1
|
Chang HG, Choi YH, Hong J, Choi JW, Yoon AR, Yun CO. GM101 in Combination with Histone Deacetylase Inhibitor Enhances Anti-Tumor Effects in Desmoplastic Microenvironment. Cells 2021; 10:2811. [PMID: 34831034 PMCID: PMC8616263 DOI: 10.3390/cells10112811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Oncolytic adenoviruses (oAds) have been evaluated in numerous clinical trials due to their promising attributes as cancer therapeutics. However, the therapeutic efficacy of oAds was limited due to variable coxsackie and adenovirus receptor (CAR) expression levels and the dense extracellular matrix (ECM) of heterogenic clinical tumors. To overcome these limitations, our present report investigated the therapeutic efficacy of combining GM101, an oAd with excellent tumor ECM degrading properties, and histone deacetylase inhibitor (HDACi). Four different HDACi (suberohydroxamic acid (SBHA), MS-275, trichostatin A (TSA), and valproic acid) candidates in combination with replication-incompetent and GFP-expressing Ad (dAd/GFP) revealed that SBHA and MS-275 exerted more potent enhancement in Ad transduction efficacy than TSA or valproic acid. Further characterization revealed that SBHA and MS-275 effectively upregulated CAR expression in cancer cells, improved the binding of Ad with cancer cell membranes, and led to dynamin 2- and clathrin-mediated endocytosis of Ad. The combination of GM101 with HDACi induced superior cancer cell killing effects compared to any of the monotherapies, without any additional cytotoxicity in normal cell lines. Further, GM101+SBHA and GM101+MS-275 induced more potent antitumor efficacy than any monotherapy in U343 xenograft tumor model. Potent antitumor efficacy was achieved via the combination of GM101 with HDACi, inducing necrotic and apoptotic cancer cell death, inhibiting cancer cell proliferation, degrading ECM in tumor tissue, and thus exerting the highest level of virus dispersion and accumulation. Collectively, these data demonstrate that the combination of GM101 and HDACi can enhance intratumoral dispersion and accumulation of oAd through multifaced mechanisms, making it a promising strategy to address the challenges toward successful clinical development of oAd.
Collapse
Affiliation(s)
- Han-Gyu Chang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
| | - Yong-Hyeon Choi
- GeneMedicine CO., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (Y.-H.C.); (J.H.)
| | - JinWoo Hong
- GeneMedicine CO., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (Y.-H.C.); (J.H.)
| | - Joung-Woo Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
- Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
- GeneMedicine CO., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (Y.-H.C.); (J.H.)
- Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
2
|
Li X, Yang Y, Wang R, Liu G, Liu X, Liu C, Deng Y, Bai Z. Quality by Design-Driven Process Development of Severe Fever With Thrombocytopenia Syndrome Vaccine. J Pharm Sci 2019; 108:3785-3791. [PMID: 31521642 DOI: 10.1016/j.xphs.2019.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
Owing to the biological activity of the vaccine, the complicated production process, sterility, and uniformity of the product, the producing process of the vaccine is complicated and the product quality hard to control. In recent years, with the development of basic science such as cell biology, molecular biology, and metabolic engineering, bioprocess engineering research has developed rapidly. Therefore, U.S. Food and Drug Administration and European Medicines Agency conduct stringent control over the development of biomedical process engineering and product quality. This case study describes an example of Quality by Design-driven process development for manufacturing a human vaccine produced with Vero cells. Cell density in harvest fermentation broth and antigenic titer were chosen as 2 critical quality attributes. The study through 3 rounds design of experiment revealed that H2O2 and cell boost 4 had a significant effect on antigenic titer. Ethanolamine had significant improvement in the final concentration of cells. Through the Monte Carlo simulation, the design spaces and control space of process parameters were determined. A successful validation in a bioreactor was executed to verify the results of a spinner flask. Our investigation presents a successful case of Quality by Design principle, which encourages other researchers to combine the methodology into other biopharmaceutical manufacturing process.
Collapse
Affiliation(s)
- Xinran Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Rongbin Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Guoqiang Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Chunli Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Shen L, Orillion A, Pili R. Histone deacetylase inhibitors as immunomodulators in cancer therapeutics. Epigenomics 2016; 8:415-28. [PMID: 26950532 DOI: 10.2217/epi.15.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HDAC inhibitors (HDACIs) are anticancer agents being developed in preclinical and clinical settings due to their capacity to modulate gene expression involved in cell growth, differentiation and apoptosis, through modification of both chromatin histone and nonhistone proteins. Most HDACIs in clinical development have cytotoxic or cytostatic properties and their direct inhibitory effects on tumor cells are well documented. Numerous studies have revealed that HDACIs have potent immunomodulatory activity in tumor-bearing animals and cancer patients, providing guidance to apply these agents in cancer immunotherapies. Here, we summarize recent reports addressing the effects of HDACIs on tumor cell immunogenicity, and on different components of the host immune system. In addition, we discuss the complexity of the immunomodulatory activity of these agents, which depends on the class specificity of the HDACIs, different experimental settings and the target immune cell populations.
Collapse
Affiliation(s)
- Li Shen
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Ashley Orillion
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.,Genitourinary Program, Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Roberto Pili
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.,Genitourinary Program, Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| |
Collapse
|
4
|
Kim YE, Park JA, Park SK, Kang HB, Kwon HJ, Lee Y. Enhancement of Transgene Expression by HDAC Inhibitors in Mouse Embryonic Stem Cells. Dev Reprod 2015; 17:379-87. [PMID: 25949154 PMCID: PMC4382945 DOI: 10.12717/dr.2013.17.4.379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 12/07/2013] [Accepted: 12/13/2013] [Indexed: 12/04/2022]
Abstract
Embryonic stem (ES) cells can self-renew and differentiate to various cells depending on the culture condition. Although ES cells are a good model for cell type specification and can be useful for application in clinics in the future, studies on ES cells have many experimental restraints including low transfection efficiency and transgene expression. Here, we observed that transgene expression after transfection was enhanced by treatment with histone deacetylse (HDAC) inhibitors such as trichostatin A, sodium butyrate, and valproic acid. Transfection was performed using conventional transfection reagents with a retroviral vector encoding GFP under the control of CMV promoter as a reporter. Treatment of ES cells with HDAC inhibitors after transfection increased population of GFP positive cells up to 180% compared with untreated control. ES cells showed normal expression of stem cell markers after treatment with HDAC inhibitors. Transgene expression was further enhanced by modifying transfection procedure. GFP positive cells selected after transfection were proved to have the stem cell properties. Our improved protocol for enhanced gene delivery and expression in mouse ES cells without hampering ES cell properties will be useful for study and application of ES cells.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Republic of Korea ; Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Republic of Korea
| | - Sang-Kyu Park
- Department of Biochemistry, College of Natural Sciences, Republic of Korea
| | - Ho-Bum Kang
- Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Hyung-Joo Kwon
- Center for Medical Science Research, Republic of Korea ; Department of Microbiology, College of Medicine, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Republic of Korea ; Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| |
Collapse
|
5
|
Jackson MF, Hoversten KE, Powers JM, Trobridge GD, Rodgers BD. Genetic manipulation of myoblasts and a novel primary myosatellite cell culture system: comparing and optimizing approaches. FEBS J 2013; 280:827-39. [PMID: 23173931 DOI: 10.1111/febs.12072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 11/30/2022]
Abstract
The genetic manipulation of skeletal muscle cells in vitro is notoriously difficult, especially when using undifferentiated muscle cell lines (myoblasts) or primary muscle stem cells (myosatellites). We therefore optimized methods of gene transfer by overexpressing green fluorescent protein (GFP) in mouse C2C12 cells and in a novel system, primary rainbow trout myosatellite cells. A common lipid-based transfection reagent was used (Lipofectamine 2000) along with three different viral vectors: adeno-associated virus serotype 2 (AAV2), baculovirus (BAC) and lentivirus. Maximal transfection efficiencies of 49% were obtained in C2C12 cells after optimizing cell density and reagent : DNA ratio, although the GFP signal rapidly dissipated with proliferation and was not maintained with differentiation. The transduction efficiency of AAV2 was optimized to 65% by extending incubation time and decreasing cell density, although only 30% of cells retained expression after passing. A viral comparison revealed that lentivirus was most efficient at transducing C2C12 myoblasts as 97% of cells were transduced with only 10(6) viral genomes (vg) compared to 54% with 10(8) vg AAV2 and 23% with 10(9) vg BAC. Lentivirus also transduced 90% of primary trout myosatellites compared to 1-10% with AAV2 and BAC. The phosphoglycerate kinase 1 (pgk) promoter was 10-fold more active than the cytomegalovirus immediate-early promoter in C2C12 cells and both were effective in trout myosatellites. Maximal transduction of C2C12 myotubes was achieved by differentiating myoblasts previously transduced with lentivirus and the pgk promoter. Thus, our optimized protocol proved highly effective in diverse muscle cell systems and could therefore help overcome a common technological barrier.
Collapse
Affiliation(s)
- Melissa F Jackson
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164-6351, USA
| | | | | | | | | |
Collapse
|
6
|
The histone deacetylase inhibitor valproic acid lessens NK cell action against oncolytic virus-infected glioblastoma cells by inhibition of STAT5/T-BET signaling and generation of gamma interferon. J Virol 2012; 86:4566-77. [PMID: 22318143 DOI: 10.1128/jvi.05545-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor virotherapy has been and continues to be used in clinical trials. One barrier to effective viral oncolysis, consisting of the interferon (IFN) response induced by viral infection, is inhibited by valproic acid (VPA) and other histone deacetylase inhibitors (HDACi). Innate immune cell recruitment and activation have been shown to be deleterious to the efficacy of oncolytic herpes simplex virus (oHSV) infection, and in this report we demonstrate that VPA limits this deleterious response. VPA, administered prior to oHSV inoculation in an orthotopic glioblastoma mouse model, resulted in a decline in NK and macrophage recruitment into tumor-bearing brains at 6 and 24 h post-oHSV infection. Interestingly, there was a robust rebound of recruitment of these cells at 72 h post-oHSV infection. The observed initial decline in immune cell recruitment was accompanied by a reduction in their activation status. VPA was also found to have a profound immunosuppressive effect on human NK cells in vitro. NK cytotoxicity was abrogated following exposure to VPA, consistent with downmodulation of cytotoxic gene expression of granzyme B and perforin at the mRNA and protein levels. In addition, suppression of gamma IFN (IFN-γ) production by VPA was associated with decreased STAT5 phosphorylation and dampened T-BET expression. Despite VPA-mediated immune suppression, mice were not at significantly increased risk for HSV encephalitis. These findings indicate that one of the avenues by which VPA enhances oHSV efficacy is through initial suppression of immune cell recruitment and inhibition of inflammatory cell pathways within NK cells.
Collapse
|
7
|
Combination of vorinostat and adenovirus-TRAIL exhibits a synergistic antitumor effect by increasing transduction and transcription of TRAIL in lung cancer cells. Cancer Gene Ther 2011; 18:467-77. [PMID: 21455254 DOI: 10.1038/cgt.2011.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Soluble TRAIL and adenovirus (ad)-TRAIL exhibit a strong antitumor effect by inducing apoptosis. Vorinostat is the histone deacetylase (HDAC) inhibitor that induces cell death in cancer cell lines and regulates the expression of epigenetically silenced genes, such as Coxackie adenoviral receptor (CAR), the receptor for adenoviral entry. We propose a new strategy in which vorinostat will induce high expression of ad-TRAIL and a strong antitumor response, and investigated the mechanism involved. The effect of vorinostat on transcription and expression of TRAIL from ad-TRAIL-transduced lung cancer cells were confirmed by reverse transciption-PCR (RT-PCR), quantitative real time-PCR and western blot assay. Anti-tumor effects were measured after cotreatment of vorinostat and ad-TRAIL, and the drug interactions were analyzed. After combined treatment of vorinostat and ad-TRAIL, apoptosis and western blot assays for Akt, Bcl-2 and caspase were performed. Vorinostat increased the expression of CAR in lung cancer cell lines and increased the expression of luciferase (luc) from ad-luc-transduced cells and TRAIL from ad-TRAIL-transduced cells. RT-PCR and quantitative real time-PCR, after sequential vorinostat treatment, revealed that vorinostat may enhance TRAIL expression from ad-TRAIL by increasing transduction through enhanced CAR expression and increasing adenoviral transgene transcription. Combined vorinostat and ad-TRAIL treatment showed the synergistic anti-tumor effect in lung cancer cell lines. Combined vorinostat and ad-TRAIL induced stronger apoptosis induction, suppression of NF-κB activation and breakdown of the anti-apoptotic molecule Bcl-2. In conclusion, the vorinostat synergistically enhanced the anti-tumor effect of ad-TRAIL by (1) increasing adenoviral transduction through the increased expression of CAR and (2) increasing adenoviral transgene (TRAIL) transcription in lung cancer cell lines.
Collapse
|
8
|
Taura A, Taura K, Choung YH, Masuda M, Pak K, Chavez E, Ryan AF. Histone deacetylase inhibition enhances adenoviral vector transduction in inner ear tissue. Neuroscience 2010; 166:1185-93. [PMID: 20060033 DOI: 10.1016/j.neuroscience.2009.12.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 12/16/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Adenovirus vectors (AdVs) are efficient tools for gene therapy in many tissues. Several studies have demonstrated successful transgene transduction with AdVs in the inner ear of rodents [Kawamoto K, Ishimoto SI, Minoda R, Brough DE, Raphael Y (2003) J Neurosci 23:4395-4400]. However, toxicity of AdVs [Morral N, O'Neal WK, Rice K, Leland MM, Piedra PA, Aguilar-Cordova E, Carey KD, Beaudet AL, Langston C (2002) Hum Gene Ther 13:143-154.] or lack of tropism to important cell types such as hair cells [Shou J, Zheng JL, Gao WQ (2003) Mol Cell Neurosci 23:169-179] appears to limit their experimental and potential clinical utility. Histone deacetylase inhibitors (HDIs) are known to enhance AdV-mediated transgene expression in various organs [Dion LD, Goldsmith KT, Tang DC, Engler JA, Yoshida M, Garver RI Jr (1997) Virology 231:201-209], but their effects in the inner ear have not been documented. We investigated the ability of one HDI, trichostatin A (TSA), to enhance AdV-mediated transgene expression in inner ear tissue. We cultured neonatal rat macular and cochlear explants, and transduced them with an AdV encoding green fluorescent protein (Ad-GFP) under the control of a constitutive promoter for 24 h. In the absence of TSA, GFP expression was limited, and very few hair cells were transduced. TSA did not enhance transduction when applied at the onset of Ad-GFP transduction. However, administration of TSA during or just after Ad-GFP application increased GFP expression in supporting cells approximately fourfold. Moreover, vestibular hair cell transduction was enhanced approximately sixfold, and that of inner hair cells by more than 17-fold. These results suggest that TSA increases AdV-mediated transgene expression in the inner ear, including the successful transduction of hair cells. HDIs, some of which are currently under clinical trials (Sandor et al., 2002), could be useful tools in overcoming current limitations of gene therapy in the inner ear using Ad-GFP.
Collapse
Affiliation(s)
- A Taura
- Division of Otolaryngology, Departments of Surgery, UCSD School of Medicine, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Henley DV, Mueller S, Korach KS. The short-chain fatty acid methoxyacetic acid disrupts endogenous estrogen receptor-alpha-mediated signaling. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1702-6. [PMID: 20049119 PMCID: PMC2801194 DOI: 10.1289/ehp.0900800] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/16/2009] [Indexed: 05/05/2023]
Abstract
BACKGROUND Ethylene glycol monomethyl ether (EGME) exposure is associated with impaired reproductive function. The primary metabolite of EGME is methoxyacetic acid (MAA), a short-chain fatty acid that inhibits histone deacetylase activity and alters gene expression. OBJECTIVE Because estrogen signaling is necessary for normal reproductive function and modulates gene expression, the estrogen-signaling pathway is a likely target for MAA; however, little is known about the effects of MAA in this regard. METHODS We evaluated the mechanistic effects of MAA on estrogen receptor (ER) expression and estrogen signaling using in vitro and in vivo model systems. RESULTS MAA potentiates 17beta-estradiol (E(2)) stimulation of an estrogen-responsive reporter plasmid in HeLa cells transiently transfected with either a human ERalpha or ERbeta expression vector containing a cytomegalovirus (CMV) promoter. This result is attributed to increased exogenous ER expression due to MAA-mediated activation of the CMV promoter. In contrast to its effects on exogenous ER, MAA decreases endogenous ERalpha expression and attenuates E(2)-stimulated endogenous gene expression in both MCF-7 cells and the mouse uterus. CONCLUSIONS These results illustrate the importance of careful experimental design and analysis when assessing the potential endocrine-disrupting properties of a compound to ensure biological responses are in concordance with in vitro analyses. Given the established role of the ER in normal reproductive function, the effects of MAA on the endogenous ER reported here are consistent with the reproductive abnormalities observed after EGME exposure and suggest that these toxicities may be due, at least in part, to attenuation of endogenous ER-mediated signaling.
Collapse
Affiliation(s)
- Derek V. Henley
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Stephanie Mueller
- German Cancer Research Center, Systems Biology of Signal Transduction, Heidelberg, Germany
| | - Kenneth S. Korach
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Address correspondence to K.S. Korach, Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, MD B3-02, P.O. Box 12233, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-3512. Fax: (919) 541-0696. E-mail:
| |
Collapse
|
10
|
Otsuki A, Patel A, Kasai K, Suzuki M, Kurozumi K, Chiocca EA, Saeki Y. Histone deacetylase inhibitors augment antitumor efficacy of herpes-based oncolytic viruses. Mol Ther 2008; 16:1546-1555. [PMID: 18648350 DOI: 10.1038/mt.2008.155] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 06/25/2008] [Indexed: 12/15/2022] Open
Abstract
Replication-conditional (oncolytic) mutants of herpes simplex virus (HSV), are considered promising therapeutic alternatives for human malignancies, and chemotherapeutic adjuvants are increasingly sought to augment their efficacy. Histone deacetylase (HDAC) inhibitors are a new class of antineoplastic agents because of their potent activity in growth arrest, differentiation, and apoptotic death of cancer cells. The ability of the HDAC inhibitors to upregulate exogenous transgene expression and inhibit interferon (IFN) responses prompted our exploration of their use in improving the antitumor efficacy of oncolytic HSV. We discovered that the yield of viral progeny increased significantly when cultured glioma cells were treated with HDAC inhibitors before viral infection. Valproic acid (VPA), a commonly used antiepileptic agent with HDAC inhibitory activity, proved most effective when used to treat glioma cells before viral infection, but not concomitantly with viral infection. Pretreatment with VPA inhibited the induction of several IFN-responsive antiviral genes, augmented the transcriptional level of viral genes, and improved viral propagation, even in the presence of type I IFNs. Moreover, VPA pretreatment improved the propagation and therapeutic efficacy of oncolytic HSV in a human glioma xenograft model in vivo. These findings indicate that HDAC inhibitors can improve the efficacy of tumor virotherapies.
Collapse
Affiliation(s)
- Akihiro Otsuki
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, 43210 USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Navid F, Mischen BT, Helman LJ. Low Dose Histone Deacetylase Inhibitor, Depsipeptide (FR901228), Promotes Adenoviral Transduction in Human Rhabdomyosarcoma Cell Lines. Sarcoma 2008; 8:25-30. [PMID: 18521390 PMCID: PMC2395599 DOI: 10.1080/13577140410001679220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purpose. Transduction of rhabdomyosarcoma (RMS) cells with adenoviral vectors for in vivo and in vitro applications has
been limited by the low to absent levels of coxackie and adenovirus receptor (CAR). This study investigates the potential use
of low doses of a histone deacetylase inhibitor, depsipeptide (FR901228), currently in Phase II human trials, to enhance
adenoviral uptake in six rhabdomyosarcoma cell lines. Methods. Differences in adenoviral uptake in the presence and absence of depsipeptide (FR901228) were assessed using an
adenoviral construct tagged with green fluorescent protein. Changes in CAR and αv integrin expression RMS in response to
pretreatment with depsipeptide (FR901128) was determined using RT-PCR. Results. Pretreatment of five of six RMS cell lines with 0.5 ng/ml of depsipeptide (FR901228) for 72 h resulted in increased
viral uptake as assessed by green fluorescent protein expression. RT-PCR analysis for CAR showed that in four of these five
cell lines, CAR expression was increased 2.8–8.1-fold in cells treated with depsipeptide (FR901228) as compared to control.
αv integrin expression was substantially increased in the one cell line, RH5, which showed increased GFP expression in
response to depsipeptide (FR901228) pretreatment but a minimal increase in CAR expression. Conclusions. Depsipeptide (FR901228) can be used as a vehicle to enhance adenoviral transduction in a majority of RMS
cells. The mechanism of increased viral uptake appears to mediate via upregulation of CAR.
Collapse
Affiliation(s)
- Fariba Navid
- Pediatric Oncology Branch National Cancer Institute National Institutes of Health Bethesda MD 20892-1928 USA
| | | | | |
Collapse
|
12
|
Abstract
Drug-inducible systems allow modulation of the duration and intensity of cytokine expression in liver immuno-based gene therapy protocols. However, the biological activity of the transgene may influence their function. We have analyzed the kinetics of interleukin-12 (IL-12) expression controlled by the doxycycline (Dox)- and the mifepristone (Mif)-dependent systems using two long-term expressing vectors directed to liver: a plasmid administered by hydrodynamic injection and a high-capacity adenoviral vector. Daily administration of Dox or Mif was associated with a progressive loss of inducibility and a decrease of murine IL-12 production. This inhibition occurred at the transcriptional level and was probably caused by an interferon (IFN)-gamma-mediated downmodulation of liver-specific promoters that control the expression of transactivators in these systems. Genome-wide expression microarrays studies revealed a parallel downregulation of liver-specific genes in mice overexpressing murine IL-12. However, a promoter naturally induced by IL-12 was also inhibited by this cytokine when placed in a plasmid vector. Interestingly, treatment with sodium butyrate, a class I/II histone deacetylase inhibitor, was able to rescue liver-specific promoter activity solely in the vector. We conclude that biologically active IL-12 can transiently inhibit the function of drug-inducible systems in non-integrative DNA vectors by reducing promoter activity, probably through IFN-gamma and protein deacetylation-dependent mechanisms.
Collapse
|
13
|
Goldsmith ME, Aguila A, Steadman K, Martinez A, Steinberg SM, Alley MC, Waud WR, Bates SE, Fojo T. The histone deacetylase inhibitor FK228 given prior to adenovirus infection can boost infection in melanoma xenograft model systems. Mol Cancer Ther 2007; 6:496-505. [PMID: 17308048 DOI: 10.1158/1535-7163.mct-06-0431] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major limitation of adenovirus type 5-mediated cancer gene therapy is the inefficient infection of many cancer cells. Previously, we showed that treatment with low doses of the histone deacetylase inhibitor FK228 (FR901228, depsipeptide) increased coxsackie adenovirus receptor (CAR) levels, histone H3 acetylation, and adenovirus infection efficiencies as measured by viral transgene expression in cancer cell lines but not in cultured normal cells. To evaluate FK228 in vivo, the effects of FK228 therapy in athymic mice bearing LOX IMVI or UACC-62 human melanoma xenografts were examined. Groups of mice were treated with FK228 using several dosing schedules and the differences between treated and control animals were determined. In mice with LOX IMVI xenografts (n = 6), maximum CAR induction was observed 24 h following a single FK228 dose of 3.6 mg/kg with a 13.6 +/- 4.3-fold (mean +/- SD) increase in human CAR mRNA as determined by semiquantitative reverse transcription-PCR analysis. By comparison, mouse CAR levels in liver, kidney, and lung from the same animals showed little to no change. Maximum CAR protein induction of 9.2 +/- 4.8-fold was achieved with these treatment conditions and was associated with increased histone H3 acetylation. Adenovirus carrying a green fluorescent protein (GFP) transgene (2 x 10(9) viral particles) was injected into the xenografts and GFP mRNA levels were determined. A 7.4 +/- 5.2-fold increase in GFP mRNA was found 24 h following adenovirus injection into optimally FK228-treated mice (n = 10). A 4-fold increase in GFP protein-positive cells was found following FK228 treatment. These studies suggest that FK228 treatment prior to adenovirus infection could increase the efficiency of adenovirus gene therapy in xenograft model systems.
Collapse
MESH Headings
- Acetylation
- Adenoviridae Infections/drug therapy
- Adenoviridae Infections/metabolism
- Adenoviridae Infections/virology
- Adenoviruses, Human/genetics
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Blotting, Western
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Depsipeptides/pharmacology
- Female
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Histone Deacetylase Inhibitors
- Histones/metabolism
- Humans
- Melanoma/drug therapy
- Melanoma/metabolism
- Melanoma/virology
- Mice
- Mice, Nude
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/metabolism
- Skin Neoplasms/virology
- Transgenes/drug effects
Collapse
Affiliation(s)
- Merrill E Goldsmith
- Experimental Therapeutics Section, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Building 10, Room 13N240, MSC 1903, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Libertini S, Iacuzzo I, Ferraro A, Vitale M, Bifulco M, Fusco A, Portella G. Lovastatin enhances the replication of the oncolytic adenovirus dl1520 and its antineoplastic activity against anaplastic thyroid carcinoma cells. Endocrinology 2007; 148:5186-94. [PMID: 17690162 DOI: 10.1210/en.2007-0752] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive solid tumors and shows morphological features of a highly malignant, undifferentiated neoplasm. Patients with ATC have a poor prognosis with a mean survival time of 2-6 months; surgery, radiotherapy, and chemotherapy do not improve survival. Gene therapy approaches and oncolytic viruses have been tested for the treatment of ATC. To enhance the antineoplastic effects of the oncolytic adenovirus dl1520 (Onyx-015), we treated ATC cells with lovastatin (3-hydroxy-methylglutaryl-CoA reductase inhibitor), a drug used for the treatment of hypercholesterolemia, which has previously been reported to exert growth-inhibitory and apoptotic activity on ATC cells. Lovastatin treatment significantly increased the effects of dl1520 against ATC cells. The replication of dl1520 in ATC cells was enhanced by lovastatin treatment, and a significant increase of the expression of the early gene E1A 13 S and the late gene Penton was observed in lovastatin-treated cells. Furthermore, lovastatin treatment significantly enhanced the effects of dl1520 against ATC tumor xenografts. Lovastatin treatment could be exploited to increase the efficacy of oncolytic adenoviruses, and further studies are warranted to confirm the feasibility of the approach in ATC patients.
Collapse
Affiliation(s)
- Silvana Libertini
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, via S Pansini 5, 80131, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Segura-Pacheco B, Avalos B, Rangel E, Velazquez D, Cabrera G. HDAC inhibitor valproic acid upregulates CAR in vitro and in vivo. GENETIC VACCINES AND THERAPY 2007; 5:10. [PMID: 17892546 PMCID: PMC2174455 DOI: 10.1186/1479-0556-5-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 09/24/2007] [Indexed: 11/29/2022]
Abstract
Background The presence of CAR in diverse tumor types is heterogeneous with implications in tumor transduction efficiency in the context of adenoviral mediated cancer gene therapy. Preliminary studies suggest that CAR transcriptional regulation is modulated through histone acetylation and not through promoter methylation. Furthermore, it has been documented that the pharmacological induction of CAR using histone deacetylase inhibitor (iHDAC) compounds is a viable strategy to enhance adenoviral mediated gene delivery to cancer cells in vitro. The incorporation of HDAC drugs into the overall scheme in adenoviral based cancer gene therapy clinical trials seems rational. However, reports using compounds with iHDAC properties utilized routinely in the clinic are pending. Valproic acid, a short chained fatty acid extensively used in the clinic for the treatment of epilepsy and bipolar disorder has been recently described as an effective HDAC inhibitor at therapeutic concentrations. Methods We studied the effect of valproic acid on histone H3 and H4 acetylation, CAR mRNA upregulation was studied using semiquantitative PCR and adenoviral transduction on HeLa cervical cancer cells, on MCF-7 breast cancer cells, on T24 transitional cell carcinoma of the bladder cells. CAR mRNA was studied using semiquantitative PCR on tumor tissue extracted from patients diagnosed with cervical cancer treated with valproic acid. Results CAR upregulation through HDAC inhibition was observed in the three cancer cell lines with enhancement of adenoviral transduction. CAR upregulation was also observed in tumor samples obtained from patients with cervical cancer treated with therapeutic doses of valproic acid. These results support the addition of the HDAC inhibitor valproic acid to adenoviral mediated cancer gene therapy clinical trials to enhance adenoviral mediated gene delivery to the tumor cells.
Collapse
Affiliation(s)
- Blanca Segura-Pacheco
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Berenice Avalos
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Edgar Rangel
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Dora Velazquez
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Gustavo Cabrera
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| |
Collapse
|
16
|
Okegawa T, Sayne JR, Nutahara K, Pong RC, Saboorian H, Kabbani W, Higashihara E, Hsieh JT. A Histone Deacetylase Inhibitor Enhances Adenoviral Infection of Renal Cancer Cells. J Urol 2007; 177:1148-56. [PMID: 17296436 DOI: 10.1016/j.juro.2006.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Indexed: 11/26/2022]
Abstract
PURPOSE Coxsackie and adenovirus receptor is a high affinity receptor for adenovirus type 5. To our knowledge the expression profile of coxsackie and adenovirus receptor in renal cancer has not been described. We evaluated the expression of coxsackie and adenovirus receptor in human renal cancer specimens and determined whether the histone deacetylase inhibitor FK-228 (Astelas Pharmaceutical, Osaka, Japan) increases the efficiency of adenoviral infections in renal carcinoma cells in vivo and in vitro. MATERIALS AND METHODS We used randomly selected renal cancer specimens. Specimens were analyzed for coxsackie and adenovirus receptor expression using reverse transcriptase-polymerase chain reaction and immunohistochemistry. In vitro experiments on cytotoxicity were performed to determine a nontoxic dose of FK-228 for renal cancer cells. The level of coxsackie and adenovirus receptor expression was determined by fluorescence activated cell scanning and/or reverse transcriptase-polymerase chain reaction in FK-228 treated renal cancer cells. The effect in vivo on adenoviral gene expression was investigated in athymic mice. RESULTS In several human renal cancer specimens a loss of or decreased coxsackie and adenovirus receptor expression was detected by reverse transcriptase-polymerase chain reaction based analysis and immunohistochemistry. The nontoxic dose of FK-228 for renal carcinoma cells was 0.5 ng/ml. Treatment of cancer cells with 0.5 ng/ml FK-228 increased levels of coxsackie and adenovirus receptor RNA and acetylated histone H3. This increase was associated with an approximately 10-fold increase in adenoviral infection, as evidenced by increased transgene expression from a beta-galactosidase containing adenoviral vector. Intravenous administration of FK-228 enhanced coxsackie and adenovirus receptor expression in athymic mice. The combination of beta-galactosidase adenovirus and FK-228 was significantly more effective than adenovirus only in A498 cells 3 weeks after treatment in vivo. The combination of p21 adenovirus and FK-228 resulted in significant tumor inhibition in vitro and in vivo. CONCLUSIONS In human renal cancer specimens a loss of or decrease in coxsackie and adenovirus receptor expression may be an early event in renal cancer progression. Pretreatment with FK-228 may increase tumor cell sensitivity to adenoviral gene therapy vectors.
Collapse
|
17
|
de Poorter JJ, Lipinski KS, Nelissen RGHH, Huizinga TWJ, Hoeben RC. Optimization of short-term transgene expression by sodium butyrate and ubiquitous chromatin opening elements (UCOEs). J Gene Med 2007; 9:639-48. [PMID: 17534887 DOI: 10.1002/jgm.1057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Predictable and adequate transgene expression is essential for clinical gene therapy. Several studies have focused on optimization of transgene expression. In this study the effect of sodium butyrate (NaB) and a ubiquitous chromatin opening element (UCOE) on short-term gene expression after adenovirus-mediated gene transfer in fibroblastic interface cells from periprosthetic tissue in loosened orthopedic implants is investigated. METHODS Cultures of diploid human interface cells from four patients were infected with an adenovirus type-5 vector that carries the luciferase gene driven by the cytomegalovirus (CMV) promoter as a reporter. In addition, viruses with a UCOE were evaluated. Twenty-four hours after infection NaB was added in concentrations of 0 to 9 mM. Luciferase activity was tested after a further 24 h. RESULTS NaB in a concentration of 6 mM caused a 7- to 16-fold increase in reporter gene expression compared to control condition. There was no difference in reporter gene expression when cells were infected with Ad.1.5UCOE-CMV.Luc compared to Ad.CMV.Luc. A combination of NaB and a UCOE had no advantage over NaB alone. CONCLUSIONS Addition of NaB results in a marked increase in transgene expression in cultured cells. This would allow the enhancement of the expression of the transgene, without requiring a higher vector dose. Butyrate administration could not be substituted by inclusion of UCOEs in the vector. It remains to be established whether the effective concentrations of butyrate can be obtained in vivo.
Collapse
|
18
|
Suvanasuthi S, Tamai K, Kaneda Y. Rapid transport of plasmid DNA into the nucleolus via actin depolymerization using the HVJ envelope vector. J Gene Med 2007; 9:55-62. [PMID: 17149789 DOI: 10.1002/jgm.989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Although nuclear transport of therapeutic genes is an essential requirement of human gene therapy, factors required for nuclear entry of DNA remain to be elucidated. Non-viral vector systems have led to numerous improvements in the efficiency of delivery of exogenous DNA into cells. However, nuclear transport of plasmid is difficult to achieve. METHODS We examined nuclear translocation efficiency of Cy3-labeled plasmid DNA (Cy3-pDNA) delivered by the hemagglutinating virus of Japan envelope (HVJ-E) vector, Lipofectamine or microinjection. We also examined the effect of actin depolymerization on nuclear transport of Cy3-pDNA. RESULTS Cy3-pDNA reached the nucleus, particularly in the nucleolus, in 30 min after fusion-mediated delivery using the HVJ-E vector, while the DNA was retained in the cytoplasm during the observed period after the delivery by cationic liposomes. HVJ-E treatment transiently depolymerized actin filaments, and acceleration of nucleolar entry of microinjected DNA was achieved when treated with either empty HVJ-E or cytochalasin D, an inhibitor of actin depolymerization, prior to microinjection. CONCLUSIONS These results suggest that plasmid DNA can be transported rapidly from the cytoplasm to the nucleolus when actin filaments are depolymerized. Thus, the HVJ-E vector can accelerate the transport of DNA to the nucleolus by actin depolymerization.
Collapse
Affiliation(s)
- Saroj Suvanasuthi
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
19
|
Bieler A, Mantwill K, Dravits T, Bernshausen A, Glockzin G, Köhler-Vargas N, Lage H, Gansbacher B, Holm PS. Novel three-pronged strategy to enhance cancer cell killing in glioblastoma cell lines: histone deacetylase inhibitor, chemotherapy, and oncolytic adenovirus dl520. Hum Gene Ther 2006; 17:55-70. [PMID: 16409125 DOI: 10.1089/hum.2006.17.55] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Resistance to radiation and chemotherapy remains an obstacle to the treatment of brain tumors. We have demonstrated that the replication-deficient adenovirus d1520, which lacks the E1A 13S protein, replicates efficiently and exhibits oncolytic potential in multidrug-resistant cells with nuclear localization of the human transcription factor YB-1. However, besides others, key factors regarding oncolytic virotherapy are limited tumor transduction rate and low replication efficiency. The objective of this study was to determine whether the chemotherapeutic agent irinotecan, by enhancing nuclear localization of YB-1, and the histone deacetylase inhibitor trichostatin A, by upregulating coxsackievirus-adenovirus receptor (CAR) expression, could augment replication of and cell lysis by adenovirus dl520 in glioblastomas in vitro. We found that trichostatin A upregulated CAR expression and that irinotecan caused increased nuclear localization of YB-1 in both glioblastoma cell lines. Irinotecan alone, and trichostatin A alone, enhanced replication of and cell lysis by dl520. Importantly, when combining both agents, the replication efficiency (maximum, 27-fold) and induction of cytopathic effect (maximum, 3.8-fold) of dl520 were further augmented significantly. These results support the hypothesis that the enhanced oncolytic effect of dl520, after incubation with chemotherapeutic agents, is mediated by an increased accumulation of YB-1 in the nucleus (due to irinotecan) and by upregulation of CAR (due to trichostatin A). Thus, therapy combining virotherapy, chemotherapy, and histone deacetylase inhibitor treatment is a novel approach to enhance the oncolytic efficacy of dl520.
Collapse
Affiliation(s)
- Alexa Bieler
- Institute of Experimental Oncology, Technical University of Munich, Klinikum Rechts-der-Isar, 81675 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bieler A, Mantwill K, Dravits T, Bernshausen A, Glockzin G, Kohler-Vargas N, Lage H, Gansbacher B, Holm PS. Novel Three-Pronged Strategy to Enhance Cancer Cell Killing in Glioblastoma Cell Lines: Histone Deacetylase Inhibitor, Chemotherapy, and Oncolytic Adenovirus dl520. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.17.ft-161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Bieler A, Mantwill K, Dravits T, Bernshausen A, Glockzin G, Kohler-Vargas N, Lage H, Gansbacher B, Holm PS. Novel Three-Pronged Strategy to Enhance Cancer Cell Killing in Glioblastoma Cell Lines: Histone Deacetylase Inhibitor, Chemotherapy, and Oncolytic Adenovirus dl520. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.17.ft-158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Hengge UR, Bardenheuer W. Gene therapy and the skin. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 131C:93-100. [PMID: 15468151 DOI: 10.1002/ajmg.c.30038] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Significant progress has been made during the past decade in corrective gene therapy of the skin. This includes advances in vector technology, targeted gene expression, gene replacement, gene correction, and the availability of appropriate animal models for a variety of candidate diseases. While non-viral integration of large genes such as essential basement membrane proteins has been mastered, new challenges such as the control of immune responses lie ahead of the research community. Among the first skin diseases, patients with junctional epidermolysis bullosa (JEB) and xeroderma pigmentosum (XP) will enter clinical trials.
Collapse
Affiliation(s)
- U R Hengge
- Department of Dermatology, University of Düsseldorf, Germany.
| | | |
Collapse
|
23
|
Sachs MD, Ramamurthy M, Poel HVD, Wickham TJ, Lamfers M, Gerritsen W, Chowdhury W, Li Y, Schoenberg MP, Rodriguez R. Histone deacetylase inhibitors upregulate expression of the coxsackie adenovirus receptor (CAR) preferentially in bladder cancer cells. Cancer Gene Ther 2005; 11:477-86. [PMID: 15118762 DOI: 10.1038/sj.cgt.7700726] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Studies on bladder cancer cell lines have shown that low adenoviral (Ad) infectivity is associated with low-level coxsackie adenovirus receptor (CAR) expression. Recently, we and others demonstrated a tumor stage- and grade-dependent downregulation of CAR expression in a large series of clinical bladder cancer specimens. Here, we demonstrate adenoviral gene transfer can be markedly enhanced in bladder cancer cells by upregulation of CAR through the use of certain differentiating agents, including the histone deacetylase inhibitors (HDACI) trichostatin A and sodium phenylbutyrate. CAR upregulation to supraphysiologic levels was demonstrated by quantitative rt-PCR, Western blotting, flow cytometry and adenoviral gene transfer. Normal urothelial cells and CAR-positive papilloma cells (RT4) failed to demonstrate upregulation under the same conditions. Upregulation was cell cycle dependent, associated with increased adenoviral gene transfer and persisted for at least 7 days after a single treatment. Such upregulation, however, appears to be tumor cell specific, as other CAR-negative cell lines failed to demonstrate enhanced adenoviral gene transfer with the same treatments. These results provide a rational basis for combining HDACI therapy with gene therapy as a method of augmenting activity in bladder cancer, but this strategy may not be universally applicable to other cell types.
Collapse
Affiliation(s)
- Markus D Sachs
- Brady Urological Institute, Johns Hopkins Hospital, Marburg 205, 600 N. Wolfe Street, Baltimore, Maryland 21287-2101, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hengge UR, Bardenheuer W, Doroudi R, Mirmohammadsadegh A. Thérapie génique et peau. Ann Dermatol Venereol 2005; 132:154-63. [PMID: 15798569 DOI: 10.1016/s0151-9638(05)79230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- U-R Hengge
- Département de Dermatologie, Université Heinrich-Heine, Duesseldorf, Allemagne.
| | | | | | | |
Collapse
|
25
|
Abstract
Significant progress has been made in corrective gene therapy of the skin in the last decade. This includes advances in vector technology, targeted gene expression, gene replacement, gene correction, and the availability of appropriate animal models for a variety of candidate diseases. While non-viral integration of large genes such as essential basement membrane proteins has been mastered, new challenges such as the control of immune responses lie ahead of the research community until skin gene therapy will become clinical reality. Among the first skin diseases patients with junctional epidermolysis bullosa and xeroderma pigmentosum have entered clinical trials.
Collapse
Affiliation(s)
- Ulrich R Hengge
- Department of Dermatology, Heinrich-Heine-University, D-40225 Duesseldorf, Germany.
| |
Collapse
|
26
|
Balamotis MA, Huang K, Mitani K. Efficient delivery and stable gene expression in a hematopoietic cell line using a chimeric serotype 35 fiber pseudotyped helper-dependent adenoviral vector. Virology 2004; 324:229-37. [PMID: 15183069 DOI: 10.1016/j.virol.2004.03.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 02/10/2004] [Accepted: 03/26/2004] [Indexed: 11/25/2022]
Abstract
Certain human cell populations have remained difficult to infect with human adenovirus (Ad) serotype 5 because of their lack of coxsackievirus B-adenovirus receptor (CAR). Native adenovirus fiber compositions, although diverse, cannot infect all tissue types. Recently, a chimeric Ad5/35 fiber was created, which displays an altered tropism from Ad5. We incorporated this chimeric fiber into a helper-dependent (HD) adenovirus vector system and compared HD to E1-deleted (E1Delta) vectors by transgene expression, cell transduction efficiency, and cytotoxicity. K562 cells were infected approximately 50 times more efficiently with the chimeric Ad5/35 fiber compared with the Ad5 fiber. Short-term transgene expression was sustained longer from HD Ad5/35 than E1Delta Ad5/35 vector after in vitro infection of actively dividing K562 cells. Rapid loss of transgene expression from E1Delta Ad5/35 infection was not due to the loss of vector genomes, as determined by quantitative real-time PCR (QRT-PCR), or cytotoxicity, but rather through a putative silencing mechanism.
Collapse
Affiliation(s)
- Michael Andrew Balamotis
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095-1747, USA
| | | | | |
Collapse
|
27
|
Kaneda Y, Tamai K. Current status and future prospects of gene therapy technologies toward the treatment of intractable skin diseases. Arch Dermatol Res 2003; 295 Suppl 1:S63-6. [PMID: 12677435 DOI: 10.1007/s00403-002-0375-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 565-0871 Suita, Osaka, Japan.
| | | |
Collapse
|
28
|
Yamamoto S, Yamano T, Tanaka M, Hoon DSB, Takao S, Morishita R, Aikou T, Kaneda Y. A novel combination of suicide gene therapy and histone deacetylase inhibitor for treatment of malignant melanoma. Cancer Gene Ther 2003; 10:179-86. [PMID: 12637938 DOI: 10.1038/sj.cgt.7700551] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One major problem associated with application of gene therapy to treatment of tumors is poor transgene expression. Although suicide gene therapy with the herpes simplex virus-thymidine kinase gene (HSV-tk) followed by administration of ganciclovir (GCV) was effective in the treatment of melanoma, it was still difficult to induce complete remission to cancer. A novel histone deacetylase inhibitor drug FR901229 was found to enhance transgene expression in tumor cells both in vitro and in vivo. Combination therapy with HSV-tklGCV and FR901228 by direct injection into tumor enhanced antimelanoma effects. The number of apoptotic cells in melanoma tumors was increased significantly (P<.05) after combined suicide gene therapy and FR901228. Six times injection of HSV-tk/GCV and FR901228 prolonged mice survival compared to that of HSV-tk/GCV injection alone (P=.021). In total, 56% (10 of 18) of the mice survived 120 days after combined suicide gene therapy and FR901228 treatment, and no new tumors appeared in the surviving mice. However, only 19% (3 of 16) of the mice survived when treated with suicide gene therapy alone. This novel strategy may be applicable as a therapeutic regimen for the treatment of aggressive types of cancers.
Collapse
Affiliation(s)
- Seiji Yamamoto
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Omotehara F, Kawamata H, Uchida D, Hino S, Nakashiro K, Fujimori T. Vesnarinone, a differentiation inducing drug, directly activates p21(waf1) gene promoter via Sp1 sites in a human salivary gland cancer cell line. Br J Cancer 2002; 87:1042-6. [PMID: 12434298 PMCID: PMC2364327 DOI: 10.1038/sj.bjc.6600592] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Revised: 08/06/2002] [Accepted: 08/15/2002] [Indexed: 11/10/2022] Open
Abstract
We previously demonstrated that a differentiation inducing drug, vesnarinone induced the growth arrest and p21(waf1) gene expression in a human salivary gland cancer cell line, TYS. In the present study, we investigated the mechanism of the induction of p21(waf1) gene by vesnarinone in TYS cells. We constructed several reporter plasmids containing the p21(waf1) promoter, and attempted to identify vesnarinone-responsive elements in the p21(waf1) promoter. By the luciferase reporter assay, we identified the minimal vesnarinone-responsive element in the p21(waf1) promoter at -124 to -61 relative to the transcription start site. Moreover, we demonstrated by electrophoretic mobility shift assay that Sp1 and Sp3 transcription factors bound to the vesnarinone-responsive element. Furthermore, we found that vesnarinone induced the histone hyperacetylation in TYS cells. These results suggest that vesnarinone directly activates p21(waf1) promoter via the activation of Sp1 and Sp3 transcription factors and the histone hyperacetylation in TYS cells.
Collapse
Affiliation(s)
- F Omotehara
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu, Shimo-Tsuga, Tochigi, 321-0293, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Nair RR, Rodgers JR, Schwarz LA. Enhancement of transgene expression by combining glucocorticoids and anti-mitotic agents during transient transfection using DNA-cationic liposomes. Mol Ther 2002; 5:455-62. [PMID: 11945073 DOI: 10.1006/mthe.2002.0567] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anti-mitotic drugs colchicine and paclitaxel increase transfection efficiency of cationic liposomes. Using combined lipid-mediated transfection with anti-mitotic agents for gene therapy of cancer has been limited due to the likely development of multi-drug resistance (MDR). We treated human cancer cell lines and normal liver cells with glucocorticoids in combination with the antimitotics paclitaxel or colchicine before transient, cationic lipid-mediated transfection. Colchicine and paclitaxel each enhanced transgene expression in several cell lines. Moreover, glucocorticoid, combined with paclitaxel or colchicine, significantly increased reporter gene expression above that seen in cells treated with each drug alone. P-glycoprotein (PGP), a drug exporter encoded by ABCB1, exports both paclitaxel and colchicine. To determine the influence of PGP in colchicine- or paclitaxel-mediated enhancement of transgene expression, cells were treated with a histone deacetylase inhibitor, trichostatin A (TSA), known to induce ABCB1 expression, before treatment with colchicine or paclitaxel. TSA significantly reduced colchicine-mediated increases in reporter gene expression. Addition of glucocorticoid to colchicine pretreatment significantly attenuated TSA-mediated inhibition of colchicine-induced increases in transgene expression. TSA accelerated and glucocorticoid blocked export of rhodamine 123, a molecule known to be exported by PGP. The glucocorticoid/paclitaxel combination also increased reporter gene expression in BE(2)C cells, which constitutively express high levels of PGP. Thus, the degree of enhancement of transgene expression mediated by these anti-mitotics seems to be dependent on PGP activity. Glucocorticoids augment colchicine- or paclitaxel-mediated enhancement of transgene expression most likely by reducing drug egress through PGP.
Collapse
Affiliation(s)
- Rajesh R Nair
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, 77204, USA
| | | | | |
Collapse
|
31
|
Kitazono M, Rao VK, Robey R, Aikou T, Bates S, Fojo T, Goldsmith ME. Histone deacetylase inhibitor FR901228 enhances adenovirus infection of hematopoietic cells. Blood 2002; 99:2248-51. [PMID: 11877306 DOI: 10.1182/blood.v99.6.2248] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus infection of hematopoietic cells frequently requires high virus concentrations and long incubation times to obtain moderate infection levels because these cells have low levels of Coxsackie and adenovirus receptor (CAR) and alpha(v) integrin. The effect of treatment with FR901228 (depsipeptide), a histone deacetylase inhibitor in phase 2 clinical trials, was studied in K562 cells, granulocyte-colony-stimulating factor-mobilized peripheral blood mononuclear cells (PBMCs), and CD34+ peripheral blood stem cells (PBSCs). FR901228 increased CAR and alpha(v) integrin RNA levels and histone H3 acetylation. FR901228 treatment before adenovirus infection was associated with at least a 10-fold increase in transgene expression from a beta-galactosidase-expressing adenoviral vector. More than 80% of the PBMCs or CD34+ PBSCs from 7 different donors were beta-galactosidase-positive after adenovirus infection with a multiplicity of infection of 10 for 60 minutes. Increased CAR, alpha(v) integrin, and acetylated histone H3 levels were observed in PBMCs from a patient treated with FR901228. These studies suggest that FR901228 can increase the efficiency of adenoviral infection in hematopoietic cells.
Collapse
MESH Headings
- Adenoviridae/genetics
- Anti-Bacterial Agents/administration & dosage
- Anti-Bacterial Agents/pharmacology
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacology
- Antigens, CD/blood
- Antigens, CD/drug effects
- Antigens, CD34/metabolism
- Calcium-Binding Proteins/blood
- Calcium-Binding Proteins/drug effects
- Depsipeptides
- Drug Evaluation
- Eye Proteins
- Genes, Reporter
- Genetic Therapy/methods
- Genetic Therapy/standards
- Hematopoietic Stem Cell Mobilization
- Hematopoietic Stem Cells/metabolism
- Hippocalcin
- Histone Deacetylase Inhibitors
- Humans
- Integrin alphaV
- K562 Cells
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/transplantation
- Lipoproteins
- Nerve Tissue Proteins
- Peptides, Cyclic
- Recoverin
- Transduction, Genetic/methods
- Transgenes
Collapse
Affiliation(s)
- Masaki Kitazono
- Cancer Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 10, Rm 12C103, 9000 Rockville Pike, Bethesda, MD 20892-1910, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
We have combined hemagglutinating virus of Japan (HVJ; Sendai virus) with liposomes for efficient in vitro and in vivo fusion-mediated gene delivery. The HVJ-liposome was a highly efficient vehicle for the introduction of oligonucleotides into cells in vivo as well as for the transfer of genes <100 kbp without damaging cells. By coupling the Epstein-Barr (EB) virus replicon apparatus with HVJ-liposomes (virosomes), transgene expression was sustained in vitro and in vivo. When we added cationic lipids, the HVJ-cationic liposomes increased gene delivery 100 to 800 times in vitro compared with the conventional anionic virosomes and were also more useful for gene expression in restricted areas of organs and for gene therapy of disseminated cancers. We further discovered that the use of anionic virosomes with a virus-mimicking lipid composition (artificial viral envelope; AVE type) increased transfection efficiency approximately 10 fold in vivo, especially in the heart, liver, kidney, and muscle. Most animal organs were found to be suitable targets for the fusigenic virosomes, and numerous gene therapy strategies using this system were successful in animals. The combination of suicide gene therapy with radiation was very effective for killing hepatomas in a mouse model. Arteriosclerosis obliterans in animal models was cured by the transfer of hepatocyte growth factor.
Collapse
Affiliation(s)
- Y Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
33
|
Handumrongkul C, Zhong W, Debs RJ. Distinct sets of cellular genes control the expression of transfected, nuclear-localized genes. Mol Ther 2002; 5:186-94. [PMID: 11829526 DOI: 10.1006/mthe.2002.0530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene transfection, a process used to study gene function, is itself poorly understood. Transfection-enhancing agents, including phorbol myristic acid (PMA) and histone deacetylase (HDAC) inhibitors, have been shown to increase transfection efficiency either by improving gene delivery into cells or by acting directly on delivered DNA sequences to increase their expression. Our results indicate that PMA and HDAC inhibitors can also regulate transfection efficiency by modulating distinct classes of cellular genes, which otherwise limit or block the expression of transfected genes already present in the nucleus. Either HDAC inhibitors or PMA was required to express reporter plasmids already present in the nucleus of lymphocyte lines. HDAC inhibitors and PMA seemed to operate through "transfection-controlling" cellular genes or gene products, rather than acting directly on transfected expression plasmids. PMA appeared to increase transfection efficiency by activating PKC-inducible, immediate-early gene products. Conversely, HDAC inhibitors functioned through a non-PKC-dependent pathway that required new protein synthesis, potentially acting through the de-repression of chromosomal genes. Neither delivery across the cell membrane nor into the nucleus may be rate-limiting for expressing transfected genes in some cell lines. In such cells, the targeted modulation of specific cellular genes may be required to efficiently express transfected genes.
Collapse
Affiliation(s)
- Chakkrapong Handumrongkul
- California Pacific Medical Center Research Institute, 2330 Clay St., Stern Building, San Francisco, California 94115, USA
| | | | | |
Collapse
|
34
|
Mohiuddin I, Cao X, Fang B, Nishizaki M, Smythe WR. Significant augmentation of pro-apoptotic gene therapy by pharmacologic bcl-xl down-regulation in mesothelioma. Cancer Gene Ther 2001; 8:547-54. [PMID: 11571532 DOI: 10.1038/sj.cgt.7700332] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2001] [Indexed: 11/08/2022]
Abstract
The ratio of pro-apoptotic (PAP) and anti-apoptotic (AAP) bcl-2 proteins is important in apoptosis regulation. We sought to determine if inhibition of the AAP bcl-xl by sodium butyrate (SB) would augment apoptotic cellular death in mesothelioma when combined with adenoviral pro-apoptotic gene therapy (PAGT) by simultaneously increasing PAP and decreasing AAP in these cells. Human mesothelioma cell lines were exposed to AdBax, AdBak, Adp53, and SB alone as well as all vectors combined with SB at varying doses and time points. Cell death was assessed, and apoptosis evaluated by morphology and FACS. Isobologram analysis evaluated additive or synergistic effect. Cellular death and apoptosis were augmented by PAGT/SB combinations compared to monotherapy. Following AdBax/SB and AdBak/SB, a decrease of the AAP bcl-xl was noted in combination with increases in PAP bax and bak. By isobologram analysis, additive or synergistic cell killing was noted with both combinations. SB treatment did not significantly augment cell killing or apoptosis in combination with Adp53. PAGT/SB was more effective than monotherapy in induction of apoptotic cell death. Synergy may be due to the ability of SB to decrease bcl-xl with marked increases in PAP engendered by PAGT. Combination therapy with agents that down-regulate AAP in addition to PAGT may prove useful clinically.
Collapse
Affiliation(s)
- I Mohiuddin
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
35
|
Otomo T, Yamamoto S, Morishita R, Kaneda Y. EBV replicon vector system enhances transgene expression in vivo: applications to cancer gene therapy. J Gene Med 2001; 3:345-52. [PMID: 11529664 DOI: 10.1002/jgm.199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major limitation of current cancer gene therapies is low and transient expression of the therapeutic gene. For long-term expression of transgenes in vivo, an Epstein-Barr virus (EBV) replicon vector has been developed. The present study examines the effect of the EBV replicon vector system and its application to a suicide gene therapy for melanoma in mice. METHODS An EBV replicon vector system, pEBc, consisting of EBV nuclear antigen-1 (EBNA-1) and the origin of latent viral DNA replication, oriP, was used to express either the luciferase gene or the herpes simplex virus (HSV) thymidine kinase (TK) gene. The expression vector was introduced in vivo into melanoma tumor masses in mice by means of HVJ-cationic liposomes. The time-course of gene expression and the anticancer effect of the EBV replicon vector were investigated in comparison with pcLuc, which lacks the EBV components. RESULTS Luciferase expression was sustained in both cultured cells and melanoma masses by pEBc but not by pcLuc. The luciferase expression level in melanoma masses was higher by pEBcLuc than by pcLuc, although Southern blot analysis showed the number of copies of pEBcLuc retained in the melanoma masses to be fewer than that of pcLuc. The effectiveness of EBV replicon vector on suicide gene therapy of melanoma in mice was also demonstrated. CONCLUSION The EBV replicon vector appears useful for cancer gene therapy. Analysis of the transgene in tumors suggests that the EBV replicon system may be responsible for efficient transcription but not retention of the transgene.
Collapse
Affiliation(s)
- T Otomo
- Division of Gene Therapy Science, Osaka University School of Medicine, Suita, Japan
| | | | | | | |
Collapse
|
36
|
Nash MS, Selkirk JV, Gaymer CE, Challiss RA, Nahorski SR. Enhanced inducible mGlu1alpha receptor expression in Chinese hamster ovary cells. J Neurochem 2001; 77:1664-7. [PMID: 11413250 DOI: 10.1046/j.1471-4159.2001.00405.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inducible expression of the group-I metabotropic glutamate receptor (mGlu1alpha) in Chinese hamster ovary cells allows for the study of receptor density dependent effects. However, expression levels attainable with this system are lower than those reported for various brain regions and achieved by conventional (constitutive) transfection. Thus, direct comparison of mGlu1alpha receptor-mediated responses in this inducible expression system with those for receptors expressed heterologously or in vivo is compounded. We show here that inducible expression can be selectively augmented by butyrate pretreatment to levels approaching those reported for cerebral tissue. Enhanced mGlu1alpha receptor protein levels, agonist-induced inositol phosphate accumulation, as well as single-cell inositol 1,4,5-trisphosphate production and intracellular Ca(2+) mobilization occurred following co-induction with butyrate. In contrast, endogenous purinoceptor function was unaffected. Importantly, the ability to titrate receptor expression by varying isopropyl beta-thiogalactoside concentration was retained. Sodium butyrate thus offers a simple and convenient method to enhance inducible gene expression to levels found in vivo.
Collapse
Affiliation(s)
- M S Nash
- Department of Cell Physiology and Pharmacology, University of Leicester, UK.
| | | | | | | | | |
Collapse
|
37
|
Watanabe T, Shinohara N, Sazawa A, Takimoto M, Hashimoto A, Koyanagi T, Kuzumaki N. Adenovirus-mediated gene therapy for bladder cancer in an orthotopic model using a dominant negative H-ras mutant. Int J Cancer 2001; 92:712-7. [PMID: 11340577 DOI: 10.1002/1097-0215(20010601)92:5<712::aid-ijc1242>3.0.co;2-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been suggested that abnormal Ras function is important in the carcinogenesis and progression of bladder cancer. Our aim was to investigate the efficacy of transurethral inoculation of an adenovirus expressing the dominant negative H-ras mutant N116Y against orthotopically implanted human bladder-cancer cells in nude mice. We used a replication-defective adenovirus vector containing the beta-galactosidase gene (AdCMV-LacZ) as a control and the N116Y gene (AdCMV-N116Y) as the therapeutic vector under the transcriptional control of the cytomegalovirus promoter. We initially investigated the in vitro growth-suppressive effects of AdCMV-N116Y on 2 human bladder-cancer cell lines, KU-7 and UMUC-2. Thereafter, we examined the inhibitory effects of AdCMV-N116Y on the 2 orthotopically implanted cell lines in nude mice. Intravesically created, orthotopic human bladder cancers were established in female KSN athymic nude mice with 1x 10(7) cancer cells. Then, 2, 3 and 4 days following implantation, 1 x 10(9) pfu of AdCMV-LacZ or AdCMV-N116Y were administered transurethrally. In vitro growth assays revealed significant growth suppression (>95%) with apoptosis of target cells treated with AdCMV-N116Y compared to AdCMV-LacZ. Transurethral inoculation of AdCMV-N116Y into the bladder brought about a significant reduction in size (73% to 90%) and number (47% to 78%) of orthotopically implanted human bladder tumors compared to AdCMV-LacZ or PBS. Normal mucosa in nude mice had minor inflammation with the infiltration of mononuclear cells. Our results suggest that gene therapy via transurethral inoculation of AdCMV-N116Y holds promise for the treatment of human bladder cancer.
Collapse
Affiliation(s)
- T Watanabe
- Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Bachl J, Carlson C, Gray-Schopfer V, Dessing M, Olsson C. Increased transcription levels induce higher mutation rates in a hypermutating cell line. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5051-7. [PMID: 11290786 DOI: 10.4049/jimmunol.166.8.5051] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Somatic hypermutation, in addition to V(D)J recombination, is the other major mechanism that generates the vast diversity of the Ab repertoire. Point mutations are introduced in the variable region of the Ig genes at a million-fold higher rate than in the rest of the genome. We have used a green fluorescent protein (GFP)-based reversion assay to determine the role of transcription in the mutation mechanism of the hypermutating cell line 18-81. A GFP transgene containing a premature stop codon is transcribed from the inducible tet-on operon. Using the inducible promoter enables us to study the mutability of the GFP transgene at different transcription levels. By analyzing stable transfectants of a hypermutating cell line with flow cytometry, the mutation rate at the premature stop codon can be measured by the appearance of GFP-positive revertant cells. Here we show that the mutation rate of the GFP transgene correlates with its transcription level. Increased transcription levels of the GFP transgene caused an increased point mutation rate at the premature stop codon. Treating a hypermutating transfection clone with trichostatin A, a specific inhibitor of histone deacetylase, caused an additional 2-fold increase in the mutation rate. Finally, using Northern blot analysis we show that the activation-induced cytidine deaminase, an essential trans-factor for the in vivo hypermutation mechanism, is transcribed in the hypermutating cell line 18-81.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Clone Cells
- Codon, Terminator/genetics
- Codon, Terminator/immunology
- Cytidine Deaminase/genetics
- Doxycycline/pharmacology
- Enhancer Elements, Genetic/drug effects
- Enhancer Elements, Genetic/immunology
- Flow Cytometry
- Genes, Reporter/drug effects
- Genes, Reporter/immunology
- Genetic Vectors/immunology
- Green Fluorescent Proteins
- Hydroxamic Acids/pharmacology
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Introns/genetics
- Introns/immunology
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Lymphocyte Activation/genetics
- Mice
- Mutagenesis, Site-Directed/drug effects
- Mutagens/pharmacology
- Transcription, Genetic/drug effects
- Transcription, Genetic/immunology
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/immunology
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- J Bachl
- Basel Institute for Immunology, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
39
|
Gaetano C, Catalano A, Palumbo R, Illi B, Orlando G, Ventoruzzo G, Serino F, Capogrossi MC. Transcriptionally active drugs improve adenovirus vector performance in vitro and in vivo. Gene Ther 2000; 7:1624-30. [PMID: 11083470 DOI: 10.1038/sj.gt.3301296] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytomegalovirus (CMV) promoter is often present in recombinant adenovirus vectors (AdVs) suitable for gene therapy, ensuring high levels of transgene production in a wide range of hosts. Despite this characteristic, the presence of the AdV genome in target cells and tissues typically lasts longer than transgene production that may be rapidly extincted by ill-defined silencing mechanisms. In the present article, it is reported that transcriptionally active drugs, retinoic acid (RA) and histone deacetylase inhibitor trichostatin A (TSA), enhance AdV transgene expression in infected cells and tissues. The association of RA and TSA increased more than seven-fold above control the activity of AdVs encoding for LacZ or VEGF165. This effect was, at least in part, mediated by the direct activation of retinoic acid receptors. Finally, administration of RA and TSA alone at days 0 and 5 after infection prolonged transgene production up to 21 days after infection versus 6-8 days in untreated controls. These results indicate that transcriptionally active drugs improve AdV function and may represent a novel strategy to more efficiently design AdVs for gene therapy interventions.
Collapse
Affiliation(s)
- C Gaetano
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mao C, Shapiro DJ. A histone deacetylase inhibitor potentiates estrogen receptor activation of a stably integrated vitellogenin promoter in HepG2 cells. Endocrinology 2000; 141:2361-9. [PMID: 10875235 DOI: 10.1210/endo.141.7.7564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To compare the role of histone deactylation in estrogen activation of a transiently transfected vitellogenin (VIT) promoter and an integrated VIT promoter in the same cells, we produced three HepG2, human hepatoma, cell lines (HepG2ERV cells) stably expressing human estrogen receptor alpha (hERalpha) and containing an integrated VIT promoter-chloramphenicol acetyltransferase (VIT-CAT) reporter gene. The three ER-positive HepG2ERV cell lines and wild-type, ER-negative, HepG2 cells cotransfected with cytomegalovirus-hERalpha exhibited similar MOX-dependent inductions of 20- to 50-fold with a transiently transfected VIT-luciferase reporter and 15- to 50-fold with a transfected 4-estrogen response element-TATA-luciferase reporter gene. The histone deacetylase inhibitor, trichostatin A, did not enhance MOX induction of the transiently transfected VIT promoter in the HepG2ERV cells. In contrast, trichostatin A dramatically potentiated MOX induction of the stably integrated VIT-CAT reporter gene, resulting in MOX-ER-dependent increases in CAT activity of up to 600-fold. These data demonstrate that although liganded ER exhibits the capacity to fully activate a transiently transfected VIT promoter, under some circumstances the ability to reorganize a repressive chromatin structure may be limiting for steroid receptor action.
Collapse
Affiliation(s)
- C Mao
- Department of Biochemistry, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
41
|
Yamano T, Ura K, Morishita R, Nakajima H, Monden M, Kaneda Y. Amplification of transgene expression in vitro and in vivo using a novel inhibitor of histone deacetylase. Mol Ther 2000; 1:574-80. [PMID: 10933982 DOI: 10.1006/mthe.2000.0074] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enhancement of transgene expression is an important issue in human gene therapy. Here we describe a novel system for enhancing transgene expression by cointroduction of plasmid DNA with FR901228, a water-soluble histone deacetylase inhibitor. When a luciferase expression vector was cointroduced into cells with FR901228, luciferase gene expression was enhanced 50-fold in the mouse melanoma cell line B16-F1 and 5200-fold in NIH3T3 cells in comparison to cells without the drug. Luciferase gene expression enhancement was dependent on both drug dose and treatment time. Acetylated histones increased in accordance with drug dose, and the activation of gene expression occurred at the transcriptional level. The stimulation of luciferase gene expression by FR901228 was also observed in a B16-F1 clone stably expressing luciferase. Cointroduction of the luciferase plasmid with FR901228 into a B16-F1 tumor mass activated luciferase gene expression 3- to 4-fold. Thus, activation of transgene expression by FR901228 may serve as a new tool for gene therapy.
Collapse
Affiliation(s)
- T Yamano
- Department of Surgery and Clinical Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Shangguan T, Cabral-Lilly D, Purandare U, Godin N, Ahl P, Janoff A, Meers P. A novel N-acyl phosphatidylethanolamine-containing delivery vehicle for spermine-condensed plasmid DNA. Gene Ther 2000; 7:769-83. [PMID: 10822304 DOI: 10.1038/sj.gt.3301156] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A unique method for formulation of plasmid DNA with phospholipids has been devised for the purpose of producing vehicles that can mediate gene delivery and transfection of living cells. The polycation, spermine, was used to condense plasmid DNA within a water-in-chloroform emulsion stabilized by phospholipids. After organic solvent removal, the particles formed could be extruded to a number average size of about 200 nm and retained DNA that was protected from nuclease digestion. This resulted in a relatively high protected DNA-to-lipid ratio of approximately 1 microg DNA/micromol lipid. The size distribution of the preparation was relatively homogeneous as judged by light microscopy and quasi-elastic light scattering. Electron microscopic studies showed structural heterogeneity, but suggested that at least some of the plasmid DNA in this preparation was in the form of the previously observed spermine-condensed bent rods and toroids and was encapsulated within liposomal membranes. Preparations with the fusogenic phospholipid composition, 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-dodecanoyl/ 1, 2-dioleoyl-sn-glycero-3-phosphocholine, showed transfection activity for several cells lines, particularly OVCAR-3 cells. The transfection activity sedimented with the lipid during centrifugation, confirming the association of active plasmid DNA with phospholipids. Transfection efficiency in culture was found to be of the same order of magnitude as cationic lipoplexes but much less toxic to the cells. Significant transfection of OVCAR-3 cells in tissue culture could also be observed, even in the presence of the intraperitoneal fluid from a mouse with an OVCAR-3 ascites tumor. These data indicate a new type of liposomal gene delivery system devoid of cationic lipids, phosphatidylethanolamine, cationic polymers and viral components.
Collapse
Affiliation(s)
- T Shangguan
- The Liposome Company, Inc., 1 Research Way, Princeton, NJ 08540, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kaneda Y, Saeki Y, Nakabayashi M, Zhou WZ, Kaneda MW, Morishita R. Enhancement of transgene expression by cotransfection of oriP plasmid with EBNA-1 expression vector. Hum Gene Ther 2000; 11:471-9. [PMID: 10697121 DOI: 10.1089/10430340050015932] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have attempted to develop a system for specific enhancement of transgene expression, which has been one of the most important issues in human gene therapy. When an Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) expression vector, pCMV-trEBNA-1, was cotransfected with an origin of latent viral DNA replication (oriP)-harboring plasmid, poriP-CMV-luciferase, luciferase gene expression was up to 20 times greater than in the absence of EBNA-1. This enhancement was regulated mainly at the transcriptional level and was dependent on the oriP sequence and the amount of EBNA-1. However, cointroduction of poriP-CMV-luciferase with purified recombinant EBNA-1 inhibited luciferase gene expression whereas no inhibition was observed when pCMV-luciferase was cointroduced with recombinant EBNA-1. We also introduced poriP-CMV-luciferase into mouse liver via the use of HVJ (hemagglutinating virus of Japan)-liposomes. By 10 days after transfer, luciferase gene expression was decreased to low levels. We then introduced pCMV-trEBNA-1 to mouse liver via HVJ-liposomes on day 10. Luciferase gene expression was reactivated, whereas no reactivation was detected by the injection of EBNA-1 expression plasmid into liver injected with pCMV-luciferase lacking the oriP sequence. Thus, cotransfection of oriP-harboring expression vector with EBNA-1 expression plasmid should be promising for human gene therapy, although the safety of the system must be investigated thoroughly.
Collapse
Affiliation(s)
- Y Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Kim YB, Lee KH, Sugita K, Yoshida M, Horinouchi S. Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene 1999; 18:2461-70. [PMID: 10229197 DOI: 10.1038/sj.onc.1202564] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxamflatin [(2E)-5-[3-[(phenylsufonyl) aminol phenyl]-pent-2-en-4-ynohydroxamic acid] induces transcriptional activation of junD and morphological reversion in various NIH3T3-derived transformed cell lines. We found that oxamflatin showed in vitro antiproliferative activity against various mouse and human tumor cell lines with drastic changes in the cell morphology and in vivo antitumor activity against B16 melanoma. Oxamflatin caused an elongated cell shape with filamentous protrusions as well as arrest of the cell cycle at the G1 phase in HeLa cells. These phenotypic changes of HeLa cells were apparently similar to those by trichostatin A (TSA), a specific inhibitor of histone deacetylase (HDAC). The effect of oxamflatin on the transcriptional activity of the cytomegalovirus (CMV) promoter was examined and compared with known HDAC inhibitors, TSA, sodium n-butyrate, and FR901228. Oxamflatin as well as all these inhibitors greatly enhanced the transcriptional activity of the CMV promoter in a dose-dependent manner. Oxamflatin, like TSA, inhibited intracellular HDAC activity, as a result of which marked amounts of acetylated histone species accumulated. Finally, effects on expression of several endogenous genes involved in cell morphology and cell cycle control in HeLa cells were analysed. Expression of gelsolin, cyclin E and Cdk inhibitors including p21WAF1/Cip1 was highly augmented, while that of cyclin A and cyclin D1 was decreased by oxamflatin. These results suggest that changes in the expression pattern of the genes regulating cell morphology and the cell cycle due to histone hyperacetylation are responsible for the antitumor activity, the morphological change and the cell cycle arrest induced by oxamflatin.
Collapse
Affiliation(s)
- Y B Kim
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
45
|
Preston CM, McFarlane M. Cytodifferentiating agents affect the replication of herpes simplex virus type 1 in the absence of functional VP16. Virology 1998; 249:418-26. [PMID: 9791032 DOI: 10.1006/viro.1998.9314] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The herpes simplex virus type 1 (HSV-1) mutant in1814 encodes an altered form of the virion protein VP16 that is unable to transactivate immediate-early (IE) transcription. As a consequence of the mutation, in1814 initiates productive replication inefficiently after infection of tissue culture cells. Previous studies showed that this defect could be overcome by the inclusion in the culture medium of hexamethylene bisacetamide (HMBA), a compound that promotes the differentiation of murine erythroleukemia cells (MELCs). The effects of additional agents known to induce differentiation of MELCs were investigated. N'-Methylnicotinamide, at concentrations optimal for the induction of MELCs, complemented the replication of in1814 and stimulated IE gene expression. Suberoyl bishydroxamic acid and suberoylanilide hydroxamic acid, which induce differentiation of MELCs at micromolar concentrations, did not complement in1814 but specifically blocked the action of HMBA. The histone deacetylase inhibitor trichostatin A, which also induces differentiation of MELCs, antagonized the effect of HMBA in a manner similar to that of suberoyl bishydroxamic acid and suberoylanilide hydroxamic acid. The results demonstrate that the requirement for VP16 activity is dependent on the metabolic state of the host cell and that the pathways leading to complementation of in1814 and differentiation of MELCs are overlapping but not identical.
Collapse
Affiliation(s)
- C M Preston
- Medical Research Council Virology Unit, Church Street, Glasgow, G11 5JR, Scotland.
| | | |
Collapse
|
46
|
Goldsmith KT, Dion LD, Curiel DT, Garver RI. trans E1 component requirements for maximal replication of E1-defective recombinant adenovirus. Virology 1998; 248:406-19. [PMID: 9721248 DOI: 10.1006/viro.1998.9293] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Strategies that enable E1-defective recombinant adenoviruses to selectively undergo replication in neoplastic tissue may be useful for future investigations or therapies of malignancies. A growing body of evidence suggests that some molecular alterations commonly associated with malignancies, such as p53 mutations, can modify the specific E1 requirements for replication of human serotype adenoviruses. In the studies reported here, a panel of human non-small cell lung cancer cell lines with previously defined p53 status were characterized for basal interleukin-6 (IL-6) and bcl-2 content because previous studies have indicated both proteins can functionally substitute for the replication requirements provided by native E1 viral proteins. Cell lines were infected with E1-defective adenovirus 5 and simultaneously transfected with different combinations of E1 plasmids, or a bcl-2 expression plasmid, and adenovirus present in the cells was quantified 6 days later. These assays demonstrated that E1A with both 19- and 55-kDa E1B-encoding plasmids were required for maximal adenoviral replication, independent of the varying p53/IL-6/basal bcl-2 phenotypes of the host cell lines. E1A was required for maximal replication enablement, independent of the basal IL-6 content of these cell lines, and exogenous IL-6 also did not obviate the E1A requirement. Interestingly, the bcl-2 expression plasmid did not consistently substitute for the 19-kDa expression plasmid in the context of this replication complementation assay. These results suggest that (1) basal levels of IL-6 greater than that present in these cell lines are necessary for functional replacement of the E1A replication function and (2) bcl-2 does not predictably substitute for the 19-kDa E1B replication function in the context of trans complementation.
Collapse
Affiliation(s)
- K T Goldsmith
- Gene Therapy Program, Birmingham VAMC, Birmingham, Alabama, 35294, USA
| | | | | | | |
Collapse
|
47
|
Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 1998; 241:126-33. [PMID: 9633520 DOI: 10.1006/excr.1998.4027] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Screening for microbial metabolites that induce transcriptional activation of the SV40 promoter resulted in the identification of two known compounds, FR901228 and trichostatin A (TSA). FR901228 is a potent antitumor drug that is currently under clinical investigation. TSA is a specific inhibitor of histone deacetylase. Despite structural unrelatedness, both FR901228 and TSA greatly enhanced the transcriptional activity of the SV40 promoter in an enhancer-dependent manner. The effects of FR901228 on the cell cycle, chromatin structure, and histone acetylation were examined and compared with those of TSA. Both compounds caused arrest of the cell cycle at both G1 and G2/M phases and induction of internucleosomal breakdown of chromatin. FR901228, like TSA, inhibited intracellular histone deacetylase activity, as a result of which marked amounts of acetylated histone species accumulated. FR901228 is therefore a new type of histone deacetylase inhibitor, whose chemical structure is unrelated to known inhibitors such as trichostatins and trapoxins.
Collapse
Affiliation(s)
- H Nakajima
- Exploratory Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Ibaraki, Japan
| | | | | | | | | |
Collapse
|
48
|
Abstract
We have studied the effects of sodium butyrate (NaBu) on the expression of genes transduced by retroviral vectors and stably expressed in two salivary gland-derived cell lines, A5-DAP and A5-BAG, established earlier. These cell lines were obtained by infecting A5 cells with the retroviral vectors DAP and BAG, respectively, and by selecting neomycin-resistant transduced cells. A5-DAP cells express human placental alkaline phosphatase (PLAP) and A5-BAG cells bacterial beta-galactosidase, both under the control of the viral long terminal repeat (LTR) enhancer-promoter. NaBu in the concentration of 2-8 mM inhibited the growth of A5-DAP cells, and induced the expression of heat-stable PLAP. These effects of NaBu were dose-dependent. Induction of PLAP in clones of A5-DAP cells that express different basal levels of the enzyme was not correlated with the relative inducibilty by NaBu. Exposure to 4 mM NaBu for 48 h increased the PLAP mRNA level by 31%. A5-DAP cells released, in a time-dependent manner, PLAP into the culture medium. Cells treated with NaBu released more PLAP than untreated cells in proportion to their elevated level of the enzyme. The parent A5 cells also express a low level of tissue non-specific type alkaline phosphatase, which was also induced by NaBu. NaBu inhibited the growth of A5-BAG cells also, and increased the beta-galactosidase level. These data indicate the genes transduced by retroviral vectors can be induced by NaBu, which most likely interacts with the viral LTR.
Collapse
Affiliation(s)
- T Barka
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine of The City University of New York, New York 10029, USA.
| |
Collapse
|
49
|
Tang DC, Jennelle RS, Shi Z, Garver RI, Carbone DP, Loya F, Chang CH, Curiel DT. Overexpression of adenovirus-encoded transgenes from the cytomegalovirus immediate early promoter in irradiated tumor cells. Hum Gene Ther 1997; 8:2117-24. [PMID: 9414259 DOI: 10.1089/hum.1997.8.17-2117] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Efficient expression of therapeutic genes in irradiated tumor cells would facilitate the conversion of a malignant tumor nodule into a cancer vaccine in situ. We reported previously that transgene expression from an adenoviral vector could be markedly enhanced by treating transduced tumor cells with butyrate. In this study, we demonstrated that a similar butyrate effect could be achieved in irradiated tumor cells. In addition, irradiating cells at doses of 2-40 Gy prior to transduction could also amplify recombinant adenoviral transgene products in a cell-type-specific manner. This suggests that adenovirus-mediated gene therapy, radiation therapy, and butyrate-mediated cancer therapy may potentially be formulated into one synergistic protocol for cancer treatment.
Collapse
Affiliation(s)
- D C Tang
- Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|