.1016/j.ejpain.2008.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 11/16/2022]
|
47
|
de la Fuente-Sandoval C, Favila R, Gómez-Martín D, León-Ortiz P, Graff-Guerrero A. Neural response to experimental heat pain in stable patients with schizophrenia. J Psychiatr Res 2012; 46:128-34. [PMID: 21955439 DOI: 10.1016/j.jpsychires.2011.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/01/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
Diminished pain sensitivity in schizophrenia has been reported in clinical studies. While the role of antipsychotic medications as a cause of the decrease in pain perception has been questioned, little is known about neural pain processing in treated schizophrenia patients. The aim of this pilot study was to examine the blood oxygen level-dependent (BOLD) changes induced by an experimental pain tolerance (endure) hot stimuli vs. non-painful stimuli in clinically stable patients with schizophrenia and in healthy controls. Twelve patients with schizophrenia, treated with risperidone and considered clinically stable, and 13 gender- and age-matched healthy controls were studied using painful and non-painful thermal stimuli in a periodic block design. BOLD changes were assessed using high field, 3 T functional Magnetic Resonance Imaging (fMRI). Pain tolerance in stable patients was not statistically different than healthy controls. Interestingly, patients showed higher activation in the primary somatosensory cortex (S1) and superior prefrontal cortex, and less activation in the posterior cingulate cortex and brainstem than controls. Our pilot study indicates that pain tolerance is similar in clinically stable patients and controls, although the neural processing of pain is not normalized with antipsychotic treatment.
Collapse
|
48
|
Liu CC, Franaszczuk P, Crone NE, Jouny C, Lenz FA. Studies of properties of "Pain Networks" as predictors of targets of stimulation for treatment of pain. Front Integr Neurosci 2011; 5:80. [PMID: 22164137 PMCID: PMC3230069 DOI: 10.3389/fnint.2011.00080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/19/2011] [Indexed: 12/29/2022] Open
Abstract
Two decades of functional imaging studies have demonstrated pain-related activations of primary somatic sensory cortex (S1), parasylvian cortical structures (PS), and medial frontal cortical structures (MF), which are often described as modules in a "pain network." The directionality and temporal dynamics of interactions between and within the cortical and thalamic modules are uncertain. We now describe our studies of these interactions based upon recordings of local field potentials (LFPs) carried out in an epilepsy monitoring unit over the one week period between the implantation and removal of cortical electrodes during the surgical treatment of epilepsy. These recordings have unprecedented clarity and resolution for the study of LFPs related to the experimental pain induced by cutaneous application of a Thulium YAG laser. We also used attention and distraction as behavioral probes to study the psychophysics and neuroscience of the cortical "pain network." In these studies, electrical activation of cortex was measured by event-related desynchronization (ERD), over SI, PS, and MF modules, and was more widespread and intense while attending to painful stimuli than while being distracted from them. This difference was particularly prominent over PS. In addition, greater perceived intensity of painful stimuli was associated with more widespread and intense ERD. Connectivity of these modules was then examined for dynamic causal interactions within and between modules by using the Granger causality (GRC). Prior to the laser stimuli, a task involving attention to the painful stimulus consistently increased the number of event-related causality (ERC) pairs both within the SI cortex, and from SI upon PS (SI > PS). After the laser stimulus, attention to a painful stimulus increased the number of ERC pairs from SI > PS, and SI > MF, and within the SI module. LFP at some electrode sites (critical sites) exerted ERC influences upon signals at multiple widespread electrodes, both in other cortical modules and within the module where the critical site was located. In summary, critical sites and SI modules may bind the cortical modules together into a "pain network," and disruption of that network by stimulation might be used to treat pain. These results in humans may be uniquely useful to design and optimize anatomically based pain therapies, such as stimulation of the S1 or critical sites through transcutaneous magnetic fields or implanted electrodes.
Collapse
Affiliation(s)
- C. C. Liu
- Department of Neurosurgery, Johns Hopkins HospitalBaltimore, MD, USA
| | - P. Franaszczuk
- Department of Neurology, Johns Hopkins HospitalBaltimore, MD, USA
- US Army Research Laboratory, Human Research and Engineering DirectorateAberdeen Proving Ground, MD, USA
| | - N. E. Crone
- Department of Neurology, Johns Hopkins HospitalBaltimore, MD, USA
| | - C. Jouny
- Department of Neurology, Johns Hopkins HospitalBaltimore, MD, USA
| | - F. A. Lenz
- Department of Neurosurgery, Johns Hopkins HospitalBaltimore, MD, USA
| |
Collapse
|
49
|
Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp 2011; 34:109-49. [PMID: 22131304 DOI: 10.1002/hbm.21416] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/28/2011] [Accepted: 07/05/2011] [Indexed: 12/23/2022] Open
Abstract
A meta-analysis of 140 neuroimaging studies was performed using the activation-likelihood-estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. The second analysis contrasted noxious cold with noxious heat stimulation and revealed higher likelihood of activation to noxious cold in the subgenual ACC and the amygdala. The third analysis assessed the implications of using either a warm stimulus or a resting baseline as the control condition to reveal activation attributed to noxious heat. Comparing noxious heat to warm stimulation led to peak ALE values that were restricted to cortical regions with known nociceptive input. The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus-specific likelihood of being activated.
Collapse
Affiliation(s)
- Emma G Duerden
- Département de Physiologie, Groupe de Recherche Sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
50
|
Khan B, Chand P, Alexandrakis G. Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging. BIOMEDICAL OPTICS EXPRESS 2011; 2:3367-86. [PMID: 22162826 PMCID: PMC3233255 DOI: 10.1364/boe.2.003367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/20/2011] [Accepted: 11/16/2011] [Indexed: 05/22/2023]
Abstract
Functional near infrared (fNIR) imaging was used to identify spatiotemporal relations between spatially distinct cortical regions activated during various hand and arm motion protocols. Imaging was performed over a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary sensorimotor, and the posterior parietal cortices over a single brain hemisphere. This is a more extended FOV than typically used in current fNIR studies. Three subjects performed four motor tasks that induced activation over this extended FOV. The tasks included card flipping (pronation and supination) that, to our knowledge, has not been performed in previous functional magnetic resonance imaging (fMRI) or fNIR studies. An earlier rise and a longer duration of the hemodynamic activation response were found in tasks requiring increased physical or mental effort. Additionally, analysis of activation images by cluster component analysis (CCA) demonstrated that cortical regions can be grouped into clusters, which can be adjacent or distant from each other, that have similar temporal activation patterns depending on whether the performed motor task is guided by visual or tactile feedback. These analyses highlight the future potential of fNIR imaging to tackle clinically relevant questions regarding the spatiotemporal relations between different sensorimotor cortex regions, e.g. ones involved in the rehabilitation response to motor impairments.
Collapse
|