1
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
2
|
Sharma T, Gupta A, Chauhan R, Bhat AA, Nisar S, Hashem S, Akhtar S, Ahmad A, Haris M, Singh M, Uddin S. Cross-talk between the microbiome and chronic inflammation in esophageal cancer: potential driver of oncogenesis. Cancer Metastasis Rev 2022; 41:281-299. [PMID: 35511379 PMCID: PMC9363391 DOI: 10.1007/s10555-022-10026-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Esophageal cancer (EC) is frequently considered a lethal malignancy and is often identified at a later stage. It is one of the major causes of cancer-related deaths globally. The conventional treatment methods like chemotherapy, radiotherapy, and surgery offer limited efficacy and poor clinical outcome with a less than 25% 5-year survival rate. The poor prognosis of EC persists despite the growth in the development of diagnostic and therapeutic modalities to treat EC. This underlines the need to elucidate the complex molecular mechanisms that drive esophageal oncogenesis. Apart from the role of the tumor microenvironment and its structural and cellular components in tumorigenesis, mounting evidence points towards the involvement of the esophageal microbiome, inflammation, and their cross-talk in promoting esophageal cancer. The current review summarizes recent research that delineates the underlying molecular mechanisms by which the microbiota and inflammation promote the pathophysiology of esophageal cancer, thus unraveling targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Tarang Sharma
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar.,Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, PA, Philadelphia, USA.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Semin Cancer Biol 2022; 86:720-736. [DOI: 10.1016/j.semcancer.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
4
|
Vela-Patiño S, Salazar MI, Remba-Shapiro I, Peña-Martínez E, Silva-Roman G, Andoneui-Elguera S, Ordoñez-Garcia JDJ, Taniguchi-Ponciano K, Bonifaz L, Aguilar-Flores C, Marrero-Rodríguez D, Mercado M. Neuroendocrine-immune Interface: Interactions of Two Complex Systems in Health and Disease. Arch Med Res 2022; 53:240-251. [DOI: 10.1016/j.arcmed.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/25/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
|
5
|
Kaur H, Ghorai SM. Role of Cytokines as Immunomodulators. IMMUNOMODULATORS AND HUMAN HEALTH 2022:371-414. [DOI: 10.1007/978-981-16-6379-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Tang X, Liu M, Luo X, Zhu M, Huang S, Pan X. The Prognostic Value of a Tumor Microenvironment-Based Immune Cell Infiltration Score Model in Colon Cancer. Front Oncol 2021; 11:728842. [PMID: 34737949 PMCID: PMC8561118 DOI: 10.3389/fonc.2021.728842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The current study aimed to construct a prognostic predictive model based on tumor microenvironment. CIBERSORT and ESTIMATE algorithms were used to reveal the immune cell infiltration (ICI) landscape of colon cancer. Patients were classified into three clusters by ConsensusClusterPlus algorithm. ICI scores of each patient were determined by principal component analysis. Patients were divided into high and low ICI score groups. Survival, gene expression, and somatic mutation of the two groups were compared. We found that patients with no lymph node invasion, no metastasis, T1–2 disease, and stage I–II had higher ICI scores. Calcium signaling pathway, leukocyte transendothelial migration pathway, MAPK signaling pathway, TGF β pathway, and Wnt signaling pathway were enriched in the high ICI score group. Immune-checkpoint and immune-activity associated genes were decreased in high ICI score patients. Patients in the high ICI score group had better survival. Prognostic value of ICI score was independent of tumor mutational burden (TMB). The ICI score model constructed in the current study may serve as an independent prognostic biomarker in colon cancer.
Collapse
Affiliation(s)
- Xingkui Tang
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Minling Liu
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xijun Luo
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Mengyuan Zhu
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shan Huang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaofen Pan
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
7
|
Nisar S, Yousuf P, Masoodi T, Wani NA, Hashem S, Singh M, Sageena G, Mishra D, Kumar R, Haris M, Bhat AA, Macha MA. Chemokine-Cytokine Networks in the Head and Neck Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094584. [PMID: 33925575 PMCID: PMC8123862 DOI: 10.3390/ijms22094584] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell-cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.
Collapse
Affiliation(s)
- Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Parvaiz Yousuf
- Department of Zoology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode 400102, India;
| | - Nissar A. Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Mayank Singh
- Departmental of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | - Deepika Mishra
- Centre for Dental Education and Research, Department of Oral Pathology and Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rakesh Kumar
- Centre for Advanced Research, School of Biotechnology and Indian Council of Medical Research, Shri Mata Vaishno Devi University, Katra 182320, India;
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Ajaz A. Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora 192122, India
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| |
Collapse
|
8
|
Immunoediting role for major vault protein in apoptotic signaling induced by bacterial N-acyl homoserine lactones. Proc Natl Acad Sci U S A 2021; 118:2012529118. [PMID: 33723037 PMCID: PMC8000436 DOI: 10.1073/pnas.2012529118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Pseudomonas aeruginosa Here, we report the use of photoactive probes to identify MVP as a target of the N-(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including P. aeruginosa. A treatment of normal and cancer cells with C12 or other N-acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death. Since MVP is the structural core of large particles termed vaults, our findings suggest a mechanism in which MVP vaults act as sentinels that fine-tune inflammation-activated processes such as apoptotic signaling mediated by immunosurveillance cytokines including tumor necrosis factor-related apoptosis inducing ligand (TRAIL).
Collapse
|
9
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
10
|
Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani NA, Rizwan A, Bagga P, Singh M, Reddy R, Uddin S, Grivel JC, Chand G, Frenneaux MP, Siddiqi MA, Bedognetti D, El-Rifai W, Macha MA, Haris M. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer 2021; 20:2. [PMID: 33390169 PMCID: PMC7780621 DOI: 10.1186/s12943-020-01294-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Selma Maacha
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Nissar A Wani
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
11
|
Subhadarshani S, Yusuf N, Elmets CA. IL-23 and the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:89-98. [PMID: 33559857 DOI: 10.1007/978-3-030-55617-4_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The tumor microenvironment (TME), which assists in the development, progression, and metastasis of malignant cells, is instrumental in virtually every step of tumor development. While a healthy TME can protect against malignancy, in an unhealthy state, it can result in aberrant cellular behavior and augment tumor progression. Cytokines are one component of the TME, therefore, understanding the composition of the cytokine milieu in the tumor microenvironment is critical to understand the biology of malignant transformation. One cytokine, interleukin (IL)-23, has received particular scrutiny in cancer research because of its ability to manipulate host immune responses, its role in modulating the cells in TME, and its capacity to directly affect a variety of premalignant and malignant tumors. IL-23 belongs to the IL-12 cytokine family, which is produced by activated dendritic cells (DC) and macrophages. IL-23 acts by binding to its receptor consisting of two distinct subunits, IL-12Rβ1 and IL-23R. This, in turn, leads to janus kinase (JAK) activation and signal transducer and activator of transcription (STAT) 3/4 phosphorylation. There have been contradictory reports of pro- and antitumor effects of IL-23, which likely depend on the genetic background, the type of tumor, the causative agent, and the critical balance of STAT3 signaling in both the tumor itself and the TME. Clinical trials of IL-12/23 inhibitors that are used to treat patients with psoriasis, have been scrutinized for reports of malignancy, the most common being nonmelanoma skin cancers (NMSCs). Continued investigation into the relationship of IL-23 and its downstream pathways holds promise in identifying novel targets for the management of cancer and other diseases.
Collapse
Affiliation(s)
| | | | - Craig A Elmets
- Department of Dermatology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, University Boulevard, Birmingham, AL, USA.
| |
Collapse
|
12
|
Chen X, Wei H, Qian D, Wang Y, Guan Y, Er P, Song Y, Liu N, Wang J, Zhao L, Yuan Z, Wang P, Pang Q, Zhang W. Predictive value of EGF and uPAR for chemoradiotherapy response and survival in patients with esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1152. [PMID: 33241001 PMCID: PMC7576018 DOI: 10.21037/atm-20-4503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Chemoradiotherapy (CRT) plays a central role in the treatment of esophageal squamous cell carcinoma (ESCC). However, no effective biomarkers have been identified for predict CRT sensitivity and prognosis of patients with ESCC. The aim of this study was to investigate cytokine profiles of epidermal growth factor (EGF) and urokinase plasminogen activator receptor (uPAR) in 68 ESCC patients, and to evaluate the clinical utility of these markers. Methods This pilot study enrolled 68 patients who received neoadjuvant CRT followed by radical surgery or definitive CRT between 2015 and 2017. Serum specimen was obtained from each patient before treatment and at the time of administration of total doses of 40 Gy. Cytokines expression analyses were performed in pre- and post-treatment serum using human cytokine antibody arrays which contained 120 known tumor-related cytokines. Results Seven differentially expressed cytokines identified by cytokine antibody arrays in pre- and post-treatment serum from 4 patients with CRT sensitivity and 4 patients with CRT resistance. Of these, up-regulation of EGF and uPAR in serum at the doses of 40 Gy were associated with adverse clinical outcomes. The predictive value of EGF and uPAR were further assessed in a second set of 60 ESCCs. A total of 68 patients enrolled in this study. The median follow-up duration of these patients was 15.87 months (range, 6.21–23.85 months). Cox multivariate survival analyses revealed that high uPAR ratio after CRT independently predicted progression-free survival (PFS) (HR =3.999, 95% CI: 1.503–10.639, P=0.006) and patients with elevated levels of EGF after CRT exhibited significantly worse overall survival (OS) (HR =2.574, 95% CI: 1.046–6.335, P=0.040). Of note, uPAR expression was significantly positive correlation with EGF expression in pre- and post-treatment serum (P=0.0001, P=0.0038). Patients with both high EGF and uPAR ratios had an inferior PFS and OS, compared to patients with a high EGF ratio only or uPAR ratio only or neither (1-year PFS rate 44.2% vs. 61.4%, 1-year OS rate 64.2% vs. 83.4%, P=0.033 and 0.029, respectively). Conclusions The levels of EGF and uPAR in serum are reliable and predictive biomarkers for survival in ESCC patients. Further prospective validation in larger independent cohorts is necessary to fully assess its predictive power. We present the following article in accordance with the REMARK reporting checklist.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Wei
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin, China
| | - Dong Qian
- Department of radiotherapy, The First Affiliated Hospital of University of Science and Technology of China, Heifei, China
| | - Yuwen Wang
- Department of radiotherapy, Tianjin Medical University Cancer Hospital Airport Hospital, Tianjin, China
| | - Yong Guan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Puchun Er
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yongchun Song
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
13
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
14
|
Chu LY, Peng YH, Weng XF, Xie JJ, Xu YW. Blood-based biomarkers for early detection of esophageal squamous cell carcinoma. World J Gastroenterol 2020; 26:1708-1725. [PMID: 32351288 PMCID: PMC7183865 DOI: 10.3748/wjg.v26.i15.1708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive system worldwide, especially in China. Due to the lack of effective early detection methods, ESCC patients often present at an advanced stage at the time of diagnosis, which seriously affects the prognosis of patients. At present, early detection of ESCC mainly depends on invasive and expensive endoscopy and histopathological biopsy. Therefore, there is an unmet need for a non-invasive method to detect ESCC in the early stages. With the emergence of a large class of non-invasive diagnostic tools, serum tumor markers have attracted much attention because of their potential for detection of early tumors. Therefore, the identification of serum tumor markers for early detection of ESCC is undoubtedly one of the most effective ways to achieve early diagnosis and treatment of ESCC. This article reviews the recent advances in the discovery of blood-based ESCC biomarkers, and discusses the origins, clinical applications, and technical challenges of clinical validation of various types of biomarkers.
Collapse
Affiliation(s)
- Ling-Yu Chu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xue-Fen Weng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
15
|
Kazakov OV, Raiter TV, Poveshchenko AF, Orlov NB, Poveshchenko OV, Kabakov AV, Kim II, Bondarenko NA, Strunkin DN, Lykov AP, Letyagin AY, Konenkov VI. Correlation Analysis of Morphological Changes of Structural and Functional Areas of Mesenteric Lymph Nodes with Cytokines of Lymph of Thoracic Lymphatic Duct in Experimental Breast Cancer. Bull Exp Biol Med 2020; 168:512-516. [PMID: 32147763 DOI: 10.1007/s10517-020-04743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 10/24/2022]
Abstract
We performed a correlation analysis of the morphometric parameters of mesenteric lymph nodes and cytokine content in the lymph of thoracic duct in rats with chemically induced breast cancer. The study showed that activity of the local immune response in the lymph nodes in breast cancer is aimed at antitumor protection. In breast cancer, the area of the paracortical zone remained at the level of the intact group, while the area of lymphoid nodules with germinative centers and the area of medullary substance increased; the number of macrophages in the thymus-dependent zone and zone responsible for humoral immunity also increased. The following positive correlations were revealed: in germinative centers and medullary substance, number of mitotic cells correlated with cytokine IL-5 content and the number of medium lymphocytes correlated with the content of chemokine MIP-1α; in the germinative centers, the number of immunoblasts correlated with the level of cytokine GRO/KC, in the paracortical zone, the number of macrophages correlated with the level of chemokine MCP-1, the number of reticular cells correlated with IL-6 and M-CSF content; in medullary substance, the number of small lymphocytes and mature cells plasma cells (their content was reduced) correlated with the level of chemokine GRO/KC, which can be caused by their migration from the lymph node.
Collapse
Affiliation(s)
- O V Kazakov
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - T V Raiter
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A F Poveshchenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N B Orlov
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O V Poveshchenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kabakov
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I I Kim
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Bondarenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D N Strunkin
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A P Lykov
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Yu Letyagin
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V I Konenkov
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
16
|
Khatibi AS, Roodbari NH, Majidzade-A K, Yaghmaei P, Farahmand L. In vivo tumor-suppressing and anti-angiogenic activities of a recombinant anti-CD3ε nanobody in breast cancer mice model. Immunotherapy 2019; 11:1555-1567. [PMID: 31865872 DOI: 10.2217/imt-2019-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Achievements in cancer immunotherapy require augmentation of a host's anti-tumor immune response for anti-cancer modality. Materials & methods: Different concentrations of recombinant anti-CD3 nanobody were administered at predetermined time intervals during a 24-day treatment period and then expression of angiogenic biomarkers including VEGFR2, MMP9 and CD31, as well as tumor cell proliferation marker ki67, was determined in tumor sections by immunohistochemistry. Furthermore, expression of cytokines was examined in peripheral blood of mice. Results: Based on our results, administration of nanobody could reduce biomarker expression in tumor sections. Tumor growth was also delayed and survival rate was increased in response to nanobody treatment. Moreover, expression of pro-inflammatory cytokines was reduced. Conclusion: In conclusion, we demonstrated that administration of nanobody could effectively suppress angiogenesis as well as tumor growth.
Collapse
Affiliation(s)
- Azadeh Sharif Khatibi
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Keivan Majidzade-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Alexandrino CAF, Honda NK, Matos MDFC, Portugal LC, Souza PRBD, Perdomo RT, Guimarães RDCA, Kadri MCT, Silva MCBL, Bogo D. Antitumor effect of depsidones from lichens on tumor cell lines and experimental murine melanoma. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Domingueti CB, Janini JBM, Paranaíba LMR, Lozano-Burgos C, Olivero P, González-Arriagada WA. Prognostic value of immunoexpression of CCR4, CCR5, CCR7 and CXCR4 in squamous cell carcinoma of tongue and floor of the mouth. Med Oral Patol Oral Cir Bucal 2019; 24:e354-e363. [PMID: 31011147 PMCID: PMC6530956 DOI: 10.4317/medoral.22904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 11/30/2022] Open
Abstract
Background Diverse studies have evidenced that chemokines can play a critical role in pathogenesis of oral squamous cell carcinoma (SCC). The main chemokines involved in oral carcinogenesis, tumor invasion and metastasis are CCR4, CCR5, CCR7 and CXCR4, and our aim was to evaluate the prognostic value of the immunoexpression of these chemokines in SCC of tongue and floor of the mouth. Material and Methods A retrospective descriptive study of the immunohistochemical expression of CCR4, CCR5, CCR7 and CXCR4 in paraffin-embedded samples of 124 patients with SCC of the tongue and floor of the mouth was performed, considering 98 cases from Brazil and 26 cases from Chile. Associations between variables were analyzed using chi-square test. Survival curves were performed using the Kaplan-Meier method and compared with long-rank test. For multivariate survival analysis, the Cox hazard model was established. The level of significance established was p≤0.05. Results The statistical analysis showed that samples with well or moderate WHO model differentiation (p=0.001) and a high expression of CCR5 (p=0.05) were significantly associated with a higher disease specific survival, which were also observed in Cox´s multivariate analysis (p=0.01). A higher expression of CCR7 (p=0.01) interfered significantly in disease-free survival in univariate analysis and in Cox´s multivariate analysis (p=0.05). Conclusions These results support additional evidence, showing that chemokine receptors CCR5 and CCR7 are helpful as biomarkers of poor prognosis in patients with SCC of the tongue and floor of the mouth. Key words:Oral squamous cell carcinoma, prognosis, survival, chemokine receptor.
Collapse
Affiliation(s)
- C-B Domingueti
- Facultad de Odontología, Universidad de Valparaíso, Subida Leopoldo Carvallo 211, Playa Ancha, Valparaíso, Chile,
| | | | | | | | | | | |
Collapse
|
19
|
Yang S, Tse WH, Zhang J. Deposition of Antibody Modified Upconversion Nanoparticles on Glass by a Laser-Assisted Method to Improve the Performance of Cell Culture. NANOSCALE RESEARCH LETTERS 2019; 14:101. [PMID: 30877399 PMCID: PMC6420592 DOI: 10.1186/s11671-019-2918-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/03/2023]
Abstract
A suitable surface is vital for maintaining or even promoting cells' function and communication. Recently, studies show that nanostructured coatings could have a potential in improving cell adhesion. However, it hardly minimizes the contamination by using traditional solution-coating technology. Matrix-assisted pulsed laser evaporation (MAPLE) technique is a contamination-free process and demonstrates an efficient process to deposit biopolymer without damaging their backbone on the surface of various substrates. Here, upconversion nanoparticles (NaGdF4: Yb3+, Er3+) with/without immunoglobulin G (IgG) modification were produced by a one-pot synthesis method. The average size of the upconversion nanoparticles (UCNPs) is 50 ± 8 nm. IgG bio-conjugated on the surface of UCNPs can be directly observed by transmission electron microscope (TEM). MAPLE system utilizing a Nd:YAG laser (λ = 532 nm, ν = 10 Hz) is applied to deposit UCNPs with/without IgG modification on the glass bottom of culture dish. In addition, the behaviors of human umbilical vein endothelial cells (HUVECs) cultured on the culture dishes coated with UCNPs with/without IgG have been studied as compared to the control sample, glass coated with gelatin. No toxic effect is imposed on cells. The results of this work indicate that the deposition of UCNPs with/without antibody by the MAPLE technique could enhance the adhesion and proliferation of cells.
Collapse
Affiliation(s)
- Songlin Yang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9 Canada
| | - Wai Hei Tse
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7 Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9 Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7 Canada
| |
Collapse
|
20
|
Gong WJ, Liu JY, Yin JY, Cui JJ, Xiao D, Zhuo W, Luo C, Liu RJ, Li X, Zhang W, Zhou HH, Liu ZQ. Resistin facilitates metastasis of lung adenocarcinoma through the TLR4/Src/EGFR/PI3K/NF-κB pathway. Cancer Sci 2018; 109:2391-2400. [PMID: 29927028 PMCID: PMC6113506 DOI: 10.1111/cas.13704] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022] Open
Abstract
Metastasis is the main cause of lung cancer‐related death. The tumor microenvironment greatly contributes to tumor metastasis. Resistin, mainly secreted by tumor‐associated macrophages in tumor tissues, is a 12.5‐kDa cysteine‐rich secretory protein that is found at significantly higher levels in the serum or plasma of cancer patients compared with healthy controls. In this study, we explored the expression and role of resistin in lung adenocarcinoma. Our study showed that resistin was strongly expressed in lung adenocarcinoma tissues and promoted the migration and invasion of lung adenocarcinoma cells in a dose‐dependent manner. Toll‐like receptor 4 (TLR4) was the functional receptor of resistin for migration and invasion in A549 cells. Src/epidermal growth factor receptor (EGFR) was involved in resistin‐induced migration and invasion. Resistin increased the phosphorylation of EGFR through the TLR4/Src pathway. We also found that PI3K/nuclear factor (NF)‐κB were the intracellular downstream effectors mediating resistin‐induced migration and invasion. Taken together, our results suggested that resistin promoted lung adenocarcinoma metastasis through the TLR4/Src/EGFR/PI3K/NF‐κB pathway.
Collapse
Affiliation(s)
- Wei-Jing Gong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Yan Liu
- Department of orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhuo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui-Jie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Blank S, Nienhüser H, Dreikhausen L, Sisic L, Heger U, Ott K, Schmidt T. Inflammatory cytokines are associated with response and prognosis in patients with esophageal cancer. Oncotarget 2018; 8:47518-47532. [PMID: 28537901 PMCID: PMC5564583 DOI: 10.18632/oncotarget.17671] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022] Open
Abstract
Background Esophageal cancer is often marked by aggressive tumor growth and poor prognosis. Patient groups who benefit from perioperative therapy are not yet defined. The tumor microenvironment and circulating factors as possible predictors of response and prognosis gain interest. This study aimed to investigate cytokines in patients’ serum and tumor tissue with regard to response and prognosis. Results Median survival between SCC and AC was not different (published previously). Lower levels of CCL11 (Eotaxin-1) and CXCL10 (IP-10) in the tumor tissue were associated with a better prognosis (p = 0.022; p = 0.002). In the AC subgroup higher concentrations of TGF-β3 in serum and corresponding tumor tissue were associated with adverse prognosis (p = 0.035; p = 0.006). An association with histopathological response was found for IL-12(p70) and CXCL10 in patients’ sera (p = 0.041; p = 0.032). The tissue levels of TGF-β1 and TGF-β2 were significantly lower in histopathological responders than in nonresponders (p = 0.033; p = 0.007). A similar trend was seen for TGF-β3, without statistical significance (p = 0.097). Materials and Methods Preoperative serum samples and corresponding tumor tissue (n = 54), only serum (n = 20) or only tissue (n = 4) were collected from patients undergoing surgery for cT3/4 esophageal squamous cell cancer (SCC) (n = 34) and adenocarcinoma (AC) (n = 44). All samples were taken after neoadjuvant treatment. All patients received perioperative chemo(radio)therapy. Cytokine levels of 17 different cytokines were measured by multiplex immunoassay and correlated with clinicopathological factors. Conclusions Two chemokines (CCL11 and CXCL10) in posttherapeutic tumor tissue were associated with prognosis in patients with esophageal cancer, lower levels indicating a better prognosis. Lower levels of TGF-β were associated with better response and prognosis in patients with AC.
Collapse
Affiliation(s)
- Susanne Blank
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Henrik Nienhüser
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lena Dreikhausen
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Leila Sisic
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ulrike Heger
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Katja Ott
- Romed Klinikum Rosenheim, 83022 Rosenheim, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Zhang M, Zhu ZL, Gao XL, Wu JS, Liang XH, Tang YL. Functions of chemokines in the perineural invasion of tumors (Review). Int J Oncol 2018. [PMID: 29532850 DOI: 10.3892/ijo.2018.4311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The perineural invasion (PNI) of malignant tumors is a form of tumor progression in which cancer cells encroach along nerves. PNI hinders curative resection. Residual tumor cells in or around nerves can bring about local recurrence, infiltration and metastasis. This behavior is usually associated with a poor clinical prognosis. Therefore, it is necessary to investigate novel ligand-receptor crosstalk between nerves and tumor cells that promote the process of PNI. Chemokines are regarded as one of pivotal factors involved in the process of PNI. The present review collates information provided by previous studies with regard to the role of chemokines in PNI. The study presents a definition of PNI in cancer, generalizes the biological characteristics and the expression of chemokines and their receptors in cancer types associated with PNI, and discusses the underlying molecular mechanisms of chemokines, the reciprocal interactions between chemokines and other factors in PNI, and the interconnectivity of the microenvironment and chemokines. The aim of the review is to thoroughly illustrate the molecular cues of chemokines in cancer with PNI and to identify novel antitumor targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhuo-Li Zhu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Lei Gao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
23
|
Yanru W, Zhenyu B, Zhengchuan N, Qi Q, Chunmin L, Weiqiang Y. Transcriptomic analyses of chemokines reveal that down-regulation of XCR1 is associated with advanced hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 496:1314-1321. [PMID: 29408492 DOI: 10.1016/j.bbrc.2018.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
Chemokines are essential coordinators of cellular migration and cell-cell interactions, therefore considerable attention has been paid to the application of chemokines to cancer immunotherapy. In this study, we screened for the expression levels of 58 human chemokines/chemokine receptors in hepatocellular carcinoma (HCC) by using samples from the TCGA LIHC cohort and found 16 consistently down-regulated and 11 up-regulated chemokine genes in HCC compared with normal samples. Furthermore, the expressions of XCR1 were verified by Western blot in liver cancer cell lines. We used CCK8, plate cloning formation, scratch-wound and transwell analysis to measure the ability of proliferation, metastasis and invasion, respectively. Protein expression was analyzed by cell immunofluorescence and western-blot. We found that silencing XCR1 promoted, while overexpressing XCR1 inhibited, HCC cell migration and invasion in vitro, its mechanism may involve in inhibition of Epithelial Mesenchymal Transition (EMT). However, the overexpression of XCR1 in HCCLM3 in vitro can restrain the growth partially due to the inhibition of MAPK and PI3K/AKT signaling pathway. Gene Set Enrichment Analysis (GSEA) showed that high expression of XCR1 is positively associated with EMT, which is closely associated with tumor migration and invasion. Our study provides the basis for further investigation of the molecular mechanism by which down-regulation of XCR1 promotes the development and progression of HCC.
Collapse
Affiliation(s)
- Wang Yanru
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Bai Zhenyu
- Department of Laboratory, General Hospital of Pingmei Shenma Medical Group, Henan, China.
| | - Niu Zhengchuan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qi Qi
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China.
| | - Liang Chunmin
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Yao Weiqiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Liu Y, Wang J, Ni T, Wang L, Wang Y, Sun X. CCL20 mediates RANK/RANKL-induced epithelial-mesenchymal transition in endometrial cancer cells. Oncotarget 2018; 7:25328-39. [PMID: 27015366 PMCID: PMC5041907 DOI: 10.18632/oncotarget.8291] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
RANK/RANKL facilitates migration/invasion via epithelial-mesenchymal transition (EMT) in certain malignant tumors. The relationship and mechanism between RANK/RANKL and EMT in endometrial cancer (EC) cells, however, remain unclear. In this study, we firstly showed that RANK/RANKL activation was correlated with EC staging and EMT markers in human EC tissue specimen. RANK/RANKL promoted migration/invasion and initiated EMT of EC cell lines. Then, protein chip analysis and enzyme-linked immunosorbent assay (ELISA) revealed that the expression and secretion of chemokine ligand 20 (CCL20) was dramatically enhanced in RANKL-treated RANK over-expressed EC cells. Moreover, the higher level of CCL20 in both serum and tumor tissue was detected in orthotopic transplantation mouse models. Finally, we confirmed that CCL20 contributed to invasion and EMT of RANK over-expressed EC cells. In summary, all data supported the hypothesis that RANK/RANKL elevated the expression and secretion of CCL20 in EC cells, which promoted cancer progression through EMT.
Collapse
Affiliation(s)
- Yao Liu
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Ni
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yudong Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Sun
- Laboratory for Gynecologic Oncology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Regier MC, Montanez-Sauri SI, Schwartz MP, Murphy WL, Beebe DJ, Sung KE. The Influence of Biomaterials on Cytokine Production in 3D Cultures. Biomacromolecules 2017; 18:709-718. [PMID: 28157290 PMCID: PMC5672812 DOI: 10.1021/acs.biomac.6b01469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As a result of improved relevance to in vivo physiology, in vitro studies are increasingly performed in diverse, three-dimensional (3D) biomaterials. However, material-cell type pairing effects on cytokine availability remain unclear. We cultured five cell types in agarose, alginate, collagen, Matrigel, or RGD-functionalized polyethylene glycol (PEG) hydrogels. We measured 21 cytokines in the conditioned media, and we identified differences in measured cytokine levels that were cell-type- or material-dependent. We further evaluated our data using principal component analysis. Interestingly, component one identified two classes of biomaterials with characteristic cytokine expression levels. Component two identified cell-type-dependent differences in cytokines related to the wound response. Although elements of soluble cytokine availability are shared despite parameter differences, material and cellular properties variably influenced cytokine levels, underlining the influence of biomaterial-cell type pairings on in vitro assay outcomes. Relationships between material properties, cellular responses, and cytokine availability in 3D in vitro models warrant further investigation.
Collapse
Affiliation(s)
- Mary C. Regier
- Department of Biomedical Engineering, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institutes for Medical Research, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University of Wisconsin Carbone Cancer Center, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sara I. Montanez-Sauri
- Materials Science Program, University of Wisconsin-Madison,
Madison, Wisconsin 53706, United States
- Wisconsin Institutes for Medical Research, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University of Wisconsin Carbone Cancer Center, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael P. Schwartz
- Department of Biomedical Engineering, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institutes for Medical Research, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - William L. Murphy
- Department of Biomedical Engineering, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institutes for Medical Research, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Materials Science and Engineering, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Orthopedics and Rehabilitation, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - David J. Beebe
- Department of Biomedical Engineering, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institutes for Medical Research, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University of Wisconsin Carbone Cancer Center, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyung Eun Sung
- Division of Cellular and Gene Therapies, Office of Tissues
and Advanced Therapies, Center for Biologics Evaluation and Research, The U.S. Food
and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
26
|
Jian H, Fangrong S, Haitao H, Chunhua L, Guangbo Z. Th1high in tumor microenvironment is an indicator of poor prognosis for patients with NSCLC. Oncotarget 2017; 8:13116-13125. [PMID: 28061450 PMCID: PMC5355081 DOI: 10.18632/oncotarget.14471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
CD4+Th subsets play an important role in tumor progression but their expression characteristics and clinical significance in human tumor microenvironment remains unclear. In this study, we aim to analyze the expression and clinical significance of tissue-infiltrating Th1, Th2 and Th17 in lung cancer by flow cytometry. We found that the frequency of CD3+CD4+IFN-γ+Th1 in tumor nest was significantly lower than that in tumor boundary, adjacent normal lung tissue or corresponding lymph node tissue; the frequency of CD3+CD4+IL-4+Th2 in tumor nest was significantly higher than that in tumor boundary, adjacent normal lung tissue or corresponding lymph node tissue; the frequency of CD3+CD4+IL-17+Th17 in tumor nest was significantly lower than that in tumor boundary, but not adjacent normal tissue or corresponding lymph node tissue. Survival analysis of 2-years survival after surgery showed that Th1high group was significantly lower compared with Th1low group; Th2high and Th17low is a good prognosis index compared with the Th2low and Th17high groups respectively, but this difference failed to significance. In addition, we also found that PD-1 expression showed a high level on lung tumor tissues and adjacent non- tumor tissue infiltrating T cells, and no significant difference was found between the two groups. However PD-L1 on CD45+CD14+mononcytes/macrophages in tumor tissue show a significantly higher level compared with that in adjacent nontumor tissues. In vitro stimulation experiments showed that IFN-γ could significantly increase PD-L1 expression on monocyte. In conclusion, we for the first time found Th1high is a poor indicator for prognosis of lung cancer.
Collapse
Affiliation(s)
- Huang Jian
- Department of respiratory, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
| | - Shen Fangrong
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
| | - Huang Haitao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
| | - Ling Chunhua
- Department of respiratory, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
| | - Zhang Guangbo
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
| |
Collapse
|
27
|
Lesage J, Suarez‐Carmona M, Neyrinck‐Leglantier D, Grelet S, Blacher S, Hunziker W, Birembaut P, Noël A, Nawrocki‐Raby B, Gilles C, Polette M. Zonula occludens‐1/NF‐κB/CXCL8: a new regulatory axis for tumor angiogenesis. FASEB J 2017; 31:1678-1688. [DOI: 10.1096/fj.201600890r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Julien Lesage
- INSERM, Unité Mixte de Recherche–S 903, Structure Fédérative de Recherche Champagne‐Ardennes Picardie Santé (SFR CAP)University of Reims Champagne‐Ardenne Reims France
| | - Meggy Suarez‐Carmona
- Laboratory of Tumor and Development Biology, Grappe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)‐CancerUniversity of Liège Liège Belgium
| | - Deborah Neyrinck‐Leglantier
- INSERM, Unité Mixte de Recherche–S 903, Structure Fédérative de Recherche Champagne‐Ardennes Picardie Santé (SFR CAP)University of Reims Champagne‐Ardenne Reims France
| | - Simon Grelet
- Department of Biochemistry and Molecular BiologyMedical University of South Carolina Charleston South Carolina USA
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, Grappe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)‐CancerUniversity of Liège Liège Belgium
| | - Walter Hunziker
- Epithelial Cell Biology LaboratoryInstitute of Molecular and Cell Biology Singapore Singapore
| | - Philippe Birembaut
- INSERM, Unité Mixte de Recherche–S 903, Structure Fédérative de Recherche Champagne‐Ardennes Picardie Santé (SFR CAP)University of Reims Champagne‐Ardenne Reims France
- Laboratory of BiopathologyCentres Hospitaliers Universitaires Reims France
| | - Agnes Noël
- Laboratory of Tumor and Development Biology, Grappe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)‐CancerUniversity of Liège Liège Belgium
| | - Béatrice Nawrocki‐Raby
- INSERM, Unité Mixte de Recherche–S 903, Structure Fédérative de Recherche Champagne‐Ardennes Picardie Santé (SFR CAP)University of Reims Champagne‐Ardenne Reims France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, Grappe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)‐CancerUniversity of Liège Liège Belgium
| | - Myriam Polette
- INSERM, Unité Mixte de Recherche–S 903, Structure Fédérative de Recherche Champagne‐Ardennes Picardie Santé (SFR CAP)University of Reims Champagne‐Ardenne Reims France
- Laboratory of BiopathologyCentres Hospitaliers Universitaires Reims France
| |
Collapse
|
28
|
Abstract
Osteosarcoma (OS) is the most common primary malignancy of bone and patients with metastatic disease or recurrences continue to have very poor outcomes. Unfortunately, little prognostic improvement has been generated from the last 20 years of research and a new perspective is warranted. OS is extremely heterogeneous in both its origins and manifestations. Although multiple associations have been made between the development of osteosarcoma and race, gender, age, various genomic alterations, and exposure situations among others, the etiology remains unclear and controversial. Noninvasive diagnostic methods include serum markers like alkaline phosphatase and a growing variety of imaging techniques including X-ray, computed tomography, magnetic resonance imaging, and positron emission as well as combinations thereof. Still, biopsy and microscopic examination are required to confirm the diagnosis and carry additional prognostic implications such as subtype classification and histological response to neoadjuvant chemotherapy. The current standard of care combines surgical and chemotherapeutic techniques, with a multitude of experimental biologics and small molecules currently in development and some in clinical trial phases. In this review, in addition to summarizing the current understanding of OS etiology, diagnostic methods, and the current standard of care, our group describes various experimental therapeutics and provides evidence to encourage a potential paradigm shift toward the introduction of immunomodulation, which may offer a more comprehensive approach to battling cancer pleomorphism.
Collapse
Affiliation(s)
- Brock A Lindsey
- Department of Orthopaedics, West Virginia University, Morgantown, WV, USA.
| | - Justin E Markel
- Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | | |
Collapse
|
29
|
Panda S, Padhiary SK, Routray S. Chemokines accentuating protumoral activities in oral cancer microenvironment possess an imperious stratagem for therapeutic resolutions. Oral Oncol 2016; 60:8-17. [PMID: 27531867 DOI: 10.1016/j.oraloncology.2016.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/01/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022]
Abstract
Chemokines, the chemotactic cytokines have established their role in tumorigenesis and tumor progression. Studies, which explored their role in oral cancer for protumoral activity, point towards targeting chemokines for oral squamous cell carcinoma therapy. The need of the hour is to emphasize/divulge in the activities of chemokine ligands and their receptors in the tumor microenvironment for augmentation of such stratagems. This progressing sentience of chemokines and their receptors has inspired this review which is an endeavour to comprehend their role as an aid in accentuating hallmarks of cancer and targeted therapy.
Collapse
Affiliation(s)
- Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| | - Subrat Kumar Padhiary
- Department of Oral and Maxillofacial Surgery, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| | - Samapika Routray
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| |
Collapse
|
30
|
Cordani M, Pacchiana R, Butera G, D'Orazi G, Scarpa A, Donadelli M. Mutant p53 proteins alter cancer cell secretome and tumour microenvironment: Involvement in cancer invasion and metastasis. Cancer Lett 2016; 376:303-9. [PMID: 27045472 DOI: 10.1016/j.canlet.2016.03.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023]
Abstract
An ever-increasing number of studies highlight the role of mutant p53 proteins in the alteration of cancer cell secretome and in the modification of tumour microenvironment, sustaining an invasive phenotype of cancer cell. The knowledge of the molecular mechanisms underlying the interplay between mutant p53 proteins and the microenvironment is becoming fundamental for the identification of both efficient anticancer therapeutic strategies and novel serum biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells bearing mutant TP53 gene. In particular, we highlight data from available literature, suggesting that mutant p53 proteins are able to (i) alter the secretion of enzymes involved in the modulation of extracellular matrix components; (ii) alter the secretion of inflammatory cytokines; (iii) increase the extracellular acidification; and (iv) regulate the crosstalk between cancer and stromal cells.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanna Butera
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Gabriella D'Orazi
- Unit of Cellular Networks and Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Aldo Scarpa
- Applied Research on Cancer Centre (ARC-Net) and Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
31
|
Nowak M, Glowacka E, Kielbik M, Kulig A, Sulowska Z, Klink M. Secretion of cytokines and heat shock protein (HspA1A) by ovarian cancer cells depending on the tumor type and stage of disease. Cytokine 2016; 89:136-142. [PMID: 26868087 DOI: 10.1016/j.cyto.2016.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/11/2016] [Accepted: 01/26/2016] [Indexed: 01/08/2023]
Abstract
Epithelial ovarian cancer is a heterogeneous disease comprising several tumor types that each have multiple histopathological features and different biological behaviors. Recent morphologic and molecular genetic studies have allowed for the categorization of various types of ovarian cancer into two groups: type I and type II. Type I tumors are low-grade and are genetically more stable, while type II tumors are high-grade and genetically unstable. The determination of the type of ovarian cancer may have implications in terms of the appropriate therapeutic strategy because different prognoses and responses to chemotherapeutic agents are observed. Therefore, the current challenge is better recognition of the features of cancer cells, which may result in more individualized therapy. The aim of the current studies was to compare the ability of ovarian cancer cells isolated from tumors, which were classified as type I or type II ovarian cancer, to release pro-inflammatory and immunosuppressive cytokines and heat shock protein (HspA1A). These factors are known to facilitate tumor cell survival, invasion and metastasis. Our studies demonstrated that ovarian cancer cells isolated from patients with type II tumors released high levels of immunosuppressive cytokines (i.e., interleukin 10 and transforming growth factor β) and HspA1A in vitro. Conversely, ovarian cancer cells obtained from of type I tumors were significantly less active. We did not observe any difference in the ability of the isolated cancer cells to secrete pro-inflammatory cytokines, regardless of the type of ovarian cancer. In this study, we found that cancer cells from patients with type II tumors demonstrated more intense activity in regards to survival and metastasis, which should be considered during therapy.
Collapse
Affiliation(s)
- Marek Nowak
- Department of Operating Gynecology and Gynecologic Oncology, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Ewa Glowacka
- Center of Medical Laboratory Diagnostics, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Michal Kielbik
- Department of Experimental Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Andrzej Kulig
- Department of Pathology, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Zofia Sulowska
- Department of Experimental Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Klink
- Department of Experimental Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
32
|
Tasoulas J, Patsouris E, Giaginis C, Theocharis S. Salivaomics for oral diseases biomarkers detection. Expert Rev Mol Diagn 2016; 16:285-95. [DOI: 10.1586/14737159.2016.1133296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Tudoran O, Virtic O, Balacescu L, Lisencu C, Fetica B, Gherman C, Balacescu O, Berindan-Neagoe I. Baseline blood immunological profiling differentiates between Her2-breast cancer molecular subtypes: implications for immunomediated mechanisms of treatment response. Onco Targets Ther 2015; 8:3415-23. [PMID: 26604799 PMCID: PMC4655955 DOI: 10.2147/ott.s91720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose Breast cancer patients’ response to treatment is highly dependent on the primary tumor molecular features, with triple-negative breast tumors having the worst prognosis of all subtypes. According to the molecular features, tumors stimulate the microenvironment to induce distinct immune responses, baseline immune activation being associated with higher likelihood of pathologic response. In this study, we investigated the deconvolution of the immunological status of triple-negative tumors in comparison with luminal tumors and the association with patients’ clinicopathological characteristics. Patients and methods Gene expression of 84 inflammatory molecules and their receptors were analyzed in 40 peripheral blood samples from patients with Her2− primary breast cancer tumors. We studied the association of triple-negative phenotype with age, clinical stage, tumor size, lymph nodes, and menopausal status. Results We observed that more patients with estrogen (ER)/progesterone (PR)-negative tumors had grade III, while more patients with ER/PR-positive tumors had grade II tumors. Gene expression analysis revealed a panel of 14 genes to have differential expression between the two groups: several interleukins: IL13, IL16, IL17C and IL17F, IL1A, IL3; interleukin receptors: IL10RB, IL5RA; chemokines: CXCL13 and CCL26; and cytokines: CSF2, IFNA2, OSM, TNSF13. Conclusion The expression levels of these genes have been previously shown to be associated with reduced immunological status; indeed, the triple-negative breast cancer patients presented with lower counts of lymphocytes and eosinophils than the ER/PR-positive ones. These results contribute to a better understanding of the possible role of antitumor immune responses in mediating the clinical outcome.
Collapse
Affiliation(s)
- Oana Tudoran
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr Ion Chiricuţă", Cluj-Napoca, Romania ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Virtic
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Loredana Balacescu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr Ion Chiricuţă", Cluj-Napoca, Romania ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Bogdan Fetica
- Department of Pathology, The Oncology Institute "Prof Dr Ion Chiricuţă", Cluj-Napoca, Romania
| | - Claudia Gherman
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr Ion Chiricuţă", Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr Ion Chiricuţă", Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr Ion Chiricuţă", Cluj-Napoca, Romania ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
34
|
Kiyomi A, Makita M, Ozeki T, Li N, Satomura A, Tanaka S, Onda K, Sugiyama K, Iwase T, Hirano T. Characterization and Clinical Implication of Th1/Th2/Th17 Cytokines Produced from Three-Dimensionally Cultured Tumor Tissues Resected from Breast Cancer Patients. Transl Oncol 2015; 8:318-26. [PMID: 26310378 PMCID: PMC4562984 DOI: 10.1016/j.tranon.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES: Several cytokines secreted from breast cancer tissues are suggested to be related to disease prognosis. We examined Th1/Th2/Th17 cytokines produced from three-dimensionally cultured breast cancer tissues and related them with patient clinical profiles. METHODS: 21 tumor tissues and 9 normal tissues surgically resected from breast cancer patients were cultured in thermoreversible gelatin polymer–containing medium. Tissue growth and Th1/Th2/Th17 cytokine concentrations in the culture medium were analyzed and were related with hormone receptor expressions and patient clinical profiles. RESULTS: IL-6 and IL-10 were expressed highly in culture medium of both cancer and normal tissues. However, IFN-γ, TNF-α, IL-2, and IL-17A were not detected in the supernatant of the three-dimensionally cultured normal mammary gland and are seemed to be specific to breast cancer tissues. The growth abilities of hormone receptor–negative cancer tissues were significantly higher than those of receptor-positive tissues (P = 0.0383). Cancer tissues of stage ≥ IIB patients expressed significantly higher TNF-α levels as compared with those of patients with stage < IIB (P = 0.0096). CONCLUSIONS: The tumor tissues resected from breast cancer patients can grow in the three-dimensional thermoreversible gelatin polymer culture system and produce Th1/Th2/Th17 cytokines. Hormone receptor–positive cancer tissues showed less growth ability. TNF-α is suggested to be a biomarker for the cancer stage.
Collapse
Affiliation(s)
- Anna Kiyomi
- Tokyo University of Pharmacy and Life Sciences, Department of Clinical Pharmacology, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Masujiro Makita
- The Cancer Institute Hospital of JFCR, Department of Breast Oncology, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan; Nippon Medical School Musashi Kosugi Hospital, Department of Breast Surgery, 1-396 Kosugimachi, Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan.
| | - Tomoko Ozeki
- Tokyo University of Pharmacy and Life Sciences, Department of Clinical Pharmacology, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Na Li
- Tokyo University of Pharmacy and Life Sciences, Department of Clinical Pharmacology, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Aiko Satomura
- Tokyo University of Pharmacy and Life Sciences, Department of Clinical Pharmacology, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Sachiko Tanaka
- Tokyo University of Pharmacy and Life Sciences, Department of Clinical Pharmacology, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Kenji Onda
- Tokyo University of Pharmacy and Life Sciences, Department of Clinical Pharmacology, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Kentaro Sugiyama
- Tokyo University of Pharmacy and Life Sciences, Department of Clinical Pharmacology, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Takuji Iwase
- The Cancer Institute Hospital of JFCR, Department of Breast Oncology, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| | - Toshihiko Hirano
- Tokyo University of Pharmacy and Life Sciences, Department of Clinical Pharmacology, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
35
|
Marsigliante S, Vetrugno C, Muscella A. Paracrine CCL20 loop induces epithelial-mesenchymal transition in breast epithelial cells. Mol Carcinog 2015; 55:1175-86. [DOI: 10.1002/mc.22360] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/26/2015] [Accepted: 06/15/2015] [Indexed: 12/30/2022]
Affiliation(s)
- S. Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.); Laboratorio di Fisiologia Cellulare; Università del Salento; Via Provinciale per Monteroni; Lecce Italy
| | - C. Vetrugno
- Unità di Neuropatologia; Istituto di Neurologia sperimentale e Divisione di Neuroscienze; Istituto Scientifico IRCCS San Raffaele; Milano Italy
| | - A. Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.); Laboratorio di Patologia Molecolare; Università del Salento; Via Provinciale per Monteroni; Lecce Italy
| |
Collapse
|
36
|
Huang A, Dong J, Li S, Wang C, Ding H, Li H, Su X, Ge X, Sun L, Bai C, Shen X, Fang T, Li J, Shao N. Exosomal transfer of vasorin expressed in hepatocellular carcinoma cells promotes migration of human umbilical vein endothelial cells. Int J Biol Sci 2015; 11:961-9. [PMID: 26157350 PMCID: PMC4495413 DOI: 10.7150/ijbs.11943] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 02/07/2023] Open
Abstract
Vasorin (VASN) is a type I transmembrane protein that plays important roles in tumor development and vasculogenesis. In this paper, we showed that VASN could be a key mediator of communication between tumor cells and endothelial cells. We confirmed for the first time that HepG2-derived VASN can be transferred to human umbilical vein endothelial cells (HUVECs) via receptor mediated endocytosis of exosomes, at least in part through HSPGs. The HepG2-derived VASN containing exosomes promote migration of recipient HUVECs cells. Our results identify a novel pathway by which a functional protein expressed in tumor cells affects the biological fate of endothelial cells via exosomes.
Collapse
Affiliation(s)
- Aixue Huang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shaohua Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chaonan Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hongmei Ding
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hui Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xueting Su
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xingfeng Ge
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Leqiao Sun
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chenjun Bai
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xuelian Shen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tao Fang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jie Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
37
|
Sambyal V, Manjari M, Sudan M, Uppal MS, Singh NR, Singh H, Guleria K. No Association between the CCR5Δ32 Polymorphism and Sporadic Esophageal Cancer in Punjab, North-West India. Asian Pac J Cancer Prev 2015; 16:4291-5. [PMID: 26028088 DOI: 10.7314/apjcp.2015.16.10.4291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemokines and their receptors influence carcinogenesis and cysteine-cysteine chemokine receptor 5 (CCR5) directs spread of cancer to other tissues. A 32 base pair deletion in the coding region of CCR5 that might alter the expression or function of the protein has been implicated in a variety of immune-mediated diseases. The action of antiviral drugs being proposed as adjuvant therapy in cancer is dependent on CCR5 wild type status. In the present study, distribution of CCR5Δ32 polymorphism was assessed in North Indian esophageal cancer patients to explore the potential of using chemokine receptors antagonists as adjuvant therapy. MATERIALS AND METHODS DNA samples of 175 sporadic esophageal cancer patients (69 males and 106 females) and 175 unrelated healthy control individuals (69 males and 106 females) were screened for the CCR5Δ32 polymorphism by direct polymerase chain reaction (PCR). RESULTS The frequencies of wild type homozygous (CCR5/CCR5), heterozygous (CCR5/Δ32) and homozygous mutant (Δ32/Δ32) genotypes were 96.0 vs 97.72%, 4.0 vs 1.71% and 0 vs 0.57% in patients and controls respectively. There was no difference in the genotype and allele frequencies of CCR5Δ32 polymorphism in esophageal cancer patients and control group. CONCLUSIONS The CCR5Δ32 polymorphism is not associated with esophageal cancer in North Indians. As the majority of patients express the wild type allele, there is potential of using antiviral drug therapy as adjuvant therapy.
Collapse
Affiliation(s)
- Vasudha Sambyal
- Department of Human Genetics, Human Cytogenetics Laboratory, Guru Nanak Dev University, Punjab, India E-mail :
| | | | | | | | | | | | | |
Collapse
|
38
|
Suarez-Carmona M, Bourcy M, Lesage J, Leroi N, Syne L, Blacher S, Hubert P, Erpicum C, Foidart JM, Delvenne P, Birembaut P, Noël A, Polette M, Gilles C. Soluble factors regulated by epithelial-mesenchymal transition mediate tumour angiogenesis and myeloid cell recruitment. J Pathol 2015; 236:491-504. [PMID: 25880038 DOI: 10.1002/path.4546] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/18/2015] [Accepted: 04/13/2015] [Indexed: 01/13/2023]
Abstract
Epithelial-mesenchymal transition (EMT) programmes provide cancer cells with invasive and survival capacities that might favour metastatic dissemination. Whilst signalling cascades triggering EMT have been extensively studied, the impact of EMT on the crosstalk between tumour cells and the tumour microenvironment remains elusive. We aimed to identify EMT-regulated soluble factors that facilitate the recruitment of host cells in the tumour. Our findings indicate that EMT phenotypes relate to the induction of a panel of secreted mediators, namely IL-8, IL-6, sICAM-1, PAI-1 and GM-CSF, and implicate the EMT-transcription factor Snail as a regulator of this process. We further show that EMT-derived soluble factors are pro-angiogenic in vivo (in the mouse ear sponge assay), ex vivo (in the rat aortic ring assay) and in vitro (in a chemotaxis assay). Additionally, conditioned medium from EMT-positive cells stimulates the recruitment of myeloid cells. In a bank of 40 triple-negative breast cancers, tumours presenting features of EMT were significantly more angiogenic and infiltrated by a higher quantity of myeloid cells compared to tumours with little or no EMT. Taken together, our results show that EMT programmes trigger the expression of soluble mediators in cancer cells that stimulate angiogenesis and recruit myeloid cells in vivo, which might in turn favour cancer spread.
Collapse
Affiliation(s)
- Meggy Suarez-Carmona
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium.,Laboratory of Experimental Pathology (LEP), GIGA-Cancer, Liège, Belgium
| | - Morgane Bourcy
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Julien Lesage
- INSERM UMR-S 903, Laboratoire Pol Bouin, University of Reims, France
| | - Natacha Leroi
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Laïdya Syne
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology (LEP), GIGA-Cancer, Liège, Belgium
| | - Charlotte Erpicum
- Laboratory of Experimental Pathology (LEP), GIGA-Cancer, Liège, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology (LEP), GIGA-Cancer, Liège, Belgium
| | | | - Agnès Noël
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Myriam Polette
- INSERM UMR-S 903, Laboratoire Pol Bouin, University of Reims, France
| | - Christine Gilles
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| |
Collapse
|
39
|
Zhou Y, Hu Z, Li N, Jiang R. Interleukin-32 stimulates osteosarcoma cell invasion and motility via AKT pathway-mediated MMP-13 expression. Int J Mol Med 2015; 35:1729-33. [PMID: 25846944 DOI: 10.3892/ijmm.2015.2159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
As a pro-inflammatory cytokine, interleukin-32 (IL-32) is reported to play an important role in tumor development and progression. However, its effects on the invasion and motility of osteosarcoma cells remain elusive. The aim of the present study was to determine the molecular mechanisms of IL-32 in osteosarcoma cells using RT-PCR and western blot analysis. The results showed that IL-32 stimulation dose-dependently promoted the invasion and motility of osteosarcoma cells. Knockdown of endogenous IL-32 by siRNA inhibited osteosarcoma cell invasion and motility. Moreover, IL-32 induced the activation of AKT in a time-dependent manner. IL-32 stimulation was also capable of increasing the expression and secretion of matrix metalloproteinase (MMP)-13, which is involved in tumor invasion and metastasis. In addition, blockade of AKT activation suppressed IL-32-mediated invasion, motility and MMP-13 upregulation in osteosarcoma cells. Taken together, our results suggest that IL-32 stimulation promotes the invasion and motility of osteosarcoma cells, possibly via the activation of AKT and the upregulation of MMP-13 expression. Thus, IL-32 may serve as a marker for diagnosis, as well as for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yanhong Zhou
- Department of Clinical Laboratory, The People's Hospital of Liuzhou, Liuzhou 545006, P.R. China
| | - Zhaohui Hu
- Department of Spine Surgery, The People's Hospital of Liuzhou, Liuzhou 545006, P.R. China
| | - Ningning Li
- Department of Spine Surgery, The People's Hospital of Liuzhou, Liuzhou 545006, P.R. China
| | - Renjie Jiang
- Department of Spine Surgery, The People's Hospital of Liuzhou, Liuzhou 545006, P.R. China
| |
Collapse
|
40
|
Mendes LO, Scarano WR, Rochel-Maia SS, Fioruci-Fontaneli BA, Chuffa LG, Anselmo-Franci JA, Martinez FE. Androgen therapy reverses injuries caused by ethanol consumption in the prostate: Testosterone as a possible target to ethanol-related disorders. Life Sci 2015; 120:22-30. [DOI: 10.1016/j.lfs.2014.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/23/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
|
41
|
Kang Y, Regmi SC, Kim MY, Banskota S, Gautam J, Kim DH, Kim JA. Anti-angiogenic activity of macrolactin A and its succinyl derivative is mediated through inhibition of class I PI3K activity and its signaling. Arch Pharm Res 2014; 38:249-60. [PMID: 25547980 DOI: 10.1007/s12272-014-0535-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/20/2014] [Indexed: 02/01/2023]
Abstract
In the current study, macrolactin compounds, macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), were investigated for their anti-angiogenic activities and action mechanism. MA and SMA inhibited in vitro and in vivo angiogenesis induced by three different classes of pro-angiogenic factors, VEGF, IL-8, and TNF-α. SMA exhibited stronger anti-angiogenic activity than MA, and such anti-angiogenic activity of SMA was consistently observed in MDA-MB-231 human breast cancer cell-inoculated CAM assay showing dose-dependent suppression of tumor growth and tumor-induced angiogenesis. In an in vitro PI3K competitive activity assay, SMA induced concentration-dependent inhibition of class I PI3K isoforms, p110α, p110β, p110δ, and p110γ. In addition, non-receptor tyrosine kinase c-Src, which is involved in the activation of PI3K heterodimer, was suppressed by MA and SMA. Correspondingly, MA and SMA significantly inhibited the stimulus-induced phosphorylation of Akt, mTOR, p70S6K, and ribosomal S6 in human umbilical vein endothelial cells (HUVECs). At the same time, the stimulus-induced production of reactive oxygen species (ROS) and activation of NF-κB were significantly suppressed by MA and SMA. Moreover, the macrolactins suppressed NF-κB-regulated HSP90 protein expression, which stabilizes phosphorylated Akt and NADPH oxidase. Suppression of NF-κB in macrolactin-treated HUVECs with concurrent inhibition of rS6 indicates that MAs effectively block angiogenesis through down-regulation of genes related to angiogenesis at both transcriptional and translational levels. Taken together, the results demonstrate that anti-angiogenic effect of MA and SMA is mediated through inhibition of PI3K/Akt and NADPH oxidase-derived ROS/NF-κB signaling pathways. These results further indicate that MA and SMA may be applicable for treatment of various diseases associated with angiogenesis.
Collapse
Affiliation(s)
- Youra Kang
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Lee YH, Song GG. Association between chemokine receptor 5 delta32 polymorphism and susceptibility to cancer: a meta-analysis. J Recept Signal Transduct Res 2014; 35:509-15. [PMID: 25203595 DOI: 10.3109/10799893.2014.960934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To explore whether the functional chemokine receptor 5 delta32 (CCR5-Δ32) polymorphism is associated with susceptibility to cancer. METHODS A meta-analysis was conducted on the association between the CCR5-Δ32 polymorphism and cancer using (i) allele contrast and (ii) the dominant model. RESULTS Thirteen articles, including 16 comparative studies on a total of 3087 patients and 3735 controls, were included in the meta-analysis. These studies encompassed breast cancer (n = 3), bladder cancer (n = 3), cervical cancer (n = 2), pancreatic cancer (n = 2), prostate cancer (n = 2), head and neck cancer (n = 2), lymphoma (n = 1), gallbladder cancer (n = 1), skin cancer (n = 1) and mixed cancer (n = 1). The meta-analysis revealed an association between cancer and the CCR5-Δ32 allele (OR = 1.368, 95% CI = 1.064-1.758, p = 0.014), and stratification by ethnicity showed an association between the CCR5-Δ32 allele and cancer in Indians (OR = 2.480, 95% CI = 1.247-4.932, p = 0.010). The meta-analysis also revealed an association between breast cancer and the CCR5-Δ32 allele (OR = 1.689, 95% CI = 1.012-2.821, p = 0.045). However, allele contrast and the dominant model failed to reveal an association between the CCR5-Δ32 polymorphism and bladder cancer, cervical cancer, pancreatic cancer, prostate cancer, and head and neck cancer. CONCLUSIONS This meta-analysis demonstrates that the CCR5-Δ32 polymorphism is associated with susceptibility to cancer in Indians and is associated with breast cancer.
Collapse
Affiliation(s)
- Young Ho Lee
- a Division of Rheumatology, Department of Internal Medicine , Korea University College of Medicine , Seoul , Korea
| | - Gwan Gyu Song
- a Division of Rheumatology, Department of Internal Medicine , Korea University College of Medicine , Seoul , Korea
| |
Collapse
|
43
|
Li LF, Chan RLY, Lu L, Shen J, Zhang L, Wu WKK, Wang L, Hu T, Li MX, Cho CH. Cigarette smoking and gastrointestinal diseases: the causal relationship and underlying molecular mechanisms (review). Int J Mol Med 2014; 34:372-80. [PMID: 24859303 DOI: 10.3892/ijmm.2014.1786] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/20/2014] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking is an important risk factor for gastrointestinal (GI) disorders, including peptic ulcers, inflammatory bowel diseases, such as Crohn's disease and cancer. In this review, the relationship between smoking and GI disorders and the underlying mechanisms are discussed. It has been demonstrated that cigarette smoking is positively associated with the pathogenesis of peptic ulcers and the delay of ulcer healing. Mechanistic studies have shown that cigarette smoke and its active ingredients can cause mucosal cell death, inhibit cell renewal, decrease blood flow in the GI mucosa and interfere with the mucosal immune system. Cigarette smoking is also an independent risk factor for various types of cancer of the GI tract. In this review, we also summarize the mechanisms through which cigarette smoking induces tumorigenesis and promotes the development of cancer in various sections of the GI tract. These mechanisms include the activation of nicotinic acetylcholine receptors, the formation of DNA adducts, the stimulation of tumor angiogenesis and the modulation of immune responses in the GI mucosa. A full understanding of these pathogenic mechanisms may help us to develop more effective therapies for GI disorders in the future.
Collapse
Affiliation(s)
- L F Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - R L Y Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - L Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - J Shen
- Institute of Digestive Diseases, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - L Zhang
- Institute of Digestive Diseases, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - W K K Wu
- Institute of Digestive Diseases, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - L Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - T Hu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - M X Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - C H Cho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| |
Collapse
|
44
|
Wang T, Zhou YT, Chen XN, Zhu AX. Putative role of ischemic postconditioning in a rat model of limb ischemia and reperfusion: involvement of hypoxia-inducible factor-1α expression. ACTA ACUST UNITED AC 2014; 47:738-45. [PMID: 25075575 PMCID: PMC4143200 DOI: 10.1590/1414-431x20142910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth
factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle.
In the present study, we tested the hypothesis that ischemic postconditioning is
effective for salvaging ischemic skeletal muscle resulting from limb
ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α.
Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group
S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group
IPO). Each group was divided into subgroups (n=6) according to reperfusion time:
immediate (0 h, T0), 1 h (T1), 3 h (T3), 6 h
(T6), 12 h (T12), and 24 h (T24). In the IPO
group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were
carried out before reperfusion. At all reperfusion times
(T0-T24), serum creatine kinase (CK) and lactate
dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor
necrosis factor-α (TNF-α) concentrations, were measured in rats after they were
killed. Histological and immunohistochemical methods were used to assess the skeletal
muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and
IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all
significantly increased compared to group S, and HIF-1α expression was up-regulated
(P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and
IL-6 concentrations were significantly decreased, IL-10 concentration was increased,
HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological
changes were reduced compared to group IR. The present study suggests that ischemic
postconditioning can reduce skeletal muscle damage caused by limb
ischemia-reperfusion and that its mechanisms may be related to the involvement of
HlF-1α in the limb ischemia-reperfusion injury-triggered inflammatory response.
Collapse
Affiliation(s)
- T Wang
- Department of Anesthesiology, Shuyang People's Hospital, JiangSu, China
| | - Y T Zhou
- Department of General Surgery, Shuyang People's Hospital, JiangSu, China
| | - X N Chen
- Institute of Pathophysiology, School of Basic Medical Sciences, LanZhou University, Lanzhou, Gansu, China
| | - A X Zhu
- Department of Pharmacy, Shuyang People's Hospital, JiangSu, China
| |
Collapse
|
45
|
Cytokines association with clinical and pathological changes in esophageal squamous cell carcinoma. DISEASE MARKERS 2014; 35:883-93. [PMID: 24427776 PMCID: PMC3877595 DOI: 10.1155/2013/302862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carcinogenic transformation of cells in esophageal squamous cell carcinoma (ESCC) is characterized on molecular level by, among other things, changes in protein expression. Among all proteins related to inflammation, cytokines may be implicated as possible biological markers of esophageal cancer. These biomarkers, near imaging techniques, may be helpful in diagnosis and monitoring therapy in ESCC patients. This review demonstrates findings of researches on dysregulation of cytokines in ESCC and their clinical and pathological implications. Articles on cytokines were selected according to the following criteria: (i) the study was performed at protein level, (ii) the differences in cytokines expression or concentration were detected in tissues or serum from ESCC patients, (iii) the alterations of cytokines levels were detected by: immunohistochemistry (IHC), western blot (WB) and enzyme-linked immunosorbent assay (ELISA). Members of VEGF family seem to play an essential role as potential markers in ESCC. The results of all cytokines researches are promising but further studies are necessary to establish the biological significance of these peptydes in ESCC, their potential usefulness for early diagnosis, pre- and postoperative prognosis and monitoring of the respond to chemo- and radiotherapy of cancer patients.
Collapse
|
46
|
Shi Y, Lin H, Cui J, Qi H, Florholmen J, Liu Z, Cui G. The role of interleukin-17A in colorectal tumorigenesis. Cancer Biother Radiopharm 2013; 28:429-32. [PMID: 23701420 DOI: 10.1089/cbr.2012.1396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It has been well documented that interleukin (IL)-17A mainly produced by the newly identified T cell subtype Th17 cells is an important proinflammatory cytokine that plays a vital pathogenic role in the process of human inflammatory bowel diseases. Recently, new information concerning the biological activities of IL-17A relating to the development of colorectal cancer (CRC) has also been reported. The present mini-review focuses on recent observations concerning the role of IL-17A in the development of CRCs, and it discusses the clinical significance of IL-17A as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Yingpeng Shi
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Pretreatment levels of circulating Th1 and Th2 cytokines, and their ratios, are associated with ER-negative and triple negative breast cancers. Breast Cancer Res Treat 2013; 139:477-88. [PMID: 23624818 DOI: 10.1007/s10549-013-2549-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/22/2013] [Indexed: 02/01/2023]
Abstract
Immune signatures in breast tumors differ by estrogen receptor (ER) status. The purpose of this study was to assess associations between ER phenotypes and circulating levels of cytokines that co-ordinate cell-mediated [T-helper type 1 (Th1)] and humoral [T-helper type 2 (Th2)] immunity. We conducted a case-case comparison of 523 women with newly diagnosed breast cancer to evaluate associations between 27 circulating cytokines, measured using Luminex XMap technology, and breast cancer phenotypes [ER(-) vs. ER(+); triple negative breast cancer (TNBC) vs. luminal A (LumA)]. Ratios of Th1 to Th2 cytokines were also evaluated. Levels of interleukin (IL)-5, a Th-2 cytokine, were higher in ER(-) than in ER(+) tumors. The highest tertile of IL-5 was more strongly associated with ER(-) (OR = 2.33, 95 % CI 1.40-3.90) and TNBCs (OR = 2.78, 95 % CI 1.53-5.06) compared to ER(+) and LumA cancers, respectively, particularly among premenopausal women (OR = 4.17, 95 % CI 1.86-9.34, ER(-) vs. ER(+); OR = 5.60, 95 % CI 2.09-15.01, TNBC vs. LumA). Elevated Th1 cytokines were also detected in women with ER(-) and TNBCs, with women in the highest tertile of interferon α2 (OR = 2.39, 95 % CI 1.31-4.35) or tumor necrosis factor-α (OR = 2.27, 95 % CI 1.21-4.26) being twice as likely to have TNBC versus LumA cancer. When cytokine ratios were examined, women with the highest ratios of Th1 cytokines to IL-5 levels were least likely to have ER(-) or TNBCs compared to ER(+) or LumA cancers, respectively. The strongest associations were in premenopausal women, who were up to 80 % less likely to have TNBC than LumA cancers (IL-12p40/IL-5, OR = 0.19, 95 % CI 0.07-0.56). These findings indicate that immune function is associated with ER(-) and TNBC and may be most relevant among younger women, who are likely to be diagnosed with these aggressive phenotypes.
Collapse
|
48
|
Interleukin-19 in breast cancer. Clin Dev Immunol 2013; 2013:294320. [PMID: 23710200 PMCID: PMC3654677 DOI: 10.1155/2013/294320] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/22/2013] [Accepted: 03/29/2013] [Indexed: 01/08/2023]
Abstract
Inflammatory cytokines within the tumor microenvironment are linked to progression in breast cancer. Interleukin- (IL-) 19, part of the IL-10 family, contributes to a range of diseases and disorders, such as asthma, endotoxic shock, uremia, psoriasis, and rheumatoid arthritis. IL-19 is expressed in several types of tumor cells, especially in squamous cell carcinoma of the skin, tongue, esophagus, and lung and invasive duct carcinoma of the breast. In breast cancer, IL-19 expression is correlated with increased mitotic figures, advanced tumor stage, higher metastasis, and poor survival. The mechanisms of IL-19 in breast cancer have recently been explored both in vitro and in vivo. IL-19 has an autocrine effect in breast cancer cells. It directly promotes proliferation and migration and indirectly provides a microenvironment for tumor progression, which suggests that IL-19 is a prognostic marker in breast cancer and that antagonizing IL-19 may have therapeutic potential.
Collapse
|
49
|
Kravchenko V, Garner AL, Mathison J, Seit-Nebi A, Yu J, Gileva IP, Ulevitch R, Janda KD. Facilitating cytokine-mediated cancer cell death by proteobacterial N-acylhomoserine lactones. ACS Chem Biol 2013; 8:1117-20. [PMID: 23517377 DOI: 10.1021/cb4000184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in cancer cells over normal cells; however, tumor cells may develop TRAIL resistance. Here, we demonstrate that this resistance can be overcome in the presence of bacterial acylhomoserine lactones (AHLs) or AHL-producing bacteria through the combined effect of TRAIL-induced apoptosis and AHL-mediated inhibition of inflammation regulated by NF-κB signaling. This discovery unveils a previously unrecognized symbiotic link between bacteria and host immunosurveillance.
Collapse
Affiliation(s)
| | | | | | | | | | - Irina P. Gileva
- FBUN SRC VB VECTOR, 360599 Koltsovo, Novosibirsk Region, Russia
| | | | | |
Collapse
|
50
|
Tazzyman S, Niaz H, Murdoch C. Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth. Semin Cancer Biol 2013; 23:149-58. [PMID: 23410638 DOI: 10.1016/j.semcancer.2013.02.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/09/2013] [Accepted: 02/01/2013] [Indexed: 01/30/2023]
Abstract
Neutrophils are rapidly responding, phagocytes that are an essential part of the host innate immune response to invading micro-organisms. Along with other leucocytes they also play a key role in directing repair at sites of tissue damage. Neutrophils accomplish many of their biological functions by releasing enzymes, anti-microbial agents and cytokines when stimulated to degranulate. There is now increasing evidence to show that tumours are able to recruit neutrophils by secreting a number of tumour cell or stromal-derived chemoattractants. Once within the tumour microenvironment neutrophils, like macrophages, are polarised into a pro-tumour phenotype that can foster tumour growth by secreting factors that directly influence tumour cell proliferation, drive immunosuppression and promote tumour angiogenesis. In this review we discuss the likely mechanisms by which neutrophils are recruited into the tumour and then elaborate on how these cells may induce tumour vascularisation by the secretion of powerful pro-angiogenic factors.
Collapse
Affiliation(s)
- Simon Tazzyman
- MRC Centre for Developmental and Biomedical Genetics, Firth Court, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|