1
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Kuehner F, Wong M, Straub E, Doorbar J, Iftner T, Roden RBS, Stubenrauch F. Mus musculus papillomavirus 1 E8^E2 represses expression of late protein E4 in basal-like keratinocytes via NCoR/SMRT-HDAC3 co-repressor complexes to enable wart formation in vivo. mBio 2023; 14:e0069623. [PMID: 37382436 PMCID: PMC10470772 DOI: 10.1128/mbio.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
High-risk human papillomaviruses (PV) account for approximately 600,000 new cancers per year. The early protein E8^E2 is a conserved repressor of PV replication, whereas E4 is a late protein that arrests cells in G2 and collapses keratin filaments to facilitate virion release. While inactivation of the Mus musculus PV1 (MmuPV1) E8 start codon (E8-) increases viral gene expression, surprisingly, it prevents wart formation in FoxN1nu/nu mice. To understand this surprising phenotype, the impact of additional E8^E2 mutations was characterized in tissue culture and mice. MmuPV1 and HPV E8^E2 similarly interact with cellular NCoR/SMRT-HDAC3 co-repressor complexes. Disruption of the splice donor sequence used to generate the E8^E2 transcript or E8^E2 mutants (mt) with impaired binding to NCoR/SMRT-HDAC3 activates MmuPV1 transcription in murine keratinocytes. These MmuPV1 E8^E2 mt genomes also fail to induce warts in mice. The phenotype of E8^E2 mt genomes in undifferentiated cells resembles productive PV replication in differentiated keratinocytes. Consistent with this, E8^E2 mt genomes induced aberrant E4 expression in undifferentiated keratinocytes. In line with observations for HPV, MmuPV1 E4-positive cells displayed a shift to the G2 phase of the cell cycle. In summary, we propose that in order to enable both expansion of infected cells and wart formation in vivo, MmuPV1 E8^E2 inhibits E4 protein expression in the basal keratinocytes that would otherwise undergo E4-mediated cell cycle arrest. IMPORTANCE Human papillomaviruses (PVs) initiate productive replication, which is characterized by genome amplification and expression of E4 protein strictly within suprabasal, differentiated keratinocytes. Mus musculus PV1 mutants that disrupt splicing of the E8^E2 transcript or abolish the interaction of E8^E2 with cellular NCoR/SMRT-HDAC3 co-repressor complexes display increased gene expression in tissue culture but are unable to form warts in vivo. This confirms that the repressor activity of E8^E2 is required for tumor formation and genetically defines a conserved E8 interaction domain. E8^E2 prevents expression of E4 protein in basal-like, undifferentiated keratinocytes and thereby their arrest in G2 phase. Since binding of E8^E2 to NCoR/SMRT-HDAC3 co-repressor is required to enable expansion of infected cells in the basal layer and wart formation in vivo, this interaction represents a novel, conserved, and potentially druggable target.
Collapse
Affiliation(s)
- Franziska Kuehner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - Margaret Wong
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Elke Straub
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Iftner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - Richard B. S. Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Frank Stubenrauch
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Parisi F, Fonti N, Millanta F, Freer G, Pistello M, Poli A. Exploring the link between viruses and cancer in companion animals: a comprehensive and comparative analysis. Infect Agent Cancer 2023; 18:40. [PMID: 37386451 DOI: 10.1186/s13027-023-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, it is estimated that 15% of human neoplasms globally are caused by infectious agents, with new evidence emerging continuously. Multiple agents have been implicated in various forms of neoplasia, with viruses as the most frequent. In recent years, investigation on viral mechanisms underlying tumoral transformation in cancer development and progression are in the spotlight, both in human and veterinary oncology. Oncogenic viruses in veterinary medicine are of primary importance not only as original pathogens of pets, but also in the view of pets as models of human malignancies. Hence, this work will provide an overview of the main oncogenic viruses of companion animals, with brief notes of comparative medicine.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| | - Niccolò Fonti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Francesca Millanta
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| |
Collapse
|
4
|
Carobeli LR, Meirelles LEDF, Damke GMZF, Damke E, de Souza MVF, Mari NL, Mashiba KH, Shinobu-Mesquita CS, Souza RP, da Silva VRS, Gonçalves RS, Caetano W, Consolaro MEL. Phthalocyanine and Its Formulations: A Promising Photosensitizer for Cervical Cancer Phototherapy. Pharmaceutics 2021; 13:pharmaceutics13122057. [PMID: 34959339 PMCID: PMC8705941 DOI: 10.3390/pharmaceutics13122057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is one of the most common causes of cancer-related deaths in women worldwide. Despite advances in current therapies, women with advanced or recurrent disease present poor prognosis. Photodynamic therapy (PDT) has emerged as an effective therapeutic alternative to treat oncological diseases such as cervical cancer. Phthalocyanines (Pcs) are considered good photosensitizers (PS) for PDT, although most of them present high levels of aggregation and are lipophilic. Despite many investigations and encouraging results, Pcs have not been approved as PS for PDT of invasive cervical cancer yet. This review presents an overview on the pathophysiology of cervical cancer and summarizes the most recent developments on the physicochemical properties of Pcs and biological results obtained both in vitro in tumor-bearing mice and in clinical tests reported in the last five years. Current evidence indicates that Pcs have potential as pharmaceutical agents for anti-cervical cancer therapy. The authors firmly believe that Pc-based formulations could emerge as a privileged scaffold for the establishment of lead compounds for PDT against different types of cervical cancer.
Collapse
Affiliation(s)
- Lucimara R. Carobeli
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Lyvia E. de F. Meirelles
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Gabrielle M. Z. F. Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Maria V. F. de Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Natália L. Mari
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Kayane H. Mashiba
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Cristiane S. Shinobu-Mesquita
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Raquel P. Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Vânia R. S. da Silva
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Renato S. Gonçalves
- Department of Chemistry, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (R.S.G.); (W.C.)
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (R.S.G.); (W.C.)
| | - Márcia E. L. Consolaro
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
- Correspondence: ; Tel.: +55-44-3011-5455
| |
Collapse
|
5
|
Warburton A, Della Fera AN, McBride AA. Dangerous Liaisons: Long-Term Replication with an Extrachromosomal HPV Genome. Viruses 2021; 13:1846. [PMID: 34578427 PMCID: PMC8472234 DOI: 10.3390/v13091846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023] Open
Abstract
Papillomaviruses cause persistent, and usually self-limiting, infections in the mucosal and cutaneous surfaces of the host epithelium. However, in some cases, infection with an oncogenic HPV can lead to cancer. The viral genome is a small, double-stranded circular DNA molecule that is assembled into nucleosomes at all stages of infection. The viral minichromosome replicates at a low copy number in the nucleus of persistently infected cells using the cellular replication machinery. When the infected cells differentiate, the virus hijacks the host DNA damage and repair pathways to replicate viral DNA to a high copy number to generate progeny virions. This strategy is highly effective and requires a close association between viral and host chromatin, as well as cellular processes associated with DNA replication, repair, and transcription. However, this association can lead to accidental integration of the viral genome into host DNA, and under certain circumstances integration can promote oncogenesis. Here we describe the fate of viral DNA at each stage of the viral life cycle and how this might facilitate accidental integration and subsequent carcinogenesis.
Collapse
Affiliation(s)
| | | | - Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.); (A.N.D.F.)
| |
Collapse
|
6
|
Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol 2021; 20:95-108. [PMID: 34522050 DOI: 10.1038/s41579-021-00617-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) are an ancient and highly successful group of viruses that have co-evolved with their host to replicate in specific anatomical niches of the stratified epithelia. They replicate persistently in dividing cells, hijack key host cellular processes to manipulate the cellular environment and escape immune detection, and produce virions in terminally differentiated cells that are shed from the host. Some HPVs cause benign, proliferative lesions on the skin and mucosa, and others are associated with the development of cancer. However, most HPVs cause infections that are asymptomatic and inapparent unless the immune system becomes compromised. To date, the genomes of almost 450 distinct HPV types have been isolated and sequenced. In this Review, I explore the diversity, evolution, infectious cycle, host interactions and disease association of HPVs.
Collapse
|
7
|
Uncovering the Role of the E1 Protein in Different Stages of Human Papillomavirus 18 Genome Replication. J Virol 2020; 94:JVI.00674-20. [PMID: 32759324 DOI: 10.1128/jvi.00674-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) comprises three distinct phases of DNA replication: initial amplification, maintenance of the genome copy number at a constant level, and vegetative amplification. The viral helicase E1 is one of the factors required for the initiation of HPV genome replication. However, the functions of the E1 protein during other phases of the viral life cycle are largely uncharacterized. Here, we studied the role of the HPV18 E1 helicase in three phases of viral genome replication by downregulating E1 expression using RNA interference or inducing degradation of the E1 protein via inhibition of casein kinase 2α expression or catalytic activity. We generated a novel modified HPV18 genome expressing Nanoluc and tagged E1 and E2 proteins and created several stable HPV18-positive cell lines. We showed that, in contrast to initial amplification of the HPV18 genome, other phases of viral genome replication involve also an E1-independent mechanism. We characterize two distinct populations of HPV18 replicons existing during the maintenance and vegetative amplification phases. We show that a subset of these replicons, including viral genome monomers, replicate in an E1-dependent manner, while some oligomeric forms of the HPV18 genome replicate independently of E1 function.IMPORTANCE Human papillomavirus (HPV) infections pose serious medical problem. To date, there are no HPV-specific antivirals available due to poor understanding of the molecular mechanisms of virus infection cycle. The infection cycle of HPV involves initial amplification of the viral genomes and maintenance of the viral genomes with a constant copy number, followed by another round of viral genome amplification and new viral particle formation. The viral protein E1 is critical for the initial amplification of the viral genome. However, E1 involvement in other phases of the viral life cycle has remained controversial. In the present study, we show that at least two different replication modes of the HPV18 genome are undertaken simultaneously during the maintenance and vegetative amplification phases, i.e., replication of the majority of the HPV18 genome proceeds under the control of the host cell replication machinery without E1 function, whereas a minority of the genome replicates in an E1-dependent manner.
Collapse
|
8
|
Morgan EL, Macdonald A. Manipulation of JAK/STAT Signalling by High-Risk HPVs: Potential Therapeutic Targets for HPV-Associated Malignancies. Viruses 2020; 12:E977. [PMID: 32899142 PMCID: PMC7552066 DOI: 10.3390/v12090977] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are small, DNA viruses that cause around 5% of all cancers in humans, including almost all cervical cancer cases and a significant proportion of anogenital and oral cancers. The HPV oncoproteins E5, E6 and E7 manipulate cellular signalling pathways to evade the immune response and promote virus persistence. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has emerged as a key mediator in a wide range of important biological signalling pathways, including cell proliferation, cell survival and the immune response. While STAT1 and STAT2 primarily drive immune signalling initiated by interferons, STAT3 and STAT5 have widely been linked to the survival and proliferative potential of a number of cancers. As such, the inhibition of STAT3 and STAT5 may offer a therapeutic benefit in HPV-associated cancers. In this review, we will discuss how HPV manipulates JAK/STAT signalling to evade the immune system and promote cell proliferation, enabling viral persistence and driving cancer development. We also discuss approaches to inhibit the JAK/STAT pathway and how these could potentially be used in the treatment of HPV-associated disease.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| |
Collapse
|
9
|
Epigenetic Regulation of the Human Papillomavirus Life Cycle. Pathogens 2020; 9:pathogens9060483. [PMID: 32570816 PMCID: PMC7350343 DOI: 10.3390/pathogens9060483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Persistent infection with certain types of human papillomaviruses (HPVs), termed high risk, presents a public health burden due to their association with multiple human cancers, including cervical cancer and an increasing number of head and neck cancers. Despite the development of prophylactic vaccines, the incidence of HPV-associated cancers remains high. In addition, no vaccine has yet been licensed for therapeutic use against pre-existing HPV infections and HPV-associated diseases. Although persistent HPV infection is the major risk factor for cancer development, additional genetic and epigenetic alterations are required for progression to the malignant phenotype. Unlike genetic mutations, the reversibility of epigenetic modifications makes epigenetic regulators ideal therapeutic targets for cancer therapy. This review article will highlight the recent advances in the understanding of epigenetic modifications associated with HPV infections, with a particular focus on the role of these epigenetic changes during different stages of the HPV life cycle that are closely associated with activation of DNA damage response pathways.
Collapse
|
10
|
Gautam D, Johnson BA, Mac M, Moody CA. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. PLoS Pathog 2018; 14:e1007367. [PMID: 30312361 PMCID: PMC6200281 DOI: 10.1371/journal.ppat.1007367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/24/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
The life cycle of HPV is tied to the differentiation status of its host cell, with productive replication, late gene expression and virion production restricted to the uppermost layers of the stratified epithelium. HPV DNA is histone-associated, exhibiting a chromatin structure similar to that of the host chromosome. Although HPV chromatin is subject to histone post-translational modifications, how the viral life cycle is epigenetically regulated is not well understood. SETD2 is a histone methyltransferase that places the trimethyl mark on H3K36 (H3K36me3), a mark of active transcription. Here, we define a role for SETD2 and H3K36me3 in the viral life cycle. We have found that HPV positive cells exhibit increased levels of SETD2, with SETD2 depletion leading to defects in productive viral replication and splicing of late viral RNAs. Reducing H3K36me3 by overexpression of KDM4A, an H3K36me3 demethylase, or an H3.3K36M transgene also blocks productive viral replication, indicating a significant role for this histone modification in facilitating viral processes. H3K36me3 is enriched on the 3' end of the early region of the high-risk HPV31 genome in a SETD2-dependent manner, suggesting that SETD2 may regulate the viral life cycle through the recruitment of H3K36me3 readers to viral DNA. Intriguingly, we have found that activation of the ATM DNA damage kinase, which is required for productive viral replication, is necessary for the maintenance of H3K36me3 on viral chromatin and for processing of late viral RNAs. Additionally, we have found that the HPV31 E7 protein maintains the increased SETD2 levels in infected cells through an extension of protein half-life. Collectively, our findings highlight the importance of epigenetic modifications in driving the viral life cycle and identify a novel role for E7 as well as the DNA damage response in the regulation of viral processes through epigenetic modifications.
Collapse
Affiliation(s)
- Dipendra Gautam
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bryan A. Johnson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cary A. Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Pentland I, Campos-León K, Cotic M, Davies KJ, Wood CD, Groves IJ, Burley M, Coleman N, Stockton JD, Noyvert B, Beggs AD, West MJ, Roberts S, Parish JL. Disruption of CTCF-YY1-dependent looping of the human papillomavirus genome activates differentiation-induced viral oncogene transcription. PLoS Biol 2018; 16:e2005752. [PMID: 30359362 PMCID: PMC6219814 DOI: 10.1371/journal.pbio.2005752] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 11/06/2018] [Accepted: 10/12/2018] [Indexed: 11/19/2022] Open
Abstract
The complex life cycle of oncogenic human papillomavirus (HPV) initiates in undifferentiated basal epithelial keratinocytes where expression of the E6 and E7 oncogenes is restricted. Upon epithelial differentiation, E6/E7 transcription is increased through unknown mechanisms to drive cellular proliferation required to support virus replication. We report that the chromatin-organising CCCTC-binding factor (CTCF) promotes the formation of a chromatin loop in the HPV genome that epigenetically represses viral enhancer activity controlling E6/E7 expression. CTCF-dependent looping is dependent on the expression of the CTCF-associated Yin Yang 1 (YY1) transcription factor and polycomb repressor complex (PRC) recruitment, resulting in trimethylation of histone H3 at lysine 27. We show that viral oncogene up-regulation during cellular differentiation results from YY1 down-regulation, disruption of viral genome looping, and a loss of epigenetic repression of viral enhancer activity. Our data therefore reveal a key role for CTCF-YY1-dependent looping in the HPV life cycle and identify a regulatory mechanism that could be disrupted in HPV carcinogenesis.
Collapse
Affiliation(s)
- Ieisha Pentland
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karen Campos-León
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marius Cotic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kelli-Jo Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - C. David Wood
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Ian J. Groves
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Megan Burley
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joanne D. Stockton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D. Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Human Papillomavirus Replication Regulation by Acetylation of a Conserved Lysine in the E2 Protein. J Virol 2018; 92:JVI.01912-17. [PMID: 29142126 DOI: 10.1128/jvi.01912-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/25/2022] Open
Abstract
The papillomavirus (PV) E2 protein is a sequence-specific DNA binding protein that recruits cellular factors to its genome in infected epithelial cells. E2 also binds to and loads the viral E1 DNA helicase at the origin of replication. Posttranslational modifications (PTMs) of PV E2 have been identified as potential regulators of E2 functions. We recently reported lysine 111 (K111) as a target of p300 acetylation in bovine PV (BPV). The di-lysines at 111 and 112 are conserved in almost all papillomaviruses. We pursued a mutational approach to query the functional significance of lysine in human PV (HPV) E2. Amino acid substitutions that prevent acetylation, including arginine, were unable to stimulate transcription and E1-mediated DNA replication. The arginine K111 mutant retained E2 transcriptional repression, nuclear localization, DNA and chromatin binding, and association with E2 binding partners involved in PV transcription and replication. While the replication-defective E2-K111R mutant recruited E1 to the viral replication origin, surprisingly, unwinding of the duplex DNA did not occur. In contrast, the K111 glutamine (K111Q) mutant increased origin melting and stimulated replication compared to wild-type E2. These experiments reveal a novel activity of E2 necessary for denaturing the viral origin that likely depends on acetylation of highly conserved lysine 111.IMPORTANCE HPV is one of the most common sexually transmitted infections in the United States. Over 200 HPVs have been described, and they manifest in a variety of ways; they can be asymptomatic or can result in benign lesions (papillomas) or progress to malignancy. Although 90% of infections are asymptomatic and resolve easily, HPV16 and -18 alone are responsible for 70% of all cervical cancers, which are almost entirely caused by HPV infection. Interestingly, 60 to 90% of other cancers have been linked to HPV. The goal of this research is to further elucidate the mechanisms that regulate and mediate viral replication.
Collapse
|
13
|
Stepp WH, Stamos JD, Khurana S, Warburton A, McBride AA. Sp100 colocalizes with HPV replication foci and restricts the productive stage of the infectious cycle. PLoS Pathog 2017; 13:e1006660. [PMID: 28968443 PMCID: PMC5638619 DOI: 10.1371/journal.ppat.1006660] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/12/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022] Open
Abstract
We have shown previously that Sp100 (a component of the ND10 nuclear body) represses transcription, replication and establishment of incoming human papillomavirus (HPV) DNA in the early stages of infection. In this follow up study, we show that Sp100 does not substantially regulate viral infection in the maintenance phase, however at late stages of infection Sp100 interacts with amplifying viral genomes to repress viral processes. We find that Sp100 localizes to HPV16 replication foci generated in primary keratinocytes, to HPV31 replication foci that form in differentiated cells, and to HPV16 replication foci in CIN 1 cervical biopsies. To analyze this further, Sp100 was down regulated by siRNA treatment of differentiating HPV31 containing cells and levels of viral transcription and replication were assessed. This revealed that Sp100 represses viral transcription and replication in differentiated cells. Analysis of Sp100 binding to viral chromatin showed that Sp100 bound across the viral genome, and that binding increased at late stages of infection. Therefore, Sp100 represses the HPV life cycle at both early and late stages of infection.
Collapse
Affiliation(s)
- Wesley H. Stepp
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James D. Stamos
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Simran Khurana
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alix Warburton
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
14
|
Moody C. Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes. Viruses 2017; 9:v9090261. [PMID: 28925973 PMCID: PMC5618027 DOI: 10.3390/v9090261] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found in the stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating basal cells of the stratified epithelium, where cellular replication machinery is abundant. However, the productive phase of the viral life cycle, including productive replication, late gene expression and virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide a replication-competent environment in differentiating cells.
Collapse
Affiliation(s)
- Cary Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Playing with fire: consequences of human papillomavirus DNA replication adjacent to genetically unstable regions of host chromatin. Curr Opin Virol 2017; 26:63-68. [PMID: 28779692 DOI: 10.1016/j.coviro.2017.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/21/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
Papillomaviruses are small DNA viruses that replicate persistently in the stratified epithelial surfaces of the host. They have minimal coding capacity and must hijack many cellular processes to complete their life cycle. For example, viral genomes are tethered to host chromatin to ensure that they are effectively partitioned in dividing cells, and the host DNA damage and repair pathways are usurped to replicate viral DNA in differentiated cells. These processes result in the close juxtaposition of viral DNA with host DNA that is undergoing replication stress. This could explain the propensity of oncogenic human papillomaviruses (HPVs) to accidently integrate into common fragile sites in host DNA.
Collapse
|
16
|
McBride AA. Mechanisms and strategies of papillomavirus replication. Biol Chem 2017; 398:919-927. [PMID: 28315855 DOI: 10.1515/hsz-2017-0113] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
Animal and human papillomaviruses (HPVs) replicate persistently in specific types of stratified epithelia of their host. After the initial infection, the viral genome replicates at low levels in the dividing cells of the epithelium, and these cells form a reservoir of infection that can last for decades. When the infected cells differentiate, viral genomes replicate to high levels to form progeny virus that is released from the surface of the epithelium. This complex life cycle requires several different modes of viral DNA replication, but papillomaviruses are masters at hijacking key cellular processes to facilitate their own reproduction.
Collapse
|
17
|
HPV16-E2 protein modifies self-renewal and differentiation rate in progenitor cells of human immortalized keratinocytes. Virol J 2017; 14:65. [PMID: 28372578 PMCID: PMC5376701 DOI: 10.1186/s12985-017-0736-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/23/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cervical cancer is the fourth cause of death worldwide by cancer in women and is a disease associated to persistent infection with human papillomavirus (HPV), particularly from two high-risk types HPV16 and 18. The virus initiates its replicative cycle infecting cells located in the basal layer of the epithelium, where a small population of epithelial stem cells is located performing important functions of renewal and maintenance of the tissue. Viral E2 gene is one of the first expressed after infection and plays relevant roles in the replicative cycle of the virus, modifying fundamental processes in the infected cells. Thus, the aim of the present study was to demonstrate the presence of hierarchic subpopulations in HaCaT cell line and evaluate the effect of HPV16-E2 expression, on their biological processes. METHODS HaCaT-HPV16-E2 cells were generated by transduction of HaCaT cell line with a lentiviral vector. The α6-integrin-CD71 expression profile was established by immunostaining and flow cytometric analysis. After sorting, cell subpopulations were analyzed in biological assays for self-renewal, clonogenicity and expression of stemness factors (RT-qPCR). RESULTS We identified in HaCaT cell line three different subpopulations that correspond to early differentiated cells (α6-integrindim), transitory amplifying cells (α6-integrinbri/CD71bri) and progenitor cells (α6-integrinbri/CD71dim). The last subpopulation showed stem cell characteristics, such as self-renewal ability, clonogenicity and expression of the well-known stem cell factors SOX2, OCT4 and NANOG, suggesting they are stem-like cells. Interestingly, the expression of HPV16-E2 in HaCaT cells changed its α6-integrin-CD71 immunophenotype modifying the relative abundance of the cell subpopulations, reducing significantly the percentage of α6-integrinbri/CD71dim cells. Moreover, the expression of the stem cell markers was also modified, increasing the expression of SOX2 and NANOG, but decreasing notably the expression of OCT4. CONCLUSIONS Our data demonstrated the presence of a small subpopulation with epithelial "progenitor cells" characteristics in the HaCaT cell line, and that HPV16-E2 expression on these cells induces early differentiation.
Collapse
|
18
|
Egawa N, Wang Q, Griffin HM, Murakami I, Jackson D, Mahmood R, Doorbar J. HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions. PLoS Pathog 2017; 13:e1006282. [PMID: 28306742 PMCID: PMC5371391 DOI: 10.1371/journal.ppat.1006282] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/29/2017] [Accepted: 03/08/2017] [Indexed: 12/03/2022] Open
Abstract
To clarify E1^E4’s role during high-risk HPV infection, the E4 proteins of HPV16 and 18 were compared side by side using an isogenic keratinocyte differentiation model. While no effect on cell proliferation or viral genome copy number was observed during the early phase of either virus life cycle, time-course experiments showed that viral genome amplification and L1 expression were differently affected upon differentiation, with HPV16 showing a much clearer E4 dependency. Although E4 loss never completely abolished genome amplification, its more obvious contribution in HPV16 focused our efforts on 16E4. As previously suggested, in the context of the virus life cycle, 16E4s G2-arrest capability was found to contribute to both genome amplification success and L1 accumulation. Loss of 16E4 also lead to a reduced maintenance of ERK, JNK and p38MAPK activity throughout the genome amplifying cell layers, with 16E4 (but not 18E4) co-localizing precisely with activated cytoplasmic JNK in both wild type raft tissue, and HPV16-induced patient biopsy tissue. When 16E1 was co-expressed with E4, as occurs during genome amplification in vivo, the E1 replication helicase accumulated preferentially in the nucleus, and in transient replication assays, E4 stimulated viral genome amplification. Interestingly, a 16E1 mutant deficient in its regulatory phosphorylation sites no longer accumulated in the nucleus following E4 co-expression. E4-mediated stabilisation of 16E2 was also apparent, with E2 levels declining in organotypic raft culture when 16E4 was absent. These results suggest that 16E4-mediated enhancement of genome amplification involves its cell cycle inhibition and cellular kinase activation functions, with E4 modifying the activity and function of viral replication proteins including E1. These activities of 16E4, and the different kinase patterns seen here with HPV18, 31 and 45, may reflect natural differences in the biology and tropisms of these viruses, as well as differences in E4 function. In HPV induced lesions, the most abundant protein expressed in the productive stage of viral life cycle is E1^E4 (E4), with its expression being coincident with viral genome amplification. To clarify the role of E4 in the high-risk HPV life cycle, we carried out a comparative analysis of E4 function in HPV16 and 18 using an isogenic keratinocyte cell-line background. Our results show that E1^E4 contributes to virus genome replication efficiency and life cycle completion rather than being essential. These effects were seen more dramatically with HPV16. The difference between HPV16 and HPV18 in our system suggests important tropism differences between these viruses. HPV16 E4’s contribution to the virus life cycle is mediated by several activities, including its G2 arrest function, as well as its role in activating members of the MAPK pathway, including ERK, p38, and most notably pJNK. These 16 E4 functions facilitated the nuclear localization of the E1 virus helicase and enhanced E1/E2 dependent viral genome amplification as well as stabilising E2. We suspect that the massive accumulation of E4 in the upper epithelial layers may however underlie a more critical role for E4 post-genome amplification.
Collapse
Affiliation(s)
- Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Qian Wang
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Heather M. Griffin
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Isao Murakami
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Deborah Jackson
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Radma Mahmood
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Porter SS, Stepp WH, Stamos JD, McBride AA. Host cell restriction factors that limit transcription and replication of human papillomavirus. Virus Res 2017; 231:10-20. [PMID: 27863967 PMCID: PMC5325803 DOI: 10.1016/j.virusres.2016.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 02/08/2023]
Abstract
The life cycle of human papillomaviruses (HPV) is tightly regulated by the differentiation state of mucosal and cutaneous keratinocytes. To counteract viral infection, constitutively expressed cellular factors, which are defined herein as restriction factors, directly mitigate viral gene expression and replication. In turn, some HPV gene products target these restriction factors and abrogate their anti-viral effects to establish efficient gene expression and replication programs. Ironically, in certain circumstances, this delicate counterbalance between viral gene products and restriction factors facilitates persistent infection by HPVs. This review serves to recapitulate the current knowledge of nuclear restriction factors that directly affect the HPV infectious cycle.
Collapse
Affiliation(s)
- Samuel S Porter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA; Biological Sciences Graduate Program, University of Maryland, University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| | - Wesley H Stepp
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA
| | - James D Stamos
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Anacker DC, Moody CA. Modulation of the DNA damage response during the life cycle of human papillomaviruses. Virus Res 2016; 231:41-49. [PMID: 27836727 DOI: 10.1016/j.virusres.2016.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted viral infection. Infection with certain types of HPV pose a major public health risk as these types are associated with multiple human cancers, including cervical cancer, other anogenital malignancies and an increasing number of head and neck cancers. The HPV life cycle is closely tied to host cell differentiation with late viral events such as structural gene expression and viral genome amplification taking place in the upper layers of the stratified epithelium. The DNA damage response (DDR) is an elaborate signaling network of proteins that regulate the fidelity of replication by detecting, signaling and repairing DNA lesions. ATM and ATR are two kinases that are major regulators of DNA damage detection and repair. A multitude of studies indicate that activation of the ATM (Ataxia telangiectasia mutated) and ATR (Ataxia telangiectasia and Rad3-related) pathways are critical for HPV to productively replicate. This review outlines how HPV interfaces with the ATM- and ATR-dependent DNA damage responses throughout the viral life cycle to create an environment supportive of viral replication and how activation of these pathways could impact genomic stability.
Collapse
Affiliation(s)
- Daniel C Anacker
- Lineberger Comprehensive Cancer Center and the Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC, USA
| | - Cary A Moody
- Lineberger Comprehensive Cancer Center and the Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
21
|
McKinney CC, Hussmann KL, McBride AA. The Role of the DNA Damage Response throughout the Papillomavirus Life Cycle. Viruses 2015; 7:2450-69. [PMID: 26008695 PMCID: PMC4452914 DOI: 10.3390/v7052450] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022] Open
Abstract
The DNA damage response (DDR) maintains genomic integrity through an elaborate network of signaling pathways that sense DNA damage and recruit effector factors to repair damaged DNA. DDR signaling pathways are usurped and manipulated by the replication programs of many viruses. Here, we review the papillomavirus (PV) life cycle, highlighting current knowledge of how PVs recruit and engage the DDR to facilitate productive infection.
Collapse
Affiliation(s)
- Caleb C McKinney
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Katherine L Hussmann
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Moody CA, Laimins LA. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog 2009; 5:e1000605. [PMID: 19798429 PMCID: PMC2745661 DOI: 10.1371/journal.ppat.1000605] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 09/04/2009] [Indexed: 11/26/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancers. The infectious HPV life cycle is closely linked to the differentiation state of the host epithelia, with viral genome amplification, late gene expression and virion production restricted to suprabasal cells. The E6 and E7 proteins provide an environment conducive to DNA synthesis upon differentiation, but little is known concerning the mechanisms that regulate productive viral genome amplification. Using keratinocytes that stably maintain HPV-31 episomes, and chemical inhibitors, we demonstrate that viral proteins activate the ATM DNA damage response in differentiating cells, as indicated by phosphorylation of CHK2, BRCA1 and NBS1. This activation is necessary for viral genome amplification, as well as for formation of viral replication foci. In contrast, inhibition of ATM kinase activity in undifferentiated keratinocytes had no effect on the stable maintenance of viral genomes. Previous studies have shown that HPVs induce low levels of caspase 3/7 activation upon differentiation and that this is important for cleavage of the E1 replication protein and genome amplification. Our studies demonstrate that caspase cleavage is induced upon differentiation of HPV positive cells through the action of the DNA damage protein kinase CHK2, which may be activated as a result of E7 binding to the ATM kinase. These findings identify a major regulatory mechanism responsible for productive HPV replication in differentiating cells. Our results have potential implications for the development of anti-viral therapies to treat HPV infections. Over 100 types of human papillomavirus (HPV) have been identified, and approximately one-third of these infect epithelial cells of the genital mucosa. A subset of these HPV types are the causative agents of cervical and other anogenital cancers. The infectious life cycle of HPV is dependent on differentiation of the host epithelial cell, with viral genome amplification and virion production restricted to differentiated suprabasal cells. While normal keratinocytes exit the cell cycle upon differentiation, HPV positive suprabasal cells are able to re-enter S-phase to mediate productive replication. The mechanisms regulating the activation of differentiation-dependent viral replication are largely unknown. In this study, we demonstrate that HPV induces an ATM-dependent DNA damage response that is essential for viral genome amplification in differentiating cells. In addition, we have found that ATM signaling to its downstream target CHK2 is critical for providing an environment that is conducive to HPV productive replication. Our findings identify an important regulatory mechanism by which HPV controls replication during the productive phase of the life cycle and may identify new targets for the development of therapeutics to treat HPV-induced infections.
Collapse
Affiliation(s)
- Cary A. Moody
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Laimonis A. Laimins
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
A novel interaction between the human papillomavirus type 16 E2 and E1--E4 proteins leads to stabilization of E2. Virology 2009; 394:266-75. [PMID: 19783272 DOI: 10.1016/j.virol.2009.08.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/29/2009] [Accepted: 08/26/2009] [Indexed: 11/21/2022]
Abstract
The E4 (also called E1--E4) and E2 proteins of human papillomavirus type 16 are thought to be expressed within the same cells of a lesion, and their open reading frames overlap, suggesting that they may have a functional relationship. We have examined the effect of co-expression of these two proteins and found that each enhances the level of the other. We also identified the N-terminus of E2 as the first example of a viral protein that directly binds the HPV16 E1--E4 protein. This appears to result in the E2 becoming less soluble and promotes its relocation from the nucleus to the cytoplasm. In addition, the turnover of the E2 protein is decreased in the presence of E1--E4. All this raises the possibility that E1--E4 acts to influence E2 activity by varying the amount of available E2 in the cell.
Collapse
|
24
|
Host cell sumoylation level influences papillomavirus E2 protein stability. Virology 2009; 387:176-83. [PMID: 19251296 DOI: 10.1016/j.virol.2009.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/09/2009] [Accepted: 02/02/2009] [Indexed: 11/23/2022]
Abstract
The stability of papillomavirus E2 proteins is regulated by proteasomal degradation, and regulation of degradation could contribute to the higher expression levels of E2 proteins observed in suprabasal layers of differentiated skin. We have recently shown that the E2 proteins are modified by sumoylation [Wu Y-C, Roark AA, Bian X-L, Wilson, VG (2008) Virol 378:329-338], and that sumoylation levels are up-regulated during keratinocyte differentiation [Deyrieux AF, Rosas-Acosta G, Ozbun MA, Wilson VG (2007) J Cell Sci 120:125-136]. These observations, coupled with the known ability of sumoylation to prevent proteasomal degradation of certain proteins, suggested that this modification might contribute to stabilizing E2 proteins in suprabasal keratinocytes. Conditions that increased overall sumoylation were found to increase the intracellular amounts of the HPV11, 16, and 18 E2 proteins. No effect of sumoylation was seen on E2 transcripts, and the increased levels of E2 proteins resulted from a greatly increased half-life for the E2 proteins. In vitro studies confirmed that sumoylation could block the proteasomal degradation of the 16E2 protein. Interestingly, this stabilization effect was indirect as it did not require sumoylation of 16E2 itself and must be acting through sumoylation of a cellular target(s). This sumoylation-dependent, indirect stabilization of E2 proteins is a novel process that may couple E2 levels to changes in the cellular environment. Specifically, our results suggest that the levels of papillomavirus E2 protein could be up-regulated in differentiating keratinocytes in response to the increased overall sumoylation that accompanies differentiation.
Collapse
|
25
|
Papillomavirus DNA replication — From initiation to genomic instability. Virology 2009; 384:360-8. [DOI: 10.1016/j.virol.2008.11.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 12/25/2022]
|
26
|
Côté-Martin A, Moody C, Fradet-Turcotte A, D'Abramo CM, Lehoux M, Joubert S, Poirier GG, Coulombe B, Laimins LA, Archambault J. Human papillomavirus E1 helicase interacts with the WD repeat protein p80 to promote maintenance of the viral genome in keratinocytes. J Virol 2008; 82:1271-83. [PMID: 18032488 PMCID: PMC2224424 DOI: 10.1128/jvi.01405-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 11/12/2007] [Indexed: 02/02/2023] Open
Abstract
Due to the limited coding capacity of their small genomes, human papillomaviruses (HPV) rely extensively on host factors for the completion of their life cycles. Accordingly, most HPV proteins, including the replicative helicase E1, engage in multiple protein interactions. The fact that conserved regions of E1 have not yet been ascribed a function prompted us to use tandem affinity protein purification (TAP) coupled to mass spectrometry to identify novel targets of this helicase. This method led to the discovery of a novel interaction between the N-terminal 40 amino acids of HPV type 11 (HPV11) E1 and the cellular WD repeat protein p80 (WDR48). We found that interaction with p80 is conserved among E1 proteins from anogenital HPV but not among cutaneous or animal types. Colocalization studies showed that E1 can redistribute p80 from the cytoplasm to the nucleus in a manner that is dependent on the E1 nuclear localization signal. Three amino acid substitutions in E1 proteins from HPV11 and -31 were identified that abrogate binding to p80 and its relocalization to the nucleus. In HPV31 E1, these substitutions reduced but did not completely abolish transient viral DNA replication. HPV31 genomes encoding two of the mutant E1 proteins were not maintained as episomes in immortalized primary keratinocytes, whereas one encoding the third mutant protein was maintained at a very low copy number. These findings suggest that the interaction of E1 with p80 is required for efficient maintenance of the viral episome in undifferentiated keratinocytes.
Collapse
Affiliation(s)
- Alexandra Côté-Martin
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Human papillomaviruses complete their life cycle in differentiating epithelial cells that would not normally be competent for either cellular or viral DNA replication. To overcome this, papillomaviruses encode two groups of proteins that work together in the upper epithelial layers to amplify viral genomes. The E6 and E7 proteins play a critical role in driving differentiating epithelial cells that have left the basal layer, back into the cell cycle, in order to produce a replication-competent environment that can be used by the virus for genome amplification. Papillomavirus replication is heavily dependent on cellular replication proteins, but in addition needs the viral E1 and E2 proteins, which act to unwind viral DNA around the origin of replication, and to recruit essential cellular proteins to the replication site. Recent work using mutant viral genomes has suggested that two other viral proteins, E4 and E5, contribute to efficient replication in the upper epithelial layers, although the mechanisms by which they do this have not yet been clearly established. Genome amplification in the upper epithelial layers differs from maintenance replication in the basal layer, where viral genome replication appears coupled to that of the cellular genome. The onset of genome amplification during differentiation is thought to be triggered at least in part by an increase in E1 and E2 levels, and possibly also by a change in the relative levels of the two proteins. The role of E6 and E7 in basal cell replication is, however, uncertain and there is even some question as to the exact requirement for E1. Although similarities in papillomavirus lifecycle organization and protein function suggest a common mechanism by which viral DNA replication is regulated, differences in the site of infection and transmission route appear to manifest themselves as differences in the timing and extent of genome amplification. Understanding the patterns of protein expression seen during natural infection will be important in fully understanding how these differences arise.
Collapse
Affiliation(s)
- John Doorbar
- National Institute for Medical Research, Division of Virology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Kenneth Raj
- National Institute for Medical Research, Division of Virology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
28
|
Zhao X, Fay J, Lambkin H, Schwartz S. Identification of a 17-nucleotide splicing enhancer in HPV-16 L1 that counteracts the effect of multiple hnRNP A1-binding splicing silencers. Virology 2007; 369:351-63. [PMID: 17869320 DOI: 10.1016/j.virol.2007.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/13/2007] [Accepted: 08/01/2007] [Indexed: 11/26/2022]
Abstract
Human papillomavirus type 16 (HPV-16) infections can in rare cases persist and cause lesions that may progress to cervical cancer. Cells in the lesions are not permissive for virus production, nor are cervical cancer cells. The intracellular environment is such that it prevents production of the highly immunogenic, viral structural proteins L1 and L2. One may speculate that inhibition of L1 and L2 expression is a prerequisite for persistence and cancer progression. We have therefore investigated how expression of HPV-16 L1 is regulated. We found that the only splice site in the HPV-16 late region, which is used to produce L1 mRNAs, is under control of a splicing enhancer located in the 17 nucleotides immediately downstream of the splice site. However, the function of this enhancer in cervical cancer cells is largely overshadowed by multiple splicing silencers in the late region which bind to hnRNP A1. High levels of hnRNP A1 therefore inhibit HPV-16 L1 expression. Immunohistological analysis of cervical epithelia revealed that hnRNP A1 is expressed primarily in the lower layers of the epithelium. hnRNP A1 is undetectable in terminally differentiated cells that can express HPV-16 late genes, which supports the conclusion that high levels of hnRNP A1 inhibit HPV-16 L1 expression.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Husargatan 3, Box 582, 751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
29
|
Mistry N, Simonsson M, Evander M. Transcriptional activation of the human papillomavirus type 5 and 16 long control region in cells from cutaneous and mucosal origin. Virol J 2007; 4:27. [PMID: 17352804 PMCID: PMC1828153 DOI: 10.1186/1743-422x-4-27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/12/2007] [Indexed: 12/26/2022] Open
Abstract
Human papillomavirus type-16 (HPV-16) infects mucosal epithelium and is the most common type found in cervical cancer. HPV-5 infects cornified epithelium and is the most common type found on normal skin and belongs to the types frequently associated with skin cancers of Epidermodysplasia verruciformis patients. One factor by which this anatomical tropism could be determined is the regulation of HPV gene expression in the host cell. The HPV long control region (LCR) contains cis-responsive elements that regulate HPV transcription and the epithelial tropism of HPV is determined by epithelial specific constitutive enhancers in the LCR. Since HPV-16 and other types infecting the mucosa differ in host cell from HPV types infecting skin, it has been hypothesized that it is the combination of ubiquitous transcription factors working in concert in the host cell that determines the cell-type-specific expression. To study if HPV tropism could be determined by differences in transcriptional regulation we have cloned the transcriptional regulating region, LCR, from HPV-16 and HPV-5 and studied the activation of a reporter gene in cell lines with different origin. To analyse promoter activity we transfected the plasmids into four different cell lines; HaCaT, C33A, NIKS and W12E and the efficiency of HPV-5 and HPV-16 LCR in the different cell lines was compared. In HaCaT cells, with a skin origin, the HPV-5 LCR was two-fold more efficient in transcriptional activation compared to the HPV-16 LCR. In cervical W12E cells the HPV-16 LCR was almost 2-fold more effective in activating transcription compared to the HPV-5 LCR. The ability to initiate transcription in the other cell lines was independent on cell origin and HPV-type.
Collapse
Affiliation(s)
- Nitesh Mistry
- Department of Virology, Umeå University, S-901 85 Umeå, Sweden
| | | | - Magnus Evander
- Department of Virology, Umeå University, S-901 85 Umeå, Sweden
| |
Collapse
|
30
|
Sato K, Takeuchi T, Kukimoto I, Mori S, Yasugi T, Yano T, Taketani Y, Kanda T. Human papillomavirus type 16 P670 promoter is negatively regulated by CCAAT displacement protein. Virus Genes 2007. [DOI: 10.1007/pl00022203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Odgerel Z, Choi IK, Byun KS, Pak CY, Bennett S, Gu SH, Park K, Kee SH, Song KJ, Song JW. Human papillomavirus type 16 P670 promoter is negatively regulated by CCAAT displacement protein. Virus Genes 2007; 35:473-81. [PMID: 16991006 DOI: 10.1007/s11262-006-0074-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/13/2006] [Accepted: 12/27/2006] [Indexed: 01/19/2023]
Abstract
HPV16 late gene transcription from P670 is suppressed in undifferentiated keratinocytes. To identify DNA sites involved in the negative regulation, we examined the effect of a series of substitutions in the P670 promoter region (nucleotide (nt) 106-855) on the transcription, using an expression plasmid having the promoter fragment placed to drive the firefly-luciferase gene. Twenty-base pair-long segments covering the entire promoter region were replaced with a sequence lacking any so far known factor-binding motifs to produce 38 mutants. These plasmids were introduced by transfecton into undifferentiated or partially differentiated human HaCaT and HeLa cells, and transient expression of the reporter was examined with the cell extracts. The reporter expression from the wild-type promoter region was lower, half to one-third, in the undifferentiated cells than in the partially differentiated cells, which expressed hSkn-1a, a keratinocyte specific transcription factor that activates P670, and CCAAT displacement protein (CDP), a transcriptional repressor involved in cell differentiation. Two mutants with substitutions including the putative CDP-binding sites, one from nt 562 to 567 and the other from nt 673 to 678, induced markedly enhanced reporter expression particularly in the partially differentiated cells. Electrophoretic mobility shift analysis demonstrated that bacterially produced GST-CDP bound to the two sites in a sequence-specific manner. The data strongly suggest that CDP acts as a major suppressor for P670 transcription by binding to the promoter region in the undifferentiated cells and even in the partially differentiated cells that express the activator hSkn-1a.
Collapse
Affiliation(s)
- Zagaa Odgerel
- Department of Microbiology, College of Medicine, Korea University, Seoul, 136-705, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Milligan SG, Veerapraditsin T, Ahamet B, Mole S, Graham SV. Analysis of novel human papillomavirus type 16 late mRNAs in differentiated W12 cervical epithelial cells. Virology 2006; 360:172-81. [PMID: 17098271 PMCID: PMC2151308 DOI: 10.1016/j.virol.2006.10.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/12/2006] [Accepted: 10/05/2006] [Indexed: 11/15/2022]
Abstract
The life cycle of human papillomavirus type 16 (HPV16) is intimately linked to differentiation of the epithelium it infects, and late events in the life cycle are restricted to the suprabasal layers. Here we have used 5′RACE of polyadenylated RNA isolated from differentiated W12 cells (cervical epithelial cells containing episomal copies of the HPV16 genome) that express virus late proteins to map virus late mRNAs. Thirteen different transcripts were identified. Extensive alternative splicing and use of two late polyadenylation sites were noted. A novel promoter located in the long control region was detected as well as P97 and Plate. Promoters in the E4 and E5 open reading frames were active yielding transcripts where L1 or L2 respectively are the first open reading frames. Finally, mRNAs that could encode novel proteins E6*^*E7, E6*^E4, E1^*E4 and E1^E2C (putative repressor E2) were identified, indicating that HPV16 may encode more late proteins than previously accepted.
Collapse
|
33
|
Abstract
Carcinoma of the uterine cervix, a leading cause of cancer death in women worldwide, is initiated by infection with high-risk types of human papillomaviruses (HPVs). This review summarizes laboratory studies over the past 20 years that have elucidated the major features of the HPV life cycle, identified the functions of the viral proteins, and clarified the consequences of HPV infection for their host cells. This information has allowed the development of various strategies to prevent or treat infections, including prophylactic vaccination with virus-like particles, therapeutic vaccination against viral proteins expressed in cancer cells, and antiviral approaches to inhibit virus replication, spread, or pathogenesis. These strategies have the potential to cause a dramatic reduction in the incidence of cervical carcinoma and serve as the prototype for comprehensive efforts to combat virus-induced tumors.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
34
|
Hebner CM, Laimins LA. Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 2006; 16:83-97. [PMID: 16287204 DOI: 10.1002/rmv.488] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomaviruses (HPVs) are small double-stranded DNA viruses that infect the cutaneous and mucosal epithelium. Infection by specific HPV types has been linked to the development of cervical carcinoma. HPV infects epithelial cells that undergo terminal differentiation and so encode multiple mechanisms to override the normal regulation of differentiation to produce progeny virions. Two viral proteins, E6 and E7, alter cell cycle control and are the main arbitrators of HPV-induced oncogenesis. Recent data suggest that E6 and E7 also play a major role in the inhibition of the host cell innate immune response to HPV. The E1 and E2 proteins, in combination with various cellular factors, mediate viral replication. In addition, E2 has been implicated in both viral and cellular transcriptional control. Despite decades of research, the function of other viral proteins still remains unclear. While prophylactic vaccines to block genital HPV infection will soon be available, the widespread nature of HPV infection requires greater understanding of both the HPV life cycle as well as the mechanisms underlying HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Christy M Hebner
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
35
|
Zhao KN, Gu W, Fang NX, Saunders NA, Frazer IH. Gene codon composition determines differentiation-dependent expression of a viral capsid gene in keratinocytes in vitro and in vivo. Mol Cell Biol 2005; 25:8643-55. [PMID: 16166644 PMCID: PMC1265747 DOI: 10.1128/mcb.25.19.8643-8655.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By establishing mouse primary keratinocytes (KCs) in culture, we were able, for the first time, to express papillomavirus major capsid (L1) proteins by transient transfection of authentic or codon-modified L1 gene expression plasmids. We demonstrate in vitro and in vivo that gene codon composition is in part responsible for differentiation-dependent expression of L1 protein in KCs. L1 mRNA was present in similar amounts in differentiated and undifferentiated KCs transfected with authentic or codon-modified L1 genes and had a similar half-life, demonstrating that L1 protein production is posttranscriptionally regulated. We demonstrate further that KCs substantially change their tRNA profiles upon differentiation. Aminoacyl-tRNAs from differentiated KCs but not undifferentiated KCs enhanced the translation of authentic L1 mRNA, suggesting that differentiation-associated change to tRNA profiles enhances L1 expression in differentiated KCs. Thus, our data reveal a novel mechanism for regulation of gene expression utilized by a virus to direct viral capsid protein expression to the site of virion assembly in mature KCs. Analysis of two structural proteins of KCs, involucrin and keratin 14, suggests that translation of their mRNAs is also regulated, in association with KC differentiation in vitro, by a similar mechanism.
Collapse
MESH Headings
- Animals
- Biolistics
- Blotting, Northern
- Blotting, Western
- Capsid/chemistry
- Cell Differentiation
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Codon
- DNA/metabolism
- Dactinomycin/pharmacology
- Gene Expression Regulation, Viral
- In Vitro Techniques
- Keratin-14
- Keratinocytes/cytology
- Keratinocytes/virology
- Keratins/metabolism
- Mice
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Nucleic Acid Hybridization
- Papillomaviridae/genetics
- Plasmids/metabolism
- Protein Biosynthesis
- Protein Precursors/metabolism
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
- Viruses/metabolism
Collapse
Affiliation(s)
- Kong-Nan Zhao
- Centre for Immunology and Cancer Research, The University of Queensland, Research Extension, Building 1, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Queensland 4102, Australia.
| | | | | | | | | |
Collapse
|
36
|
Kukimoto I, Takeuchi T, Kanda T. CCAAT/enhancer binding protein beta binds to and activates the P670 promoter of human papillomavirus type 16. Virology 2005; 346:98-107. [PMID: 16307770 DOI: 10.1016/j.virol.2005.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/11/2005] [Accepted: 10/17/2005] [Indexed: 11/18/2022]
Abstract
The P670 promoter of HPV16 directs transcription of the virus late genes in the differentiating epithelium. We found that CCAAT/enhancer binding protein beta (C/EBPbeta), a key transcription factor that induces the terminal differentiation of keratinocytes, enhanced the P670-driven transcription in transient reporter assays in HeLa cells and human primary keratinocytes, whereas it inhibited, as reported previously, the transcription from the early P97 promoter. An electrophoretic mobility shift analysis identified two binding sites in the upstream region of P670 for a bacterially expressed C/EBPbeta. A chromatin immunoprecipitation analysis demonstrated that C/EBPbeta bound to these sites of the P670 reporter plasmid in HeLa cells. Nucleotide substitutions in these sites in the reporter plasmid abrogated the enhancement by C/EBPbeta in the transient HeLa and keratinocyte assays, indicating that the C/EBPbeta-binding to these sites is required for the enhancement of transcription from P670. These results suggest that C/EBPbeta is involved in enhancing transcription from the P670 during keratinocyte differentiation.
Collapse
Affiliation(s)
- Iwao Kukimoto
- Division of Molecular Genetics, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | |
Collapse
|
37
|
Abstract
PURPOSE The urothelial stroma is presumed to have a critical role in the formation and homeostasis of normal urothelium. To determine the intrinsic capacity of urothelial cells to initiate urothelial differentiation human urothelial cell were cultured under conditions that promote differentiation in the absence of stromal signaling. MATERIALS AND METHODS Immortalized and primary human urothelial cells were cultured in semisolid medium. Recovered cells were then analyzed by immunofluorescence, flow cytometry and immunoblotting for expression of the differentiation specific keratins K18 and K8, and cyclin-cyclin-dependent kinase inhibitors. The expression of these markers in cells following semisolid culture was then compared with that in normal bladder and ureteral mucosa as well as in synthetic urothelium generated by 3-dimensional organotypic raft cultures. RESULTS Organotypic raft culture of primary and immortalized urothelial cells generated full-thickness epithelium that resembled human bladder and ureteral urothelium, and expressed K8 and K18 in superficial layers. Suspension culture in semisolid medium induced K18 expression approximately 9-fold at 24 hours. p21 and p27 expression were induced by 6 hours and yet p21 expression subsided within 12 hours, while p27 expression persisted. CONCLUSIONS These results indicate that primary and immortalized human urothelial cells have the capacity to enter the urothelial differentiation program and such entry does not require inductive signals from stroma. Furthermore, these data suggest that p21 and p27 have distinct roles in regulating the urothelial cell cycle.
Collapse
Affiliation(s)
- Christopher S Mudge
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
38
|
Hubert WG. Variant upstream regulatory region sequences differentially regulate human papillomavirus type 16 DNA replication throughout the viral life cycle. J Virol 2005; 79:5914-22. [PMID: 15857977 PMCID: PMC1091712 DOI: 10.1128/jvi.79.10.5914-5922.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the central role of the viral upstream regulatory region (URR) in the human papillomavirus (HPV) life cycle has been well established, its effects on viral replication factor expression and plasmid replication of HPV type 16 (HPV16) remain unclear. Some nonprototypic variants of HPV16 contain altered URR sequences and are considered to increase the oncogenic risk of infections. To determine the relationship between viral replication and variant URRs, hybrid viral genomes were constructed with the replication-competent HPV16 prototype W12 and analyzed in assays which recapitulate the different phases of normal viral replication. The establishment efficiencies of hybrid HPV16 genomes differed about 20-fold among European prototypes and variants from Africa and America. Generally, European and African genomes exhibited the lowest replication efficiencies. The high replication levels observed with American variants were primarily attributable to their efficient expression of the replication factors E1 and E2. The maintenance levels of these viral genomes varied about fivefold, which correlated with their respective establishment phenotypes and published P(97) activities. Vegetative DNA amplification could also be observed with replicating HPV16 genomes. These results indicate that efficient E1/E2 expression and elevated plasmid replication levels during the persistent stage of infection may comprise a risk factor in HPV16-mediated oncogenesis.
Collapse
Affiliation(s)
- Walter G Hubert
- Department of Dermatology, MS576, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA.
| |
Collapse
|
39
|
Bodily JM, Meyers C. Genetic analysis of the human papillomavirus type 31 differentiation-dependent late promoter. J Virol 2005; 79:3309-21. [PMID: 15731225 PMCID: PMC1075705 DOI: 10.1128/jvi.79.6.3309-3321.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses infect stratifying squamous epithelia, causing benign and malignant lesions. Upon differentiation of the host keratinocyte, the virus undergoes a dramatic increase in both DNA replication and transcription from the late promoter, leading to expression of late genes and virion morphogenesis. In human papillomavirus type 31 (HPV31), the late promoter is designated p742 and includes multiple start sites embedded within the E7 gene. In this report, we mapped viral DNA elements that control transcriptional activity from p742. Enhancer elements in the viral upstream regulatory region positively regulate this promoter. The region containing the transcriptional start sites is dispensable for activity, and at least two separate elements in the E6/E7 region are capable of supporting transcription. Of these, we mapped one to a 150-bp region of the E7 open reading frame and designate it the core p742 promoter. Using GF109203X, an inhibitor of protein kinase C signaling, we show that p742 activation is independent of viral genome amplification. Finally, we mapped elements in the region of p742 that confer responsiveness to differentiation and show that the upstream regulatory region does not contribute to the differentiation response of p742. These studies are an important step toward understanding the functioning and regulation of this multiple-start promoter.
Collapse
Affiliation(s)
- Jason M Bodily
- Department of Microbiology and Immunology H107, P. O. Box 850, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
40
|
Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 2004; 68:362-72. [PMID: 15187189 PMCID: PMC419925 DOI: 10.1128/mmbr.68.2.362-372.2004] [Citation(s) in RCA: 406] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPV) are the etiological agents of cervical and other anogenital malignancies. Over 100 different types of HPVs have been identified to date, and all target epithelial tissues for infection. One-third of HPV types specifically infect the genital tract, and a subset of these are the causative agents of anogenital cancers. Other HPV types that infect the genital tract induce benign hyperproliferative lesions or genital warts. The productive life cycle of HPVs is linked to epithelial differentiation. Papillomaviruses are thought to infect cells in the basal layer of stratified epithelia and establish their genomes as multicopy nuclear episomes. In these cells, viral DNA is replicated along with cellular chromosomes. Following cell division, one of the daughter cells migrates away from the basal layer and undergoes differentiation. In highly differentiated suprabasal cells, vegetative viral replication and late-gene expression are activated, resulting in the generation of progeny virions. Since virion production is restricted to differentiated cells, infected basal cells can persist for up to several decades or until the immune system clears the infection. The E6 and E7 genes encode viral oncoproteins that target Rb and p53, respectively. During the viral life cycle, these proteins facilitate stable maintenance of episomes and stimulate differentiated cells to reenter the S phase. The E1 and E2 proteins act as origin recognition factors as well as regulators of early viral transcription. The functions of the E5 and E1--E4 proteins are still largely unknown, but these proteins have been implicated in modulating late viral functions. The L1 and L2 proteins form icosahedral capsids for progeny virion generation. The characterization of the cellular targets of these viral proteins and the mechanisms regulating the differentiation-dependent viral life cycle remain active areas for the study of these important human pathogens.
Collapse
Affiliation(s)
- Michelle S Longworth
- Department of Microbiology-Immunology, The Fineberg Medical School, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | |
Collapse
|
41
|
Rosenstierne MW, Vinther J, Hansen CN, Prydsoe M, Norrild B. Identification and characterization of a cluster of transcription start sites located in the E6 ORF of human papillomavirus type 16. J Gen Virol 2003; 84:2909-2920. [PMID: 14573795 DOI: 10.1099/vir.0.19332-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomavirus type 16 (HPV-16) is the prototype strain among the malignant types of HPV in the western world. The main promoter, P97, located in front of the E6 ORF, has been shown to control expression of the oncogenes E6 and E7. These oncogenes are expressed continuously in HPV-16-transformed cells. In contrast to malignant HPV types, non-malignant HPV types have separate promoters driving the expression of E6 and E7. Experiments have shown that the translation of E7 is more efficient from monocistronic than bicistronic transcripts encoding both E6 and E7. Here, identification of a cluster of transcription start sites located in the E6 ORF of HPV-16 is presented. Transcripts from this region contain the E7 ORF as the first reading frame. The cluster consists of multiple transcription start sites located around nt 441. Additional transcription start sites were identified in a cluster around nt 480. A transcription start site has been identified previously at nt 480 but has never been characterized further. The region responsible for transcription activity was mapped to nt 272-448. Mutational analysis showed that initiation of transcription is independent of a TATA-box element, which is consistent with the finding of multiple transcription start sites. Furthermore, it is shown that proteins from HeLa and SiHa nuclear cell extracts bind to the two regions at nt 291-314 and 388-411, and that these two regions influence transcription activity in a cell type-dependent manner.
Collapse
Affiliation(s)
- Maiken W Rosenstierne
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Jeppe Vinther
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Christina N Hansen
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Martin Prydsoe
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Bodil Norrild
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| |
Collapse
|
42
|
Deng W, Jin G, Lin BY, Van Tine BA, Broker TR, Chow LT. mRNA splicing regulates human papillomavirus type 11 E1 protein production and DNA replication. J Virol 2003; 77:10213-26. [PMID: 12970406 PMCID: PMC228435 DOI: 10.1128/jvi.77.19.10213-10226.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus replicative helicase E1 and the origin recognition protein E2 are required for efficient viral DNA replication. We fused the green fluorescent protein (GFP) to the human papillomavirus type 11 E1 protein either in a plasmid with the E1 coding region alone (nucleotides [nt] 832 to 2781) (pGFP-11E1) or in a plasmid containing both the E1 and E2 regions (nt 2723 to 3826) and the viral origin of replication (ori) (p11Rc). The former supported transient replication of an ori plasmid, whereas the latter was a self-contained replicon. Unexpectedly, these plasmids produced predominantly a cytoplasmic variant GFP or a GFP-E1 E4 protein, respectively. The majority of the mRNAs had an intragenic or intergenic splice from nt 847 to nt 2622 or from nt 847 to nt 3325, corresponding to the E2 or E1 E4 messages. pGFP-11E1dm and p11Rc-E1dm, mutated at the splice donor site, abolished these splices and increased GFP-E1 protein expression. Three novel, alternatively spliced, putative E2 mRNAs were generated in higher abundance from the mutated replicon than from the wild type. Relative to pGFP-11E1, low levels of pGFP-11E1dm supported more efficient replication, but high levels had a negative effect. In contrast, elevated E2 levels always increased replication. Despite abundant GFP-E1 protein, p11Rc-E1dm replicated less efficiently than the wild type. Collectively, these observations show that the E1/E2 ratio is as important as the E1 and E2 concentrations in determining the replication efficiency. These findings suggest that alternative mRNA splicing could provide a mechanism to regulate E1 and E2 protein expression and DNA replication during different stages of the virus life cycle.
Collapse
Affiliation(s)
- Wentao Deng
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ozbun MA. Infectious human papillomavirus type 31b: purification and infection of an immortalized human keratinocyte cell line. J Gen Virol 2002; 83:2753-2763. [PMID: 12388811 DOI: 10.1099/0022-1317-83-11-2753] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomaviruses (HPVs) are aetiological agents of human malignancies, most notably cervical cancers. The life-cycles of HPVs are dependent on epithelial differentiation, and this has impeded many basic studies of HPV biology. The organotypic (raft) culture system supports epithelial differentiation such that infectious virions are synthesized in raft tissues from epithelial cells that replicate extrachromosomal HPV genomes. The CIN-612 9E cell line maintains episomal copies of HPV type 31b (HPV31b), an HPV type associated with cervical cancers. Many previous studies, including our own, have focused on characterizing the later stages of the HPV31b life-cycle in CIN-612 9E raft tissues. In this study, we have used the raft system to generate large numbers of HPV31b viral DNA (vDNA)-containing particles. We found a biologically contained homogenization system to be efficient at virion extraction from raft epithelial tissues. We also determined that vDNA-containing particles could be directly quantified from density-gradient fractions. Using an RT-PCR assay, the presence of newly synthesized, spliced HPV31b transcripts was detected following HPV31b infection of the immortalized HaCaT epithelial cell line. Spliced E6 and E1( wedge )E4 RNAs were detected using a single round of RT-PCR from cells infected with a dose as low as 1.0 vDNA-containing particle per cell. Spliced E1*I,E2 transcripts were found in cells infected with an HPV31b dose as low as 10 vDNA-containing particles per cell. Infectivity was blocked by HPV31 antiserum, but was not affected by DNase I. This work lays a foundation for a detailed analysis of the early events in HPV infection.
Collapse
Affiliation(s)
- Michelle A Ozbun
- Department of Molecular Genetics and Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA1
| |
Collapse
|
44
|
Ozbun MA. Human papillomavirus type 31b infection of human keratinocytes and the onset of early transcription. J Virol 2002; 76:11291-300. [PMID: 12388689 PMCID: PMC136784 DOI: 10.1128/jvi.76.22.11291-11300.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Accepted: 08/12/2002] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs) cause a number of human tumors and malignancies, including cervical cancers. Epithelial differentiation is required for the complete HPV life cycle and can be achieved using the organotypic (raft) culture system. The CIN-612 9E cell line maintains episomal copies of HPV type 31b (HPV31b), an HPV type associated with cervical cancers. When grown in the raft system, CIN-612 9E cells form a differentiated epithelium such that infectious virions can be synthesized. Many aspects of the later stages of the HPV31b life cycle have been investigated in CIN-612 9E raft tissues. We used a biologically contained homogenization system for efficient virion extraction from raft epithelial tissues. Purified HPV31b virions were used to infect low-passage-number human foreskin keratinocytes and a variety of epithelial cell lines. Newly synthesized, spliced HPV31b transcripts were detected by reverse transcription and PCR (RT-PCR) following HPV31b infection. HPV31b infection was most efficient and reproducible in HaCaT cells. The onset of viral transcription following infection was also investigated using RT-PCR techniques. Spliced E1(*)I,E2 RNAs were present as early as 4 h postinfection (p.i.), whereas the other major viral transcripts were detected by 8 to 10 h p.i. Furthermore, we characterized the structures and temporal expression of seven novel spliced early transcripts expressed following infection.
Collapse
Affiliation(s)
- Michelle A Ozbun
- Department of Molecular Genetics and Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA.
| |
Collapse
|
45
|
Peh WL, Middleton K, Christensen N, Nicholls P, Egawa K, Sotlar K, Brandsma J, Percival A, Lewis J, Liu WJ, Doorbar J. Life cycle heterogeneity in animal models of human papillomavirus-associated disease. J Virol 2002; 76:10401-16. [PMID: 12239317 PMCID: PMC136551 DOI: 10.1128/jvi.76.20.10401-10416.2002] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Animal papillomaviruses are widely used as models to study papillomavirus infection in humans despite differences in genome organization and tissue tropism. Here, we have investigated the extent to which animal models of papillomavirus infection resemble human disease by comparing the life cycles of 10 different papillomavirus types. Three phases in the life cycles of all viruses were apparent using antibodies that distinguish between early events, the onset of viral genome amplification, and the expression of capsid proteins. The initiation of these phases follows a highly ordered pattern that appears important for the production of virus particles. The viruses examined included canine oral papillomavirus, rabbit oral papillomavirus (ROPV), cottontail rabbit papillomavirus (CRPV), bovine papillomavirus type 1, and human papillomavirus types 1, 2, 11, and 16. Each papillomavirus type showed a distinctive gene expression pattern that could be explained in part by differences in tissue tropism, transmission route, and persistence. As the timing of life cycle events affects the accessibility of viral antigens to the immune system, the ideal model system should resemble human mucosal infection if vaccine design is to be effective. Of the model systems examined here, only ROPV had a tissue tropism and a life cycle organization that resembled those of the human mucosal types. ROPV appears most appropriate for studies of the life cycles of mucosal papillomavirus types and for the development of prophylactic vaccines. The persistence of abortive infections caused by CRPV offers advantages for the development of therapeutic vaccines.
Collapse
Affiliation(s)
- Woei Ling Peh
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Männik A, Rünkorg K, Jaanson N, Ustav M, Ustav E. Induction of the bovine papillomavirus origin "onion skin"-type DNA replication at high E1 protein concentrations in vivo. J Virol 2002; 76:5835-45. [PMID: 11992014 PMCID: PMC137012 DOI: 10.1128/jvi.76.11.5835-5845.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the replication of plasmids composed of bovine papillomavirus type 1 (BPV1) origin of replication and expression cartridges for viral proteins E1 and E2 in hamster and mouse cells. We found that the replication mode changed dramatically at different expression levels of the E1 protein. At high levels of the E1 protein, overreplication of the origin region of the plasmid was observed. Analysis of the replication products by one-dimensional and two-dimensional gel electrophoresis suggested that initially "onion skin"-type replication intermediates were generated, presumably resulting from initiation of the new replication forks before the leading fork completed the synthesis of the DNA on the episomal plasmid. These replication intermediates served as templates for generation of a heterogeneous set of origin region-containing linear fragments by displacement synthesis at the partially replicated plasmid. Additionally, the linear fragments may have been generated by DNA break-up of the onion skin-type intermediates. Analysis of replication products indicated that generated linear fragments recombined and formed concatemers or circular molecules, which presumably were able to replicate in an E1- and E2-dependent fashion. At moderate and low levels of E1, generated by transcription of the E1 open reading frame using weaker promoters, DNA replication was initiated at much lower levels, which allowed elongation of the replication fork starting from the origin to be more balanced and resulted in the generation of full-sized replication products.
Collapse
Affiliation(s)
- Andres Männik
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Estonian Biocentre, Tartu University, Tartu, Estonia
| | | | | | | | | |
Collapse
|
47
|
Hartley KA, Alexander KA. Human TATA binding protein inhibits human papillomavirus type 11 DNA replication by antagonizing E1-E2 protein complex formation on the viral origin of replication. J Virol 2002; 76:5014-23. [PMID: 11967317 PMCID: PMC136168 DOI: 10.1128/jvi.76.10.5014-5023.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human papillomavirus (HPV) protein E2 possesses dual roles in the viral life cycle. By interacting directly with host transcription factors in basal keratinocytes, E2 promotes viral transcription. As keratinocyte differentiation progresses, E2 associates with the viral helicase, E1, to activate vegetative viral DNA replication. How E2's major role switches from transcription to replication during keratinocyte differentiation is not understood, but the presence of a TATA site near the viral origin of replication led us to hypothesize that TATA-binding protein (TBP) could affect HPV replication. Here we show that the C-terminal domain of TBP (TBPc) is a potent inhibitor of E2-stimulated HPV DNA replication in vitro (50% inhibitory concentration = 0.56 nM). Increasing the E1 concentration could not overcome TBPc inhibition in replication assays, indicating that TBPc is a noncompetitive inhibitor of E1 binding. While direct E2-TBPc association could be demonstrated, this interaction could not fully account for the mechanism of TBPc-mediated inhibition of viral replication. Because E2 supports sequence-specific binding of E1 to the viral ori, we proposed that TBPc antagonizes E1-ori association indirectly through inhibition of E2-DNA binding. Indeed, TBPc potently antagonized E2 binding to DNA in the absence (K(i) = 0.5 +/- 0.1 nM) and presence (K(i) = 0.6 +/- 0.3 nM) of E1. Since E2 and TBPc cannot be coadjacent on viral sequences, direct DNA-binding competition between TBPc and E2 was responsible for replication inhibition. Given the ability of TBPc to inhibit HPV DNA replication in vitro and data indicating that TBPc antagonized E2-ori association, we propose that transcription factors regulate HPV DNA replication as well as viral transcription.
Collapse
Affiliation(s)
- Kelly A Hartley
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
48
|
Hubert WG, Laimins LA. Human papillomavirus type 31 replication modes during the early phases of the viral life cycle depend on transcriptional and posttranscriptional regulation of E1 and E2 expression. J Virol 2002; 76:2263-73. [PMID: 11836404 PMCID: PMC153800 DOI: 10.1128/jvi.76.5.2263-2273.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1 and E2 proteins are both required for papillomavirus DNA replication, and replication efficiency is controlled by the abundance of these factors. In human papillomaviruses (HPVs), the regulation of E1 and E2 expression and its effect on viral replication are not well understood. In particular, it is not known if E1 and E2 modulate their own expression and how posttranscriptional mechanisms may affect the levels of the replication proteins. Previous studies have implicated splicing within the E6 open reading frame (ORF) as being important for modulating replication of HPV type 31 (HPV31) through altered expression of E1 and E2. To analyze the function of the E6 intron in viral replication more specifically, we examined the effects of E6 splicing mutations in the context of entire viral genomes in transient assays. HPV31 genomes which had mutations in the splice donor site (E6SD) or the splice acceptor site (E6SA), a deletion of the intron (E6ID), or substituted heterologous intron sequences (E6IS) were constructed. Compared to wild-type (wt) HPV31, pHPV31-E6SD, -E6SA, and -E6IS replicated inefficiently while pHPV31-E6ID replicated at an intermediate level. Cotransfection of the E6 mutant genomes with an E1 expression vector strongly activated their replication levels, indicating that efficient expression of E1 requires E6 internal splicing. In contrast, replication was activated only moderately with an E2 expression vector. Replacing the wt E6 intron in HPV31 with a heterologous intron from simian virus 40 (E6SR2) resulted in replication levels similar to that of the wt in the absence of expression vectors, suggesting that mRNA splicing upstream of the E1 ORF is important for high-level replication. To examine the effects of E6 intron splicing on E1 and E2 expression directly, we constructed reporter DNAs in which the luciferase coding sequences were fused in frame to the E1 (E1Luc) or E2 (E2Luc) gene. Reporter activities were then analyzed in transient assays with cotransfected E1 or E2 expression vectors. Both reporters were moderately activated by E1 in a dose-dependent manner. In addition, E1Luc was activated by low doses of E2 but was repressed at high doses. In contrast, E2 had little effect on E2Luc activity. These data indicate that E1 expression and that of E2 are interdependent and regulated differentially. When the E6 splicing mutations were analyzed in both reporter backgrounds, only E1Luc activities correlated with splicing competence in the E6 ORF. These findings support the hypothesis that the E6 intron primarily regulates expression of E1. Finally, in long-term replication assays, none of the E6 mutant genomes could be stably maintained. However, cotransfection of the E6 splicing mutant genomes with pHPV31-E7NS, which contains a nonsense mutation in the E7 coding sequence, restored stable replication of some mutants. Our observations indicate that E1 expression and that of E2 are differentially regulated at multiple levels and that efficient expression of E1 is required for transient and stable viral replication. These regulatory mechanisms likely act to control HPV copy number during the various phases of the viral life cycle.
Collapse
Affiliation(s)
- Walter G Hubert
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
49
|
Kukimoto I, Kanda T. Displacement of YY1 by differentiation-specific transcription factor hSkn-1a activates the P(670) promoter of human papillomavirus type 16. J Virol 2001; 75:9302-11. [PMID: 11533193 PMCID: PMC114498 DOI: 10.1128/jvi.75.19.9302-9311.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription from human papillomavirus type 16 (HPV16) P(670), a promoter in the E7 open reading frame, is repressed in undifferentiated keratinocytes but becomes activated upon differentiation. We showed that the transient luciferase expression driven by P(670) was markedly enhanced in HeLa cells cotransfected with an expression plasmid for human Skn-1a (hSkn-1a), a transcription factor specific to differentiating keratinocytes. The hSkn-1a POU domain alone, which mediates sequence-specific DNA binding, was sufficient to activate the expression of luciferase. Electrophoretic mobility shift assay revealed the presence of two binding sites, sites 1 and 2, upstream of P(670), which were shared by hSkn-1a and YY1. Site 1 bound more strongly to hSkn-1a than site 2 did. YY1 complexing with a short DNA fragment having site 1 was displaced by hSkn-1a, indicating that hSkn-1a's affinity with site 1 was stronger than YY1's. Disrupting the binding sites by nucleotide substitutions raised the basal expression level of luciferase and decreased the enhancing effect of hSkn-1a. In HeLa cells transfected with circular HPV16 DNA along with the expression plasmid for hSkn-1a, the transcript from P(670) was detectable, which indicates that the results obtained with the reporter plasmids are likely to have mimicked the regulation of P(670) in authentic HPV16 DNA. The data strongly suggest that the transcription from P(670) is repressed primarily by YY1 binding to the two sites, and the displacement of YY1 by hSkn-1a releases P(670) from the repression.
Collapse
Affiliation(s)
- I Kukimoto
- Division of Molecular Genetics, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | |
Collapse
|
50
|
del Mar Peña LM, Laimins LA. Differentiation-dependent chromatin rearrangement coincides with activation of human papillomavirus type 31 late gene expression. J Virol 2001; 75:10005-13. [PMID: 11559836 PMCID: PMC114575 DOI: 10.1128/jvi.75.20.10005-10013.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) is tightly linked to the differentiation status of the host cell. While early genes are expressed during the initial stages of viral infection, late gene expression occurs in the suprabasal layers of the cervical epithelium. Late genes encode E1-E4, a cytosolic protein, and capsid proteins L1 and L2. We have mapped over 30 initiation sites for late transcripts and show that the transcripts initiate in a 200-nucleotide region within the E7 open reading frame. The mechanisms regulating the activation of late gene expression, however, are not yet understood. DNase I hypersensitivity analysis of HPV-31 chromatin in cell lines that maintain viral genomes extrachromosomally indicates that a major shift in nuclease digestion occurs upon differentiation. In undifferentiated cells, hypersensitive regions exist in the upstream regulatory region proximal to the E6 open reading frame. Upon differentiation, a region between nucleotides 659 and 811 in the E7 open reading frame becomes accessible to DNase I. These results indicate that the late transcript initiation region becomes accessible to transcription factor binding upon differentiation. Several complexes mediate chromatin rearrangement, and we tested whether histone acetylation was sufficient for late transcript activation. Treatment with the histone deacetylase inhibitor trichostatin A was found to be insufficient to activate late gene expression in undifferentiated cells. However, it did activate expression of early transcripts. These results suggest that chromatin remodeling around the late promoter occurs upon epithelial differentiation and that mechanisms in addition to histone deacetylation contribute to activation of late gene expression.
Collapse
Affiliation(s)
- L M del Mar Peña
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|