1
|
Labib R, Cantrell K, Costin GE, Milac AL, Raabe H, Gettings S. Evaluation of eye irritation potential of experimental cosmetic formulations containing glycolic acid, salicylic acid and ethanol using the Bovine Corneal Opacity and Permeability Assay. Cutan Ocul Toxicol 2024; 43:167-175. [PMID: 38810268 DOI: 10.1080/15569527.2024.2361334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE Prototype cosmetic formulations containing short-chain acids and alcohols intended to be applied in the proximity of the eyes are sometimes evaluated for ocular irritation potential using the validated Bovine Corneal Opacity and Permeability Assay (OECD TG 437). We evaluated the eye irritation potential of nine experimental cosmetic formulations designed and prepared by Avon Global Reserach and Development to differ only in the concentrations of Ethanol, Glycolic Acid and Salicylic Acid. METHODS We analysed the data generated using the BCOP assay. The opacity and permeability values obtained following the exposure of bovine corneas to experimental cosmetic formulations were combined into a single In Vitro Irritancy Score used to rank eye irritation potential. Histopathological examination of treated corneas was used to provide additional information about the depth and degree of the injury and to support the prediction of eye irritation potential of each experimental cosmetic formulation. RESULTS The In Vitro Irritancy Scores and histopathological analysis showed that experimental formulations containing only Ethanol, Glycolic Acid, or Salicylic Acid alone had, at most, a mild ocular irritation potential. The experimental formulations containing both Ethanol and Glycolic Acid had a mild ocular irritation potential, while the experimental formulations containing both Ethanol and Salicylic Acid had a moderate ocular irritation potential. Severe ocular irritation potential was induced by an experimental formulation containing a combination of Glycolic Acid and Salicylic Acid and it was further accentuated by the addition of Ethanol to the formulation. Our data indicate a possible synergistic effect on eye irritation potential of Ethanol, Glycolic Acid and Salicylic Acid in at least some experimental cosmetic formulations. Further, our results provide insight on an apparent concentration-dependent ocular irritation potential effect of combinations of Glycolic Acid, Salicylic Acid and Ethanol in at least one experimental cosmetic formulation. CONCLUSIONS The results presented herein emphasise the need to consider in vitro testing of prototype cosmetic formulations containing combinations of Ethanol, Glycolic Acid and Salicylic Acid rather than relying on any predicted additive effect on ocular irritation based solely on previously generated results of similar formulations containing Ethanol, Glycolic Acid or Salicylic Acid alone. Further work is required to understand the significance of these observations and to elucidate the mechanisms responsible for the apparent synergistic effects of Glycolic Acid, Salicylic Acid and Ethanol and eye irritation potential suggested by our results.
Collapse
Affiliation(s)
- R Labib
- Avon Global Research and Development, Suffern, NY, USA
| | - K Cantrell
- Institute for In Vitro Sciences, Inc. (IIVS), Gaithersburg, MD, USA
| | - G-E Costin
- Institute for In Vitro Sciences, Inc. (IIVS), Gaithersburg, MD, USA
| | - A L Milac
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - H Raabe
- Institute for In Vitro Sciences, Inc. (IIVS), Gaithersburg, MD, USA
| | - S Gettings
- Avon Global Research and Development, Suffern, NY, USA
| |
Collapse
|
2
|
van der Zalm AJ, Daniel AB, Raabe HA, Choksi N, Flint Silva T, Breeden-Alemi J, O'Dell L, Kleinstreuer NC, Lowit AB, Allen DG, Clippinger AJ. Defined approaches to classify agrochemical formulations into EPA hazard categories developed using EpiOcular TM reconstructed human corneal epithelium and bovine corneal opacity and permeability assays. Cutan Ocul Toxicol 2024; 43:58-68. [PMID: 37905558 DOI: 10.1080/15569527.2023.2275029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Many sectors have seen complete replacement of the in vivo rabbit eye test with reproducible and relevant in vitro and ex vivo methods to assess the eye corrosion/irritation potential of chemicals. However, the in vivo rabbit eye test remains the standard test used for agrochemical formulations in some countries. Therefore, two defined approaches (DAs) for assessing conventional agrochemical formulations were developed, using the EpiOcularTM Eye Irritation Test (EIT) [Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 492] and the Bovine Corneal Opacity and Permeability (OECD TG 437; BCOP) test with histopathology. Presented here are the results from testing 29 agrochemical formulations, which were evaluated against the United States Environmental Protection Agency's (EPA) pesticide classification system, and assessed using orthogonal validation, rather than direct concordance analysis with the historical in vivo rabbit eye data. Scientific confidence was established by evaluating the methods and testing results using an established framework that considers fitness for purpose, human biological relevance, technical characterisation, data integrity and transparency, and independent review. The in vitro and ex vivo methods used in the DAs were demonstrated to be as or more fit for purpose, reliable and relevant than the in vivo rabbit eye test. Overall, there is high scientific confidence in the use of these DAs for assessing the eye corrosion/irritation potential of agrochemical formulations.
Collapse
Affiliation(s)
| | | | - Hans A Raabe
- Institute for In Vitro Sciences, Inc, Gaithersburg, MD, USA
| | | | - Tara Flint Silva
- US Environmental Protection Agency Office of Pesticide Programs, Washington, DC, USA
| | - Julie Breeden-Alemi
- US Environmental Protection Agency Office of Pesticide Programs, Washington, DC, USA
| | - Lindsay O'Dell
- US Environmental Protection Agency Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Nicole C Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, NC, USA
| | - Anna B Lowit
- US Environmental Protection Agency Office of Pollution Prevention and Toxics, Washington, DC, USA
| | | | | |
Collapse
|
3
|
Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision (Basel) 2023; 7:vision7020032. [PMID: 37092465 PMCID: PMC10123707 DOI: 10.3390/vision7020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.
Collapse
Affiliation(s)
| | - Brandon Locke
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jacqueline Albert
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
4
|
Aizawa S, Yoshida H, Umeshita K, Watanabe S, Takahashi Y, Sakane S, Sakaguchi H, Kataoka S. Development of an oral mucosal irritation test using a three-dimensional human buccal oral mucosal model. Toxicol In Vitro 2023; 87:105519. [PMID: 36403724 DOI: 10.1016/j.tiv.2022.105519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The oral mucosa can become irritated by oral care products and lip cosmetics. Therefore, it is important to determine the irritation potential of their ingredients and products during safety evaluations. We developed a method for oral mucosal irritation test using EpiOral, which is a three-dimensional cultured model. Exposure of sodium lauryl sulphate (SLS) to EpiOral showed a dose-dependent decrease in cell viability. Under 120 min exposure conditions, SLS irritation was detected when 60% cell viability was set as a criterion. Evaluation of the irritancy of SLS and four other raw materials used in oral products at three laboratories under the above conditions confirmed good transferability of the test. Focused on the similarity of the oral and eye mucous, 32 chemicals categorised by the UN-GHS eye-irritation classification were evaluated to ensure the reliability of our criteria at these laboratories. The concordance rate between the UN-GHS classification and our test results was 100% for irritants and 60% for non-irritants. The good intra-laboratory reproducibility of our test was confirmed from the evaluation results of negative and positive controls, and the good inter-laboratory reproducibility was confirmed from the results of 32 chemicals. These findings showed that oral mucosal irritation can be evaluated using EpiOral.
Collapse
Affiliation(s)
- Seiya Aizawa
- Safety Science Research Laboratories, LION Corporation, Kanagawa, Japan.
| | - Hidenori Yoshida
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | | | - Shinichi Watanabe
- Safety Science Research Laboratories, LION Corporation, Kanagawa, Japan
| | - Yutaka Takahashi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Shinji Sakane
- Safety & Analysis, R&D Support, Sunstar Inc., Osaka, Japan
| | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Shinsuke Kataoka
- Safety Science Research Laboratories, LION Corporation, Kanagawa, Japan
| |
Collapse
|
5
|
Development of a novel ex vivo model for chemical ocular toxicity assessment and its applicability for hair straightening products. Food Chem Toxicol 2022; 170:113457. [DOI: 10.1016/j.fct.2022.113457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
6
|
Glaudo M, Panfil C, Schrage NF. Defining corneal chemical burns: A novel exact and adjustable ocular model. Toxicol Rep 2021; 8:1200-1206. [PMID: 34189056 PMCID: PMC8215138 DOI: 10.1016/j.toxrep.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/03/2022] Open
Abstract
Novel method induces highly reproducible chemical injuries in an ex vivo cornea model. Initial corneal surface humidity is an important parameter for consistent injury. The application frequency of the corrosive has a major impact on the extent of injury. This automated method can provide a consistent baseline for further investigations.
Introduction Live-animal-free ocular toxicity models and tests are a necessity in multiple branches of medicine, industry and science. Corneal models with adjustable ranges of injury severities do not exist. In this work, a novel and precise and dose - response method to induce and observe ex vivo corneal chemical burns has been established. Methods The EVEIT (Ex Vivo Eye Irritation Test) is based on an ex vivo corneal organ model for rabbit corneas from food industry. Further, a highly precise three – axis workstation has been employed to apply liquid corrosive, sodium hydroxide (NaOH), droplets in a nanolitre (nL) range onto the corneal surface. Optical Coherence Tomography (OCT) has been used to observe and quantify the elicited changes in the corneal layers. Results The speed and intervals of single nanodroplet application played a crucial role in the extent of the corneal changes. Similar total volumes applied at low frequencies elicited deep and extensive changes in the corneal layers whereas high application frequencies elicited comparatively superficial changes. Increasing NaOH concentrations effected measurably increasing corneal changes. Increasing the volume of applied NaOH also showed an increase in corneal changes. Conclusions OCT imaging proved to be effective in observing, documenting and quantifying the changes in the corneal layers. The ex vivo model, in conjunction with the novel application method was able to induce and display distinctive and consistent correlations between NaOH volume, concentration and elicited corneal changes. This ex vivo ocular chemical burn model provides a consistent in vitro basis for pharmaceutical and toxicological experiments and investigations into corneal chemical burn mechanisms and treatment.
Collapse
Affiliation(s)
- Markus Glaudo
- Aachen Centre of Technology Transfer in Ophthalmology, (ACTO e. V.) Karlsburgweg 9, 52070 Aachen, Germany
| | - Claudia Panfil
- Aachen Centre of Technology Transfer in Ophthalmology, (ACTO e. V.) Karlsburgweg 9, 52070 Aachen, Germany
| | - Norbert F Schrage
- Aachen Centre of Technology Transfer in Ophthalmology, (ACTO e. V.) Karlsburgweg 9, 52070 Aachen, Germany
| |
Collapse
|
7
|
Grading criteria of histopathological evaluation in BCOP assay by various staining methods. Toxicol Res 2021; 38:9-17. [PMID: 35070936 PMCID: PMC8748586 DOI: 10.1007/s43188-021-00099-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 01/03/2023] Open
Abstract
This study was performed to provide information on classifying eye irritating chemicals using the BCOP assay. After the BCOP assay, bovine corneas were classified by IVIS presented in OECD test guideline 437, and three special staining methods (H&E, MT, and PAS) were performed for histopathological evaluation. Non-irritant chemicals (IVIS ≤ 3), showed intact structures. In the 3 < IVIS ≤ 55 group, epithelial cell edema was observed by H&E staining, and loose collagen bundles were confirmed by MT staining. In PAS staining, bleaching of the epithelium and reduced visibility of the basement membrane were observed. Severe irritant chemicals (IVIS > 55) showed large increases edema and nuclear condensation by H&E staining. Loose collagen bundles and vacuoles around keratocytes were also observed by MT staining. Bleaching of the epithelial layer, reduction in visibility, and thickness of the basement membrane were confirmed by PAS staining. Based on the stepwise histopathological analysis, we set the criteria and grades for histopathological evaluation and found that eye irritation was increased following the irritation degree of test chemicals. Further histopathological study will support and lead to improvements in the BCOP assay.
Collapse
|
8
|
Clippinger AJ, Raabe HA, Allen DG, Choksi NY, van der Zalm AJ, Kleinstreuer NC, Barroso J, Lowit AB. Human-relevant approaches to assess eye corrosion/irritation potential of agrochemical formulations. Cutan Ocul Toxicol 2021; 40:145-167. [PMID: 33830843 DOI: 10.1080/15569527.2021.1910291] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There are multiple in vitro and ex vivo eye irritation and corrosion test methods that are available as internationally harmonized test guidelines for regulatory use. Despite their demonstrated usefulness to a broad range of substances through inter-laboratory validation studies, they have not been widely adopted for testing agrochemical formulations due to a lack of concordance with parallel results from the traditional regulatory test method for this endpoint, the rabbit eye test. The inherent variability of the rabbit test, differences in the anatomy of the rabbit and human eyes, and differences in modelling exposures in rabbit eyes relative to human eyes contribute to this lack of concordance. Ultimately, the regulatory purpose for these tests is protection of human health, and, thus, there is a need for a testing approach based on human biology. This paper reviews the available in vivo, in vitro and ex vivo test methods with respect to their relevance to human ocular anatomy, anticipated exposure scenarios, and the mechanisms of eye irritation/corrosion in humans. Each of the in vitro and ex vivo methods described is generally appropriate for identifying non-irritants. To discriminate among eye irritants, the human three-dimensional epithelial and full thickness corneal models provide the most detailed information about the severity of irritation. Consideration of the mechanisms of eye irritation, and the strengths and limitations of the in vivo, in vitro and ex vivo test methods, show that the in vitro/ex vivo methods are as or more reflective of human biology and less variable than the currently used rabbit approach. Suggestions are made for further optimizing the most promising methods to distinguish between severe (corrosive), moderate, mild and non-irritants and provide information about the reversibility of effects. Also considered is the utility of including additional information (e.g. physical chemical properties), consistent with the Organization for Economic Cooperation and Development's guidance document on an integrated approach to testing and assessment of potential eye irritation. Combining structural and functional information about a test substance with test results from human-relevant methods will ensure the best protection of humans following accidental eye exposure to agrochemicals.
Collapse
Affiliation(s)
| | - Hans A Raabe
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - David G Allen
- Integrated Laboratory Systems, LLC, Research Triangle Park, NC, USA
| | - Neepa Y Choksi
- Integrated Laboratory Systems, LLC, Research Triangle Park, NC, USA
| | | | - Nicole C Kleinstreuer
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - João Barroso
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | - Anna B Lowit
- US Environmental Protection Agency Office of Pesticide Programs, Washington, DC, USA
| |
Collapse
|
9
|
Budai P, Kormos É, Buda I, Somody G, Lehel J. Comparative evaluation of HET-CAM and ICE methods for objective assessment of ocular irritation caused by selected pesticide products. Toxicol In Vitro 2021; 74:105150. [PMID: 33753176 DOI: 10.1016/j.tiv.2021.105150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/29/2023]
Abstract
Eye irritation potency of pesticides (fungicides, herbicides, insecticides) was comparatively tested by HET-CAM and ICE method. Based on the results of the tests the statistical analysis of agreement between classification using individual methods was done by Goodman-Kruskal's rank correlation and determination (calculation) of Cohen's kappa coefficient. Statistical analysis of agreement between classification revealed significant correlation between results of in vivo and in HET-CAM assays (76%). There was no significant correlation between result of in vivo and in ICE methods (64%). Weakest correlation was found between the data from in vitro HET-CAM and ICE tests. The percentage of agreement between two in vitro data was 48%. They may be recommended as a part of a battery of tests to reduce experimentation on mammals and to limit or eliminate pain and injury inflicted on experimental animals. The HET-CAM test is a useful tool for studying in vivo the potential conjunctival irritation, while the ICE test can be used to study corneal irritant effects in detail.
Collapse
Affiliation(s)
- Péter Budai
- Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Hungary.
| | - Éva Kormos
- Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Hungary
| | - István Buda
- Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Hungary
| | - Gergő Somody
- Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Hungary
| | - József Lehel
- University of Veterinary Medicine Budapest, Hungary.
| |
Collapse
|
10
|
In vitro reconstructed 3D corneal tissue models for ocular toxicology and ophthalmic drug development. In Vitro Cell Dev Biol Anim 2021; 57:207-237. [PMID: 33544359 DOI: 10.1007/s11626-020-00533-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Testing of all manufactured products and their ingredients for eye irritation is a regulatory requirement. In the last two decades, the development of alternatives to the in vivo Draize eye irritation test method has substantially advanced due to the improvements in primary cell isolation, cell culture techniques, and media, which have led to improved in vitro corneal tissue models and test methods. Most in vitro models for ocular toxicology attempt to reproduce the corneal epithelial tissue which consists of 4-5 layers of non-keratinized corneal epithelial cells that form tight junctions, thereby limiting the penetration of chemicals, xenobiotics, and pharmaceuticals. Also, significant efforts have been directed toward the development of more complex three-dimensional (3D) equivalents to study wound healing, drug permeation, and bioavailability. This review focuses on in vitro reconstructed 3D corneal tissue models and their utilization in ocular toxicology as well as their application to pharmacology and ophthalmic research. Current human 3D corneal epithelial cell culture models have replaced in vivo animal eye irritation tests for many applications, and substantial validation efforts are in progress to verify and approve alternative eye irritation tests for widespread use. The validation of drug absorption models and further development of models and test methods for many ophthalmic and ocular disease applications is required.
Collapse
|
11
|
An alternative predictor of eye irritation that utilizes potential parameters of the human corneal epithelium model calculated based on Hansen solubility parameters. Toxicol Lett 2021; 342:1-5. [PMID: 33545305 DOI: 10.1016/j.toxlet.2021.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
Eye irritation predictions are very important in the development of cosmetics and pharmaceuticals. For animal protection, alternative tests are being developed to replace the Draize test, which involves the use of rabbits to test eye irritation. The Vitrigel-eye irritancy test (Vitrigel-EIT), is one such alternative. As a preliminary study, we evaluated if Hansen solubility parameter (HSP) values can be used to predict Vitrigel-EIT results. An Hansen sphere was created based on the HSP values and Vitrigel-EIT results from 61 substances. Substances inside and outside of the sphere were designated as dangerous and safe substances, respectively. The safety of each test substance was predicted by comparing the center point (Ro) of the sphere with the relative energy difference, i.e., the ratio of each test substance (Ra). The accuracy, false negativity, and false positivity of the "irritant" and "nonirritant" designations, as determined by the Vitrigel-EIT results and Hansen sphere, were 91.8% (56/61), 2.3% (1/43), and 22.2% (4/18), respectively. These results indicated that HSP values can be used to predict Vitrigel-EIT results with high reproducibility, and thus are useful for evaluating the safety of substances.
Collapse
|
12
|
Highly accurate predictor of eye irritation utilizing potential parameters of a reconstructed human cornea epithelium model calculated based on Hansen solubility parameters. Toxicol In Vitro 2020; 70:105039. [PMID: 33137446 DOI: 10.1016/j.tiv.2020.105039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
Concerns regarding animal welfare have led to the need for alternatives to animal eye irritation tests. The reconstructed human cornea-like epithelium (RhCE) test is described in the OECD TG 492 as an alternative to animal eye irritation tests. However, the accuracy and labor investment of this method can be improved if the results can be predicted before the experiment. In this study, we evaluated whether Hansen solubility parameter (HSP) values can be used to predict the results of RhCE method using the LabCyte CORNEA-MODEL for 65 test substances. We found that HSP values can predict the RhCE method with high correlation (accuracy 84.6% (55/65), false-negative rate of 16.2% (7/43), and false-positive rate of 13.6% (3/22). These results indicate that HSP values can be used to predict the results RhCE method using LabCyte CORNEA-MODEL with high reproducibility, and thus are useful for evaluating the safety of substances.
Collapse
|
13
|
Andrade WM, da Silva ACG, Moreira LC, Gomes TRLES, Batista AC, Valadares MC. Innovative strategy based on mechanisms to substitute animal testing for ocular toxicity assessment of agrochemical formulations market in Brazil. Toxicol In Vitro 2020; 66:104851. [PMID: 32259559 DOI: 10.1016/j.tiv.2020.104851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/27/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Considering the successful employment of alternative methods for eye toxicity assessment of products for regulatory purposes, and the recent advances in Brazilian legislative scenario, which adopted the UN GHS classification system for agrochemical formulations toxicity assessment, there is an emerging demand for strategies that allow the evaluation of such products. Based on this, the present study aimed to address the applicability of a mechanistic-based defined approach for eye toxicity assessment of agrochemical formulations. It was investigated the opacity/permeability, depth and location of corneal injury in bovine cornea, and vascular events in chorioallantoic membrane induced for different Brazilian agrochemicals using a Sequential Testing Strategy (STS). Cytotoxicity induced by the agrochemical formulations was evaluated by Short Time exposure (STE) (OECD TG 491) assay (step 1), corneal injury was investigated by standard Bovine Corneal Opacity and Permeability (BCOP) (OECD TG 437) followed by histopathological evaluation (step 2), and Hen Chorionic-allantoic Membrane test (HET-CAM) was used to evaluate vascular injury (step 3). The results demonstrated that the proposed defined approach enabled a classification corresponding UN GHS classification of agrochemical formulations while minimizing the use of live animals. Therefore, this approach may be useful for categorization of agrochemicals in Brazil according to the new regulatory scenario.
Collapse
Affiliation(s)
- Wanessa Machado Andrade
- Laboratory of Education and Research in In Vitro Toxicology, Tox In, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Artur Christian Garcia da Silva
- Laboratory of Education and Research in In Vitro Toxicology, Tox In, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Larissa Cleres Moreira
- Laboratory of Education and Research in In Vitro Toxicology, Tox In, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Aline Carvalho Batista
- Laboratory of Oral Pathology, Dental School, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratory of Education and Research in In Vitro Toxicology, Tox In, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
14
|
Corneal histomorphometric analysis: The depth of damage induced in the bovine cornea correlates with the severity of the ocular toxicity. Toxicol In Vitro 2019; 61:104593. [DOI: 10.1016/j.tiv.2019.104593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/04/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022]
|
15
|
Establishment and performance assessment of an in-house 3D Reconstructed Human Cornea-Like Epithelium (RhCE) as a screening tool for the identification of liquid chemicals with potential eye hazard. Toxicol In Vitro 2019; 61:104604. [DOI: 10.1016/j.tiv.2019.104604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/20/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022]
|
16
|
Engelke M, Patzke J, Tykhonova S, Zorn-Kruppa M. Assessment of Ocular Irritation by Image Processed Quantification of Cell Injury in Human Corneal Cell Cultures and in Corneal Constructs. Altern Lab Anim 2019; 32:345-53. [PMID: 15651918 DOI: 10.1177/026119290403200405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Currently, there are no accepted alternative tests for the replacement of animals in ocular irritation testing. This study focused on the quantification of cellular viability as a measure of toxic events in immortalised human corneal cell cultures and a three-dimensional corneal construct. Simultaneous vital dye staining by calcein AM and ethidium homodimer-1 was used to provide "live" and "dead" probes, respectively. For further quantification, we have developed image processing tools to evaluate digital images obtained from confocal fluorescence scanning microscopy measurements. Based on the finding that ocular irritation can be related to the extent of cell injury at the various cell layers of the cornea, we extended our studies from corneal cell cultures to an in vitro human corneal equivalent system comprising epithelial, stromal keratocyte and endothelial layers. Our results showed that the microscopic measurement of cellular injury by using either cell cultures or in vitro corneal constructs, combined with image processed quantification, can provide insight into the extent of the toxic effects.
Collapse
Affiliation(s)
- Maria Engelke
- Institute for Biophysics, University of Bremen, Bremen, Germany.
| | | | | | | |
Collapse
|
17
|
Eskes C, Bessou S, Bruner L, Curren R, Harbell J, Jones P, Kreiling R, Liebsch M, McNamee P, Pape W, Prinsen MK, Seidle T, Vanparys P, Worth A, Zuang V. 3.3. Eye Irritation. Altern Lab Anim 2019; 33 Suppl 1:47-81. [PMID: 16194141 DOI: 10.1177/026119290503301s09] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chantra Eskes
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra (VA), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zorn-Kruppa M, Tykhonova S, Belge G, Bednarz J, Diehl HA, Engelke M. A Human Corneal Equivalent Constructed from SV40-immortalised Corneal Cell Lines. Altern Lab Anim 2019; 33:37-45. [PMID: 15813699 DOI: 10.1177/026119290503300107] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Within the last decade, extensive research in the field of tissue and organ engineering has focused on the development of in vitro models of the cornea. The use of organotypic, three-dimensional corneal equivalents has several advantages over simple monolayer cultures. The aim of this study was to develop a corneal equivalent model composed of the same cell types as in the natural human tissue, but by using immortalised cell lines to ensure reproducibility and to minimise product variation. We report our success in the establishment of an SV40-immortalised human corneal keratocyte cell line (designated HCK). A collagen matrix, built up with these cells, displayed the morphological characteristics of the human stromal tissue and served as a biomatrix for the immortalised human corneal epithelial and endothelial cells. Histological cross-sections of the whole-cornea equivalents resemble human corneas in tissue structure. This organotypic in vitro model may serve as a research tool for the ophthalmic science community, as well as a model system for testing for eye irritancy and drug efficacy.
Collapse
Affiliation(s)
- Michaela Zorn-Kruppa
- Institute of Biophysics, University of Bremen, Otto Hahn Allee 1, 28359 Bremen, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
da Silva ACG, Chialchia AR, de Ávila RI, Valadares MC. Mechanistic-based non-animal assessment of eye toxicity: Inflammatory profile of human keratinocytes cells after exposure to eye damage/irritant agents. Chem Biol Interact 2018; 292:1-8. [DOI: 10.1016/j.cbi.2018.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/11/2018] [Accepted: 06/24/2018] [Indexed: 11/29/2022]
|
20
|
Ezrin as a complementary marker in ocular toxicity assessment using a three-dimensional reconstructed human corneal-like epithelium model, EpiOcular™. J Pharmacol Toxicol Methods 2018; 92:24-33. [DOI: 10.1016/j.vascn.2018.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/10/2018] [Accepted: 02/15/2018] [Indexed: 11/21/2022]
|
21
|
Adriaens E, Verstraelen S, Alépée N, Kandarova H, Drzewiecka A, Gruszka K, Guest R, Willoughby J, Van Rompay A. CON4EI: Development of testing strategies for hazard identification and labelling for serious eye damage and eye irritation of chemicals. Toxicol In Vitro 2018; 49:99-115. [PMID: 28964898 DOI: 10.1016/j.tiv.2017.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/12/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
22
|
Predictive performance and inter-laboratory reproducibility in assessing eye irritation potential of water- and oil-soluble mixtures using the Short Time Exposure test method. Toxicol In Vitro 2018; 48:78-85. [DOI: 10.1016/j.tiv.2017.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/07/2017] [Accepted: 12/28/2017] [Indexed: 11/17/2022]
|
23
|
Rönkkö S, Vellonen KS, Järvinen K, Toropainen E, Urtti A. Human corneal cell culture models for drug toxicity studies. Drug Deliv Transl Res 2017; 6:660-675. [PMID: 27613190 PMCID: PMC5097077 DOI: 10.1007/s13346-016-0330-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vivo toxicity and absorption studies of topical ocular drugs are problematic, because these studies involve invasive tissue sampling and toxic effects in animal models. Therefore, different human corneal models ranging from simple monolayer cultures to three-dimensional models have been developed for toxicological prediction with in vitro models. Each system has its own set of advantages and disadvantages. Use of non-corneal cells, inadequate characterization of gene-expression profiles, and accumulation of genomic aberrations in human corneal models are typical drawbacks that decrease their reliability and predictive power. In the future, further improvements are needed for verifying comparable expression profiles and cellular properties of human corneal models with their in vivo counterparts. A rapidly expanding stem cell technology combined with tissue engineering may give future opportunities to develop new tools in drug toxicity studies. One approach may be the production of artificial miniature corneas. In addition, there is also a need to use large-scale profiling approaches such as genomics, transcriptomics, proteomics, and metabolomics for understanding of the ocular toxicity.
Collapse
Affiliation(s)
- Seppo Rönkkö
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Kati-Sisko Vellonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Kristiina Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Elisa Toropainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland. .,Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
24
|
Kandarova H, Letasiova S, Adriaens E, Guest R, Willoughby JA, Drzewiecka A, Gruszka K, Alépée N, Verstraelen S, Van Rompay AR. CON4EI: CONsortium for in vitro Eye Irritation testing strategy - EpiOcular™ time-to-toxicity (EpiOcular ET-50) protocols for hazard identification and labelling of eye irritating chemicals. Toxicol In Vitro 2017; 49:34-52. [PMID: 28866024 DOI: 10.1016/j.tiv.2017.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 11/16/2022]
Abstract
Assessment of acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. The objective of the CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was to develop tiered testing strategies for eye irritation assessment for all drivers of classification. A set of 80 reference chemicals (38 liquids and 42 solids) was tested with eight different alternative methods. Here, the results obtained with reconstructed human cornea-like epithelium (RhCE) EpiOcular™ in the EpiOcular time-to-toxicity Tests (Neat and Dilution ET-50 protocols) are presented. The primary aim of this study was to evaluate whether test methods can discriminate chemicals not requiring classification for serious eye damage/eye irritancy (No Category) from chemicals requiring classification and labelling for Category 1 and Category 2. In addition, the predictive capacity in terms of in vivo drivers of classification was investigated. The chemicals were tested in two independent runs by MatTek In Vitro Life Science Laboratories. Results of this study demonstrate very high specificity of both test protocols. With the existing prediction models described in the SOPs, the specificity of the Neat and Dilution method was 87% and 100%, respectively. The Dilution method was able to correctly predicting 66% of GHS Cat 2 chemicals, however, prediction of GHS Cat 1 chemicals was only 47%-55% using the current protocols. In order to achieve optimal prediction for all three classes, a testing strategy was developed which combines the most predictive time-points of both protocols and for tests liquids and solids separately. Using this new testing strategy, the sensitivity for predicting GHS Cat 1 and GHS Cat 2 chemicals was 73% and 64%, respectively and the very high specificity of 97% was maintained. None of the Cat 1 chemicals was underpredicted as GHS No Category. Further combination of the EpiOcular time-to-toxicity protocols with other validated in vitro systems evaluated in this project, should enable significant reduction and even possible replacement of the animal tests for the final assessment of the irritation potential in all of the GHS classes.
Collapse
Affiliation(s)
- Helena Kandarova
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovakia.
| | | | | | | | | | | | - Katarzyna Gruszka
- Institute of Industrial Organic Chemistry Branch Pszczyna, Pszczyna, Poland
| | | | | | - An R Van Rompay
- VITO NV (Flemish Institute for Technological Research), Mol, Belgium
| |
Collapse
|
25
|
Furukawa M, Sakakibara T, Itoh K, Kawamura K, Matsuura M, Kojima H. Suggestion of the updated IVIS cut-off values for identifying non-ocular irritants in the bovine corneal opacity and permeability (BCOP) assay. Toxicol In Vitro 2017; 45:19-24. [PMID: 28765095 DOI: 10.1016/j.tiv.2017.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 06/09/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
The bovine corneal opacity and permeability (BCOP) assay is an alternative to the Draize test in rabbits. Although it can be used to evaluate ocular non-irritants and severe irritants, it is not used for the assessment of mild-irritating substances. In this assay, a chemical with an in vitro irritancy score (IVIS)≤3 is defined as a "non-irritant" while one with an IVIS>55 is defined as a "corrosive" or "severe irritant." We attempted to evaluate mild eye irritants by assessing the recovery of corneal lesions histopathologically. Our results indicated that chemicals with IVIS≤6 may be defined as "non-irritants," because the rapid recovery of lesions limited to the squamous layer was predicted by the histopathology. In cases where lesions extended to the wing and basal cell layers, when some intact basal cells remained, the lesions were also predicted to be reversible. Thus, chemicals which induce lesions in which basal cells remain intact can be considered to be mild irritants.
Collapse
Affiliation(s)
- M Furukawa
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyotaa-ku, Sapporo, Hokkaido 004-0839, Japan.
| | - T Sakakibara
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyotaa-ku, Sapporo, Hokkaido 004-0839, Japan
| | - K Itoh
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyotaa-ku, Sapporo, Hokkaido 004-0839, Japan
| | - K Kawamura
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyotaa-ku, Sapporo, Hokkaido 004-0839, Japan
| | - M Matsuura
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyotaa-ku, Sapporo, Hokkaido 004-0839, Japan
| | - H Kojima
- National Institute of Health Science, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| |
Collapse
|
26
|
Destruel PL, Zeng N, Maury M, Mignet N, Boudy V. In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: state of the art and beyond. Drug Discov Today 2017; 22:638-651. [DOI: 10.1016/j.drudis.2016.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/18/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
|
27
|
Prinsen MK, Hendriksen CF, Krul CA, Woutersen RA. The Isolated Chicken Eye test to replace the Draize test in rabbits. Regul Toxicol Pharmacol 2017; 85:132-149. [DOI: 10.1016/j.yrtph.2017.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
|
28
|
Kolle SN, Sauer UG, Rey Moreno MC, Teubner W, Wohlleben W, Landsiedel R. Eye irritation testing of nanomaterials using the EpiOcular™ eye irritation test and the bovine corneal opacity and permeability assay. Part Fibre Toxicol 2016; 13:18. [PMID: 27083156 PMCID: PMC4833924 DOI: 10.1186/s12989-016-0128-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Assessment of eye irritation hazard has long been a core requirement in any chemical legislation. Nevertheless, publications focussing on the eye damaging potential of nanomaterials are scarce. Traditionally, eye irritation testing was performed using rabbits. The OECD Test Guideline 437 Bovine Corneal Opacity and Permeability (BCOP) test method allows determining severely irritating substances without animals, and the recently adopted OECD Test Guideline 492 Reconstructed human cornea-like epithelium test method allows identifying chemicals that neither induce eye irritation nor serious eye damage. For substances applicable to these tests, huge progress has been made in replacing animal testing. METHODS The in vitro eye irritation potential of 20 nanosized and 3 non-nanosized materials was investigated in a 2-tier EpiOcular™ Eye Irritation Test (EpiOcular™-EIT) and BCOP testing strategy including histopathology of the bovine corneas. Furthermore, applicability of the testing strategy for nanomaterials was assessed. Test materials encompassed OECD representative nanomaterials (metals (Ag), metal oxides (ZnO, TiO2, CeO2), amorphous SiO2 and MWCNTs), three organic pigments, quartz, and talc. RESULTS None of the dry-powder nanomaterials elicited eye irritation in either the EpiOcular™-EIT or the BCOP assay. Likewise, an amorphous SiO2 nanomaterial that was supplied as suspension was tested negative in both assays. By contrast, in the EpiOcular™-EIT, the silver nanomaterial that was supplied as dispersion was tested positive, whereas its surfactant-containing dispersant was borderline to negative. In the BCOP assay, the silver nanomaterial elicited highly variable results and dark-brown patches remained on the corneal surface, whereas the results for its dispersant alone were borderline to positive, which was assessed as inconclusive due to high inter-assay variability. CONCLUSION The present study points to the low eye irritation potential of a spectrum of nanomaterials, which is consistent with available in vivo data for the same test materials or for nanosized or bulk materials of the same composition.
Collapse
Affiliation(s)
- Susanne N. Kolle
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056 Ludwigshafen, Germany
| | - Ursula G. Sauer
- Scientific Consultancy – Animal Welfare, Hallstattfeld 16, 85579 Neubiberg, Germany
| | - Maria C. Rey Moreno
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056 Ludwigshafen, Germany
| | - Wera Teubner
- BASF Schweiz AG, GUP/PS - K141, 4057 Basel, Switzerland
| | - Wendel Wohlleben
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056 Ludwigshafen, Germany
- BASF SE, Material Physics and Analytics, GMC/R - B7, 67056 Ludwigshafen, Germany
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056 Ludwigshafen, Germany
| |
Collapse
|
29
|
Assessment of the eye irritation potential of chemicals: A comparison study between two test methods based on human 3D hemi-cornea models. Toxicol In Vitro 2015; 30:561-8. [PMID: 26362509 DOI: 10.1016/j.tiv.2015.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 11/21/2022]
Abstract
We have recently developed two hemi-cornea models (Bartok et al., Toxicol in Vitro 29, 72, 2015; Zorn-Kruppa et al. PLoS One 9, e114181, 2014), which allow the correct prediction of eye irritation potential of chemicals according to the United Nations globally harmonized system of classification and labeling of chemicals (UN GHS). Both models comprise a multilayered epithelium and a stroma with embedded keratocytes in a collagenous matrix. These two models were compared, using a set of fourteen test chemicals. Their effects after 10 and 60 minutes (min) exposure were assessed from the quantification of cell viability using the MTT reduction assay. The first approach separately quantifies the damage inflicted to the epithelium and the stroma. The second approach quantifies the depth of injury by recording cell death as a function of depth. The classification obtained by the two models was compared to the Draize rabbit eye test and an ex vivo model using rabbit cornea (Jester et al. Toxicol in Vitro. 24, 597-604, 2010). With a 60 min exposure, both of our models are able to clearly differentiate UN GHS Category 1 and UN GHS Category 2 test chemicals.
Collapse
|
30
|
Furukawa M, Sakakibara T, Itoh K, Kawamura K, Sasaki S, Matsuura M. Histopathological evaluation of the ocular-irritation potential of shampoos, make-up removers and cleansing foams in the bovine corneal opacity and permeability assay. J Toxicol Pathol 2015; 28:243-8. [PMID: 26538816 PMCID: PMC4604136 DOI: 10.1293/tox.2015-0022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/25/2015] [Indexed: 11/21/2022] Open
Abstract
The bovine corneal opacity and permeability (BCOP) assay is an alternative method to the in vivo Draize eye test in rabbits for evaluating eye irritation in vitro. Here, we compared the numerical results of the BCOP assay with the corresponding histopathology for three different corneas for each test substance, including commercially available shampoos, make-up removers and cleansing foams that contained surfactants and other ingredients. The histopathological score was defined based on the severity of lesions in the corneal epithelium. The histopathological findings and scores of the three sections for each test substance were comparable. The in vitro irritancy score (IVIS) generally corresponds to the corneal irritant potential of the test substances assigned on the basis of the histopathological findings in this study. In the present study, we characterized the histopathology of the corneal epithelium and stroma and especially showed that the corneal epithelial injury caused by test substances might be important in assessment of test substances that are mild eye irritants (category 2B) as classified by the United Nations (UN) Globally Harmonized System of Classification and Labelling of Chemicals (GHS), as corneal lesions suggestive of classification into category 2B were localized on the border between the corneal epithelium and stroma, which contained cell elements related to assessment of prognosis of an in vivo eye injury. Histopathological assessment might be useful in predicting in vivo ocular irritation, particularly for test substances with an IVIS >3.1 but ≤25 that are classified as mild irritants (category 2B) according to the UN GHS.
Collapse
Affiliation(s)
- Masatoshi Furukawa
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyota-ku, Sapporo, Hokkaido 004-0839, Japan
| | - Takashi Sakakibara
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyota-ku, Sapporo, Hokkaido 004-0839, Japan
| | - Kouta Itoh
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyota-ku, Sapporo, Hokkaido 004-0839, Japan
| | - Kohtaro Kawamura
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyota-ku, Sapporo, Hokkaido 004-0839, Japan
| | - Satoshi Sasaki
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyota-ku, Sapporo, Hokkaido 004-0839, Japan
| | - Masao Matsuura
- Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyota-ku, Sapporo, Hokkaido 004-0839, Japan
| |
Collapse
|
31
|
Kolle SN, Moreno MCR, Mayer W, van Cott A, van Ravenzwaay B, Landsiedel R. The EpiOcular™ Eye Irritation Test is the Method of Choice for the In Vitro Eye Irritation Testing of Agrochemical Formulations: Correlation Analysis of EpiOcular Eye Irritation Test and BCOP Test Data According to the UN GHS, US EPA and Brazil ANVISA Classification Schemes. Altern Lab Anim 2015; 43:181-98. [DOI: 10.1177/026119291504300307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Bovine Corneal Opacity and Permeability (BCOP) test is commonly used for the identification of severe ocular irritants (GHS Category 1), but it is not recommended for the identification of ocular irritants (GHS Category 2). The incorporation of human reconstructed tissue model-based tests into a tiered test strategy to identify ocular non-irritants and replace the Draize rabbit eye irritation test has been suggested (OECD TG 405). The value of the EpiOcular™ Eye Irritation Test (EIT) for the prediction of ocular non-irritants (GHS No Category) has been demonstrated, and an OECD Test Guideline (TG) was drafted in 2014. The purpose of this study was to evaluate whether the BCOP test, in conjunction with corneal histopathology (as suggested for the evaluation of the depth of the injury) and/or the EpiOcular-EIT, could be used to predict the eye irritation potential of agrochemical formulations according to the UN GHS, US EPA and Brazil ANVISA classification schemes. We have assessed opacity, permeability and histopathology in the BCOP assay, and relative tissue viability in the EpiOcular-EIT, for 97 agrochemical formulations with available in vivo eye irritation data. By using the OECD TG 437 protocol for liquids, the BCOP test did not result in sufficient correct predictions of severe ocular irritants for any of the three classification schemes. The lack of sensitivity could be improved somewhat by the inclusion of corneal histopathology, but the relative viability in the EpiOcular-EIT clearly outperformed the BCOP test for all three classification schemes. The predictive capacity of the EpiOcular-EIT for ocular non-irritants (UN GHS No Category) for the 97 agrochemical formulations tested (91% sensitivity, 72% specificity and 82% accuracy for UN GHS classification) was comparable to that obtained in the formal validation exercise underlying the OECD draft TG. We therefore conclude that the EpiOcular-EIT is currently the best in vitro method for the prediction of the eye irritation potential of liquid agrochemical formulations.
Collapse
Affiliation(s)
- Susanne N. Kolle
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Winfried Mayer
- BASF SE Agricultural Products Formulation Development, Ludwigshafen, Germany
| | | | | | | |
Collapse
|
32
|
Spöler F, Kray O, Kray S, Panfil C, Schrage NF. The Ex Vivo Eye Irritation Test as an Alternative Test Method for Serious Eye Damage/Eye Irritation. Altern Lab Anim 2015; 43:163-79. [DOI: 10.1177/026119291504300306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ocular irritation testing is a common requirement for the classification, labelling and packaging of chemicals (substances and mixtures). The in vivo Draize rabbit eye test (OECD Test Guideline 405) is considered to be the regulatory reference method for the classification of chemicals according to their potential to induce eye injury. In the Draize test, chemicals are applied to rabbit eyes in vivo, and changes are monitored over time. If no damage is observed, the chemical is not categorised. Otherwise, the classification depends on the severity and reversibility of the damage. Alternative test methods have to be designed to match the classifications from the in vivo reference method. However, observation of damage reversibility is usually not possible in vitro. Within the present study, a new organotypic method based on rabbit corneas obtained from food production is demonstrated to close this gap. The Ex Vivo Eye Irritation Test (EVEIT) retains the full biochemical activity of the corneal epithelium, epithelial stem cells and endothelium. This permits the in-depth analysis of ocular chemical trauma beyond that achievable by using established in vitro methods. In particular, the EVEIT is the first test to permit the direct monitoring of recovery of all corneal layers after damage. To develop a prediction model for the EVEIT that is comparable to the GHS system, 37 reference chemicals were analysed. The experimental data were used to derive a three-level potency ranking of eye irritation and corrosion that best fits the GHS categorisation. In vivo data available in the literature were used for comparison. When compared with GHS classification predictions, the overall accuracy of the three-level potency ranking was 78%. The classification of chemicals as irritating versus non-irritating resulted in 96% sensitivity, 91% specificity and 95% accuracy.
Collapse
Affiliation(s)
- Felix Spöler
- Institute of Semiconductor Electronics, RWTH Aachen University, Aachen, Germany
| | - Oya Kray
- Institute of Semiconductor Electronics, RWTH Aachen University, Aachen, Germany
- Aachen Centre for Technology Transfer in Ophthalmology, Aachen, Germany
| | - Stefan Kray
- Institute of Semiconductor Electronics, RWTH Aachen University, Aachen, Germany
| | - Claudia Panfil
- Institute of Semiconductor Electronics, RWTH Aachen University, Aachen, Germany
- Aachen Centre for Technology Transfer in Ophthalmology, Aachen, Germany
| | | |
Collapse
|
33
|
Bartok M, Gabel D, Zorn-Kruppa M, Engelke M. Development of an in vitro ocular test system for the prediction of all three GHS categories. Toxicol In Vitro 2015; 29:72-80. [DOI: 10.1016/j.tiv.2014.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 11/28/2022]
|
34
|
Wilson SL, Ahearne M, Hopkinson A. An overview of current techniques for ocular toxicity testing. Toxicology 2015; 327:32-46. [DOI: 10.1016/j.tox.2014.11.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/25/2022]
|
35
|
Zorn-Kruppa M, Houdek P, Wladykowski E, Engelke M, Bartok M, Mewes KR, Moll I, Brandner JM. Determining the Depth of Injury in Bioengineered Tissue Models of Cornea and Conjunctiva for the Prediction of All Three Ocular GHS Categories. PLoS One 2014; 9:e114181. [PMID: 25494045 PMCID: PMC4262406 DOI: 10.1371/journal.pone.0114181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
The depth of injury (DOI) is a mechanistic correlate to the ocular irritation response. Attempts to quantitatively determine the DOI in alternative tests have been limited to exvivo animal eyes by fluorescent staining for biomarkers of cell death and viability in histological cross sections. It was the purpose of this study to assess whether DOI could also be measured by means of cell viability detected by the MTT assay using 3-dimensional (3D) reconstructed models of cornea and conjunctiva. The formazan-free area of metabolically inactive cells in the tissue after topical substance application is used as the visible correlate of the DOI. Areas of metabolically active or inactive cells are quantitatively analyzed on cryosection images with ImageJ software analysis tools. By incorporating the total tissue thickness, the relative MTT-DOI (rMTT-DOI) was calculated. Using the rMTT-DOI and human reconstructed cornea equivalents, we developed a prediction model based on suitable viability cut-off values. We tested 25 chemicals that cover the whole range of eye irritation potential based on the globally harmonized system of classification and labelling of chemicals (GHS). Principally, the MTT-DOI test method allows distinguishing between the cytotoxic effects of the different chemicals in accordance with all 3 GHS categories for eye irritation. Although the prediction model is slightly over-predictive with respect to non-irritants, it promises to be highly valuable to discriminate between severe irritants (Cat. 1), and mild to moderate irritants (Cat. 2). We also tested 3D conjunctiva models with the aim to specifically address conjunctiva-damaging substances. Using the MTT-DOI method in this model delivers comparable results as the cornea model, but does not add additional information. However, the MTT-DOI method using reconstructed cornea models already provided good predictability that was superior to the already existing established invitro/exvivo methods.
Collapse
Affiliation(s)
- Michaela Zorn-Kruppa
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, 20246 Hamburg, Germany
- * E-mail:
| | - Pia Houdek
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, 20246 Hamburg, Germany
| | - Ewa Wladykowski
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, 20246 Hamburg, Germany
| | - Maria Engelke
- Jacobs University Bremen gGmbH, School of Engineering and Sciences, 28759 Bremen, Germany
| | - Melinda Bartok
- Jacobs University Bremen gGmbH, School of Engineering and Sciences, 28759 Bremen, Germany
| | | | - Ingrid Moll
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, 20246 Hamburg, Germany
| | - Johanna M. Brandner
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, 20246 Hamburg, Germany
| |
Collapse
|
36
|
Piersma AH, Ezendam J, Luijten M, Muller JJA, Rorije E, van der Ven LTM, van Benthem J. A critical appraisal of the process of regulatory implementation of novel in vivo and in vitro methods for chemical hazard and risk assessment. Crit Rev Toxicol 2014; 44:876-94. [PMID: 25058877 DOI: 10.3109/10408444.2014.940445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulatory toxicology urgently needs applicable alternative test systems that reduce animal use, testing time, and cost. European regulation on cosmetic ingredients has already banned animal experimentation for hazard identification, and public awareness drives toward additional restrictions in other regulatory frameworks as well. In addition, scientific progress stimulates a more mechanistic approach of hazard identification. Nevertheless, the implementation of alternative methods is lagging far behind their development. In search for general bottlenecks for the implementation of alternative methods, this manuscript reviews the state of the art as to the development and implementation of 10 diverse test systems in various areas of toxicological hazard assessment. They vary widely in complexity and regulatory acceptance status. The assays are reviewed as to parameters assessed, biological system involved, standardization, interpretation of results, extrapolation to human hazard, position in testing strategies, and current regulatory acceptance status. Given the diversity of alternative methods in many aspects, no common bottlenecks could be identified that hamper implementation of individual alternative assays in general. However, specific issues for the regulatory acceptance and application were identified for each assay. Acceptance of one-in-one replacement of complex in vivo tests by relatively simple in vitro assays is not feasible. Rather, innovative approaches using test batteries are required together with metabolic information and in vitro to in vivo dose extrapolation to convincingly provide the same level of information of current in vivo tests. A mechanistically based alternative approach using the Adverse Outcome Pathway concept could stimulate further (regulatory) acceptance of non-animal tests.
Collapse
Affiliation(s)
- Aldert H Piersma
- RIVM, Center for Health Protection , Bilthoven , the Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Suitability of histopathology as an additional endpoint to the Isolated Chicken Eye Test for classification of non-extreme pH detergent and cleaning products. Toxicol In Vitro 2014; 28:657-66. [DOI: 10.1016/j.tiv.2014.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
|
38
|
Katoh M, Hamajima F, Ogasawara T, Hata KI. Establishment of a new in vitro test method for evaluation of eye irritancy using a reconstructed human corneal epithelial model, LabCyte CORNEA-MODEL. Toxicol In Vitro 2013; 27:2184-92. [DOI: 10.1016/j.tiv.2013.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/12/2013] [Accepted: 08/22/2013] [Indexed: 11/30/2022]
|
39
|
Cosmetics Europe multi-laboratory pre-validation of the EpiOcular™ reconstituted human tissue test method for the prediction of eye irritation. Toxicol In Vitro 2013; 27:619-26. [DOI: 10.1016/j.tiv.2012.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/19/2012] [Accepted: 11/06/2012] [Indexed: 11/21/2022]
|
40
|
Engelke M, Zorn-Kruppa M, Gabel D, Reisinger K, Rusche B, Mewes K. A human hemi-cornea model for eye irritation testing: Quality control of production, reliability and predictive capacity. Toxicol In Vitro 2013; 27:458-68. [DOI: 10.1016/j.tiv.2012.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 07/08/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
41
|
Cater KC, Harbell JW. Prediction of eye irritation potential of liquid and granular laundry detergent formulas using the bovine corneal opacity and permeability (BCOP) assay. Cutan Ocul Toxicol 2013; 32:210-21. [PMID: 23360218 DOI: 10.3109/15569527.2012.754459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Evaluation of eye irritation potential is a routine part of consumer product testing. Increasingly, companies are using in vitro methods to perform these assessments. We have used the bovine corneal opacity and permeability (BCOP) assay for the prediction of eye irritation of liquid and granular laundry detergent formulas. The BCOP assay was selected because it can distinguish between moderate and severe irritants as required to evaluate these classes of formulations. Corneas were maintained in short-term culture and the exposure conditions were optimized using marketed product upper-end benchmark formulas for each product class. The primary endpoint was the loss of epithelium as measured by the change in permeability of the cornea to fluorescein and was complemented by histological evaluation of depth of injury. The opacity endpoint was not used, as the surfactants in these products do not induce opacity in proportion to the depth of injury induced. Liquid laundry detergents were diluted to 25% and exposed to the corneas for 20 min while the granular detergents were diluted to 10% and exposed for 30 min. These conditions were selected for each product type to induce OD490 values in the midrange (between 0.5 and 0.6 absorbance units) and so increased or decreased irritation potential in the test formulas could readily be observed. Seventeen liquid and eleven granular laundry detergents were tested and the OD490 values ranged from 0.278 to 2.193 for the liquid detergents and 0.267 to 0.856 for the granular detergents. Histological changes in the epithelium and stroma were consistent with the OD490 values. These data suggest that the OD490 provides an effective measure of epithelial cell loss (degree of cell lysis) and thus irritation potential for these surfactant-based formulas. The upper-end benchmark set a known upper range for acceptable irritation for the product class. Those formulas inducing lower OD490 values may be considered to fall within the acceptable range while those inducing greater OD490 values should receive further evaluation and perhaps reformulation.
Collapse
|
42
|
Implementation challenges for designing integrated in vitro testing strategies (ITS) aiming at reducing and replacing animal experimentation. Toxicol In Vitro 2012; 26:526-34. [PMID: 22269383 DOI: 10.1016/j.tiv.2012.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 11/23/2022]
Abstract
At the IVTIP (in vitro testing industrial platform) meeting of November 26th 2009 entitled 'Toxicology in the 21st century ('21C')--working our way towards a visionary reality' all delegates endorsed the emerging concept of the '21C' vision as the way forward to enable a thorough, reliable and systematic approach to future toxicity testing without the use of animals. One of the emerging concepts focused on integrating a defined number of tests modelling in vivo-relevant and well-characterised toxicity pathways representing mechanistic endpoints. At this meeting the importance of Integrated Testing Strategies (ITS) as tools towards reduction and eventually replacement of the animals currently used for hazard identification and risk assessment was recognised. A follow-up IVTIP Spring 2010 meeting entitled 'Integrated In Vitro Testing Strategies (ITS)--Implementation Challenges' was organised to address pending questions about ITS. This report is not a review of the ITS literature, but a summary of the discussions triggered by presented examples on how to develop and implement ITS. Contrasts between pharmaceutical and chemical industry, as well as a list of general but practical aspects to be considered while developing an ITS emerged from the discussions. In addition, current recommendations on the validation of ITS were discussed. In conclusion, the outcome of this workshop improved the understanding of the participants of some important factors that may impact the design of an ITS in function of its purpose (e.g., screening, or early decision making versus regulatory), the context in which they need to be applied (e.g., ICH guidelines, REACH) and the status and quality of the available tools. A set of recommendations of best practices was established and the importance of the applicability of the individual tests as well as the testing strategy itself was highlighted.
Collapse
|
43
|
Bouvier d'Yvoire M, Bremer S, Casati S, Ceridono M, Coecke S, Corvi R, Eskes C, Gribaldo L, Griesinger C, Knaut H, Linge JP, Roi A, Zuang V. ECVAM and new technologies for toxicity testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:154-80. [PMID: 22437818 DOI: 10.1007/978-1-4614-3055-1_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of alternative empirical (testing) and non-empirical (non-testing) methods to traditional toxicological tests for complex human health effects is a tremendous task. Toxicants may potentially interfere with a vast number of physiological mechanisms thereby causing disturbances on various levels of complexity of human physiology. Only a limited number of mechanisms relevant for toxicity ('pathways' of toxicity) have been identified with certainty so far and, presumably, many more mechanisms by which toxicants cause adverse effects remain to be identified. Recapitulating in empirical model systems (i.e., in vitro test systems) all those relevant physiological mechanisms prone to be disturbed by toxicants and relevant for causing the toxicity effect in question poses an enormous challenge. First, the mechanism(s) of action of toxicants in relation to the most relevant adverse effects of a specific human health endpoint need to be identified. Subsequently, these mechanisms need to be modeled in reductionist test systems that allow assessing whether an unknown substance may operate via a specific (array of) mechanism(s). Ideally, such test systems should be relevant for the species of interest, i.e., based on human cells or modeling mechanisms present in humans. Since much of our understanding about toxicity mechanisms is based on studies using animal model systems (i.e., experimental animals or animal-derived cells), designing test systems that model mechanisms relevant for the human situation may be limited by the lack of relevant information from basic research. New technologies from molecular biology and cell biology, as well as progress in tissue engineering, imaging techniques and automated testing platforms hold the promise to alleviate some of the traditional difficulties associated with improving toxicity testing for complex endpoints. Such new technologies are expected (1) to accelerate the identification of toxicity pathways with human relevance that need to be modeled in test methods for toxicity testing (2) to enable the reconstruction of reductionist test systems modeling at a reduced level of complexity the target system/organ of interest (e.g., through tissue engineering, use of human-derived cell lines and stem cells etc.), (3) to allow the measurement of specific mechanisms relevant for a given health endpoint in such test methods (e.g., through gene and protein expression, changes in metabolites, receptor activation, changes in neural activity etc.), (4) to allow to measure toxicity mechanisms at higher throughput rates through the use of automated testing. In this chapter, we discuss the potential impact of new technologies on the development, optimization and use of empirical testing methods, grouped according to important toxicological endpoints. We highlight, from an ECVAM perspective, the areas of topical toxicity, skin absorption, reproductive and developmental toxicity, carcinogenicity/genotoxicity, sensitization, hematopoeisis and toxicokinetics and discuss strategic developments including ECVAM's database service on alternative methods. Neither the areas of toxicity discussed nor the highlighted new technologies represent comprehensive listings which would be an impossible endeavor in the context of a book chapter. However, we feel that these areas are of utmost importance and we predict that new technologies are likely to contribute significantly to test development in these fields. We summarize which new technologies are expected to contribute to the development of new alternative testing methods over the next few years and point out current and planned ECVAM projects for each of these areas.
Collapse
|
44
|
Schrage A, Kolle SN, Moreno MCR, Norman K, Raabe H, Curren R, van Ravenzwaay B, Landsiedel R. The bovine corneal opacity and permeability test in routine ocular irritation testing and its improvement within the limits of OECD test guideline 437. Altern Lab Anim 2011; 39:37-53. [PMID: 21452913 DOI: 10.1177/026119291103900119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Data on eye irritation are generally needed for the hazard identification of chemicals. As the Bovine Corneal Opacity and Permeability (BCOP) test has been accepted by many regulatory agencies for the identification of corrosive and severe ocular irritants since September 2009 (OECD Test Guideline 437, TG 437), we evaluated this alternative method for routine testing at BASF. We demonstrated our technical proficiency by testing the reference standards recommended in TG 437, and 21 additional materials with published BCOP and in vivo data. Our results matched the published in vitro data very well, but with some intentionally selected false negatives (FNs) and false positives (FPs), the concordance was 77% (24/31), with FN and FP rates of 20% (2/10) and 24% (5/21), respectively. In addition, we tested 21 in-house materials, demonstrating the utility of the BCOP assay for our own test material panel. Histopathological assessment of the corneas by light microscopy was also conducted, as this was suggested as a means of improving the identification of FNs. The histopathology corrected the classification of some FNs, but also increased the number of FPs. Parallel to the test method evaluation, we compared three new opacitometer models with the current standard device. We recommend the use of an opacitometer developed in our BASF laboratory, which has certified components and electronic data storage, resulting in what we consider to be excellent sensitivity, stability and reproducibility.
Collapse
|
45
|
Prinsen MK, Schipper MEI, Wijnands MVW. Histopathology in the isolated chicken eye test and comparison of different stainings of the cornea. Toxicol In Vitro 2011; 25:1475-9. [PMID: 21575711 DOI: 10.1016/j.tiv.2011.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
The isolated chicken eye (ICE) test, developed at our Institute, is accepted by the OECD for identification of severe eye irritants. The OECD ICE Guideline (No. 438) encourages preservation of the treated eyes for possible histopathology of the cornea, which is believed to strengthen evidence of absence or presence of irritation and to help clarify borderline effects by assessment of the corneal Depth-of-Injury. Histopathology of the cornea in addition to the normal slit-lamp microscope assessment of corneal effects has already been performed routinely in ICE tests at our Institute, using two standard stainings (H&E and PAS). In this study, three other stainings (AZAN, EVG and Trichrome), more specific for collagen-rich membranes such as basement- and Bowman's membranes were examined with corneas exposed to four model compounds ranging from non- to severely irritating (corrosive). PAS appeared to be the superior staining method. Surprisingly, the well-known eye corrosive sodium hydroxide (NaOH, solid) did not visibly compromise the integrity of Bowman's or the basement membrane. Based on our experience, histopathology of the treated cornea is confirmative in relation to the standard assessment of eye irritation by slit-lamp observation in the ICE and in certain cases can help to evaluate borderline effects. Besides establishing the depth of injury, additional investigation of corneal limbal stem cell damage after chemical exposure might be appropriate to determine reversibility or irreversibility of eye effects.
Collapse
Affiliation(s)
- Menk K Prinsen
- TNO Triskelion, Toxicology and Applied Pharmacology Department, PO Box 844, 3700 AV Zeist, The Netherlands.
| | | | | |
Collapse
|
46
|
Eye irritation potential: usefulness of the HET-CAM under the Globally Harmonized System of classification and labeling of chemicals (GHS). Regul Toxicol Pharmacol 2011; 59:471-92. [PMID: 21310206 DOI: 10.1016/j.yrtph.2011.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 11/22/2022]
Abstract
Extensive research has been conducted over the past decades to develop alternatives to the rabbit eye irritation test (Draize test) used in a regulatory context to assess eye irritation potentials. Although no single in vitro test has emerged as being completely acceptable for full replacement, various tests are considered to be suitable and are regularly used to assess certain aspects. Amongst these, the Hen's Egg Test Chorioallantoic Membrane (HET-CAM) has gained regulatory acceptance in various countries to classify severe eye irritants. In this retrospective study, historical eye irritation data (in vivo and in vitro) from 137 samples (approx. 75% non-irritants; 25% (severe) irritants) tested both in the HET-CAM and Draize eye test was compared with regard to the predicted eye irritation classes under the GHS and the traditional EU classification system (DSD).The overall concordance was in the range of 80-90%. A high specificity (96-98%, depending on the classification system and the chosen discrimination) but rather low sensitivity (48-65%) was observed. The study indicates that HET-CAM results are useful as part of weight-of-evidence assessments or in tiered approaches to assess eye irritation potentials rather than as stand-alone classification method.
Collapse
|
47
|
Survey of ocular irritation predictive capacity using Chorioallantoic Membrane Vascular Assay (CAMVA) and Bovine Corneal Opacity and Permeability (BCOP) test historical data for 319 personal care products over fourteen years. Toxicol In Vitro 2010; 25:563-72. [PMID: 21147215 DOI: 10.1016/j.tiv.2010.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 11/21/2022]
Abstract
The Chorioallantoic Membrane Vascular Assay (CAMVA) and Bovine Corneal Opacity and Permeability (BCOP) test are widely used to predict ocular irritation potential for consumer-use products. These in vitro assays do not require live animals, produce reliable predictive data for defined applicability domains compared to the Draize rabbit eye test, and are rapid and inexpensive. Data from 304 CAMVA and/or BCOP studies (319 formulations) were surveyed to determine the feasibility of predicting ocular irritation potential for various formulations. Hair shampoos, skin cleansers, and ethanol-based hair styling sprays were repeatedly predicted to be ocular irritants (accuracy rate=0.90-1.00), with skin cleanser and hair shampoo irritation largely dependent on surfactant species and concentration. Conversely, skin lotions/moisturizers and hair styling gels/lotions were repeatedly predicted to be non-irritants (accuracy rate=0.92 and 0.82, respectively). For hair shampoos, ethanol-based hair stylers, skin cleansers, and skin lotions/moisturizers, future ocular irritation testing (i.e., CAMVA/BCOP) can be nearly eliminated if new formulations are systematically compared to those previously tested using a defined decision tree. For other tested product categories, new formulations should continue to be evaluated in CAMVA/BCOP for ocular irritation potential because either the historical data exhibit significant variability (hair conditioners and mousses) or the historical sample size is too small to permit definitive conclusions (deodorants, make-up removers, massage oils, facial masks, body sprays, and other hair styling products). All decision tree conclusions should be made within a conservative weight-of-evidence context, considering the reported limitations of the BCOP test for alcohols, ketones, and solids.
Collapse
|
48
|
Jester JV, Ling J, Harbell J. Measuring depth of injury (DOI) in an isolated rabbit eye irritation test (IRE) using biomarkers of cell death and viability. Toxicol In Vitro 2010; 24:597-604. [DOI: 10.1016/j.tiv.2009.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/29/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
|
49
|
Scott L, Eskes C, Hoffmann S, Adriaens E, Alepée N, Bufo M, Clothier R, Facchini D, Faller C, Guest R, Harbell J, Hartung T, Kamp H, Varlet BL, Meloni M, McNamee P, Osborne R, Pape W, Pfannenbecker U, Prinsen M, Seaman C, Spielmann H, Stokes W, Trouba K, Berghe CVD, Goethem FV, Vassallo M, Vinardell P, Zuang V. A proposed eye irritation testing strategy to reduce and replace in vivo studies using Bottom–Up and Top–Down approaches. Toxicol In Vitro 2010; 24:1-9. [DOI: 10.1016/j.tiv.2009.05.019] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/12/2009] [Accepted: 05/26/2009] [Indexed: 11/17/2022]
|
50
|
In vitro assessment of eye irritancy using the Reconstructed Human Corneal Epithelial SkinEthic HCE model: application to 435 substances from consumer products industry. Toxicol In Vitro 2009; 24:523-37. [PMID: 19913609 DOI: 10.1016/j.tiv.2009.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 11/21/2022]
Abstract
The 7th amendment of the EU Cosmetics Directive led to the ban of eye irritation testing for cosmetic ingredients in animals, effective from March 11th 2009. Over the last 20years, many efforts have been made to find reliable and relevant alternative methods. The SkinEthic HCE model was used to evaluate the in vitro eye irritancy potential of substances from a cosmetic industry portfolio. An optimized protocol based on a specific 1-h treatment and a 16-h post-treatment incubation period was first assessed on a set of 102 substances. The prediction model (PM) based on a 50% viability cut-off, allowed to draw up two classes (Irritants and Non-Irritants), with good associated sensitivity (86.2%) and specificity (83.5%). To check the robustness of the method, the evaluated set was expanded up to 435 substances. Final performances maintained a high level and were characterized by an overall accuracy value > 82% when using EU or GHS classification rules. Results showed that the SkinEthic HCE test method is a promising in vitro tool for the prediction of eye irritancy. Optimization datasets were shared with the COLIPA Eye Irritation Project Team and ECVAM experts, and reviewed as part of an ongoing progression to enter an ECVAM prospective validation study for eye irritation.
Collapse
|