1
|
Li Y, Yin Z, Wang J, Xu Y, Huo S, Wu Y, Dou D, Han Q, Jiang S, Li F, Liu P, Yu F. Surveillance of avian influenza viruses in Hebei Province of China from 2021 to 2023: Identification of a novel reassortant H3N3. J Infect 2024; 89:106240. [PMID: 39173919 DOI: 10.1016/j.jinf.2024.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Avian influenza remains a global public health concern for its well-known point mutation and genomic segment reassortment, through which plenty of serum serotypes are generated to escape existing immune protection in animal and human populations. Some occasional cases of human infection of avian influenza viruses (AIVs) since 2020 posed a potential pandemic risk through human-to-human transmission. Both east-west and north-south migratory birds fly through and linger in the Hebei Province of China as a stopover habitat, providing an opportunity for imported AIVs to infect the local poultry and for viral gene reassortment to generate novel stains. In this study, we collected more than 6000 environmental samples (mostly feces) in Hebei Province from 2021 to 2023. Samples were screened using real-time RT-PCR, and virus isolation was performed using the chick embryo culture method. We identified 10 AIV isolates, including a novel reassortant H3N3 isolate. Sequencing analysis revealed these AIVs are highly homologous to those isolated in the Yellow River Basin. Our findings supported that AIVs keep evolving to generate new isolates, necessitating a continuous risk assessment of local avian influenza in wild waterfowl in Hebei, China.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Juan Wang
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yujuan Xu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yang Wu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Dou Dou
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Qingan Han
- Hebei Animal Disease Control Center, Shijiazhuang, China
| | - Shibo Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China.
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
2
|
Karakus U, Sempere Borau M, Martínez-Barragán P, von Kempis J, Yildiz S, Arroyo-Fernández LM, Pohl MO, Steiger JA, Glas I, Hunziker A, García-Sastre A, Stertz S. MHC class II proteins mediate sialic acid independent entry of human and avian H2N2 influenza A viruses. Nat Microbiol 2024; 9:2626-2641. [PMID: 39009691 DOI: 10.1038/s41564-024-01771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Influenza A viruses (IAV) pose substantial burden on human and animal health. Avian, swine and human IAV bind sialic acid on host glycans as receptor, whereas some bat IAV require MHC class II complexes for cell entry. It is unknown how this difference evolved and whether dual receptor specificity is possible. Here we show that human H2N2 IAV and related avian H2N2 possess dual receptor specificity in cell lines and primary human airway cultures. Using sialylation-deficient cells, we reveal that entry via MHC class II is independent of sialic acid. We find that MHC class II from humans, pigs, ducks, swans and chickens but not bats can mediate H2 IAV entry and that this is conserved in Eurasian avian H2. Our results demonstrate that IAV can possess dual receptor specificity for sialic acid and MHC class II, and suggest a role for MHC class II-dependent entry in zoonotic IAV infections.
Collapse
Affiliation(s)
- Umut Karakus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Marie O Pohl
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Julia A Steiger
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annika Hunziker
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Karakus U, Mena I, Kottur J, El Zahed SS, Seoane R, Yildiz S, Chen L, Plancarte M, Lindsay L, Halpin R, Stockwell TB, Wentworth DE, Boons GJ, Krammer F, Stertz S, Boyce W, de Vries RP, Aggarwal AK, García-Sastre A. H19 influenza A virus exhibits species-specific MHC class II receptor usage. Cell Host Microbe 2024; 32:1089-1102.e10. [PMID: 38889725 PMCID: PMC11295516 DOI: 10.1016/j.chom.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.
Collapse
Affiliation(s)
- Umut Karakus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Jithesh Kottur
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara S El Zahed
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rocío Seoane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leanne Chen
- Department of Biology, Barnard College, New York, NY 10027, USA
| | - Magdalena Plancarte
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - LeAnn Lindsay
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | | | | | | | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA; Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Walter Boyce
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Aneel K Aggarwal
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Penteado AB, de Oliveira Ribeiro G, Lima Araújo EL, Kato RB, de Melo Freire CC, de Araújo JMG, da Luz Wallau G, Salvato RS, de Jesus R, Bosco GG, Franz HF, da Silva PEA, de Souza Leal E, Goulart Trossini GH, de Lima Neto DF. Binding Evolution of the Dengue Virus Envelope Against DC-SIGN: A Combined Approach of Phylogenetics and Molecular Dynamics Analyses Over 30 Years of Dengue Virus in Brazil. J Mol Biol 2024; 436:168577. [PMID: 38642883 DOI: 10.1016/j.jmb.2024.168577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
The Red Queen Hypothesis (RQH), derived from Lewis Carroll's "Through the Looking-Glass", postulates that organisms must continually adapt in response to each other to maintain relative fitness. Within the context of host-pathogen interactions, the RQH implies an evolutionary arms race, wherein viruses evolve to exploit hosts and hosts evolve to resist viral invasion. This study delves into the dynamics of the RQH in the context of virus-cell interactions, specifically focusing on virus receptors and cell receptors. We observed multiple virus-host systems and noted patterns of co-evolution. As viruses evolved receptor-binding proteins to effectively engage with cell receptors, cells countered by altering their receptor genes. This ongoing mutual adaptation cycle has influenced the molecular intricacies of receptor-ligand interactions. Our data supports the RQH as a driving force behind the diversification and specialization of both viral and host cell receptors. Understanding this co-evolutionary dance offers insights into the unpredictability of emerging viral diseases and potential therapeutic interventions. Future research is crucial to dissect the nuanced molecular changes and the broader ecological consequences of this ever-evolving battle. Here, we combine phylogenetic inferences, structural modeling, and molecular dynamics analyses to describe the epidemiological characteristics of major Brazilian DENV strains that circulated from 1990 to 2022 from a combined perspective, thus providing us with a more detailed picture on the dynamics of such interactions over time.
Collapse
MESH Headings
- Dengue Virus/genetics
- Dengue Virus/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/chemistry
- Phylogeny
- Molecular Dynamics Simulation
- Humans
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/chemistry
- Brazil
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/chemistry
- Evolution, Molecular
- Dengue/virology
- Host-Pathogen Interactions/genetics
- Protein Binding
- Viral Envelope/metabolism
- Receptors, Virus/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Viral Envelope Proteins/chemistry
Collapse
Affiliation(s)
- André Berndt Penteado
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Av. Prof. Lineu Prestes, 580, Cidade Universitária, São Paulo, SP 05508-000, Brazil
| | - Geovani de Oliveira Ribeiro
- General-Coordination of Public Health Laboratories, Department of Strategic Coordination and Surveillance in Health and the Environment, Ministry of Health, Brasilia, Brazil; Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Distrito Federal, Brazil
| | - Emerson Luiz Lima Araújo
- General Coordination of Attention to Communicable Diseases in Primary Care of the Department of Comprehensive Care Management of the Secretariat of Primary Health Care of the Ministry of Health (CDTAP/DGCI/SAPS-MS), Brazil
| | - Rodrigo Bentes Kato
- General-Coordination of Public Health Laboratories, Department of Strategic Coordination and Surveillance in Health and the Environment, Ministry of Health, Brasilia, Brazil
| | - Caio Cesar de Melo Freire
- Department of Genetics and Evolution, Centre of Biological and Health Sciences, Federal University of Sao Carlos, PO Box 676, Washington Luis Road, km 235, São Carlos, SP 13565-905, Brazil
| | - Joselio Maria Galvão de Araújo
- Federal University of Rio Grande do Norte, Biosciences Center, Department of Microbiology and Parasitology, Campus Universitário, S/N Lagoa Nova 59078900, Natal, RN, Brazil
| | - Gabriel da Luz Wallau
- Department of Entomology and Bioinformatics Center of the Aggeu Magalhães Institute - FIOCRUZ - IAM, Brazil
| | - Richard Steiner Salvato
- Center for Scientific and Technological Development, State Center for Health Surveillance of Rio Grande do Sul, State Department of Health of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ronaldo de Jesus
- General-Coordination of Public Health Laboratories, Department of Strategic Coordination and Surveillance in Health and the Environment, Ministry of Health, Brasilia, Brazil
| | - Geraldine Goés Bosco
- University of São Paulo, Faculty of Philosophy Sciences and Letters of Ribeirão Preto. Av. Bandeirantes, 3900 Ribeirão Preto, SP, Brazil
| | - Helena Ferreira Franz
- General-Coordination of Public Health Laboratories, Department of Strategic Coordination and Surveillance in Health and the Environment, Ministry of Health, Brasilia, Brazil
| | - Pedro Eduardo Almeida da Silva
- General-Coordination of Public Health Laboratories, Department of Strategic Coordination and Surveillance in Health and the Environment, Ministry of Health, Brasilia, Brazil
| | - Elcio de Souza Leal
- Federal University of Pará, Faculty of Biotechnology, Institute of Biological Sciences, Rua Augusto Corrêa, Guamá, 04039-032 Belem, PA, Brazil
| | - Gustavo Henrique Goulart Trossini
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Av. Prof. Lineu Prestes, 580, Cidade Universitária, São Paulo, SP 05508-000, Brazil
| | - Daniel Ferreira de Lima Neto
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Av. Prof. Lineu Prestes, 580, Cidade Universitária, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
5
|
Naiqing X, Tang X, Wang X, Cai M, Liu X, Lu X, Hu S, Gu M, Hu J, Gao R, Liu K, Chen Y, Liu X, Wang X. Hemagglutinin affects replication, stability and airborne transmission of the H9N2 subtype avian influenza virus. Virology 2024; 589:109926. [PMID: 37952465 DOI: 10.1016/j.virol.2023.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.
Collapse
Affiliation(s)
- Xu Naiqing
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xinen Tang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xin Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Miao Cai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Gilbertson B, Duncan M, Subbarao K. Role of the viral polymerase during adaptation of influenza A viruses to new hosts. Curr Opin Virol 2023; 62:101363. [PMID: 37672875 DOI: 10.1016/j.coviro.2023.101363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
As a group, influenza-A viruses (IAV) infect a wide range of animal hosts, however, they are constrained to infecting selected host species by species-specific interactions between the host and virus, that are required for efficient replication of the viral RNA genome. When IAV cross the species barrier, they acquire mutations in the viral genome to enable interactions with the new host factors, or to compensate for their loss. The viral polymerase genes polymerase basic 1, polymerase basic 2, and polymerase-acidic are important sites of host adaptation. In this review, we discuss why the viral polymerase is so vital to the process of host adaptation, look at some of the known viral mutations, and host factors involved in adaptation, particularly of avian IAV to mammalian hosts.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Melanie Duncan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Swanson NJ, Marinho P, Dziedzic A, Jedlicka A, Liu H, Fenstermacher K, Rothman R, Pekosz A. 2019-2020 H1N1 clade A5a.1 viruses have better in vitro fitness compared with the co-circulating A5a.2 clade. Sci Rep 2023; 13:10223. [PMID: 37353648 PMCID: PMC10290074 DOI: 10.1038/s41598-023-37122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-2020 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-2020 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-2020 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.
Collapse
Affiliation(s)
- Nicholas J Swanson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA.
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Wang B, Huang Y, Hu B, Zhang H, Han S, Yang Z, Su Q, He H. Characterization of a reassortant H11N9 subtype avian influenza virus isolated from spot-billed duck in China. Virus Genes 2023:10.1007/s11262-023-02009-8. [PMID: 37266848 DOI: 10.1007/s11262-023-02009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
H11N9 viruses in wild birds might have provided the NA gene of human H7N9 virus in early 2013 in China, which evolved with highly pathogenic strains in 2017 and caused severe fatalities. To investigate the prevalence and evolution of the H11N9 influenza viruses, 16,781 samples were collected and analyzed during 2016-2020. As a result, a novel strain of influenza A (H11N9) virus with several characteristics that increase virulence was isolated. This strain had reduced pathogenicity in chicken and mice and was able to replicate in mice without prior adaptation. Phylogenetic analyses showed that it was a sextuple-reassortant virus of H11N9, H3N8, H3N6, H7N9, H9N2, and H6N8 viruses present in China, similar to the H11N9 strains in Japan and Korea during the same period. This was the H11N9 strain isolated from China most recently, which add a record to viruses in wild birds. This study identified a new H11N9 reassortant in a wild bird with key mutation contributing to virulence. Therefore, comprehensive surveillance and enhanced biosecurity precautions are particularly important for the prediction and prevention of potential pandemics resulting from reassortant viruses with continuous evolution and expanding geographic distributions.
Collapse
Affiliation(s)
- Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Yang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
9
|
Swanson NJ, Marinho P, Dziedzic A, Jedlicka A, Liu H, Fenstermacher K, Rothman R, Pekosz A. 2019-20 H1N1 clade A5a.1 viruses have better in vitro replication compared with the co-circulating A5a.2 clade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530085. [PMID: 36865250 PMCID: PMC9980287 DOI: 10.1101/2023.02.26.530085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-20 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-20 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-20 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.
Collapse
Affiliation(s)
- Nicholas J Swanson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Lvov DK, Alkhovsky SV, Zhirnov OP. [130th anniversary of virology]. Vopr Virusol 2022; 67:357-384. [PMID: 36515283 DOI: 10.36233/0507-4088-140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 06/17/2023]
Abstract
130 years ago, in 1892, our great compatriot Dmitry Iosifovich Ivanovsky (18641920) discovered a new type of pathogen viruses. Viruses have existed since the birth of life on Earth and for more than three billion years, as the biosphere evolved, they are included in interpopulation interactions with representatives of all kingdoms of life: archaea, bacteria, protozoa, algae, fungi, plants, invertebrates, and vertebrates, including the Homo sapiens (Hominidae, Homininae). Discovery of D.I. Ivanovsky laid the foundation for a new science virology. The rapid development of virology in the 20th century was associated with the fight against emerging and reemerging infections, epidemics (epizootics) and pandemics (panzootics) of which posed a threat to national and global biosecurity (tick-borne and other encephalitis, hemorrhagic fevers, influenza, smallpox, poliomyelitis, HIV, parenteral hepatitis, coronaviral and other infections). Fundamental research on viruses created the basis for the development of effective methods of diagnostics, vaccine prophylaxis, and antiviral drugs. Russian virologists continue to occupy leading positions in some priority areas of modern virology in vaccinology, environmental studies oz zoonotic viruses, studies of viral evolution in various ecosystems, and several other areas. A meaningful combination of theoretical approaches to studying the evolution of viruses with innovative methods for studying their molecular genetic properties and the creation of new generations of vaccines and antiviral drugs on this basis will significantly reduce the consequences of future pandemics or panzootics. The review presents the main stages in the formation and development of virology as a science in Russia with an emphasis on the most significant achievements of soviet and Russian virologists in the fight against viral infectious diseases.
Collapse
Affiliation(s)
- D K Lvov
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| | - S V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| | - O P Zhirnov
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| |
Collapse
|
11
|
Wan Z, Jiang W, Gong J, Zhao Z, Tang T, Li Y, Zhang J, Xie Q, Li T, Shao H, Liu J, Qin A, Ye J. Emergence of Chicken Infection with Novel Reassortant H3N8 Avian Influenza Viruses Genetically Close to Human H3N8 Isolate, China. Emerg Microbes Infect 2022; 11:2553-2555. [PMID: 36150006 DOI: 10.1080/22221751.2022.2128437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenjie Jiang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianxi Gong
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhehong Zhao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ting Tang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yafeng Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjun Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co.Ltd, Yangzhou, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Molecular Characteristics, Receptor Specificity, and Pathogenicity of Avian Influenza Viruses Isolated from Wild Ducks in Russia. Int J Mol Sci 2022; 23:ijms231810829. [PMID: 36142740 PMCID: PMC9502348 DOI: 10.3390/ijms231810829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Avian influenza viruses (AIV) of wild ducks are known to be able to sporadically infect domestic birds and spread along poultry. Regular surveillance of AIV in the wild is needed to prepare for potential outbreaks. During long-year monitoring, 46 strains of AIV were isolated from gulls and mallards in Moscow ponds and completely sequenced. Amino acid positions that affect the pathogenicity of influenza viruses in different hosts were tested. The binding affinity of the virus for receptors analogs typical for different hosts and the pathogenicity of viruses for mice and chickens were investigated. Moscow isolates did not contain well-known markers of pathogenicity and/or adaptation to mammals, so as a polybasic cleavage site in HA, substitutions of 226Q and 228G amino acids in the receptor-binding region of HA, and substitutions of 627E and 701D amino acids in the PB2. The PDZ-domain ligand in the NS protein of all studied viruses contains the ESEV or ESEI sequence. Although several viruses had the N66S substitution in the PB1-F2 protein, all Moscow isolates were apathogenic for both mice and chickens. This demonstrates that the phenotypic manifestation of pathogenicity factors is not absolute but depends on the genome context.
Collapse
|
13
|
Munday RJ, Coradin T, Nimmo R, Lad Y, Hyde SC, Mitrophanos K, Gill DR. Sendai F/HN pseudotyped lentiviral vector transduces human ciliated and non-ciliated airway cells using α 2,3 sialylated receptors. Mol Ther Methods Clin Dev 2022; 26:239-252. [PMID: 35892086 PMCID: PMC9304433 DOI: 10.1016/j.omtm.2022.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/03/2022] [Indexed: 02/06/2023]
Abstract
A lentiviral vector (LV) pseudotype derived from the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins of a murine respirovirus (Sendai virus) facilitates efficient targeting of murine lung in vivo. Since targeting of the human lung will depend upon the availability and distribution of receptors used by F/HN, we investigated transduction of primary human airway cells differentiated at the air-liquid interface (ALI). We observed targeting of human basal, ciliated, goblet, and club cells, and using a combination of sialidase enzymes and lectins, we showed that transduction is dependent on the availability of sialylated glycans, including α2,3 sialylated N-acetyllactosamine (LacNAc). Transduction via F/HN was 300-fold more efficient than another hemagglutinin-based LV pseudotype derived from influenza fowl plague virus (HA Rostock), despite similar efficiency reported in murine airways in vivo. Using specific glycans to inhibit hemagglutination, we showed this could be due to a greater affinity of F/HN for α2,3 sialylated LacNAc. Overall, these results highlight the importance of identifying the receptors used in animal and cell-culture models to predict performance in the human airways. Given the reported prevalence of α2,3 sialylated LacNAc on human pulmonary cells, these results support the suitability of the F/HN pseudotype for human lung gene therapy applications.
Collapse
Affiliation(s)
- Rosie J Munday
- Gene Medicine Research Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital (Level 4), University of Oxford, Oxford OX3 9DU, UK
| | | | | | - Yatish Lad
- Oxford Biomedica (UK) Ltd., Oxford OX4 6LT, UK
| | - Stephen C Hyde
- Gene Medicine Research Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital (Level 4), University of Oxford, Oxford OX3 9DU, UK
| | | | - Deborah R Gill
- Gene Medicine Research Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital (Level 4), University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
14
|
Xu H, Palpant T, Weinberger C, Shaw DE. Characterizing Receptor Flexibility to Predict Mutations That Lead to Human Adaptation of Influenza Hemagglutinin. J Chem Theory Comput 2022; 18:4995-5005. [PMID: 35815857 PMCID: PMC9367001 DOI: 10.1021/acs.jctc.1c01044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
A key step in the
emergence of human pandemic influenza strains
has been a switch in binding preference of the viral glycoprotein
hemagglutinin (HA) from avian to human sialic acid (SA) receptors.
The conformation of the bound SA varies substantially with HA sequence,
and crystallographic evidence suggests that the bound SA is flexible,
making it difficult to predict which mutations are responsible for
changing HA-binding preference. We performed molecular dynamics (MD)
simulations of SA analogues binding to various HAs and observed a
dynamic equilibrium among structurally diverse receptor conformations,
including conformations that have not been experimentally observed.
Using one such novel conformation, we predicted—and experimentally
confirmed—a set of mutations that substantially increased an
HA’s affinity for a human SA analogue. This prediction could
not have been inferred from the existing crystal structures, suggesting
that MD-generated HA–SA conformational ensembles could help
researchers predict human-adaptive mutations, aiding surveillance
of emerging pandemic threats.
Collapse
Affiliation(s)
- Huafeng Xu
- D. E. Shaw Research, New York, New York 10036, United States
| | - Timothy Palpant
- D. E. Shaw Research, New York, New York 10036, United States
| | - Cody Weinberger
- D. E. Shaw Research, New York, New York 10036, United States
| | - David E Shaw
- D. E. Shaw Research, New York, New York 10036, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
15
|
Ding L, Li J, Li X, Qu B. Evolutionary and Mutational Characterization of the First H5N8 Subtype Influenza A Virus in Humans. Pathogens 2022; 11:pathogens11060666. [PMID: 35745520 PMCID: PMC9227545 DOI: 10.3390/pathogens11060666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Highly pathogenic influenza A virus H5 subtype remains a risk for transmission in humans. The H5N8 subtype has caused multiple outbreaks in poultry in Europe over the past few winters. During one recent outbreak in poultry in Astrakhan, workers on the farm were also infected. So far, little is known about how this virus evolves and adapts to infect humans. Here, we performed a time-resolved phylogenetic analysis of 129 HA sequences representing all 1891 available H5N8 viruses collected from 2010 to 2020. We also conducted a whole-genome scan on the human virus at the protein level. We found that H5N8 viruses have spilled over in 34 European countries during the flu season of 2020–2021. These viruses underwent two significant evolutionary steps during 2015–2016 and after 2018. Furthermore, we characterized a number of critical mutations in all viral proteins except PB1-F2, which contribute to increased virulence and avian-to-human adaptation. Our findings suggested that the accumulated mutations under evolution led to quantitative and qualitative changes, likely allowing the virus to spread to humans. Given that the H5N8 virus is co-circulating with other H5 viruses in Europe, the risk of a pandemic should not be underestimated. Continental surveillance and pandemic preparedness are to be established.
Collapse
Affiliation(s)
- Lin Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China;
| | - Jie Li
- Department of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310059, China;
| | - Xue Li
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Bingqian Qu
- Department of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
16
|
Akbari A, Bigham A, Rahimkhoei V, Sharifi S, Jabbari E. Antiviral Polymers: A Review. Polymers (Basel) 2022; 14:1634. [PMID: 35566804 PMCID: PMC9101550 DOI: 10.3390/polym14091634] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Polymers, due to their high molecular weight, tunable architecture, functionality, and buffering effect for endosomal escape, possess unique properties as a carrier or prophylactic agent in preventing pandemic outbreak of new viruses. Polymers are used as a carrier to reduce the minimum required dose, bioavailability, and therapeutic effectiveness of antiviral agents. Polymers are also used as multifunctional nanomaterials to, directly or indirectly, inhibit viral infections. Multifunctional polymers can interact directly with envelope glycoproteins on the viral surface to block fusion and entry of the virus in the host cell. Polymers can indirectly mobilize the immune system by activating macrophages and natural killer cells against the invading virus. This review covers natural and synthetic polymers that possess antiviral activity, their mechanism of action, and the effect of material properties like chemical composition, molecular weight, functional groups, and charge density on antiviral activity. Natural polymers like carrageenan, chitosan, fucoidan, and phosphorothioate oligonucleotides, and synthetic polymers like dendrimers and sialylated polymers are reviewed. This review discusses the steps in the viral replication cycle from binding to cell surface receptors to viral-cell fusion, replication, assembly, and release of the virus from the host cell that antiviral polymers interfere with to block viral infections.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials—National Research Council (IPCB-CNR), Viale J.F. Kennedy 54—Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Vahid Rahimkhoei
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA;
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
17
|
Zhang R, Liu R, Huang Y, Chen Z, Cheng L, Fu G, Shi S, Chen H, Wan C, Fu Q. WITHDRAWN: Molecular Evolution and Amino Acid Characteristics of Main Antigen Genes of Clinical Duck-Derived H5N6 Subtype Avian Influenza Virus in East China from 2015 to 2019. Avian Dis 2022; 66:1. [PMID: 35092235 DOI: 10.1637/aviandiseases-d-21-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 11/05/2022]
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Rongchang Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China,
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Longfei Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Shaohua Shi
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Hongmei Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Qiuling Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| |
Collapse
|
18
|
Gao X, Wang N, Chen Y, Gu X, Huang Y, Liu Y, Jiang F, Bai J, Qi L, Xin S, Shi Y, Wang C, Liu Y. Sequence characteristics and phylogenetic analysis of H9N2 subtype avian influenza A viruses detected from poultry and the environment in China, 2018. PeerJ 2022; 9:e12512. [PMID: 35036116 PMCID: PMC8697764 DOI: 10.7717/peerj.12512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
H9N2 subtype avian influenza A virus (AIV) is a causative agent that poses serious threats to both the poultry industry and global public health. In this study, we performed active surveillance to identify H9N2 AIVs from poultry (chicken, duck, and goose) and the environment of different regions in China, and we phylogenetically characterized the sequences. AIV subtype-specific reverse transcription polymerase chain reaction (RT-PCR) showed that 5.43% (83/1529) samples were AIV positive, and 87.02% (67/77) of which were H9N2 AIVs. Phylogenetic analysis revealed that all H9N2 field viruses belonged to the Y280-like lineage, exhibiting 93.9-100% and 94.6-100% of homology in the hemagglutinin (HA) gene and 94.4-100% and 96.3-100% in the neuraminidase (NA) gene, at the nucleotide (nt) and amino acid (aa) levels, respectively. All field viruses shared relatively lower identities with vaccine strains, ranging from 89.4% to 97.7%. The aa sequence at the cleavage site (aa 333-340) in HA of all the isolated H9N2 AIVs was PSRSSRG/L, which is a characteristic of low pathogenic avian influenza virus (LPAIV). Notably, all the H9N2 field viruses harbored eight glycosylation sites, whereas a glycosylation site 218 NRT was missing and a new site 313 NCS was inserted. All field viruses had NGLMR as their receptor binding sites (RBS) at aa position 224-229, showing high conservation with many recently-isolated H9N2 strains. All H9N2 field isolates at position 226 had the aa Leucine (L), indicating their ability to bind to sialic acid (SA) α, a 2-6 receptor of mammals that poses the potential risk of transmission to humans. Our results suggest that H9N2 AIVs circulating in poultry populations that have genetic variation and the potential of infecting mammalian species are of great significance when monitoring H9N2 AIVs in China.
Collapse
Affiliation(s)
- Xiaoyi Gao
- National Veterinary Diagnostic Center, China Animal Disease Control Center, Beijing, P.R.China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, P.R.China
| | - Naidi Wang
- National Veterinary Diagnostic Center, China Animal Disease Control Center, Beijing, P.R.China
| | - Yuhong Chen
- College of Animal Science and Technology, GuangXi University, Nanning, Guangxi, P.R.China
| | - Xiaoxue Gu
- National Veterinary Diagnostic Center, China Animal Disease Control Center, Beijing, P.R.China
| | - Yuanhui Huang
- College of Animal Science and Technology, GuangXi University, Nanning, Guangxi, P.R.China
| | - Yang Liu
- National Veterinary Diagnostic Center, China Animal Disease Control Center, Beijing, P.R.China
| | - Fei Jiang
- National Veterinary Diagnostic Center, China Animal Disease Control Center, Beijing, P.R.China
| | - Jie Bai
- National Veterinary Diagnostic Center, China Animal Disease Control Center, Beijing, P.R.China
| | - Lu Qi
- National Veterinary Diagnostic Center, China Animal Disease Control Center, Beijing, P.R.China
| | - Shengpeng Xin
- National Veterinary Diagnostic Center, China Animal Disease Control Center, Beijing, P.R.China
| | - Yuxiang Shi
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, P.R.China
| | - Chuanbin Wang
- National Veterinary Diagnostic Center, China Animal Disease Control Center, Beijing, P.R.China
| | - Yuliang Liu
- National Veterinary Diagnostic Center, China Animal Disease Control Center, Beijing, P.R.China
| |
Collapse
|
19
|
Rodríguez-Frías F, Quer J, Tabernero D, Cortese MF, Garcia-Garcia S, Rando-Segura A, Pumarola T. Microorganisms as Shapers of Human Civilization, from Pandemics to Even Our Genomes: Villains or Friends? A Historical Approach. Microorganisms 2021; 9:2518. [PMID: 34946123 PMCID: PMC8708650 DOI: 10.3390/microorganisms9122518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Universal history is characterized by continuous evolution, in which civilizations are born and die. This evolution is associated with multiple factors, among which the role of microorganisms is often overlooked. Viruses and bacteria have written or decisively contributed to terrible episodes of history, such as the Black Death in 14th century Europe, the annihilation of pre-Columbian American civilizations, and pandemics such as the 1918 Spanish flu or the current COVID-19 pandemic caused by the coronavirus SARS-CoV-2. Nevertheless, it is clear that we could not live in a world without these tiny beings. Endogenous retroviruses have been key to our evolution and for the regulation of gene expression, and the gut microbiota helps us digest compounds that we could not otherwise process. In addition, we have used microorganisms to preserve or prepare food for millennia and more recently to obtain drugs such as antibiotics or to develop recombinant DNA technologies. Due to the enormous importance of microorganisms for our survival, they have significantly influenced the population genetics of different human groups. This paper will review the role of microorganisms as "villains" who have been responsible for tremendous mortality throughout history but also as "friends" who help us survive and evolve.
Collapse
Affiliation(s)
- Francisco Rodríguez-Frías
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria Francesca Cortese
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Selene Garcia-Garcia
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Ariadna Rando-Segura
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Tomas Pumarola
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| |
Collapse
|
20
|
Zhang M, Liu M, Bai S, Zhao C, Li Z, Xu J, Zhang X. Influenza A Virus-Host Specificity: An Ongoing Cross-Talk Between Viral and Host Factors. Front Microbiol 2021; 12:777885. [PMID: 34803997 PMCID: PMC8602901 DOI: 10.3389/fmicb.2021.777885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
One big threat from influenza A viruses (IAVs) is that novel viruses emerge from mutation alongside reassortment. Some of them have gained the capability to transmit into human from the avian reservoir. Understanding the molecular events and the involved factors in breaking the cross-species barrier holds important implication for the surveillance and prevention of potential influenza outbreaks. In this review, we summarize recent progresses, including several ground-breaking findings, in how the interaction between host and viral factors, exemplified by the PB2 subunit of the influenza virus RNA polymerase co-opting host ANP32 protein to facilitate transcription and replication of the viral genome, shapes the evolution of IAVs from host specificity to cross-species infection.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences & Animal Influenza Virus Evolution and Pathogenesis Innovation Team of the Agricultural Science and Technology Innovation Team, Shanghai, China
| | - Mingbin Liu
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shimeng Bai
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhao
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences & Animal Influenza Virus Evolution and Pathogenesis Innovation Team of the Agricultural Science and Technology Innovation Team, Shanghai, China
| | - Jianqing Xu
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Wan Z, Kan Q, Zhao Z, Shao H, Deliberto TJ, Wan XF, Qin A, Ye J. Characterization of Subtype H6 Avian Influenza A Viruses Isolated From Wild Birds in Poyang Lake, China. Front Vet Sci 2021; 8:685399. [PMID: 34589532 PMCID: PMC8473872 DOI: 10.3389/fvets.2021.685399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Subtype H6 avian influenza A viruses (IAVs) are enzootic and genetically diverse in both domestic poultry and wild waterfowl and may cause spillovers in both pigs and humans. Thus, it is important to understand the genetic diversity of H6 IAVs in birds and their zoonotic potential. Compared with that in domestic poultry, the genetic diversity of H6 viruses in wild birds in China has not been well-understood. In this study, five H6 viruses were isolated from wild birds in Poyang Lake, China, and genetic analyses showed that these isolates are clustered into four genotypes associated with reassortments among avian IAVs from domestic poultry and wild birds in China and those from Eurasia and North America and that these viruses exhibited distinct phenotypes in growth kinetics analyses with avian and mammalian cells lines and in mouse challenge experiments. Of interest is that two H6 isolates from the Eurasian teal replicated effectively in the mouse lung without prior adaptation, whereas the other three did not. Our study suggested that there are variations in the mammalian viral replication efficiency phenotypic among genetically diverse H6 IAVs in wild birds and that both intra- and inter-continental movements of IAVs through wild bird migration may facilitate the emergence of novel H6 IAV reassortants with the potential for replicating in mammals, including humans. Continued surveillance to monitor the diversity of H6 IAVs in wild birds is necessary to increase our understanding of the natural history of IAVs.
Collapse
Affiliation(s)
- Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Qiuqi Kan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Zhehong Zhao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Thomas J Deliberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Fort Collins, CO, United States
| | - Xiu-Feng Wan
- University of Missouri Center for Influenza and Emerging infectious Diseases, University of Missouri, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States.,Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Gamblin SJ, Vachieri SG, Xiong X, Zhang J, Martin SR, Skehel JJ. Hemagglutinin Structure and Activities. Cold Spring Harb Perspect Med 2021; 11:a038638. [PMID: 32513673 PMCID: PMC8485738 DOI: 10.1101/cshperspect.a038638] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hemagglutinins (HAs) are the receptor-binding and membrane fusion glycoproteins of influenza viruses. They recognize sialic acid-containing, cell-surface glycoconjugates as receptors but have limited affinity for them, and, as a consequence, virus attachment to cells requires their interaction with several virus HAs. Receptor-bound virus is transferred into endosomes where membrane fusion by HAs is activated at pH between 5 and 6.5, depending on the strain of virus. Fusion activity requires extensive rearrangements in HA conformation that include extrusion of a buried "fusion peptide" to connect with the endosomal membrane, form a bridge to the virus membrane, and eventually bring both membranes close together. In this review, we give an overview of the structures of the 16 genetically and antigenically distinct subtypes of influenza A HA in relation to these two functions in virus replication and in relation to recognition of HA by antibodies that neutralize infection.
Collapse
Affiliation(s)
- Steven J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Sébastien G Vachieri
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Xiaoli Xiong
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jie Zhang
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephen R Martin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
23
|
Differential Diagnosis for Highly Pathogenic Avian Influenza Virus Using Nanoparticles Expressing Chemiluminescence. Viruses 2021; 13:v13071274. [PMID: 34208793 PMCID: PMC8310176 DOI: 10.3390/v13071274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) virus is a causative agent of systemic disease in poultry, characterized by high mortality. Rapid diagnosis is crucial for the control of HPAI. In this study, we aimed to develop a differential diagnostic method that can distinguish HPAI from low pathogenic avian influenza (LPAI) viruses using dual split proteins (DSPs). DSPs are chimeras of an enzymatic split, Renilla luciferase (RL), and a non-enzymatic split green fluorescent protein (GFP). Nanoparticles expressing DSPs, sialic acid, and/or transmembrane serine protease 2 (TMPRSS2) were generated, and RL activity was determined in the presence of HPAI or LPAI pseudotyped viruses. The RL activity of nanoparticles containing both DSPs was approximately 2 × 106 RLU, indicating that DSPs can be successfully incorporated into nanoparticles. The RL activity of nanoparticles containing half of the DSPs was around 5 × 101 RLU. When nanoparticles containing half of the DSPs were incubated with HPAI pseudotyped viruses at low pH, RL activity was increased up to 1 × 103 RLU. However, LPAI pseudotyped viruses produced RL activity only in the presence of proteases (trypsin or TMPRSS2), and the average RL activity was around 7 × 102 RLU. We confirmed that nanoparticle fusion assay also diagnoses authentic viruses with specificity of 100% and sensitivity of 91.67%. The data indicated that the developed method distinguished HPAI and LPAI, and suggested that the diagnosis using DSPs could be used for the development of differential diagnostic kits for HPAI after further optimization.
Collapse
|
24
|
CMAS and ST3GAL4 Play an Important Role in the Adsorption of Influenza Virus by Affecting the Synthesis of Sialic Acid Receptors. Int J Mol Sci 2021; 22:ijms22116081. [PMID: 34200006 PMCID: PMC8200212 DOI: 10.3390/ijms22116081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAVs) initiate infection by attaching Hemagglutinin (HA) on the viral envelope to sialic acid (SA) receptors on the cell surface. Importantly, HA of human IAVs has a higher affinity for α-2,6-linked SA receptors, and avian strains prefer α-2,3-linked SA receptors, whereas swine strains have a strong affinity for both SA receptors. Host gene CMAS and ST3GAL4 were found to be essential for IAV attachment and entry. Loss of CMAS and ST3GAL4 hindered the synthesis of sialic acid receptors, which in turn prevented the adsorption of IAV. Further, the knockout of CMAS had an effect on the adsorption of swine, avian and human IAVs. However, ST3GAL4 knockout prevented the adsorption of swine and avian IAV and the impact on avian IAV was more distinct, whereas it had no effect on the adsorption of human IAV. Collectively, our findings demonstrate that knocking out CMAS and ST3GAL4 negatively regulated IAV replication by inhibiting the synthesis of SA receptors, which also provides new insights into the production of gene-edited animals in the future.
Collapse
|
25
|
Powell H, Liu H, Pekosz A. Changes in sialic acid binding associated with egg adaptation decrease live attenuated influenza virus replication in human nasal epithelial cell cultures. Vaccine 2021; 39:3225-3235. [PMID: 33985852 PMCID: PMC8184632 DOI: 10.1016/j.vaccine.2021.04.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
Abstract
Live Attenuated Influenza Virus (LAIV) is administered to and replicates in the sinonasal epithelium. Candidate LAIV vaccine strains are selected based on their ability to replicate to a high titer in embryonated hen's eggs, a process that can lead to mutations which alter the receptor binding and antigenic structure of the hemagglutinin (HA) protein. In the 2012-2013 northern hemisphere vaccine, the H3N2 HA vaccine strain contained three amino acid changes - H156Q, G186V and S219Y - which altered HA antigenic structure and thus presumably decreased vaccine efficacy. To determine if these mutations also altered LAIV replication, reabcombinant viruses were created that encoded the wild-type (WT) parental HA of A/Victoria/361/2011 (WT HA LAIV), the egg adapted HA (EA HA LAIV) from the A/Victoria/361/2011 vaccine strain and an HA protein with additional amino acid changes to promote α2,3 sialic acid binding (2,3 EA HA LAIV). The WT HA LAIV bound α2,6 sialic compared to the EA HA LAIV and 2,3 EA HA LAIV which both demonstrated an increased preference for α2,3 sialic acid. On MDCKs, the WT HA and EA HA LAIVs showed similar replication at 32 °C but at 37 °C the EA HA LAIV replicated to lower infectious virus titers. The 2,3 EA HA LAIV replicated poorly at both temperatures. This replication phenotype was similar on human nasal epithelial cell (hNEC) cultures, however the WT HA LAIV induced the highest amount of IFN-λ and infected more nasal epithelial cells compared to the other viruses. Together, these data indicate that egg adaption mutations in the HA protein that confer preferential α2,3 sialic acid binding may adversely affect LAIV replication and contribute to reduced vaccine efficacy.
Collapse
Affiliation(s)
- Harrison Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States.
| |
Collapse
|
26
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
27
|
Detzner J, Steil D, Pohlentz G, Legros N, Müthing J. Surface acoustic wave (SAW) real-time interaction analysis of influenza A virus hemagglutinins with sialylated neoglycolipids. Glycobiology 2021; 31:734-740. [PMID: 33527987 DOI: 10.1093/glycob/cwab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 01/27/2023] Open
Abstract
Real-time interaction analysis of H1 hemagglutinin from influenza A H1N1 (A/New York/18/2009) and H7 hemagglutinin from influenza A H7N7 (A/Netherlands/219/03) with sialylated neoglycolipids (neoGLs) was performed using the surface acoustic wave (SAW) technology. The produced neoGLs carried phosphatidylethanolamine (PE) as lipid anchor and terminally sialylated lactose (Lc2, Galβ1-4Glc) or neolactotetraose (nLc4, Galβ1-4GlcNAcβ1-3Galβ1-4Glc) harbouring an N-acetylneuraminic acid (Neu5Ac). Using α2-6-sialylated neoGLs, H1 and H7 exhibited marginal attachment towards II6Neu5Ac-Lc2-PE, whereas Sambucus nigra lectin (SNL) exhibited strong binding and Maackia amurensis lectin (MAL) was negative in accordance with their known binding preference towards a distal Neu5Acα2-6Gal- and Neu5Acα2-3Gal-residue, respectively. H1 revealed significant binding towards IV6Neu5Ac-nLc4-PE when compared to weak interaction of H7, while SNL showed strong and MAL no attachment corresponding to their interaction specificities. Additional controls of MAL and SNL with α2-3-sialylated II3Neu5Ac-Lc2-PE and IV3Neu5Ac-nLc4-PE underscored the reliability of the SAW technology. Pre-exposure of model membranes spiked with α2-6-sialylated neoGLs to Vibrio cholerae neuraminidase substantially reduced the binding of the hemagglutinins and the SNL reference. Collectively, the SAW technology is capable of accurate measuring binding features of hemagglutinins towards neoGL-spiked lipid bilayers, which can be easily loaded to the functionalized biosensor gold surface thereby simulating biological membranes and suggesting promising clinical application for influenza virus research.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | - Daniel Steil
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Nadine Legros
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
28
|
Trinh TTT, Duong BT, Nguyen ATV, Tuong HT, Hoang VT, Than DD, Nam S, Sung HW, Yun KJ, Yeo SJ, Park H. Emergence of Novel Reassortant H1N1 Avian Influenza Viruses in Korean Wild Ducks in 2018 and 2019. Viruses 2020; 13:v13010030. [PMID: 33375376 PMCID: PMC7823676 DOI: 10.3390/v13010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023] Open
Abstract
Influenza A virus subtype H1N1 has caused global pandemics like the “Spanish flu” in 1918 and the 2009 H1N1 pandemic several times. H1N1 remains in circulation and survives in multiple animal sources, including wild birds. Surveillance during the winter of 2018–2019 in Korea revealed two H1N1 isolates in samples collected from wild bird feces: KNU18-64 (A/Greater white-fronted goose/South Korea/KNU18-64/2018(H1N1)) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)). Phylogenetic analysis indicated that M gene of KNU18-64(H1N1) isolate resembles that of the Alaskan avian influenza virus, whereas WKU19-4(H1N1) appears to be closer to the Mongolian virus. Molecular characterization revealed that they harbor the amino acid sequence PSIQRS↓GLF and are low-pathogenicity influenza viruses. In particular, the two isolates harbored three different mutation sites, indicating that they have different virulence characteristics. The mutations in the PB1-F2 and PA protein of WKU19-4(H1N1) indicate increasing polymerase activity. These results corroborate the kinetic growth data for WKU19-4 in MDCK cells: a dramatic increase in the viral titer after 12 h post-inoculation compared with that in the control group H1N1 (CA/04/09(pdm09)). The KNU18-64(H1N1) isolate carries mutations indicating an increase in mammal adaptation; this characterization was confirmed by the animal study in mice. The KNU18-64(H1N1) group showed the presence of viruses in the lungs at days 3 and 6 post-infection, with titers of 2.71 ± 0.16 and 3.71 ± 0.25 log10(TCID50/mL), respectively, whereas the virus was only detected in the WKU19-4(H1N1) group at day 6 post-infection, with a lower titer of 2.75 ± 0.51 log10(TCID50/mL). The present study supports the theory that there is a relationship between Korea and America with regard to reassortment to produce novel viral strains. Therefore, there is a need for increased surveillance of influenza virus circulation in free-flying and wild land-based birds in Korea, particularly with regard to Alaskan and Asian strains.
Collapse
Affiliation(s)
- Thuy-Tien Thi Trinh
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Hien Thi Tuong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Duong Duc Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - SunJeong Nam
- Division of EcoScience, Ewha University, Seoul 03760, Korea;
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea;
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
29
|
Structural Biology of Influenza Hemagglutinin: An Amaranthine Adventure. Viruses 2020; 12:v12091053. [PMID: 32971825 PMCID: PMC7551194 DOI: 10.3390/v12091053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Hemagglutinin (HA) glycoprotein is an important focus of influenza research due to its role in antigenic drift and shift, as well as its receptor binding and membrane fusion functions, which are indispensable for viral entry. Over the past four decades, X-ray crystallography has greatly facilitated our understanding of HA receptor binding, membrane fusion, and antigenicity. The recent advances in cryo-EM have further deepened our comprehension of HA biology. Since influenza HA constantly evolves in natural circulating strains, there are always new questions to be answered. The incessant accumulation of knowledge on the structural biology of HA over several decades has also facilitated the design and development of novel therapeutics and vaccines. This review describes the current status of the field of HA structural biology, how we got here, and what the next steps might be.
Collapse
|
30
|
Capone A. Simultaneous circulation of COVID-19 and flu in Italy: Potential combined effects on the risk of death? Int J Infect Dis 2020; 99:393-396. [PMID: 32768696 PMCID: PMC7405819 DOI: 10.1016/j.ijid.2020.07.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
Infection resurgence might occur during a simultaneous circulation of COVID-19 and flu. Viral cooperation takes place to boost the reproductive probabilities. Stratification of people at a very high risk of death is crucial for public health.
Based on data updated to 20 May 2020, the total recorded number of patients who died due to COVID-19-related reasons in Italy was 31,851. Demographic and clinical characteristics of patients who have died (including the number of comorbidities) are extremely relevant, especially to define those with a higher risk of mortality. Health authorities recommend influenza (flu) vaccinations in a number of categories at risk of serious medical complications, including: people aged ≥65 years, or patients with diabetes, cardiovascular diseases, chronic obstructive pulmonary disease (COPD), renal failure, cancer, immunodeficiencies, chronic hepatopathies, and chronic inflammatory bowel diseases. The seasonal flu peak certainly preceded that of the pandemic; however, it would seem clear that the two viruses have been simultaneously circulating in Italy for a while. Hence, after the peak of seasonal flu, influenza-like illness-related (ILI) deaths started to grow again. While some of the excess mortality reported in the ILI group may be attributable to COVID-19, a question arises: do we have to consider this observation as a result of a random sequence of events or a potential relationship between the two viruses play a role? A cooperation mechanism intended at establishing an absolute advantage over the host could also be assumed; this system often takes place to boost the reproductive probabilities. A characterization of those who died due to virus-related reasons can be performed by cross-linking data (stored in different warehouses) from the same geographical area and developing electronic health records. It would be of great relevance to identify people at very high risk of mortality as a result of an overlapping or combination of risk factors that were separately reported in patients who died from COVID-19 or influenza. A description of the subgroup of people at higher risk of mortality will be crucial for prioritizing and implementing future public health prevention and treatment programs.
Collapse
Affiliation(s)
- Alessandro Capone
- Statistics for Health Economic Evaluation Group (external member), Department of Statistical Science, University College London, London, UK.
| |
Collapse
|
31
|
Wu NC, Wilson IA. Influenza Hemagglutinin Structures and Antibody Recognition. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038778. [PMID: 31871236 DOI: 10.1101/cshperspect.a038778] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemagglutinin (HA) is most abundant glycoprotein on the influenza virus surface. Influenza HA promotes viral entry by engaging the receptor and mediating virus-host membrane fusion. At the same time, HA is the major antigen of the influenza virus. HA antigenic shift can result in pandemics, whereas antigenic drift allows human circulating strains to escape herd immunity. Most antibody responses against HA are strain-specific. However, antibodies that have neutralizing activities against multiple strains or even subtypes have now been discovered and characterized. These broadly neutralizing antibodies (bnAbs) target conserved regions on HA, such as the receptor-binding site and the stem domain. Structural studies of such bnAbs have provided important insight into universal influenza vaccine and therapeutic design. This review discusses the HA functions as well as HA-antibody interactions from a structural perspective.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
32
|
A D200N hemagglutinin substitution contributes to antigenic changes and increased replication of avian H9N2 influenza virus. Vet Microbiol 2020; 245:108669. [PMID: 32456831 DOI: 10.1016/j.vetmic.2020.108669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022]
Abstract
Influenza virus hemagglutinin (HA) plays an important role in viral antigenicity, replication and host range. However, few amino acid positions in HA were reported to play multiple functions in both viral antigenicity and replication. In the present study, through analyzing the amino acid sequences of H9N2 avian influenza viruses (AIVs) isolated from China, we identified a multi-functional substitution of D200N in HA1 protein. Firstly, the substitution of D200N changed the antigenicity of H9N2 AIVs. Secondly, the D200N increased the HA cleavage efficiency and reduced acid and thermal stability of HA protein, which triggered viral-endosomal membrane fusion whereby promoted the release of viral genome into the host cytoplasm. Finally, residue 200-N increased the replication of H9N2 viruses in both chicken embryo fibroblast (CEF) cells and chicken embryonated eggs. In summary, the D200N substitution is a newly identified antigenicity and replication determinant of H9N2 AIVs, which should be paid more attention during surveillance.
Collapse
|
33
|
Genetic Characterization of Avian Influenza A (H11N9) Virus Isolated from Mandarin Ducks in South Korea in 2018. Viruses 2020; 12:v12020203. [PMID: 32059510 PMCID: PMC7077279 DOI: 10.3390/v12020203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/17/2023] Open
Abstract
In July 2018, a novel avian influenza virus (A/Mandarin duck/South Korea/KNU18-12/2018(H11N9)) was isolated from Mandarin ducks in South Korea. Phylogenetic and molecular analyses were conducted to characterize the genetic origins of the H11N9 strain. Phylogenetic analysis indicated that eight gene segments of strain H11N9 belonged to the Eurasian lineages. Analysis of nucleotide sequence similarity of both the hemagglutinin (HA) and neuraminidase (NA) genes revealed the highest homology with A/duck/Kagoshima/KU57/2014 (H11N9), showing 97.70% and 98.00% nucleotide identities, respectively. Additionally, internal genes showed homology higher than 98% compared to those of other isolates derived from duck and wild birds. Both the polymerase acidic (PA) and polymerase basic 1 (PB1) genes were close to the H5N3 strain isolated in China; whereas, other internal genes were closely related to that of avian influenza virus in Japan. A single basic amino acid at the HA cleavage site (PAIASR↓GLF), the lack of a five-amino acid deletion (residue 69–73) in the stalk region of the NA gene, and E627 in the polymerase basic 2 (PB2) gene indicated that the A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) isolate was a typical low-pathogenicity avian influenza. In vitro viral replication of H11N9 showed a lower titer than H1N1 and higher than H9N2. In mice, H11N9 showed lower adaptation than H1N1. The novel A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) isolate may have resulted from an unknown reassortment through the import of multiple wild birds in Japan and Korea in approximately 2016–2017, evolving to produce a different H11N9 compared to the previous H11N9 in Korea (2016). Further reassortment events of this virus occurred in PB1 and PA in China-derived strains. These results indicate that Japanese- and Chinese-derived avian influenza contributes to the genetic diversity of A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) in Korea.
Collapse
|
34
|
Host Innate Immune Response of Geese Infected with Clade 2.3.4.4 H5N6 Highly Pathogenic Avian Influenza Viruses. Microorganisms 2020; 8:microorganisms8020224. [PMID: 32046051 PMCID: PMC7074872 DOI: 10.3390/microorganisms8020224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
Since 2014, highly pathogenic avian influenza (HPAI) H5N6 viruses have circulated in waterfowls and caused human infections in China, posing significant threats to the poultry industry and the public health. However, the genetics, pathogenicity and innate immune response of H5N6 HPAIVs in geese remain largely unknown. In this study, we analyzed the genetic characteristic of the two H5N6 viruses (GS38 and DK09) isolated from apparently healthy domestic goose and duck in live poultry markets (LPMs) of Southern China in 2016. Phylogenetic analysis showed that the HA genes of the two H5N6 viruses belonged to clade 2.3.4.4 and were clustered into the MIX-like group. The MIX-like group viruses have circulated in regions such as China, Japan, Korea, and Vietnam. The NA genes of the two H5N6 viruses were classified into the Eurasian sublineage. The internal genes including PB2, PB1, PA, NP, M, and NS of the two H5N6 viruses derived from the MIX-like. Therefore, our results suggested that the two H5N6 viruses were reassortants of the H5N1 and H6N6 viruses and likely derived from the same ancestor. Additionally, we evaluated the pathogenicity and transmission of the two H5N6 viruses in domestic geese. Results showed that both the two viruses caused serious clinical symptoms in all inoculated geese and led to high mortality in these birds. Both the two viruses were transmitted efficiently to contact geese and caused lethal infection in these birds. Furthermore, we found that mRNA of pattern recognition receptors (PRRs), interferons (IFNs), and stimulated genes (ISGs) exhibited different levels of activation in the lungs and spleens of the two H5N6 viruses-inoculated geese though did not protect these birds from H5N6 HPAIVs infection. Our results suggested that the clade 2.3.4.4 waterfowl-origin H5N6 HPAIVs isolated from LPMs of Southern China could cause high mortality in geese and innate immune-related genes were involved in the geese innate immune response to H5N6 HPAIVs infection. Therefore, we should pay more attention to the evolution, pathogenic variations of these viruses and enhance virological surveillance of clade 2.3.4.4 H5N6 HPAIVs in waterfowls in China.
Collapse
|
35
|
Direct visualization of avian influenza H5N1 hemagglutinin precursor and its conformational change by high-speed atomic force microscopy. Biochim Biophys Acta Gen Subj 2020; 1864:129313. [DOI: 10.1016/j.bbagen.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/06/2023]
|
36
|
Diversity of A(H5N1) clade 2.3.2.1c avian influenza viruses with evidence of reassortment in Cambodia, 2014-2016. PLoS One 2019; 14:e0226108. [PMID: 31815962 PMCID: PMC6901219 DOI: 10.1371/journal.pone.0226108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022] Open
Abstract
In Cambodia, highly pathogenic avian influenza A(H5N1) subtype viruses circulate endemically causing poultry outbreaks and zoonotic human cases. To investigate the genomic diversity and development of endemicity of the predominantly circulating clade 2.3.2.1c A(H5N1) viruses, we characterised 68 AIVs detected in poultry, the environment and from a single human A(H5N1) case from January 2014 to December 2016. Full genomes were generated for 42 A(H5N1) viruses. Phylogenetic analysis shows that five clade 2.3.2.1c genotypes, designated KH1 to KH5, were circulating in Cambodia during this period. The genotypes arose through multiple reassortment events with the neuraminidase (NA) and internal genes belonging to H5N1 clade 2.3.2.1a, clade 2.3.2.1b or A(H9N2) lineages. Phylogenies suggest that the Cambodian AIVs were derived from viruses circulating between Cambodian and Vietnamese poultry. Molecular analyses show that these viruses contained the hemagglutinin (HA) gene substitutions D94N, S133A, S155N, T156A, T188I and K189R known to increase binding to the human-type α2,6-linked sialic acid receptors. Two A(H5N1) viruses displayed the M2 gene S31N or A30T substitutions indicative of adamantane resistance, however, susceptibility testing towards neuraminidase inhibitors (oseltamivir, zanamivir, lananmivir and peramivir) of a subset of thirty clade 2.3.2.1c viruses showed susceptibility to all four drugs. This study shows that A(H5N1) viruses continue to reassort with other A(H5N1) and A(H9N2) viruses that are endemic in the region, highlighting the risk of introduction and emergence of novel A(H5N1) genotypes in Cambodia.
Collapse
|
37
|
Bogdanow B, Wang X, Eichelbaum K, Sadewasser A, Husic I, Paki K, Budt M, Hergeselle M, Vetter B, Hou J, Chen W, Wiebusch L, Meyer IM, Wolff T, Selbach M. The dynamic proteome of influenza A virus infection identifies M segment splicing as a host range determinant. Nat Commun 2019; 10:5518. [PMID: 31797923 PMCID: PMC6892822 DOI: 10.1038/s41467-019-13520-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Pandemic influenza A virus (IAV) outbreaks occur when strains from animal reservoirs acquire the ability to infect and spread among humans. The molecular basis of this species barrier is incompletely understood. Here we combine metabolic pulse labeling and quantitative proteomics to monitor protein synthesis upon infection of human cells with a human- and a bird-adapted IAV strain and observe striking differences in viral protein synthesis. Most importantly, the matrix protein M1 is inefficiently produced by the bird-adapted strain. We show that impaired production of M1 from bird-adapted strains is caused by increased splicing of the M segment RNA to alternative isoforms. Strain-specific M segment splicing is controlled by the 3' splice site and functionally important for permissive infection. In silico and biochemical evidence shows that avian-adapted M segments have evolved different conserved RNA structure features than human-adapted sequences. Thus, we identify M segment RNA splicing as a viral host range determinant.
Collapse
Affiliation(s)
- Boris Bogdanow
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Seestrase 10, 13353, Berlin, Germany
- Structural Interactomics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Xi Wang
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Katrin Eichelbaum
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Anne Sadewasser
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Seestrase 10, 13353, Berlin, Germany
| | - Immanuel Husic
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Katharina Paki
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Seestrase 10, 13353, Berlin, Germany
| | - Matthias Budt
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Seestrase 10, 13353, Berlin, Germany
| | - Martha Hergeselle
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Barbara Vetter
- Labor für Pädiatrische Molekularbiologie, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jingyi Hou
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Wei Chen
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
- Department of Biology, Southern University of Science and Technology, Xuanyuan Road 1088, 518055, Shenzhen, China
| | - Lüder Wiebusch
- Labor für Pädiatrische Molekularbiologie, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Irmtraud M Meyer
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
- Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Thorsten Wolff
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Seestrase 10, 13353, Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
- Charité Universitätsmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
38
|
Shi L, Yao Q, Gao Y, Yu B, Yang B, Yao W, He L, Li Q, Liang Q, Wang X, Ping J, Ge Y. Molecular evolution and amino acid characteristics of newly isolated H9N2 avian influenza viruses from Liaoning Province, China. J Vet Med Sci 2019; 82:101-108. [PMID: 31801929 PMCID: PMC6983663 DOI: 10.1292/jvms.19-0421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
H9N2 is widespread among poultry and humans. Though this subtype is not lethal to either species, it can cause considerable financial losses for farmers and threaten human health. In this
study, 10 new H9N2 avian influenza viruses (AIVs) produced by reassortment were isolated from domestic birds in Liaoning Province between March 2012 and October 2014. Nucleotide sequence
comparisons indicate that the internal genes of one of these strains are highly similar to those of human H7N9 viruses. Amino acid substitutions and deletions occurred in the HA and NA
proteins separately, indicating that all 10 of these isolates may have an enhanced ability to infect mammals. A cross-hemagglutinin inhibition assay conducted with two vaccine strains that
are broadly used in China suggests that antisera against vaccine candidates cannot completely inhibit the new isolates. Two of the 10 newly isolated viruses could replicate in respiratory
organs of infected BALB/c mice without adaption, suggesting that these isolates can potentially infect mammals. The continued surveillance of poultry is important to provide early warning
and control of AIV outbreaks. Our results highlight the high genetic diversity of AIV and the need for more extensive AIV surveillance.
Collapse
Affiliation(s)
- Lin Shi
- Agriculture College, Guangdong Ocean University, Zhanjiang 524088, China.,Liaoning Agricultural Development Service Center Province, Shenyang 110164, China.,College of Veterinary Medicine, Nanjing Agriculture University, Nanjing 210095, China
| | - Qiucheng Yao
- Agriculture College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuan Gao
- Liaoning Agricultural Development Service Center Province, Shenyang 110164, China
| | - Benliang Yu
- Liaoning Agricultural Development Service Center Province, Shenyang 110164, China
| | - Benyong Yang
- Liaoning Agricultural Development Service Center Province, Shenyang 110164, China
| | - Wei Yao
- Liaoning Agricultural Development Service Center Province, Shenyang 110164, China
| | - Likun He
- Liaoning Agricultural Development Service Center Province, Shenyang 110164, China
| | - Qingzhu Li
- Liaoning Agricultural Development Service Center Province, Shenyang 110164, China
| | - Qiao Liang
- Liaoning Agricultural Development Service Center Province, Shenyang 110164, China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150000, China
| | - Jihui Ping
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing 210095, China
| | - Ye Ge
- Agriculture College, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
39
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
40
|
Synergistic PA and HA mutations confer mouse adaptation of a contemporary A/H3N2 influenza virus. Sci Rep 2019; 9:16616. [PMID: 31719554 PMCID: PMC6851088 DOI: 10.1038/s41598-019-51877-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/07/2019] [Indexed: 12/25/2022] Open
Abstract
The mouse is the most widely used animal model for influenza virus research. However, the susceptibility of mice to seasonal influenza virus depends on the strain of mouse and on the strain of the influenza virus. Seasonal A/H3N2 influenza viruses do not replicate well in mice and therefore they need to be adapted to this animal model. In this study, we generated a mouse-adapted A/H3N2 virus (A/Switzerland/9715293/2013 [MA-H3N2]) by serial passaging in mouse lungs that exhibited greater virulence compared to the wild-type virus (P0-H3N2). Seven mutations were found in the genome of MA-H3N2: PA(K615E), NP(G384R), NA(G320E) and HA(N122D, N144E, N246K, and A304T). Using reverse genetics, two synergistically acting genes were found as determinants of the pathogenicity in mice. First, the HA substitutions were shown to enhanced viral replication in vitro and, second, the PA-K615E substitution increased polymerase activity, although did not alter virus replication in vitro or in mice. Notably, single mutations had only limited effects on virulence in vitro. In conclusion, a co-contribution of HA and PA mutations resulted in a lethal mouse model of seasonal A/H3N2 virus. Such adapted virus is an excellent tool for evaluation of novel drugs or vaccines and for study of influenza pathogenesis.
Collapse
|
41
|
Gambaryan AS, Balish A, Klimov AI, Tuzikov AB, Chinarev AA, Pazynina GV, Bovin NV. Changes in the Receptor-Binding Properties of H3N2 Viruses during Long-Term Circulation in Humans. BIOCHEMISTRY (MOSCOW) 2019; 84:1177-1185. [PMID: 31694513 DOI: 10.1134/s0006297919100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It was previously shown that hemagglutinin residues Thr155, Glu158, and Ser228 are crucial for the recognition of Neu5Gc. In this study, we demonstrated that the ability to bind the Neu5Gc-terminated receptor is related to the amino acid 145: viruses of years 1972-1999 with Lys145 bind to the receptor, whereas viruses with Asn145 do not. Sporadic appearance and disappearance of the ability to bind Neu5Gc oligosaccharides and the absence of Neu5Gc in the composition of human glycoconjugates indicate the non-adaptive nature of this ability. It was previously shown that unlike H1N1 viruses, H3N2 viruses of years 1968-1989 did not distinguish between Neu5Acα2-6Galβ1-4Glc (6'SL) and Neu5Acα2-6Galβ1-4GlcNAc (6'SLN). H3N2 viruses isolated after 1993 have acquired the ability to distinguish between 6'SL and 6'SLN, similarly to H1N1 viruses. We found that the affinity for 6'SLN has gradually increased from 1992 to 2003. After 2003, the viruses lost the ability to bind a number of sialosides, including 6'SL, that were good receptors for earlier H3N2 viruses, and retained high affinity for 6'SLN only, which correlated with the acquisition of new glycosylation sites at positions 122, 133, and 144, as well as Glu190Asp and Gly225Asp substitutions, in hemagglutinin. These substitutions are also responsible for the receptor-binding phenotype of human H1N1 viruses. We conclude that the convergent evolution of the receptor specificity of the H1N1 and H3N2 viruses indicates that 6'SLN is the optimal natural human receptor for influenza viruses.
Collapse
Affiliation(s)
- A S Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia.
| | - A Balish
- Influenza Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - A I Klimov
- Influenza Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - A B Tuzikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - A A Chinarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - G V Pazynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - N V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
42
|
Kariithi HM, Welch CN, Ferreira HL, Pusch EA, Ateya LO, Binepal YS, Apopo AA, Dulu TD, Afonso CL, Suarez DL. Genetic characterization and pathogenesis of the first H9N2 low pathogenic avian influenza viruses isolated from chickens in Kenyan live bird markets. INFECTION GENETICS AND EVOLUTION 2019; 78:104074. [PMID: 31634645 DOI: 10.1016/j.meegid.2019.104074] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022]
Abstract
Poultry production plays an important role in the economy and livelihoods of rural households in Kenya. As part of a surveillance program, avian influenza virus (AIV)-specific real-time RT-PCR (RRT-PCR) was used to screen 282 oropharyngeal swabs collected from chickens at six live bird markets (LBMs) and 33 backyard poultry farms in Kenya and 8 positive samples were detected. Virus was isolated in eggs from five samples, sequenced, and identified as H9N2 low pathogenic AIV (LPAIV) G1 lineage, with highest nucleotide sequence identity (98.6-99.9%) to a 2017 Ugandan H9N2 isolate. The H9N2 contained molecular markers for mammalian receptor specificity, implying their zoonotic potential. Virus pathogenesis and transmissibility was assessed by inoculating low and medium virus doses of a representative Kenyan H9N2 LPAIV isolate into experimental chickens and exposing them to naïve uninfected chickens at 2 -days post inoculation (dpi). Virus shedding was determined at 2/4/7 dpi and 2/5 days post placement (dpp), and seroconversion determined at 14 dpi/12 dpp. None of the directly-inoculated or contact birds exhibited any mortality or clinical disease signs. All directly-inoculated birds in the low dose group shed virus during the experiment, while only one contact bird shed virus at 2 dpp. Only two directly-inoculated birds that shed high virus titers seroconverted in that group. All birds in the medium dose group shed virus at 4/7 dpi and at 5 dpp, and they all seroconverted at 12/14 dpp. This is the first reported detection of H9N2 LPAIV from Kenya and it was shown to be infectious and transmissible in chickens by direct contact and represents a new disease threat to poultry and potentially to people.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Road, Loresho, Nairobi, Kenya; Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Catharine N Welch
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Helena L Ferreira
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; University of Sao Paulo, ZMV- FZEA, Pirassununga 13635900, Brazil.
| | - Elizabeth A Pusch
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Leonard O Ateya
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Road, Loresho, Nairobi, Kenya.
| | - Yatinder S Binepal
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Road, Loresho, Nairobi, Kenya.
| | - Auleria A Apopo
- Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock, Fisheries and Irrigation, Private Bag-00625, Nairobi, Kenya.
| | - Thomas D Dulu
- Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock, Fisheries and Irrigation, Private Bag-00625, Nairobi, Kenya.
| | - Claudio L Afonso
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - David L Suarez
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
43
|
RETRACTED ARTICLE: Insights into the role of turkeys as potential intermediate host for influenza viruses. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Complete genome sequence of a novel reassortant H3N3 avian influenza virus. Arch Virol 2019; 164:2881-2885. [PMID: 31456087 DOI: 10.1007/s00705-019-04386-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
Aquatic birds are known to be a reservoir for the most common influenza A viruses (IAVs). In the annual surveillance program, we collected the feces of migratory birds for the detection of IAVs in South Korea in November 2016. A novel reassorted H3N3 avian influenza virus (AIV) containing genes from viruses of wild and domestic birds was identified and named A/aquatic bird/South Korea/sw006/2016(H3N3). The polymerase basic 2 (PB2) and non-structural (NS) genes of this isolate are most closely related to those of wild-bird-origin AIV, while the polymerase basic 1 (PB1), polymerase acidic (PA), hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), and matrix (M) genes are most closely related to those of domestic-bird-origin AIV. A/aquatic bird/South Korea/sw006/2016 contains PA, NP, M, and NS genes were most closely related to those of AIV subtype H4 and PB2, PB1, and HA genes that are most closely related to those of AIV subtype H3N8, while the NA gene was most closely related to those of subtype H10, which was recently detected in humans in China. These results suggest that novel reassortment of AIV strains occurred due to interaction between wild and domestic birds. Hence, we emphasize the need for continued surveillance of avian influenza virus in bird populations.
Collapse
|
45
|
Suttie A, Karlsson EA, Deng YM, Hurt AC, Greenhill AR, Barr IG, Dussart P, Horwood PF. Avian influenza in the Greater Mekong Subregion, 2003-2018. INFECTION GENETICS AND EVOLUTION 2019; 74:103920. [PMID: 31201870 DOI: 10.1016/j.meegid.2019.103920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
The persistent circulation of avian influenza viruses (AIVs) is an ongoing problem for many countries in South East Asia, causing large economic losses to both the agricultural and health sectors. This review analyses AIV diversity, evolution and the risk of AIV emergence in humans in countries of the Greater Mekong Subregion (GMS): Cambodia, Laos, Myanmar, Thailand and Vietnam (excluding China). The analysis was based on AIV sequencing data, serological studies, published journal articles and AIV outbreak reports available from January 2003 to December 2018. All countries of the GMS have suffered losses due repeated outbreaks of highly pathogenic (HP) H5N1 that has also caused human cases in all GMS countries. In Laos, Myanmar and Vietnam AIV outbreaks in domestic poultry have also been caused by clade 2.3.4.4 H5N6. A diverse range of low pathogenic AIVs (H1-H12) have been detected in poultry and wild bird species, though surveillance for and characterization of these subtypes is limited. Subtype H3, H4, H6 and H11 viruses have been detected over prolonged periods; whilst H1, H2, H7, H8, H10 and H12 viruses have only been detected transiently. H9 AIVs circulate endemically in Cambodia and Vietnam with seroprevalence data indicating human exposure to H9 AIVs in Cambodia, Thailand and Vietnam. As surveillance studies focus heavily on the detection of H5 AIVs in domestic poultry further research is needed to understand the true level of AIV diversity and the risk AIVs pose to humans in the GMS.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institute Pasteur in Cambodia, Phnom Penh, Cambodia; School of Applied and Biomedical Sciences, Federation University, Churchill, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Erik A Karlsson
- Virology Unit, Institute Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Andrew R Greenhill
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Philippe Dussart
- Virology Unit, Institute Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
46
|
Stepanova EA, Kotomina TS, Matyushenko VA, Smolonogina TA, Shapovalova VS, Rudenko LG, Isakova-Sivak IN. Amino Acid Substitutions N123D and N149D in Hemagglutinin Molecule Enhance Immunigenicity of Live Attenuated Influenza H7N9 Vaccine Strain in Experiment. Bull Exp Biol Med 2019; 166:631-636. [PMID: 30903496 DOI: 10.1007/s10517-019-04407-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 02/01/2023]
Abstract
We compared three cold-adapted live attenuated influenza vaccine strains prepared by reverse genetics methods on the basis of master donor virus A/Leningrad/134/17/57 and influenza H7N9 strains A/Anhui/1/2013 and A/Shanghai/1/2013. Two strains based on A/Anhui/1/2013 differed by amino acid positions 123 and 149 in HA1 (123N/149N; 123D/149D). All strains efficiently replicated in developing chicken embryos; A/Shanghai/1/2013-based strain and A/Anhui/1/2013-123N/149N variant were characterized by reduced replication in MDCK cells. Strains based on A/Anhui/1/2013 virus agglutinated erythrocytes with α2,3- and α2,6-linked sialic acid residues, whereas strain A/Shanghai/1/2013 only α2,3. In experiments with BALB/c mice, Anhui-123D/149D strain was most immunogenic and induced high crossreactive humoral immune response, therefore it can be recommended as the model virus for the construction of recombinant vector vaccines based on live attenuated influenza vaccine.
Collapse
Affiliation(s)
- E A Stepanova
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia.
| | - T S Kotomina
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - V A Matyushenko
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - T A Smolonogina
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - V S Shapovalova
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - L G Rudenko
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - I N Isakova-Sivak
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
47
|
Nuñez IA, Ross TM. A review of H5Nx avian influenza viruses. Ther Adv Vaccines Immunother 2019; 7:2515135518821625. [PMID: 30834359 PMCID: PMC6391539 DOI: 10.1177/2515135518821625] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Drive, CVI Room 1504, Athens, GA 30602, USA
| |
Collapse
|
48
|
McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. Influenza Virus Neuraminidase Structure and Functions. Front Microbiol 2019; 10:39. [PMID: 30761095 PMCID: PMC6362415 DOI: 10.3389/fmicb.2019.00039] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
With the constant threat of emergence of a novel influenza virus pandemic, there must be continued evaluation of the molecular mechanisms that contribute to virulence. Although the influenza A virus surface glycoprotein neuraminidase (NA) has been studied mainly in the context of its role in viral release from cells, accumulating evidence suggests it plays an important, multifunctional role in virus infection and fitness. This review investigates the various structural features of NA, linking these with functional outcomes in viral replication. The contribution of evolving NA activity to viral attachment, entry and release of virions from infected cells, and maintenance of functional balance with the viral hemagglutinin are also discussed. Greater insight into the role of this important antiviral drug target is warranted.
Collapse
Affiliation(s)
- Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sanja Trifkovic
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Santos JJS, Abente EJ, Obadan AO, Thompson AJ, Ferreri L, Geiger G, Gonzalez-Reiche AS, Lewis NS, Burke DF, Rajão DS, Paulson JC, Vincent AL, Perez DR. Plasticity of Amino Acid Residue 145 Near the Receptor Binding Site of H3 Swine Influenza A Viruses and Its Impact on Receptor Binding and Antibody Recognition. J Virol 2019; 93:e01413-18. [PMID: 30355680 PMCID: PMC6321904 DOI: 10.1128/jvi.01413-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/13/2018] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin (HA), a glycoprotein on the surface of influenza A virus (IAV), initiates the virus life cycle by binding to terminal sialic acid (SA) residues on host cells. The HA gradually accumulates amino acid substitutions that allow IAV to escape immunity through a mechanism known as antigenic drift. We recently confirmed that a small set of amino acid residues are largely responsible for driving antigenic drift in swine-origin H3 IAV. All identified residues are located adjacent to the HA receptor binding site (RBS), suggesting that substitutions associated with antigenic drift may also influence receptor binding. Among those substitutions, residue 145 was shown to be a major determinant of antigenic evolution. To determine whether there are functional constraints to substitutions near the RBS and their impact on receptor binding and antigenic properties, we carried out site-directed mutagenesis experiments at the single-amino-acid level. We generated a panel of viruses carrying substitutions at residue 145 representing all 20 amino acids. Despite limited amino acid usage in nature, most substitutions at residue 145 were well tolerated without having a major impact on virus replication in vitro All substitution mutants retained receptor binding specificity, but the substitutions frequently led to decreased receptor binding. Glycan microarray analysis showed that substitutions at residue 145 modulate binding to a broad range of glycans. Furthermore, antigenic characterization identified specific substitutions at residue 145 that altered antibody recognition. This work provides a better understanding of the functional effects of amino acid substitutions near the RBS and the interplay between receptor binding and antigenic drift.IMPORTANCE The complex and continuous antigenic evolution of IAVs remains a major hurdle for vaccine selection and effective vaccination. On the hemagglutinin (HA) of the H3N2 IAVs, the amino acid substitution N 145 K causes significant antigenic changes. We show that amino acid 145 displays remarkable amino acid plasticity in vitro, tolerating multiple amino acid substitutions, many of which have not yet been observed in nature. Mutant viruses carrying substitutions at residue 145 showed no major impairment in virus replication in the presence of lower receptor binding avidity. However, their antigenic characterization confirmed the impact of the 145 K substitution in antibody immunodominance. We provide a better understanding of the functional effects of amino acid substitutions implicated in antigenic drift and its consequences for receptor binding and antigenicity. The mutation analyses presented in this report represent a significant data set to aid and test the ability of computational approaches to predict binding of glycans and in antigenic cartography analyses.
Collapse
Affiliation(s)
- Jefferson J S Santos
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - Eugenio J Abente
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Adebimpe O Obadan
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - Andrew J Thompson
- Department of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Lucas Ferreri
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - Ginger Geiger
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - Ana S Gonzalez-Reiche
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicola S Lewis
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - David F Burke
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Daniela S Rajão
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - James C Paulson
- Department of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
50
|
Nemanichvili N, Tomris I, Turner HL, McBride R, Grant OC, van der Woude R, Aldosari MH, Pieters RJ, Woods RJ, Paulson JC, Boons GJ, Ward AB, Verheije MH, de Vries RP. Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. J Mol Biol 2018; 431:842-856. [PMID: 30597163 DOI: 10.1016/j.jmb.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023]
Abstract
Influenza A virus carries hundreds of trimeric hemagglutinin (HA) proteins on its viral envelope that interact with various sialylated glycans on a host cell. This interaction represents a multivalent binding event that is present in all the current receptor binding assays, including those employing viruses or precomplexed HA trimers. To study the nature of such multivalent binding events, we fused a superfolder green fluorescent protein (sfGFP) to the C-terminus of trimeric HA to allow for direct visualization of HA-receptor interactions without the need for additional fluorescent antibodies. The multivalent binding of the HA-sfGFP proteins was studied using glycan arrays and tissue staining. The HA-sfGFP with human-type receptor specificity was able to bind to a glycan array as the free trimer. In contrast, the HA-sfGFP with avian-type receptor specificity required multimerization by antibodies before binding to glycans on the glycan array could be observed. Interestingly, multimerization was not required for binding to tissues. The array data may be explained by the possible bivalent binding mode of a single human-specific HA trimer to complex branched N-glycans, which is not possible for the avian-specific HA due to geometrical constrains of the binding sites. The fact that this specificity pattern changes upon interaction with a cell surface probably represents the enhanced amount of glycan orientations and variable densities versus those on the glycan array.
Collapse
Affiliation(s)
- Nikoloz Nemanichvili
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584, CL, Utrecht, the Netherlands
| | - Ilhan Tomris
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Mohammed H Aldosari
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands; Drug sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Monique H Verheije
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584, CL, Utrecht, the Netherlands.
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|