1
|
Kuang G, Wang J, Feng Y, Wu W, Han X, Xin G, Yang W, Pan H, Yang L, Wang J, Shi M, Gao Z. The discovery of novel variants reveals the genetic diversity and potential origin of Seoul orthohantavirus. PLoS Negl Trop Dis 2024; 18:e0012478. [PMID: 39264900 PMCID: PMC11392341 DOI: 10.1371/journal.pntd.0012478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Seoul orthohantavirus (SEOV) has been identified as one of the main causative agents of hemorrhagic fever with renal syndrome (HFRS) in China. The virus was found circulating in rodent populations in almost all provinces of the country, reflecting the wide distribution of HFRS. Here, using the direct immunofluorescence assay (DFA) and real-time quantitative reverse transcription PCR (qRT-PCR) approach, we performed screening in 1784 small mammals belonging to 14 species of three orders captured in the main areas of HFRS endemicity in Yunnan province (southwestern China) and identified 37 SEOV-positive rats (36 Rattus norvegicus and 1 Rattus tanezumi). A 3-year surveillance of HFRS epidemics and dynamics of rodent reservoir density and virus prevalence implied a potential correlation between them. The subsequent meta-transcriptomic sequencing and phylogenetic analyses revealed three SEOV variants, among which two are completely novel. The ancestral character state reconstruction (ACSR) analysis based on both novel variants and documented strains from 5 continents demonstrated that SEOV appeared to originate near the southwestern area (Yunnan-Kweichow Plateau) of China, then could spread to other regions and countries by their rodent carriers, resulting in a global distribution today. In summary, these data furthered the understanding regards genetic diversity and the potential origin for SEOV. However, the expanding endemic foci in the province suggest that the virus is spreading over a wider region and is much more diverse than previous depicted, which means that increased sampling is necessary.
Collapse
Affiliation(s)
- Guopeng Kuang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Jing Wang
- The Centre for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yun Feng
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
- School of Public Health, Dali University, Dali, Yunnan, China
| | - Weichen Wu
- The Centre for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xi Han
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Genyang Xin
- The Centre for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weihong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Hong Pan
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Lifen Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Juan Wang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Mang Shi
- The Centre for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zihou Gao
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| |
Collapse
|
2
|
Hou Y, Li Q, Huang X, Wang J, Hou J, Sun Y, Wu X, Dian Z, Wang B, Xia X. Distribution and genetic characterization of hantaviruses in bats and rodents from Yunnan. PLoS Negl Trop Dis 2024; 18:e0012437. [PMID: 39208380 PMCID: PMC11412632 DOI: 10.1371/journal.pntd.0012437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 09/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hemorrhagic fever with renal syndrome caused by hantaviruses has long been a serious public health issue in Yunnan Province. Hantaviruses exhibit a high extent of biodiversity in their natural hosts, particularly in mammalian hosts. This study was conducted to screen for hantaviruses in bats and rodents in Yunnan Province and elucidate their genetic characteristics and possible zoonotic disease risk. Hantaviruses were detected in 202 bats and 372 rodents with the positive rates 27.49% and 1.25% respectively. A novel lineage (named Lineage 10) of the Seoul virus (SEOV) from rodents and the geographic clustering of hantavirus in bats were identified using phylogenetic analyses of the full-length M- and S-segments. Our study suggest a high cross-species transmissibility of hantaviruses in bats and existence of a new lineage of SEOV in rodents differing significantly from other SEOVs. These results provide data to support the prevention and control of hantavirus-associated diseases in Yunnan Province.
Collapse
Affiliation(s)
- Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- Dali University, Dali, P.R. China
| | - Xingyu Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Jiale Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Junjie Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Yunze Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Xinrui Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Ziqin Dian
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Yunnan, P.R. China
| | - Binghui Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Su F, Liu Y, Ling F, Zhang R, Wang Z, Sun J. Epidemiology of Hemorrhagic Fever with Renal Syndrome and Host Surveillance in Zhejiang Province, China, 1990-2021. Viruses 2024; 16:145. [PMID: 38275955 PMCID: PMC10818760 DOI: 10.3390/v16010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is caused by hantaviruses (HVs) and is endemic in Zhejiang Province, China. In this study, we aimed to explore the changing epidemiology of HFRS cases and the dynamics of hantavirus hosts in Zhejiang Province. Joinpoint regression was used to analyze long-term trends in the incidence of HFRS. The comparison of animal density at different stages was conducted using the Mann-Whitney Test. A comparison of HV carriage rates between stages and species was performed using the chi-square test. The incidence of HFRS shows a continuous downward trend. Cases are widely distributed in all counties of Zhejiang Province except Shengsi County. There was a high incidence belt from west to east, with low incidence in the south and north. The HFRS epidemic showed two seasonal peaks in Zhejiang Province, which were winter and summer. It showed a marked increase in the age of the incidence population. A total of 23,073 minibeasts from 21 species were captured. Positive results were detected in the lung tissues of 14 rodent species and 1 shrew species. A total of 80% of the positive results were from striped field mice and brown rats. No difference in HV carriage rates between striped field mice and brown rats was observed (χ2 = 0.258, p = 0.611).
Collapse
Affiliation(s)
- Fan Su
- Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Ying Liu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China (R.Z.)
| | - Feng Ling
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China (R.Z.)
| | - Rong Zhang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China (R.Z.)
| | - Zhen Wang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China (R.Z.)
| | - Jimin Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China (R.Z.)
| |
Collapse
|
4
|
Chen JT, Zhan JB, Zhu MC, Li KJ, Liu MQ, Hu B, Cai K, Xiong HR, Chen SL, Tan WL, Chen LJ, Hou W. Diversity and genetic characterization of orthohantavirus from small mammals and humans during 2012-2022 in Hubei Province, Central China. Acta Trop 2024; 249:107046. [PMID: 37866727 DOI: 10.1016/j.actatropica.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a significant public health problem in Hubei Province, China, where a novel strain of orthohantavirus, HV004, was reported in 2012. However, no systematic study has investigated the prevalence and variation of orthohantavirus in rodents and humans. Herein, 2137 small mammals were collected from ten HFRS epidemic areas in Hubei Province from 2012 to 2022, and 143 serum samples from patients with suspected hemorrhagic fever were collected from two hospitals from 2017 to 2021. Orthohantavirus RNA was recovered from 134 lung tissue samples from five rodent species, with a 6.27 % prevalence, and orthohantavirus was detected in serum samples from 25 patients. Genetic analyses revealed that orthohantavirus hantanense (HTNV), orthohantavirus seoulense (SEOV), and orthohantavirus dabieshanense (DBSV) are co-circulating in rodents in Hubei, and HTNV and SEOV were identified in patient serum. Phylogenetic analysis showed that most of the HTNV sequences were clustered with HV004, indicating that HV004-like orthohantavirus was the main HNTV subtype in rodents. Two genetic reassortments and six recombination events were observed in Hubei orthohantaviruses. In summary, this study identified the diversity of orthohantaviruses circulating in Hubei over the past decade, with the HV004-like subtype being the main genotype in rodents and patients. These findings highlight the need for continued attention and focus on orthohantaviruses, especially concerning newly identified strains.
Collapse
Affiliation(s)
- Jin-Tao Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China
| | - Jian-Bo Zhan
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei 430079, China
| | - Ming-Chao Zhu
- Department of Clinical Laboratory, The First People's Hospital of Tianmen, 1 Jingling Renming Road, Tianmen, Hubei 431700, China
| | - Kai-Ji Li
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China
| | - Man-Qing Liu
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei 430015, China
| | - Bin Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei 430079, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei 430079, China
| | - Hai-Rong Xiong
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China
| | - Shu-Liang Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China
| | - Wei-Long Tan
- Department of Infection Disease, Nanjing Bioengineering (Gene) Technology Center for Medicines, 293 Zhongshan East Road, Nanjing, Jiangsu 210002, China
| | - Liang-Jun Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China.
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China; School of Public Health, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China; School of Ecology and Environment, Tibet University, 36 Jiangsu Road, Lhasa 850000, China.
| |
Collapse
|
5
|
Huang H, Fu M, Han P, Yin H, Yang Z, Kong Y, Wang B, Yang X, Ren T, Zhang Y. Clinical and Molecular Epidemiology of Hemorrhagic Fever with Renal Syndrome Caused by Orthohantaviruses in Xiangyun County, Dali Prefecture, Yunnan Province, China. Vaccines (Basel) 2023; 11:1477. [PMID: 37766153 PMCID: PMC10537480 DOI: 10.3390/vaccines11091477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease transmitted by several rodent species. We obtained clinical data of HFRS patients from the medical records of the People's Hospital of Xiangyun County in Dali Prefecture from July 2019 to August 2021. We collected epidemiological data of HFRS patients through interviews and investigated host animals using the night clip or night cage method. We systematically performed epidemiological analyses of patients and host animals. The differences in the presence of rodent activity at home (χ2 = 8.75, p = 0.031 < 0.05), of rodent-proof equipment in the food (χ2 = 9.19, p = 0.025 < 0.05), and of rodents or rodent excrement in the workplace (χ2 = 10.35, p = 0.014 < 0.05) were statistically different in the four clinical types, including mild, medium, severe, and critical HFRS-associated diseases. Furthermore, we conducted molecular detection of orthohantavirus in host animals. The total orthohantavirus infection rate of rodents was 2.72% (9/331); the specific infection rate of specific animal species was 6.10% (5/82) for the Apodemus chevrieri, 100% (1/1) for the Rattus nitidus, 3.77% (2/53) for the Rattus norvegicus, and 12.50% (1/8) for the Crocidura dracula. In this study, a total of 21 strains of orthohantavirus were detected in patients and rodents. The 12 orthohantavirus strains from patients showed a closer relationship with Seoul orthohantavirus (SEOOV) L0199, DLR2, and GZRn60 strains; the six orthohantavirus strains from Rattus norvegicus and Apodemus chevrieri were closely related to SEOOV GZRn60 strain. One strain (XYRn163) from Rattus norvegicus and one strain (XYR.nitidus97) from Rattus nitidus were closely related to SEOOV DLR2 strain; the orthohantavirus strain from Crocidura dracula was closely related to the Luxi orthohantavirus (LUXV) LX309 strain. In conclusion, patients with HFRS in Xuangyun County of Dali Prefecture are predominantly affected by SEOOV, with multiple genotypes of orthohantavirus in host animals, and, most importantly, these orthohantavirus strains constantly demonstrated zoonotic risk in humans.
Collapse
Affiliation(s)
- Hao Huang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Meng Fu
- School of Public Health, Kunming Medical University, Kunming 650000, China
| | - Peiyu Han
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Hongmin Yin
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Zi Yang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Yichen Kong
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650023, China
| | - Tilian Ren
- Department of Infection, People's Hospital of Xiangyun County, Dali 671000, China
| | - Yunzhi Zhang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China
| |
Collapse
|
6
|
Liu SW, Li JX, Zou L, Liu XQ, Xu G, Xiong Y, Long ZE. Orthohantavirus infections in humans and rodents in the Yichun region, China, from 2016 to 2021. PLoS Negl Trop Dis 2023; 17:e0011540. [PMID: 37552670 PMCID: PMC10437993 DOI: 10.1371/journal.pntd.0011540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/18/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Rodents are the predominant natural hosts of orthohantavirus and the source of human infection, hemorrhagic fever with renal syndrome (HFRS) caused by orthohantavirus is a severe public health problem in the Yichun region, Jiangxi Province, China. However, little information is known about the infection of orthohantavirus in humans and rodents, and the genetic characteristics of the epidemic orthohantavirus in the region. METHODS The clinical data of HFRS cases in 2016-2021 was analyzed. Virus infection in rodents was analyzed by orthohantavirus antigen detection using immunofluorescent assay, and the species of orthohantaviruses in rodents and patients were identified by real-time RT-PCR and gene sequencing. The S and M segments of orthohantaviruses from rodents and patients were recovered and analyzed. RESULTS A total of 1,573 HFRS cases were reported in the Yichun region from 2016 to 2021, including 11 death cases. HFRS cases peaked twice each year: in winter from November to January and early summer from May to June. Farmers constituted the predominant population suffering from HFRS. The orthohantavirus antigen was identified in five species of rodents: Apodemus agrarius (A. agrarius), Rattus norvegicus (R. norvegicus), Sorex araneus, Rattus losea (R. losea), and Niviventer confucianus (N. confucianus). The real-time RT-PCR test and genetic analysis results showed that Hantaan orthohantavirus (HTNV), Seoul orthohantavirus (SEOV), and Dabieshan orthohantavirus (DBSV) were circulated in the rodents. HTNV, SEOV, and DBSV from the rodents were distantly related to other known orthohantaviruses and belonged to novel genetic lineages. SEOV and HTNV were found in HFRS patients, but 97.8% (90/92) of the infections were caused by HTNV. Winter and early summer peaks were both caused by HTNV. The HTNV sequences recovered from HFRS cases were closely related to those from A. agrarius. CONCLUSIONS In the Yichun region, the orthohantaviruses transmitted in rodents include HTNV, SEOV, and DBSV, which have obvious genetic characteristics and high genetic diversity. At the same time, this region is an HFRS mixed epidemic area dominated by HTNV, with two peaks every year, which deserves our high attention.
Collapse
Affiliation(s)
- Shi-Wen Liu
- College of Life Sciences, Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, Jiangxi Normal University, Nanchang, Jiangxi, China
- Laboratory of Viral Infectious Disease, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Jian-Xiong Li
- Laboratory of Viral Infectious Disease, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Long Zou
- College of Life Sciences, Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xiao-Qing Liu
- Laboratory of Viral Infectious Disease, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Gang Xu
- Laboratory of Viral Infectious Disease, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Ying Xiong
- Laboratory of Viral Infectious Disease, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Zhong-Er Long
- College of Life Sciences, Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Sehgal A, Mehta S, Sahay K, Martynova E, Rizvanov A, Baranwal M, Chandy S, Khaiboullina S, Kabwe E, Davidyuk Y. Hemorrhagic Fever with Renal Syndrome in Asia: History, Pathogenesis, Diagnosis, Treatment, and Prevention. Viruses 2023; 15:v15020561. [PMID: 36851775 PMCID: PMC9966805 DOI: 10.3390/v15020561] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hemorrhagic Fever with Renal Syndrome (HFRS) is the most frequently diagnosed zoonosis in Asia. This zoonotic infection is the result of exposure to the virus-contaminated aerosols. Orthohantavirus infection may cause Hemorrhagic Fever with Renal Syndrome (HRFS), a disease that is characterized by acute kidney injury and increased vascular permeability. Several species of orthohantaviruses were identified as causing infection, where Hantaan, Puumala, and Seoul viruses are most common. Orthohantaviruses are endemic to several Asian countries, such as China, South Korea, and Japan. Along with those countries, HFRS tops the list of zoonotic infections in the Far Eastern Federal District of Russia. Recently, orthohantavirus circulation was demonstrated in small mammals in Thailand and India, where orthohantavirus was not believed to be endemic. In this review, we summarized the current data on orthohantaviruses in Asia. We gave the synopsis of the history and diversity of orthohantaviruses in Asia. We also described the clinical presentation and current understanding of the pathogenesis of orthohantavirus infection. Additionally, conventional and novel approaches for preventing and treating orthohantavirus infection are discussed.
Collapse
Affiliation(s)
- Ayushi Sehgal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sanya Mehta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Ekaterina Martynova
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Albert Rizvanov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sara Chandy
- Childs Trust Medical Research Foundation, Kanchi Kamakoti Childs Trust Hospital, Chennai 600034, India
| | - Svetlana Khaiboullina
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Emmanuel Kabwe
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan Research Institute of Epidemiology and Microbiology, Kazan 420012, Russia
| | - Yuriy Davidyuk
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence:
| |
Collapse
|
8
|
Characterization of a Panel of Cross-Reactive Hantavirus Nucleocapsid Protein-Specific Monoclonal Antibodies. Viruses 2023; 15:v15020532. [PMID: 36851747 PMCID: PMC9958643 DOI: 10.3390/v15020532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Hantaviruses are emerging pathogens with a worldwide distribution that can cause life-threatening diseases in humans. Monoclonal antibodies (MAbs) against hantavirus nucleocapsid (N) proteins are important tools in virus diagnostics, epidemiological studies and basic research studies on virus replication and pathogenesis. Here, we extend the collection of previously generated MAbs raised against a segment of Puumala orthohantavirus (PUUV) N protein harbored on virus-like particles (VLPs) and MAbs against N proteins of Sin Nombre orthohantavirus/Andes orthohantavirus by generating nine novel MAbs against N proteins of Dobrava-Belgrade orthohantavirus (DOBV), Tula orthohantavirus (TULV), Thottapalayam thottimvirus (TPMV) and PUUV. In order to have a wide collection of well-described hantavirus-specific MAbs, the cross-reactivity of novel and previously generated MAbs was determined against N proteins of 15 rodent- and shrew-borne hantaviruses by different immunological methods. We found that all MAbs, excluding TPMV-specific MAbs, demonstrated different cross-reactivity patterns with N proteins of hantaviruses and recognized native viral antigens in infected mammalian cells. This well-characterized collection of cross-reactive hantavirus-specific MAbs has a potential application in various fields of hantavirus research, diagnostics and therapy.
Collapse
|
9
|
Epidemiology of Group A rotavirus in rodents and shrews in Bangladesh. Vet Res Commun 2023; 47:29-38. [PMID: 35380357 PMCID: PMC8980207 DOI: 10.1007/s11259-022-09923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/29/2022] [Indexed: 01/27/2023]
Abstract
Rodents and shrews live in close proximity to humans and have been identified as important hosts of zoonotic pathogens. This study aimed to detect Group A rotavirus (RVA) and its potential risk factors in rodents and shrews in Bangladesh. We captured 417 small mammals from 10 districts with a high degree of contact between people and domestic animals and collected rectal swab samples between June 2011 and October 2013. We tested the swab samples for RVA RNA, targeting the NSP3 gene segment using real-time reverse transcription-polymerase chain reaction (rRT-PCR). Overall, RVA prevalence was the same (6.7%) in both rodents and shrews. We detected RVA RNA in 5.3% of Bandicota bengalensis (4/76; 95% CI: 1.4-12.9), 5.1% of B. indica (4/79; 95% CI: 1.4-12.4), 18.2% of Mus musculus (4/22; 95% CI: 5.2-40.3), 6.7% of Rattus rattus (6/90; 95% CI: 2.5-13.9), and 6.7% of Suncus murinus (10/150; 95% CI: 3.2-11.9). We found significantly more RVA in males (10.4%; OR: 3.4; P = 0.007), animals with a poor body condition score (13.9%; OR: 2.7; P = 0.05), during wet season (8.3%; OR: 4.1; P = 0.032), and in urban land gradients (10.04%; OR: 2.9; P = 0.056). These findings form a basis for understanding the prevalence of rotaviruses circulating among rodents and shrews in this region. We recommend additional molecular studies to ascertain the genotype and zoonotic potential of RVA circulating in rodents and shrews in Bangladesh.
Collapse
|
10
|
Wei X, Meng B, Peng H, Li Y, Liu M, Si H, Wu R, Chen H, Bai Y, Li Y, Feng Q, Wang C, Zhao X. Hemorrhagic fever with renal syndrome caused by destruction of residential area of rodent in a construction site: epidemiological investigation. BMC Infect Dis 2022; 22:761. [PMID: 36175847 PMCID: PMC9521858 DOI: 10.1186/s12879-022-07744-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND An outbreak of hemorrhagic fever with renal syndrome (HFRS), caused by a Hantavirus, affected nine adult males in the southwest area of Xi'an in November 2020 was analyzed in this study. METHODS Clinical and epidemiological data of HFRS patients in this outbreak were retrospectively analyzed. The whole genome of a hantavirus named 201120HV03xa (hv03xa for short) isolated from Apodemus agrarius captured in the construction site was sequenced and analyzed. In addition, nine HFRS patients were monitored for the IgG antibody against the HV N protein at 6 and 12 months, respectively. RESULTS In this study, inhalation of aerosolized excreta and contaminated food may be the main source of infection. Genome analysis and phylogenetic analysis showed that hv03xa is a reassortment strain of HTNV, having an S segment related to A16 of HTN 4, an M segment related to Q37 and Q10 of HTN 4, and an L segment related to prototype strain 76-118 of HTN 7. Potential recombination was detected in the S segment of hv03xa strain. The anti-HV-IgG level of all the patients persist for at least one year after infection. CONCLUSIONS This report documented an HFRS outbreak in Xi'an, China, which provided the basic data for epidemiological surveillance of endemic HTNV infection and facilitated to predict disease risk and implement prevention measures.
Collapse
Affiliation(s)
- Xiao Wei
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Biao Meng
- Centers for Disease Control and Prevention of PLA, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hong Peng
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Yan Li
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Min Liu
- PLA 63750 Military Hospital, Xi'an, Shaanxi, China
| | - Hairui Si
- PLA 63750 Military Hospital, Xi'an, Shaanxi, China
| | - Rui Wu
- Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Hailong Chen
- Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Ying Bai
- PLA 63750 Military Hospital, Xi'an, Shaanxi, China
| | - Yan Li
- PLA 63750 Military Hospital, Xi'an, Shaanxi, China
| | - Qunling Feng
- PLA 63750 Military Hospital, Xi'an, Shaanxi, China.
| | - Changjun Wang
- Centers for Disease Control and Prevention of PLA, Beijing, China. .,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
| | - Xiangna Zhao
- Centers for Disease Control and Prevention of PLA, Beijing, China. .,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Teng AY, Che TL, Zhang AR, Zhang YY, Xu Q, Wang T, Sun YQ, Jiang BG, Lv CL, Chen JJ, Wang LP, Hay SI, Liu W, Fang LQ. Mapping the viruses belonging to the order Bunyavirales in China. Infect Dis Poverty 2022; 11:81. [PMID: 35799306 PMCID: PMC9264531 DOI: 10.1186/s40249-022-00993-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral pathogens belonging to the order Bunyavirales pose a continuous background threat to global health, but the fact remains that they are usually neglected and their distribution is still ambiguously known. We aim to map the geographical distribution of Bunyavirales viruses and assess the environmental suitability and transmission risk of major Bunyavirales viruses in China. METHODS We assembled data on all Bunyavirales viruses detected in humans, animals and vectors from multiple sources, to update distribution maps of them across China. In addition, we predicted environmental suitability at the 10 km × 10 km pixel level by applying boosted regression tree models for two important Bunyavirales viruses, including Crimean-Congo hemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV). Based on model-projected risks and air travel volume, the imported risk of RVFV was also estimated from its endemic areas to the cities in China. RESULTS Here we mapped all 89 species of Bunyavirales viruses in China from January 1951 to June 2021. Nineteen viruses were shown to infect humans, including ten species first reported as human infections. A total of 447,848 cases infected with Bunyavirales viruses were reported, and hantaviruses, Dabie bandavirus and Crimean-Congo hemorrhagic fever virus (CCHFV) had the severest disease burden. Model-predicted maps showed that Xinjiang and southwestern Yunnan had the highest environmental suitability for CCHFV occurrence, mainly related to Hyalomma asiaticum presence, while southern China had the highest environmental suitability for Rift Valley fever virus (RVFV) transmission all year round, mainly driven by livestock density, mean precipitation in the previous month. We further identified three cities including Guangzhou, Beijing and Shanghai, with the highest imported risk of RVFV potentially from Egypt, South Africa, Saudi Arabia and Kenya. CONCLUSIONS A variety of Bunyavirales viruses are widely distributed in China, and the two major neglected Bunyavirales viruses including CCHFV and RVFV, both have the potential for outbreaks in local areas of China. Our study can help to promote the understanding of risk distribution and disease burden of Bunyavirales viruses in China, and the risk maps of CCHFV and RVFV occurrence are crucial to the targeted surveillance and control, especially in seasons and locations at high risk.
Collapse
Affiliation(s)
- Ai-Ying Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Tian-Le Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - An-Ran Zhang
- Department of Research, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Yan-Qun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Li-Ping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China.
| |
Collapse
|
12
|
Zhao T, Dang YQ, Wang AN, Gao HT, Zhang HD, Xing D, Li BQ, Li YJ, Liu Z, Li CX. Viral Metagenomics Analysis of Rodents From Two Border Provinces Located in Northeast and Southwest China. Front Microbiol 2022; 12:701089. [PMID: 35265046 PMCID: PMC8899188 DOI: 10.3389/fmicb.2021.701089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Wild animal pathogen surveillance will help to understand the next possible pandemic in advance. Rodents, which have close contact with humans, are generally regarded as a key factor for zoonotic disease control. Given the variation in rodent virus composition in diverse ecologies, we conducted a study on the viral infection of rodents of diverse species in different typical environments of Heilongjiang and Yunnan Provinces, located in northeastern and southwestern China, respectively. Methods Viral metagenomics sequencing and bioinformatic analysis were performed to determine the different distributions of rodent-borne viruses in typical environments of Heilongjiang and Yunnan Provinces, China. After viral culture and PCR confirmation, genomic and phylogenetic quantitative analysis was performed on the detected hantaviruses (HVs) and Beilong viruses (BeiVs). Results Nineteen rodents from three species and 35 rodents from five species of rodents were collected from Heilongjiang and Yunnan Provinces, respectively. Although the number and number of species of rodents trapped in the northeast were fewer than those in the southwest, viruses annotated from rodents in Heilongjiang were more diverse than those in Yunnan. Rodents carried 22 virus families in Heilongjiang and 13 families in Yunnan. Sequences assembled from Rattus norvegicus were annotated to the M, L, and S segments of HV, and all were clustered within the Seoul-type hantavirus (SEOV). There were 2 (R81Q, S698T) and 4 (K153R, M168I, I279S, and R1790K) amino acid site substitutions in M and L compared with the versions in the most homologous strains. Two BeiV isolates from Rattus norvegicus were closely related to BeiV from brown rats in Hong Kong, with high bootstrap values of >90% in the N segment and > 95% in the L segment. They were further clustered with Tailam virus, forming a distinct group in Paramyxoviridae. Conclusion The rodents from Heilongjiang and Yunnan located in northeast and southwest China, respectively, had different viral spectra, and only one-third (10/32) of virus families were detected in both areas. The predominant viruses were HV and BeiV in the Hantaviridae and Paramyxoviridae families, respectively. Rodent-borne viruses in the same species were similar in different geographic disparate areas owing to their similar close contact with human habitats and human activities. Additional attention should be given to the monitoring of neglected rodent-borne viruses, especially opportunistic viruses with currently low loads.
Collapse
Affiliation(s)
- Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yun-Qi Dang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science and Technology, Mudanjiang Normal University, Heilongjiang, China
| | - Ao-Nan Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science and Technology, Mudanjiang Normal University, Heilongjiang, China
| | - He-Ting Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Heng-Duan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo-Qi Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science and Technology, Mudanjiang Normal University, Heilongjiang, China
| | | | - Zhu Liu
- College of Life Science and Technology, Mudanjiang Normal University, Heilongjiang, China
| | - Chun-Xiao Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
13
|
Wang QW, Tao L, Lu SY, Zhu CQ, Ai LL, Luo Y, Yu RB, Lv H, Zhang Y, Wang CC, Tan WL. Genetic and hosts characterization of hantaviruses in port areas in Hainan Province, P. R. China. PLoS One 2022; 17:e0264859. [PMID: 35239751 PMCID: PMC8893628 DOI: 10.1371/journal.pone.0264859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hantaviruses (HVs) are major zoonotic pathogens in China that cause hemorrhagic fever with renal syndrome (HFRS) posing a major threat to people's health. Hainan Province, an island located in Southeast China, is an ideal region for sea ports. The unique tropical monsoon climate in Hainan provides sufficient living conditions for rodents, which help spread HVs and other rodent-borne diseases. In the routine monitoring of hantavirus, there was no evidence that rodents in Hainan carried hantavirus. No patients infected with hantavirus were found in the past. However, the surveillance of HVs-carrying rodents covering the whole territory of Hainan has not stopped. METHODOLOGY/PRINCIPAL FINDINGS For the monitoring of the prevalence of HVs in rodents and the search for theoretical reference for rodent control and HFRS prevention, a total of 60 rodents from 6 monitoring spots were trapped around main ports in Hainan between 2016 and 2019. HV positive samples were identified by a specific kit and sequenced. The data indicated that seven rodents (Rattus norvegicus) were positive for hantavirus with a positivity rate of 11.67%. Phylogenetic analysis suggested that the two complete sequence strains HN1 and HN4 in this research were highly similar to the sequence strains GZRn36 and GZRn148 isolated in Guangdong Province, and they located in the same phylogenetic tree branch which belongs to S2 subtype. Although the two partial sequences HT1 and HT2 isolated in Xisha Islands belong to S2 subtype according to the phylogenetic tree of L segment, they showed a great nucleotide difference with HN1 and HN4. We also found 13 amino acid variations compared with SEOV 80-39 and 6 amino acid mutations related to epitope, and the variations may reduce the effectiveness of the current HFRS vaccines used in humans. CONCLUSIONS/SIGNIFICANCE The study indicated HVs carried by rodents found in Hainan Province may be transmitted from Guangdong Province through trading ports and carriage of goods by sea. So it is of great significance to strengthen the surveillance of rodents in port areas especially capture and eliminate rodents on ship. Timely elimination of host animals of hantavirus in port areas is necessary to prevent an outbreak of HVs disease.
Collapse
Affiliation(s)
- Qiu-wei Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Li Tao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Su-ying Lu
- Hainan International Travel Healthcare Center, Haikou, China
| | - Chang-qiang Zhu
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Le-le Ai
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Yizhe Luo
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Rong-bin Yu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Heng Lv
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Yun Zhang
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Chong-cai Wang
- Hainan International Travel Healthcare Center, Haikou, China
| | - Wei-long Tan
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| |
Collapse
|
14
|
Ge D, Feijó A, Wen Z, Abramov AV, Lu L, Cheng J, Pan S, Ye S, Xia L, Jiang X, Vogler AP, Yang Q. Demographic History and Genomic Response to Environmental Changes in a Rapid Radiation of Wild Rats. Mol Biol Evol 2021; 38:1905-1923. [PMID: 33386846 PMCID: PMC8097305 DOI: 10.1093/molbev/msaa334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
For organisms to survive and prosper in a harsh environment, particularly under rapid climate change, poses tremendous challenges. Recent studies have highlighted the continued loss of megafauna in terrestrial ecosystems and the subsequent surge of small mammals, such as rodents, bats, lagomorphs, and insectivores. However, the ecological partitioning of these animals will likely lead to large variation in their responses to environmental change. In the present study, we investigated the evolutionary history and genetic adaptations of white-bellied rats (Niviventer Marshall, 1976), which are widespread in the natural terrestrial ecosystems in Asia but also known as important zoonotic pathogen vectors and transmitters. The southeastern Qinghai-Tibet Plateau was inferred as the origin center of this genus, with parallel diversification in temperate and tropical niches. Demographic history analyses from mitochondrial and nuclear sequences of Niviventer demonstrated population size increases and range expansion for species in Southeast Asia, and habitat generalists elsewhere. Unexpectedly, population increases were seen in N. eha, which inhabits the highest elevation among Niviventer species. Genome scans of nuclear exons revealed that among the congeneric species, N. eha has the largest number of positively selected genes. Protein functions of these genes are mainly related to olfaction, taste, and tumor suppression. Extensive genetic modification presents a major strategy in response to global changes in these alpine species.
Collapse
Affiliation(s)
- Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Alexei V Abramov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia.,Joint Russian-Vietnamese Tropical Research and Technological Centre, Hanoi, Vietnam
| | - Liang Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Shengkai Pan
- CAS Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sicheng Ye
- Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Xuelong Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, United Kingdom
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
15
|
Ata G, Wang H, Bai H, Yao X, Tao S. Edging on Mutational Bias, Induced Natural Selection From Host and Natural Reservoirs Predominates Codon Usage Evolution in Hantaan Virus. Front Microbiol 2021; 12:699788. [PMID: 34276633 PMCID: PMC8283416 DOI: 10.3389/fmicb.2021.699788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The molecular evolutionary dynamics that shape hantaviruses’ evolution are poorly understood even now, besides the contribution of virus-host interaction to their evolution remains an open question. Our study aimed to investigate these two aspects in Hantaan virus (HTNV)—the prototype of hantaviruses and an emerging zoonotic pathogen that infects humans, causing hemorrhagic fever with renal syndrome (HFRS): endemic in Far East Russia, China, and South Korea—via a comprehensive, phylogenetic-dependent codon usage analysis. We found that host- and natural reservoir-induced natural selection is the primary determinant of its biased codon choices, exceeding the mutational bias effect. The phylogenetic analysis of HTNV strains resulted in three distinct clades: South Korean, Russian, and Chinese. An effective number of codon (ENC) analysis showed a slightly biased codon usage in HTNV genomes. Nucleotide composition and RSCU analyses revealed a significant bias toward A/U nucleotides and A/U-ended codons, indicating the potential influence of mutational bias on the codon usage patterns of HTNV. Via ENC-plot, Parity Rule 2 (PR2), and neutrality plot analyses, we would conclude the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of HTNV; however, natural selection is the dominant factor influencing its codon usage bias. Codon adaptation index (CAI), Relative codon deoptimization index (RCDI), and Similarity Index (SiD) analyses uncovered the intense selection pressure from the host (Human) and natural reservoirs (Striped field mouse and Chinese white-bellied rat) in shaping HTNV biased codon choices. Our study clearly revealed the evolutionary processes in HTNV and the role of virus-host interaction in its evolution. Moreover, it opens the door for a more comprehensive codon usage analysis for all hantaviruses species to determine their molecular evolutionary dynamics and adaptability to several hosts and environments. We believe that our research will help in a better and deep understanding of HTNV evolution that will serve its future basic research and aid live attenuated vaccines design.
Collapse
Affiliation(s)
- Galal Ata
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Haoxiang Bai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
16
|
Knust B, Brown S, de St Maurice A, Whitmer S, Koske SE, Ervin E, Patel K, Graziano J, Morales-Betoulle ME, House J, Cannon D, Kerins J, Holzbauer S, Austin C, Gibbons-Burgener S, Colton L, Dunn J, Zufan S, Choi MJ, Davis WR, Chiang CF, Manning CR, Roesch L, Shoemaker T, Purpura L, McQuiston J, Peterson D, Radcliffe R, Garvey A, Christel E, Morgan L, Scheftel J, Kazmierczak J, Klena JD, Nichol ST, Rollin PE. Seoul Virus Infection and Spread in United States Home-Based Ratteries: Rat and Human Testing Results From a Multistate Outbreak Investigation. J Infect Dis 2021; 222:1311-1319. [PMID: 32484879 DOI: 10.1093/infdis/jiaa307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/31/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND During 2017, a multistate outbreak investigation occurred after the confirmation of Seoul virus (SEOV) infections in people and pet rats. A total of 147 humans and 897 rats were tested. METHODS In addition to immunoglobulin (Ig)G and IgM serology and traditional reverse-transcription polymerase chain reaction (RT-PCR), novel quantitative RT-PCR primers/probe were developed, and whole genome sequencing was performed. RESULTS Seventeen people had SEOV IgM, indicating recent infection; 7 reported symptoms and 3 were hospitalized. All patients recovered. Thirty-one facilities in 11 US states had SEOV infection, and among those with ≥10 rats tested, rat IgG prevalence ranged 2%-70% and SEOV RT-PCR positivity ranged 0%-70%. Human laboratory-confirmed cases were significantly associated with rat IgG positivity and RT-PCR positivity (P = .03 and P = .006, respectively). Genomic sequencing identified >99.5% homology between SEOV sequences in this outbreak, and these were >99% identical to SEOV associated with previous pet rat infections in England, the Netherlands, and France. Frequent trade of rats between home-based ratteries contributed to transmission of SEOV between facilities. CONCLUSIONS Pet rat owners, breeders, and the healthcare and public health community should be aware and take steps to prevent SEOV transmission in pet rats and to humans. Biosecurity measures and diagnostic testing can prevent further infections.
Collapse
Affiliation(s)
- Barbara Knust
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shelley Brown
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Shannon Whitmer
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah E Koske
- Wisconsin Department of Health Services, Madison, Wisconsin, USA
| | - Elizabeth Ervin
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ketan Patel
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James Graziano
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Jennifer House
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Deborah Cannon
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Janna Kerins
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Chicago Department of Public Health, Chicago, Illinois, USA
| | | | - Connie Austin
- Illinois Department of Public Health, Springfield, Illinois, USA
| | | | - Leah Colton
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - John Dunn
- Tennessee Department of Health, Nashville, Tennessee, USA
| | - Sara Zufan
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mary Joung Choi
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - William R Davis
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cheng-Feng Chiang
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Craig R Manning
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Linda Roesch
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Trevor Shoemaker
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lawrence Purpura
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer McQuiston
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Rachel Radcliffe
- South Carolina Department of Health and Environmental Control, Columbia, South Carolina, USA
| | - Ann Garvey
- South Carolina Department of Health and Environmental Control, Columbia, South Carolina, USA
| | | | - Laura Morgan
- Manitowoc County Health Department, Manitowoc, Wisconsin, USA
| | - Joni Scheftel
- Minnesota Department of Health, St. Paul, Minnesota, USA
| | | | - John D Klena
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stuart T Nichol
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Pierre E Rollin
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
17
|
Yashina LN, Hay J, Smetannikova NA, Kushnareva TV, Iunikhina OV, Kompanets GG. Hemorrhagic Fever With Renal Syndrome in Vladivostok City, Russia. Front Public Health 2021; 9:620279. [PMID: 33614585 PMCID: PMC7892620 DOI: 10.3389/fpubh.2021.620279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a public health problem in Vladivostok city, Russia. From 1997 to 2019, a study of hantaviruses in Norway rats (Rattus norvegicus), a natural reservoir of Seoul virus (SEOV), and in HFRS patients was conducted. We demonstrated the presence of SEOV in the local population of Norway rats and detected SEOV in 10, Amur virus (AMRV) in 4 and Hantaan virus (HTNV) in 1 out of 15 HFRS patients. Genetic analysis based on partial S, M and L segment sequences revealed that the Russian SEOV strains were related most closely to strains from Cambodia and Vietnam. We postulate that the SEOV strains found in the port city of Vladivostok have been spread from South-East Asia as a result of distribution of rats during standard shipping trade activities. Moreover, we suggest that city residents may have acquired AMRV and HTNV infection during visits to rural areas.
Collapse
Affiliation(s)
- Liudmila N Yashina
- Department of Genomic Research, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - John Hay
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Natalia A Smetannikova
- Department of Genomic Research, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Tatiana V Kushnareva
- Department of Microbiology and Virology, Pacific State Medical University, Vladivostok, Russia
| | - Olga V Iunikhina
- Laboratory of Experimental Virology, Somov Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | - Galina G Kompanets
- Laboratory of Experimental Virology, Somov Institute of Epidemiology and Microbiology, Vladivostok, Russia
| |
Collapse
|
18
|
Wang Q, Yue M, Yao P, Zhu C, Ai L, Hu D, Zhang B, Yang Z, Yang X, Luo F, Wang C, Hou W, Tan W. Epidemic Trend and Molecular Evolution of HV Family in the Main Hantavirus Epidemic Areas From 2004 to 2016, in P.R. China. Front Cell Infect Microbiol 2021; 10:584814. [PMID: 33614521 PMCID: PMC7886990 DOI: 10.3389/fcimb.2020.584814] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/22/2020] [Indexed: 01/29/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is caused by hantavirus (HV) infection, and is prevalent across Europe and Asia (mainly China). The genetic variation and wide host range of the HV family may lead to vaccine failure. In this study, we analyzed the gene sequences of HV isolated from different regions of China in order to trace the molecular evolution of HV and the epidemiological trends of HFRS. A total of 16,6975 HFRS cases and 1,689 HFRS-related deaths were reported from 2004 to 2016, with the average annual incidence rate of 0.9674 per 100,000, 0.0098 per 100,000 mortality rate, and case fatality rate 0.99%. The highest number of cases were detected in 2004 (25,041), and after decreasing to the lowest numbers (8,745) in 2009, showed an incline from 2010. The incidence of HFRS is the highest in spring and winter, and three times as many men are affected as women. In addition, farmers account for the largest proportion of all cases. The main hosts of HV are Rattus norvegicus and Apodemus agrarius, and the SEOV strain is mainly found in R. norvegicus and Niviventer confucianus. Phylogenetic analysis showed that at least 10 HTNV subtypes and 6 SEOV subtypes are endemic to China. We found that the clustering pattern of M genome segments was different from that of the S segments, indicating the possibility of gene recombination across HV strains. The recent increase in the incidence of HFRS may be related to climatic factors, such as temperature, relative humidity and hours of sunshine, as well as biological factors like rodent density, virus load in rodents and genetic variation. The scope of vaccine application should be continuously expanded, and surveillance measures and prevention and control strategies should be improved to reduce HFRS infection in China.
Collapse
Affiliation(s)
- Qiuwei Wang
- Department of Infectious Disease Prevention and Control, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pingping Yao
- Department of Microbiological Test, Zhejiang Provincial Center For Disease Control and Prevention, Hangzhou, China
| | - Changqiang Zhu
- Department of Infectious Disease Prevention and Control, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Lele Ai
- Department of Infectious Disease Prevention and Control, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Dan Hu
- Department of Infectious Disease Prevention and Control, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Bin Zhang
- Department of Infectious Disease Prevention and Control, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Zhangnv Yang
- Department of Microbiological Test, Zhejiang Provincial Center For Disease Control and Prevention, Hangzhou, China
| | - Xiaohong Yang
- Department of Infectious Disease Prevention and Control, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Fan Luo
- State Key Laboratory of Virology/Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chunhui Wang
- Department of Infectious Disease Prevention and Control, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Wei Hou
- State Key Laboratory of Virology/Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Weilong Tan
- Department of Infectious Disease Prevention and Control, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
19
|
Wang Q, Yue M, Yao P, Zhu C, Ai L, Hu D, Zhang B, Yang Z, Yang X, Luo F, Wang C, Hou W, Tan W. Epidemic Trend and Molecular Evolution of HV Family in the Main Hantavirus Epidemic Areas From 2004 to 2016, in P.R. China. Front Cell Infect Microbiol 2021; 10. [DOI: https:/doi.org/10.3389/fcimb.2020.584814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is caused by hantavirus (HV) infection, and is prevalent across Europe and Asia (mainly China). The genetic variation and wide host range of the HV family may lead to vaccine failure. In this study, we analyzed the gene sequences of HV isolated from different regions of China in order to trace the molecular evolution of HV and the epidemiological trends of HFRS. A total of 16,6975 HFRS cases and 1,689 HFRS-related deaths were reported from 2004 to 2016, with the average annual incidence rate of 0.9674 per 100,000, 0.0098 per 100,000 mortality rate, and case fatality rate 0.99%. The highest number of cases were detected in 2004 (25,041), and after decreasing to the lowest numbers (8,745) in 2009, showed an incline from 2010. The incidence of HFRS is the highest in spring and winter, and three times as many men are affected as women. In addition, farmers account for the largest proportion of all cases. The main hosts of HV are Rattus norvegicus and Apodemus agrarius, and the SEOV strain is mainly found in R. norvegicus and Niviventer confucianus. Phylogenetic analysis showed that at least 10 HTNV subtypes and 6 SEOV subtypes are endemic to China. We found that the clustering pattern of M genome segments was different from that of the S segments, indicating the possibility of gene recombination across HV strains. The recent increase in the incidence of HFRS may be related to climatic factors, such as temperature, relative humidity and hours of sunshine, as well as biological factors like rodent density, virus load in rodents and genetic variation. The scope of vaccine application should be continuously expanded, and surveillance measures and prevention and control strategies should be improved to reduce HFRS infection in China.
Collapse
|
20
|
Kim WK, Cho S, Lee SH, No JS, Lee GY, Park K, Lee D, Jeong ST, Song JW. Genomic Epidemiology and Active Surveillance to Investigate Outbreaks of Hantaviruses. Front Cell Infect Microbiol 2021; 10:532388. [PMID: 33489927 PMCID: PMC7819890 DOI: 10.3389/fcimb.2020.532388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging and re-emerging RNA viruses pose significant public health, economic, and societal burdens. Hantaviruses (genus Orthohantavirus, family Hantaviridae, order Bunyavirales) are enveloped, negative-sense, single-stranded, tripartite RNA viruses that are emerging zoonotic pathogens harbored by small mammals such as rodents, bats, moles, and shrews. Orthohantavirus infections cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome in humans (HCPS). Active targeted surveillance has elucidated high-resolution phylogeographic relationships between patient- and rodent-derived orthohantavirus genome sequences and identified the infection source by temporally and spatially tracking viral genomes. Active surveillance of patients with HFRS entails 1) recovering whole-genome sequences of Hantaan virus (HTNV) using amplicon (multiplex PCR-based) next-generation sequencing, 2) tracing the putative infection site of a patient by administering an epidemiological questionnaire, and 3) collecting HTNV-positive rodents using targeted rodent trapping. Moreover, viral genome tracking has been recently performed to rapidly and precisely characterize an outbreak from the emerging virus. Here, we reviewed genomic epidemiological and active surveillance data for determining the emergence of zoonotic RNA viruses based on viral genomic sequences obtained from patients and natural reservoirs. This review highlights the recent studies on tracking viral genomes for identifying and characterizing emerging viral outbreaks worldwide. We believe that active surveillance is an effective method for identifying rodent-borne orthohantavirus infection sites, and this report provides insights into disease mitigation and preparedness for managing emerging viral outbreaks.
Collapse
Affiliation(s)
- Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Seung-Ho Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Jin Sun No
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Daesang Lee
- 4th R&D Institute, Agency for Defense Development, Daejeon, South Korea
| | - Seong Tae Jeong
- 4th R&D Institute, Agency for Defense Development, Daejeon, South Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Tian H, Tie WF, Li H, Hu X, Xie GC, Du LY, Guo WP. Orthohantaviruses infections in humans and rodents in Baoji, China. PLoS Negl Trop Dis 2020; 14:e0008778. [PMID: 33075097 PMCID: PMC7595615 DOI: 10.1371/journal.pntd.0008778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/29/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, hemorrhagic fever with renal syndrome (HFRS) incidence has been becoming a severe public health problem again due to its significant increase in Shaanxi Province, China. Baoji, located in the Guanzhong Plain in the central part of Shaanxi Province, has been severely affected by HFRS since its first emergence in 1955. To better understand the epidemiology of orthohantaviruses infection in humans and the causative agents carried by the rodents, the long-term incidence patterns were analyzed and a molecular epidemiological investigation of orthohantaviruses infection in humans and rodents was performed. During 1984-2019, 13,042 HFRS cases were registered in Baoji, including 275 death cases. Except the first high prevalence of HFRS in 1988-1993, another two epidemic peaks were observed in 1998-2003 and 2012, respectively, although vaccination project was started since 1996. During the same period, HFRS cases in Baoji mainly were recorded in winter suggesting they may be caused by Hantaan orthohantavirus (HTNV), while a small peak of HFRS was also found in summer with unknown reason. Nucleotide identity and phylogenetic analyses demonstrated that a novel clade of HTNV sequences recovered from HFRS cases were closely related to those from rodents, including species close contact with humans, suggesting a direct viral transmission from rodents to humans and the important role in the HTNV transmission the nontraditional rodent hosts may play. Moreover, two distant related Dabieshan orthohantavirus (DBSV) lineages were also identified in Niviventer niviventer in this area demonstrating its considerable genetic diversity. Our data indicated that continual spillover of HTNV from rodents to humans, contributing to the high prevalence of HFRS in humans in Baoji.
Collapse
Affiliation(s)
- Hui Tian
- Baoji Center for Disease Control and Prevention, Baoji, Shaanxi, China
| | - Wei-Fang Tie
- College of Hetao, Bayannur, Inner Mongolia, China
| | - Hongbing Li
- Baoji Center for Disease Control and Prevention, Baoji, Shaanxi, China
| | - Xiaoqian Hu
- Baoji Center for Disease Control and Prevention, Baoji, Shaanxi, China
| | - Guang-Cheng Xie
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Luan-Ying Du
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Wen-Ping Guo
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
22
|
Kabwe E, Davidyuk Y, Shamsutdinov A, Garanina E, Martynova E, Kitaeva K, Malisheni M, Isaeva G, Savitskaya T, Urbanowicz RA, Morzunov S, Katongo C, Rizvanov A, Khaiboullina S. Orthohantaviruses, Emerging Zoonotic Pathogens. Pathogens 2020; 9:E775. [PMID: 32971887 PMCID: PMC7558059 DOI: 10.3390/pathogens9090775] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/23/2022] Open
Abstract
Orthohantaviruses give rise to the emerging infections such as of hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in Eurasia and the Americas, respectively. In this review we will provide a comprehensive analysis of orthohantaviruses distribution and circulation in Eurasia and address the genetic diversity and evolution of Puumala orthohantavirus (PUUV), which causes HFRS in this region. Current data indicate that the geographical location and migration of the natural hosts can lead to the orthohantaviruses genetic diversity as the rodents adapt to the new environmental conditions. The data shows that a high level of diversity characterizes the genome of orthohantaviruses, and the PUUV genome is the most divergent. The reasons for the high genome diversity are mainly caused by point mutations and reassortment, which occur in the genome segments. However, it still remains unclear whether this diversity is linked to the disease's severity. We anticipate that the information provided in this review will be useful for optimizing and developing preventive strategies of HFRS, an emerging zoonosis with potentially very high mortality rates.
Collapse
Affiliation(s)
- Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Anton Shamsutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Ekaterina Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Kristina Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | | | - Guzel Isaeva
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Tatiana Savitskaya
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Richard A. Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham NG7 2UH, UK;
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sergey Morzunov
- Department of Pathology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Cyprian Katongo
- Department of Biological Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
23
|
Shang C, Sun Y, Yin Q, Huang X, Liu X, Zhang Q, Mao L, Li C, Li A, Wang Q, Sun L, Liang M, Wang S, Li D, Li J. Hemorrhagic Fever with Renal Syndrome - Liaoning Province, China, 1999-2018. China CDC Wkly 2020; 2:350-354. [PMID: 34594659 PMCID: PMC8393047 DOI: 10.46234/ccdcw2020.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/27/2020] [Indexed: 11/14/2022] Open
Abstract
What is already known on this topic? Hemorrhagic fever with renal syndrome (HFRS) is endemic in Liaoning Province. Both Seoul and Hantaan virus are circulating in rodents, and epidemic outbreaks and sporadic cases have been recorded every year since the disease was recognized. What is added by this report? The epidemic trend of HFRS over the past 20 years (1999-2018) in Liaoning was analyzed, which showed both regional complexity and consistence with the epidemic in China. Genetic and antigenic stability of the circulating hantavirus were demonstrated, which suggested the effectiveness of the approved inactivated vaccine currently used in China. What are the implications for public health practice? Precise risk-based strategic practices that are integrated and regional are required for further improvement of the prevention and control of HFRS.
Collapse
Affiliation(s)
- Cui Shang
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingwei Sun
- Institute for prevention and control of infection and infectious diseases, Center for Disease Control and Prevention of Liaoning Province, Shenyang, Liaoning, China
| | - Qiangling Yin
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoxia Huang
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuesheng Liu
- Institute for prevention and control of infection and infectious diseases, Center for Disease Control and Prevention of Liaoning Province, Shenyang, Liaoning, China
| | - Quanfu Zhang
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingling Mao
- Institute for prevention and control of infection and infectious diseases, Center for Disease Control and Prevention of Liaoning Province, Shenyang, Liaoning, China
| | - Chuan Li
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aqian Li
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qin Wang
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lina Sun
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mifang Liang
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shiwen Wang
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dexin Li
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiandong Li
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
24
|
Li Y, Cazelles B, Yang G, Laine M, Huang ZXY, Cai J, Tan H, Stenseth NC, Tian H. Intrinsic and extrinsic drivers of transmission dynamics of hemorrhagic fever with renal syndrome caused by Seoul hantavirus. PLoS Negl Trop Dis 2019; 13:e0007757. [PMID: 31545808 PMCID: PMC6776365 DOI: 10.1371/journal.pntd.0007757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/03/2019] [Accepted: 09/06/2019] [Indexed: 11/19/2022] Open
Abstract
Seoul hantavirus (SEOV) has recently raised concern by causing geographic range expansion of hemorrhagic fever with renal syndrome (HFRS). SEOV infections in humans are significantly underestimated worldwide and epidemic dynamics of SEOV-related HFRS are poorly understood because of a lack of field data and empirically validated models. Here, we use mathematical models to examine both intrinsic and extrinsic drivers of disease transmission from animal (the Norway rat) to humans in a SEOV-endemic area in China. We found that rat eradication schemes and vaccination campaigns, but below the local elimination threshold, could diminish the amplitude of the HFRS epidemic but did not modify its seasonality. Models demonstrate population dynamics of the rodent host were insensitive to climate variations in urban settings, while relative humidity had a negative effect on the seasonality in transmission. Our study contributes to a better understanding of the epidemiology of SEOV-related HFRS, demonstrates asynchronies between rodent population dynamics and transmission rate, and identifies potential drivers of the SEOV seasonality. Seoul hantavirus (SEOV) infections are common in Europe and Asia where a considerably high seroprevalence among the population is found. However, only relatively few hemorrhagic fever with renal syndrome (HFRS) cases are reported. Comprehensive epidemiological data is necessary to study the patterns and drivers of this underestimated disease. Here, we analyzed rodent host surveillance and seroprevalence data from 1998 to 2015 for disease outbreaks in Huludao City, one of the typical SEOV-endemic areas for HFRS in China. Our mathematical models quantified the drivers on HFRS transmission and estimated the epidemiological parameters. Our study provides an understanding of its ecological process between intrinsic and extrinsic factors, human-rodent interface and disease dynamics.
Collapse
Affiliation(s)
- Yidan Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Bernard Cazelles
- IBENS, UMR 8197 CNRS-ENS Ecole Normale Supérieure, Paris, France
- International Center for Mathematical and Computational Modeling of Complex Systems (UMMISCO), IRD-Sorbonne Université, Bondy, France
| | - Guoqing Yang
- Huludao Municipal Center for Disease Control and Prevention, Huludao, Liaoning, China
| | - Marko Laine
- Finnish Meteorological Institute, Helsinki, Finland
| | | | - Jun Cai
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Hua Tan
- School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- * E-mail: (NCS); (HT)
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
- * E-mail: (NCS); (HT)
| |
Collapse
|
25
|
Liu S, Wei Y, Han X, Cai Y, Han Z, Zhang Y, Xu Y, Qi S, Li Q. Long-term retrospective observation reveals stabilities and variations of hantavirus infection in Hebei, China. BMC Infect Dis 2019; 19:765. [PMID: 31477045 PMCID: PMC6721381 DOI: 10.1186/s12879-019-4402-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/25/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS) is an emerging zoonotic infectious disease caused by hantaviruses which circulate worldwide. So far, it was still considered as one of serious public health problems in China. The present study aimed to reveal the stabilities and variations of hantavirus infection in Hebei province located in North China through a long-term retrospective observation. METHODS The epidemiological data of HFRS cases from all 11 cities of Hebei province since 1981 through 2016 were collected and descriptively analyzed. The rodent densities, species compositions and virus-carrying rates of different regions were collected from six separated rodent surveillance points which set up since 2007. The molecular diversity and phylogenetic relationship of hantaviruses circulating among rodents were analyzed based on partial viral glycoprotein gene. RESULTS HFRS cases have been reported every year in Hebei province, since the first local case was identified in 1981. The epidemic history can be artificially divided into three phases and a total of 55,507 HFRS cases with 374 deaths were reported during 1981-2016. The gender and occupational factors of susceptible population were invarible throughout, however age of that was gradually aging. The annual outbreak peak always present in spring, while the main epidemic region had gradully altered from south to northeast. Surveillance of rodents revealed that residential rodents significantly possessed higher density and virus-carring rate than field rodents. The house rat, Rattus norvegicus, was the dominant rodent species and Seoul virus S3 sub-genotype which is continued but slightly evolving perhaps to be the sole pathogen for local HFRS cases of Hebei province. CONCLUSIONS This long-term province-wide surveillance and epidemiological analysis has revealed the stabilities and variations of hantavirus infection in North China. In order to improve current prevention and control strategies of HFRS in China, all surveillance should be continuously enhanced and variations should be paid more attentions.
Collapse
Affiliation(s)
- Shiyou Liu
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Institute for Viral Disease Control and Prevention, Hebei Provincial Center for Disease Control and Prevention, 97 Huaian East Road, Shijiazhuang, 050021, Hebei, China
| | - Yamei Wei
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Institute for Viral Disease Control and Prevention, Hebei Provincial Center for Disease Control and Prevention, 97 Huaian East Road, Shijiazhuang, 050021, Hebei, China
| | - Xu Han
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Institute for Viral Disease Control and Prevention, Hebei Provincial Center for Disease Control and Prevention, 97 Huaian East Road, Shijiazhuang, 050021, Hebei, China
| | - Yanan Cai
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Institute for Viral Disease Control and Prevention, Hebei Provincial Center for Disease Control and Prevention, 97 Huaian East Road, Shijiazhuang, 050021, Hebei, China
| | - Zhanying Han
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Institute for Viral Disease Control and Prevention, Hebei Provincial Center for Disease Control and Prevention, 97 Huaian East Road, Shijiazhuang, 050021, Hebei, China
| | - Yanbo Zhang
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Institute for Viral Disease Control and Prevention, Hebei Provincial Center for Disease Control and Prevention, 97 Huaian East Road, Shijiazhuang, 050021, Hebei, China
| | - Yonggang Xu
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Institute for Viral Disease Control and Prevention, Hebei Provincial Center for Disease Control and Prevention, 97 Huaian East Road, Shijiazhuang, 050021, Hebei, China
| | - Shunxiang Qi
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Institute for Viral Disease Control and Prevention, Hebei Provincial Center for Disease Control and Prevention, 97 Huaian East Road, Shijiazhuang, 050021, Hebei, China
| | - Qi Li
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Institute for Viral Disease Control and Prevention, Hebei Provincial Center for Disease Control and Prevention, 97 Huaian East Road, Shijiazhuang, 050021, Hebei, China.
| |
Collapse
|
26
|
Laenen L, Vergote V, Calisher CH, Klempa B, Klingström J, Kuhn JH, Maes P. Hantaviridae: Current Classification and Future Perspectives. Viruses 2019; 11:v11090788. [PMID: 31461937 PMCID: PMC6784073 DOI: 10.3390/v11090788] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/23/2019] [Indexed: 01/19/2023] Open
Abstract
In recent years, negative-sense RNA virus classification and taxon nomenclature have undergone considerable transformation. In 2016, the new order Bunyavirales was established, elevating the previous genus Hantavirus to family rank, thereby creating Hantaviridae. Here we summarize affirmed taxonomic modifications of this family from 2016 to 2019. Changes involve the admission of >30 new hantavirid species and the establishment of subfamilies and novel genera based on DivErsity pArtitioning by hieRarchical Clustering (DEmARC) analysis of genomic sequencing data. We outline an objective framework that can be used in future classification schemes when more hantavirids sequences will be available. Finally, we summarize current taxonomic proposals and problems in hantavirid taxonomy that will have to be addressed shortly.
Collapse
Affiliation(s)
- Lies Laenen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium
| | | | - Boris Klempa
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Frederick, MD 21702, USA
| | - Piet Maes
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Wild Rats, Laboratory Rats, Pet Rats: Global Seoul Hantavirus Disease Revisited. Viruses 2019; 11:v11070652. [PMID: 31319534 PMCID: PMC6669632 DOI: 10.3390/v11070652] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Recent reports from Europe and the USA described Seoul orthohantavirus infection in pet rats and their breeders/owners, suggesting the potential emergence of a “new” public health problem. Wild and laboratory rat-induced Seoul infections have, however, been described since the early eighties, due to the omnipresence of the rodent reservoir, the brown rat Rattus norvegicus. Recent studies showed no fundamental differences between the pathogenicity and phylogeny of pet rat-induced Seoul orthohantaviruses and their formerly described wild or laboratory rat counterparts. The paucity of diagnosed Seoul virus-induced disease in the West is in striking contrast to the thousands of cases recorded since the 1980s in the Far East, particularly in China. This review of four continents (Asia, Europe, America, and Africa) puts this “emerging infection” into a historical perspective, concluding there is an urgent need for greater medical awareness of Seoul virus-induced human pathology in many parts of the world. Given the mostly milder and atypical clinical presentation, sometimes even with preserved normal kidney function, the importance of simple but repeated urine examination is stressed, since initial but transient proteinuria and microhematuria are rarely lacking.
Collapse
|
28
|
Molecular evidence of Tula virus in Microtus obscurus in the region of Yili, Xinjiang, China. BMC Infect Dis 2019; 19:527. [PMID: 31200661 PMCID: PMC6570900 DOI: 10.1186/s12879-019-4133-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background Hantaviruses are important zoonotic pathogens, and they pose a profound risk to public health. So far, there has been no evidence showing that Tula virus (TULV), one species of hantavirus, is endemic in China. In this study, we captured rodents and found that the Tula virus had infected voles in Yili region, Xinjiang, China. Methods Rodents were captured by flooding their burrows in mountain pasture areas in Narati, Xinyuan County, Xinjiang, China. Hantavirus L gene fragments were amplified by nest RT-PCR using genus-specific primers. Positive samples were further identified by sequencing of RT-PCR products of S gene fragment for species identification. To identify the species of captured small mammals, the rodents’ cytochrome b (Cytb) was amplified by PCR and sequenced. Phylogenetic analysis was used to show the clustering and evolution relationship of the viral nucleic acids. Results Here, 31 out of 198 voles captured (16%) were infected with TULV. Host sequencing analysis showed these voles were Microtus obscurus (M. obscurs). Alignment and phylogenetic analysis of the exon region (1191 bp) of the hantavirus S gene confirmed that all of the detected amplicons were TULV, which was similar to one strain of TULV identified in Kazakhstan. Conclusion This is the first identification of Tula virus in China, and we found that M. obscurus acts as a natural reservoir for carrying the virus. Although the infection rate in the local human population remains unknown, the high prevalence of TULV in the small mammals in the region constitutes a risk that this putative pathogen may spread to the local population. Electronic supplementary material The online version of this article (10.1186/s12879-019-4133-x) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Zheng Z, Wang P, Wang Z, Zhang D, Wang X, Zuo S, Li X. The characteristics of current natural foci of hemorrhagic fever with renal syndrome in Shandong Province, China, 2012-2015. PLoS Negl Trop Dis 2019; 13:e0007148. [PMID: 31107874 PMCID: PMC6544330 DOI: 10.1371/journal.pntd.0007148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/31/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS), an infectious disease caused by hantaviruses, is endemic in China and remains a serious public health problem. Historically, Shandong Province has had the largest HFRS burden in China. However, we do not have a comprehensive and clear understanding of the current epidemic foci of HFRS in Shandong Province. METHODOLOGY/PRINCIPAL FINDINGS The incidence and mortality rates were calculated, and a phylogenetic analysis was performed after laboratory testing of the virus in rodents. Spatial epidemiology analysis was applied to investigate the epidemic foci, including their sources. A total of 6,206 HFRS cases and 59 related deaths were reported in Shandong Province. The virus carriage rates of the rodents Rattus norvegicus, Apodemus agrarius and Mus musculus were 10.24%, 6.31% and 0.27%, respectively. The phylogenetic analysis indicated that two novel viruses obtained from R. norvegicus in Anqiu City and Qingzhou City were dissimilar to the other strains, but closely related to strains previously isolated in northeastern China. Three epidemic foci were defined, two of which were derived from the Jining and Linyi epidemic foci, respectively, while the other was the residue of the Jining epidemic focus. CONCLUSIONS/SIGNIFICANCE The southeastern and central Shandong Province are current key HFRS epidemic foci dominated by A. agrarius and R. norvegicus, respectively. Our study could help local departments to strengthen prevention and control measures in key areas to reduce the hazards of HFRS.
Collapse
Affiliation(s)
- Zhaolei Zheng
- School of Public Health, Shandong University, Jinan, Shandong Province, China
| | - Peizhu Wang
- School of Public Health, Shandong University, Jinan, Shandong Province, China
| | - Zhiqiang Wang
- Institute of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Dandan Zhang
- School of Public Health, Shandong University, Jinan, Shandong Province, China
| | - Xu Wang
- School of Public Health, Shandong University, Jinan, Shandong Province, China
| | - Shuqing Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiujun Li
- School of Public Health, Shandong University, Jinan, Shandong Province, China
- * E-mail:
| |
Collapse
|
30
|
Ling J, Verner-Carlsson J, Eriksson P, Plyusnina A, Löhmus M, Järhult JD, van de Goot F, Plyusnin A, Lundkvist Å, Sironen T. Genetic analyses of Seoul hantavirus genome recovered from rats (Rattus norvegicus) in the Netherlands unveils diverse routes of spread into Europe. J Med Virol 2019; 91:724-730. [PMID: 30609070 DOI: 10.1002/jmv.25390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/29/2018] [Indexed: 11/11/2022]
Abstract
Seoul virus (SEOV) is the etiologic agent of hemorrhagic fever with renal syndrome. It is carried by brown rats (Rattus norvegicus), a commensal rodent that closely cohabitates with humans in urban environments. SEOV has a worldwide distribution, and in Europe, it has been found in rats in UK, France, Sweden, and Belgium, and human cases of SEOV infection have been reported in Germany, UK, France, and Belgium. In the search of hantaviruses in brown rats from the Netherlands, we found both serological and genetic evidence for the presence of SEOV in the local wild rat population. To further decipher the relationship with other SEOV variants globally, the complete genome of SEOV in the Netherlands was recovered. SEOV sequences obtained from three positive rats (captured at close trapping locations at the same time) were found highly similar. Phylogenetic analyses demonstrated that two lineages of SEOV circulate in Europe. Strains from the Netherlands and UK, together with the Baxter strain from US, constitute one of these two, while the second includes strains from Europe and Asia. Our results support a hypothesis of diverse routes of SEOV spread into Europe. These findings, combined with other indications on the expansion of the spatial European range of SEOV, suggest an increased risk of this virus for the public health, highlighting the need for increased surveillance.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Jenny Verner-Carlsson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Per Eriksson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Angelina Plyusnina
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Mare Löhmus
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.,The National Veterinary Institute, Uppsala, Sweden
| | - Josef D Järhult
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Alexander Plyusnin
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Tarja Sironen
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Kim WK, No JS, Lee SH, Song DH, Lee D, Kim JA, Gu SH, Park S, Jeong ST, Kim HC, Klein TA, Wiley MR, Palacios G, Song JW. Multiplex PCR-Based Next-Generation Sequencing and Global Diversity of Seoul Virus in Humans and Rats. Emerg Infect Dis 2019; 24:249-257. [PMID: 29350137 PMCID: PMC5782898 DOI: 10.3201/eid2402.171216] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Seoul virus (SEOV) poses a worldwide public health threat. This virus, which is harbored by Rattus norvegicus and R. rattus rats, is the causative agent of hemorrhagic fever with renal syndrome (HFRS) in humans, which has been reported in Asia, Europe, the Americas, and Africa. Defining SEOV genome sequences plays a critical role in development of preventive and therapeutic strategies against the unique worldwide hantavirus. We applied multiplex PCR-based next-generation sequencing to obtain SEOV genome sequences from clinical and reservoir host specimens. Epidemiologic surveillance of R. norvegicus rats in South Korea during 2000-2016 demonstrated that the serologic prevalence of enzootic SEOV infections was not significant on the basis of sex, weight (age), and season. Viral loads of SEOV in rats showed wide dissemination in tissues and dynamic circulation among populations. Phylogenetic analyses showed the global diversity of SEOV and possible genomic configuration of genetic exchanges.
Collapse
|
32
|
Zuo SQ, Li XJ, Wang ZQ, Jiang JF, Fang LQ, Zhang WH, Zhang JS, Zhao QM, Cao WC. Genetic Diversity and the Spatio-Temporal Analyses of Hantaviruses in Shandong Province, China. Front Microbiol 2018; 9:2771. [PMID: 30524397 PMCID: PMC6257036 DOI: 10.3389/fmicb.2018.02771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a serious public health problem in Shandong Province, China. We conducted an epizootiologic investigation and phylogeographic and phylodynamic analyses to infer the phylogenetic relationships of hantaviruses in space and time, and gain further insights into their evolutionary dynamics in Shandong Province. Our data indicated that the Seoul virus (SEOV) is distributed throughout Shandong, whereas Hantaan virus (HTNV) co-circulates with SEOV in the eastern and southern areas of Shandong. Their distribution showed strong geographic clustering. In addition, our analyses indicated multiple evolutionary paths, long-distance transmission, and demographic expansion events for SEOV in some areas. Selection pressure analyses revealed that negative selection on hantaviruses acted as the principal evolutionary force, whereas a little evidence of positive selection exists. We found that several positively selected sites were located within major functional regions and indicated the importance of these residues for adaptive evolution of hantaviruses.
Collapse
Affiliation(s)
- Shu-Qing Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiu-Jun Li
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Zhi-Qiang Wang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wen-Hui Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiu-Song Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiu-Min Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
33
|
Dai X, Jian C, Li N, Li D. Characterization of the L genome segment of an orthohantavirus isolated from Niviventer confucianus. Arch Virol 2018; 164:613-616. [PMID: 30350033 DOI: 10.1007/s00705-018-4074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/26/2018] [Indexed: 02/02/2023]
Abstract
We sequenced and analyzed the L segment of the RNA genome of Hantaan virus (HTNV) strain NC167. This segment is 6,533 nucleotides in length and contains a single open reading frame (ORF) of 6,456 nucleotides in the antigenome sense that encodes the viral RNA-dependent RNA polymerase, which is 2,153 amino acids long with a predicted molecular mass of 246 kDa. The 5' terminus of the viral RNA was found to contain the expected sequences that are conserved in orthohantaviruses. According to the phylogenetics and levels of sequence similarity, the L segment of HTNV NC167 is similar to but clearly distinct from the L segments of other orthohantaviruses.
Collapse
Affiliation(s)
- Xiaoxia Dai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Can Jian
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dexin Li
- NHFPC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
| |
Collapse
|
34
|
Milholland MT, Castro-Arellano I, Suzán G, Garcia-Peña GE, Lee TE, Rohde RE, Alonso Aguirre A, Mills JN. Global Diversity and Distribution of Hantaviruses and Their Hosts. ECOHEALTH 2018; 15:163-208. [PMID: 29713899 DOI: 10.1007/s10393-017-1305-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
Rodents represent 42% of the world's mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity of disease agents. Thus, knowing the identity, diversity, host-pathogen relationships, and geographic distribution of rodent-borne zoonotic pathogens, is essential for predicting and mitigating zoonotic disease outbreaks. Hantaviruses are hosted by numerous rodent reservoirs. However, the diversity of rodents harboring hantaviruses is likely unknown because research is biased toward specific reservoir hosts and viruses. An up-to-date, systematic review covering all known rodent hosts is lacking. Herein, we document gaps in our knowledge of the diversity and distribution of rodent species that host hantaviruses. Of the currently recognized 681 cricetid, 730 murid, 61 nesomyid, and 278 sciurid species, we determined that 11.3, 2.1, 1.6, and 1.1%, respectively, have known associations with hantaviruses. The diversity of hantaviruses hosted by rodents and their distribution among host species supports a reassessment of the paradigm that each virus is associated with a single-host species. We examine these host-virus associations on a global taxonomic and geographical scale with emphasis on the rodent host diversity and distribution. Previous reviews have been centered on the viruses and not the mammalian hosts. Thus, we provide a perspective not previously addressed.
Collapse
Affiliation(s)
- Matthew T Milholland
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Iván Castro-Arellano
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Gabriel E Garcia-Peña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
- Centro de Ciencias de la Complejidad C3, Universidad Nacional Autónoma de México, 04510, México City, Mexico
- UMR MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR 5290, CNRS-IRD-Université de Montpellier, Centre de Recherche IRD, Montpellier Cedex 5, France
| | - Thomas E Lee
- Department of Biology, Abilene Christian University, ACU Box 27868, Abilene, TX, 79699, USA
| | - Rodney E Rohde
- College of Health Professions, Clinical Laboratory Science Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, 22030, USA
| | - James N Mills
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
35
|
Coalescence Models Reveal the Rise of the White-Bellied Rat (Niviventer confucianus) Following the Loss of Asian Megafauna. J MAMM EVOL 2018. [DOI: 10.1007/s10914-018-9428-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Lu T, Fu Y, Hou Y, Yang Y, Liu L, Liang H, Yang J, Jiao D, Ying C. Hantavirus RNA Prevalence in Myomorph Rodents on Bolshoy Ussuriysky Island at the Sino-Russian Border. Vector Borne Zoonotic Dis 2017; 17:588-595. [PMID: 28678679 DOI: 10.1089/vbz.2016.1953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To understand the distribution and infection status of hantavirus in Myomorph rodents on Bolshoy Ussuriysky Island (Heixiazi Island) at the Sino-Russian border, and to provide data for the safe development and utilization of Bolshoy Ussuriysky Island. METHODS In 2013 and 2014, Myomorph rodents were trapped on Bolshoy Ussuriysky Island. Total RNA was extracted from rodent tissue, and it was screened for hantavirus RNA by using reverse transcription-polymerase chain reaction. Univariate and multivariate nonconditional logistic regression analysis was used to analyze the RNA prevalence rates in eight species of rodents, in relation to species, sex, age, habitat, and season. In addition, PCR amplicons were sequenced and phylogenetic analysis was performed by using Mega 5.1 software. RESULTS Six hundred forty-four rodents belonging to three orders, five families, and eight genera were trapped. Fifty-two rodents were infected with hantavirus, and the rate of RNA detection was 8.07%. The infection rates of rodents in different habitats (χ2 = 14.853, p < 0.05) and different seasons (χ2 = 16.990, p < 0.05) showed significant differences. A logistic regression analysis showed that habitat and trapping season were risk factors of hantavirus infection (p < 0.05). Phylogenetic analysis showed that the gene sequences of positive samples were Hantaan virus and Khabarovsk virus. CONCLUSION There are two types of hantaviruses, such as HTNV (in Apodemus agrarius, Clethrionomys rutilus, Microtus fortis, Rattus norvegicus) and KHAV (in C. rutilus), among the rodents on Bolshoy Ussuriysky Island, and season and habitat are risk factors of hantavirus infection.
Collapse
Affiliation(s)
- Tingting Lu
- 1 Public Health College, Harbin Medical University , Harbin, People's Republic of China .,2 Institute of Health Quarantine , Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin, People's Republic of China .,3 Public Health College, Jinzhou Medical University , Jinzhou, People's Republic of China
| | - Yingqun Fu
- 2 Institute of Health Quarantine , Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin, People's Republic of China
| | - Yong Hou
- 2 Institute of Health Quarantine , Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin, People's Republic of China
| | - Yu Yang
- 4 Institute of Health Quarantine , Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Lijuan Liu
- 4 Institute of Health Quarantine , Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Huijie Liang
- 2 Institute of Health Quarantine , Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin, People's Republic of China
| | - Jun Yang
- 2 Institute of Health Quarantine , Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin, People's Republic of China
| | - Dan Jiao
- 2 Institute of Health Quarantine , Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin, People's Republic of China
| | - Changqing Ying
- 1 Public Health College, Harbin Medical University , Harbin, People's Republic of China
| |
Collapse
|
37
|
Hamdan NES, Ng YL, Lee WB, Tan CS, Khan FAA, Chong YL. Rodent Species Distribution and Hantavirus Seroprevalence in Residential and Forested areas of Sarawak, Malaysia. Trop Life Sci Res 2017; 28:151-159. [PMID: 28228923 DOI: 10.21315/tlsr2017.28.1.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Rodents belong to the order Rodentia, which consists of three families in Borneo (i.e., Muridae, Sciuridae and Hystricidae). These include rats, mice, squirrels, and porcupines. They are widespread throughout the world and considered pests that harm humans and livestock. Some rodent species are natural reservoirs of hantaviruses (Family: Bunyaviridae) that can cause zoonotic diseases in humans. Although hantavirus seropositive human sera were reported in Peninsular Malaysia in the early 1980s, information on their infection in rodent species in Malaysia is still lacking. The rodent populations in residential and forested areas in Sarawak were sampled. A total of 108 individuals from 15 species of rodents were collected in residential (n = 44) and forested ( n = 64) areas. The species diversity of rodents in forested areas was significantly higher (H = 2.2342) compared to rodents in residential areas (H = 0.64715) (p < 0.001 of Zar-t test based on the Shannon index). Rattus rattus and Sundamys muelleri were present at high frequencies in both localities. An enzyme-linked immunosorbent assay (ELISA) showed that hantavirus-targeting antibodies were absent from 53 tested serum samples. This is the first report of hantavirus seroprevalence surveillance in rodent populations in Sarawak, East Malaysia. The results suggested that hantavirus was not circulating in the studied rodent populations in Sarawak, or it was otherwise at a low prevalence that is below the detection threshold. It is important to remain vigilant because of the zoonotic potential of this virus and its severe disease outcome. Further studies, such as molecular detection of viral genetic materials, are needed to fully assess the risk of hantavirus infection in rodents and humans in this region of Malaysia.
Collapse
Affiliation(s)
- Nur Elfieyra Syazana Hamdan
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Jalan Dato Mohd Musa, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Yee Ling Ng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Jalan Dato Mohd Musa, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Wei Bin Lee
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Jalan Dato Mohd Musa, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Cheng Siang Tan
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Jalan Dato Mohd Musa, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Faisal Ali Anwarali Khan
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Jalan Dato Mohd Musa, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Yee Ling Chong
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Jalan Dato Mohd Musa, 94300 Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
38
|
Li Q, Cai Y, Wei Y, Han X, Han Z, Zhang Y, Qi S, Xu Y. Genovariation Study of Hantavirus in Main Endemic Areas of Hemorrhagic Fever with Renal Syndrome in Hebei Province, China. PLoS One 2016; 11:e0159731. [PMID: 27442527 PMCID: PMC4956097 DOI: 10.1371/journal.pone.0159731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS) is an important infectious disease in Hebei Province. At present, cases from the northeast regions of the province account for >80% of the total incidences. However, studies that examine the region-specific genetic variations of the Hantavirus (HV), the causative pathogen for HFRS, have been lacking. METHODS Rodents were collected in northeast Hebei Province from 2004 to 2013, and the HV strains used in this study were isolated in 1993. Lung tissues were isolated from the rodents and HV antigen was detected by indirect immunofluorescence. The M1 and M2 fragments of HV M region were amplified by reverse transcription polymerase chain reaction (RT-PCR), cloned into pMDl9-T vector, sequenced and compared with representative standard stains for homology and phylogenetic analysis. RESULT A total of 21 samples of HV antigen-positive were collected. Real-time PCR analysis revealed that the 19 rodent lungs and two HV strains were positive for the SEO virus. 11 samples were chosen to sequence, and they shared 95.8%-99.8% in nucleotide homology, and 83.6%-99.2% when compared to the standard strains of SEO virus. Phylogenetic analysis demonstrated that all strains were grouped into the same S3 subtype. CONCLUSION SEO was the major epidemic genotype of HV in the main HFRS endemic areas in Hebei Province, and S3 was the major subtype. There was minor genetic variation in HV over short term periods, while long term variations were higher.
Collapse
Affiliation(s)
- Qi Li
- Institute for Viral Disease Prevention and Control, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei Province, China
| | - Yanan Cai
- Institute for Viral Disease Prevention and Control, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei Province, China
| | - Yamei Wei
- Institute for Viral Disease Prevention and Control, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei Province, China
| | - Xu Han
- Institute for Viral Disease Prevention and Control, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei Province, China
| | - Zhanying Han
- Institute for Viral Disease Prevention and Control, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei Province, China
| | - Yanbo Zhang
- Institute for Viral Disease Prevention and Control, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei Province, China
| | - Shunxiang Qi
- Institute for Viral Disease Prevention and Control, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei Province, China
| | - Yonggang Xu
- Institute for Viral Disease Prevention and Control, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei Province, China
| |
Collapse
|
39
|
Cao S, Ma J, Cheng C, Ju W, Wang Y. Genetic characterization of hantaviruses isolated from rodents in the port cities of Heilongjiang, China, in 2014. BMC Vet Res 2016; 12:69. [PMID: 27038799 PMCID: PMC4818876 DOI: 10.1186/s12917-016-0695-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/23/2016] [Indexed: 11/20/2022] Open
Abstract
Background Hantavirus is a tripartite negative-sense RNA virus. It can infect humans through contaminated rodent excreta and causes two types of fatal human diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). China exhibits the highest HFRS occurrence rate in the world, and the Heilongjiang area is one of the most severely infected regions. Results To obtain additional insights into the genetic characteristics of hantaviruses in the port cities of the Heilongjiang area in China, a molecular epidemiological investigation of hantaviruses isolated from rodents was performed in 2014. A total of 649 rodents (11 murine species and 1 shrew species) were caught in 12 port cities in Heilongjiang. Among these rodents, the most common species was A. agrarius, and the second-most common was R. norvegicus. A viral gene PCR assay revealed the presence of two specific genotypes of hantavirus, referred to as Hantaan virus (HTNV) and Seoul virus (SEOV), and the positive SEOV infection rate was higher than that for HTNV. A genetic analysis based on partial M segment sequences indicated that all of the isolates belonging to SEOV could be assigned to two genetic lineages, whereas the isolate belonging to HTNV could be assigned to only one genetic lineage. Conclusions These results suggested that HTNV and SEOV are circulating in A. agrarius and R. norvegicus in the port cities in the area of Heilongjiang, but SEOV may be the dominant common hantavirus.
Collapse
Affiliation(s)
- Suya Cao
- Department of Wildlife Medicine, Wildlife Resources Faculty, Northeast Forestry University, Harbin, 150040, China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, Harbin, 150001, China
| | - Cheng Cheng
- Heilongjiang International Travel Healthcare Center, Harbin, 150001, China
| | - Wendong Ju
- Heilongjiang International Travel Healthcare Center, Harbin, 150001, China
| | - Yulong Wang
- Department of Wildlife Medicine, Wildlife Resources Faculty, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
40
|
Ge XY, Yang WH, Pan H, Zhou JH, Han X, Zhu GJ, Desmond JS, Daszak P, Shi ZL, Zhang YZ. Fugong virus, a novel hantavirus harbored by the small oriental vole (Eothenomys eleusis) in China. Virol J 2016; 13:27. [PMID: 26880191 PMCID: PMC4754816 DOI: 10.1186/s12985-016-0483-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Rodents are natural reservoirs of hantaviruses, which cause two disease types: hemorrhagic fever with renal syndrome in Eurasia and hantavirus pulmonary syndrome in North America. Hantaviruses related human cases have been observed throughout Asia, Europe, Africa, and North America. To date, 23 distinct species of hantaviruses, hosted by reservoir, have been identified. However, the diversity and number of hantaviruses are likely underestimated in China, and hantavirus species that cause disease in many regions, including Yunnan province, are unknown. RESULTS In August 2012, we collected tissue samples from 189 captured animals, including 15 species belonging to 10 genera, 5 families, and 4 orders in Fugong county, Yunnan province, China. Seven species were positive for hantavirus: Eothenomys eleusis (42/94), Apodemus peninsulae (3/25), Niviventer eha (3/27), Cryptotis montivaga (2/8), Anourosorex squamipes (1/1), Sorex araneus (1/1), and Mustela sibirica (1/2). We characterized one full-length genomic sequence of the virus (named fugong virus, FUGV) from a small oriental vole (Eothenomys eleusis). The full-length sequences of the small, medium, and large segments of FUGV were 1813, 3630, and 6531 nt, respectively. FUGV was most closely related to hantavirus LX309, a previously reported species detected in the red-backed vole in Luxi county, Yunnan province, China. However, the amino acid sequences of nucleocapsid (N), glycoprotein (G), and large protein (L) were highly divergent from those of Hantavirus LX309, with amino acid differences of 11.2, 15.3, and 12.7 %, respectively. In phylogenetic trees, FUGV clustered in the lineage corresponding to hantaviruses carried by rodents in the subfamily Arvicolinae. CONCLUSIONS High prevalence of hantavirus infection in small mammals was found in Fugong county, Yunnan province, China. A novel hantavirus species FUGV was identified from the small oriental vole. This virus is phylogenetic clustering with another hantavirus LX309, but shows highly genomic divergence.
Collapse
Affiliation(s)
- Xing-Yi Ge
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Wei-Hong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| | - Hong Pan
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| | - Ji-Hua Zhou
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| | - Xi Han
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| | | | | | | | - Zheng-Li Shi
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yun-Zhi Zhang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| |
Collapse
|
41
|
Abstract
Over the past few decades understanding and recognition of hantavirus infection has greatly improved worldwide, but both the amplitude and the magnitude of hantavirus outbreaks have been increasing. Several novel hantaviruses with unknown pathogenic potential have been identified in a variety of insectivore hosts. With the new hosts, new geographical distributions of hantaviruses have also been discovered and several new species were found in Africa. Hantavirus infection in humans can result in two clinical syndromes: haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) caused by Old World and New World hantaviruses, respectively. The clinical presentation of HFRS varies from subclinical, mild, and moderate to severe, depending in part on the causative agent of the disease. In general, HFRS caused by Hantaan virus, Amur virus and Dobrava virus are more severe with mortality rates from 5 to 15%, whereas Seoul virus causes moderate and Puumala virus and Saaremaa virus cause mild forms of disease with mortality rates <1%. The central phenomena behind the pathogenesis of both HFRS and HCPS are increased vascular permeability and acute thrombocytopenia. The pathogenesis is likely to be a complex multifactorial process that includes contributions from immune responses, platelet dysfunction and the deregulation of endothelial cell barrier functions. Also a genetic predisposition, related to HLA type, seems to be important for the severity of the disease. As there is no effective treatment or vaccine approved for use in the USA and Europe, public awareness and precautionary measures are the only ways to minimize the risk of hantavirus disease.
Collapse
Affiliation(s)
- T Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia.
| | - A Saksida
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia
| | - M Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia
| |
Collapse
|
42
|
Hu T, Fan Q, Hu X, Deng B, Chen G, Gu L, Li M, Zheng Y, Yuan G, Qiu W, Jiang X, Zhang F. Molecular and serological evidence for Seoul virus in rats (Rattus norvegicus) in Zhangmu, Tibet, China. Arch Virol 2015; 160:1353-7. [PMID: 25772576 DOI: 10.1007/s00705-015-2391-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/28/2015] [Indexed: 11/26/2022]
Abstract
We report the detection of a virus, tentatively identified as Seoul virus (SEOV), from a rat (Rattus norvegicus) collected in the city of Zhangmu, Tibet. SEOV RNA was detected in lung tissue by reverse transcription (RT)-PCR, followed by sequencing. Serum samples collected from Zhangmu were positive for SEOV-specific antibodies (indirect fluorescent antibody test that used SEO antigen). Sequencing and phylogenetic analysis of partial L and S sequences together with serology results suggest that the Zhangmu01 hantavirus is an isolate of SEOV, that hantaviruses circulate in Tibet, and that rats may act as natural reservoirs for the virus.
Collapse
Affiliation(s)
- Tingsong Hu
- Centre for Disease Control and Prevention, Chengdu Military Region, 168 Daguan Road, Kunming, 650032, China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ali HS, Drewes S, Weber de Melo V, Schlegel M, Freise J, Groschup MH, Heckel G, Ulrich RG. Complete genome of a Puumala virus strain from Central Europe. Virus Genes 2014; 50:292-8. [PMID: 25543297 DOI: 10.1007/s11262-014-1157-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/12/2014] [Indexed: 12/30/2022]
Abstract
Puumala virus (PUUV) is one of the predominant hantavirus species in Europe causing mild to moderate cases of haemorrhagic fever with renal syndrome. Parts of Lower Saxony in north-western Germany are endemic for PUUV infections. In this study, the complete PUUV genome sequence of a bank vole-derived tissue sample from the 2007 outbreak was determined by a combined primer-walking and RNA ligation strategy. The S, M and L genome segments were 1,828, 3,680 and 6,550 nucleotides in length, respectively. Sliding-window analyses of the nucleotide sequences of all available complete PUUV genomes indicated a non-homogenous distribution of variability with hypervariable regions located at the 3'-ends of the S and M segments. The overall similarity of the coding genome regions to the other PUUV strains ranged between 80.1 and 84.7 % at the level of the nucleotide sequence and between 89.5 and 98.1 % for the deduced amino acid sequences. In comparison to the phylogenetic trees of the complete coding sequences, trees based on partial segments revealed a general drop in phylogenetic support and a lower resolution. The Astrup strain S and M segment sequences showed the highest similarity to sequences of strains from geographically close sites in the Osnabrück Hills region. In conclusion, a primer-walking-mediated strategy resulted in the determination of the first complete nucleotide sequence of a PUUV strain from Central Europe. Different levels of variability along the genome provide the opportunity to choose regions for analyses according to the particular research question, e.g., large-scale phylogenetics or within-host evolution.
Collapse
Affiliation(s)
- Hanan Sheikh Ali
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, OIE Collaborating Centre for Zoonoses in Europe, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rubio AV, Ávila-Flores R, Suzán G. Responses of small mammals to habitat fragmentation: epidemiological considerations for rodent-borne hantaviruses in the Americas. ECOHEALTH 2014; 11:526-533. [PMID: 24845575 DOI: 10.1007/s10393-014-0944-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/05/2014] [Accepted: 04/06/2014] [Indexed: 06/03/2023]
Abstract
Rodent-borne hantaviruses are a group of zoonotic agents that cause hemorrhagic fever in humans. The transmission of hantaviruses among rodent hosts may be higher with the increase of reservoir host abundance in a given area (density-dependent transmission) and with the decrease of small mammal diversity (dilution effect phenomenon). These population and community parameters may be modified by habitat fragmentation; however, studies that focus on fragmentation and its effect on hantavirus infection risk are scarce. To further understanding of this issue, we assessed some population and community responses of rodents that may increase the risk for hantavirus transmission among wildlife hosts in the Americas. We conducted a meta-analysis of published studies to assess the responses of small mammals to fragmentation of native habitats, relative to patch size. Our analyses included five countries and 14 case studies for abundance of reservoir hosts (8 species) and 15 case studies for species richness. We found that a reduction of patch area due to habitat fragmentation is associated with increased reservoir host abundances and decreased small mammal richness, which is mainly due to the loss of non-host small mammals. According to these results, habitat fragmentation in the Americas should be considered as an epidemiological risk factor for hantavirus transmission to humans. These findings are important to assess potential risk of infection when fragmentation of native habitats occurs.
Collapse
Affiliation(s)
- André V Rubio
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Mexico, Distrito Federal, Mexico,
| | | | | |
Collapse
|
45
|
Wang CQ, Gao JH, Li M, Guo WP, Lu MQ, Wang W, Hu MX, Li MH, Yang J, Liang HJ, Tian XF, Holmes EC, Zhang YZ. Co-circulation of Hantaan, Kenkeme, and Khabarovsk Hantaviruses in Bolshoy Ussuriysky Island, China. Virus Res 2014; 191:51-8. [PMID: 25087879 DOI: 10.1016/j.virusres.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/26/2022]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) was first recognized in far eastern Asia in the 1930s, and has been highly prevalent in this region ever since. To reveal the molecular epidemiology of hantaviruses in this region, a total of 374 small mammals (eight species of rodents and one species of shrew) were captured in the Chinese part of the Bolshoy Ussuriysky Island (Heilongjiang Province). Hantavirus sequences were recovered from three striped field mice (Apodemus agrarius), 11 Maximowicz's voles (Microtus maximowiczii), and one flat-skulled shrew (Sorex roboratus). Genetic and phylogenetic analysis revealed the presence of three viruses: Hantaan virus (HTNV), Khabarovsk virus (KHAV), and Kenkeme virus (KKMV). HTNV sequences recovered from A. agrarius were closely related to those identified in Apodemus mice from the surrounding areas, while a new lineage of KHAV was present in M. maximowiczii. Additionally, while the viral sequences recovered from one flat-skulled shrew were most closely related to KKMV, their divergence to the prototype strain suggests that they represent a new viral subtype. Overall, these results suggest that Bolshoy Ussuriysky Island harbors considerable hantavirus diversity.
Collapse
Affiliation(s)
- Cai-Qiao Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China; School of Basic Medical Sciences, Hebei United University, Tangshan 063000, PR China
| | - Jian-Hua Gao
- Heilong Entry-Exit Inspection and Quarantine Bureau, Harbin, Heilongjiang Province, China
| | - Ming Li
- Heilong Entry-Exit Inspection and Quarantine Bureau, Harbin, Heilongjiang Province, China
| | - Wen-Ping Guo
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Ming-Qing Lu
- Heilong Entry-Exit Inspection and Quarantine Bureau, Harbin, Heilongjiang Province, China
| | - Wen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Man-Xia Hu
- Heilong Entry-Exit Inspection and Quarantine Bureau, Harbin, Heilongjiang Province, China
| | - Ming-Hui Li
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Jun Yang
- Heilong Entry-Exit Inspection and Quarantine Bureau, Harbin, Heilongjiang Province, China
| | - Hui-Jie Liang
- Heilong Entry-Exit Inspection and Quarantine Bureau, Harbin, Heilongjiang Province, China
| | - Xi-Feng Tian
- School of Basic Medical Sciences, Hebei United University, Tangshan 063000, PR China
| | - Edward C Holmes
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
46
|
Zhang S, Wang S, Yin W, Liang M, Li J, Zhang Q, Feng Z, Li D. Epidemic characteristics of hemorrhagic fever with renal syndrome in China, 2006-2012. BMC Infect Dis 2014; 14:384. [PMID: 25012160 PMCID: PMC4105051 DOI: 10.1186/1471-2334-14-384] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/03/2014] [Indexed: 12/16/2022] Open
Abstract
Background Hemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses is a serious public health problem in China. The National Notifiable Disease Surveillance System (NNDSS) was established online by China CDC in 2004 and rodent surveillance sites were adjusted to 40 sites in 22 provinces in 2005. Here we analyzed the surveillance data of both human cases and rodents host during 2006–2012 to examine the epidemic trends of HFRS in recent years in China. Methods Records on HFRS human cases and surveillance data of rodents host from 2006 to 2012 were analyzed. Phylogenetic tree based on complete sequence of M segment of 58 virus isolates was constructed and analyzed to make a better understanding of the molecular diversity of hantaviruses in China. Results During 2006–2012, a total of 77558 HFRS human cases and 866 deaths were reported with the average annual incidence rate of 0.83 cases/100,000 population and case fatality rate of 1.13%. 84.16% of the total cases were clustered in 9 provinces and mainly reported in spring and autumn-winter seasons. HFRS incidence in males was over 3 times higher than in females and farmers still accounted for the largest proportion. The average density of rodents was relatively stable from 2006 to 2012. Apodemus agrarius and Rattus norvegicus were predominant in wild field and residential area, respectively. Both hantaviruses carrying and infection rates in rodents had a rapid increase in 2012. Phylogenetic analysis showed that at least six clades of Hantaan virus and five of Seoul virus were prevalent in China. Conclusion HFRS in China was still a natural focal disease with relatively high morbidity and fatality and its distribution and epidemic trends had also changed. Surveillance measures, together with prevention and control strategies should be improved and strengthened to reduce HFRS infection in China.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dexin Li
- Key Laboratory of Medical Virology, NHFPC, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China.
| |
Collapse
|
47
|
Yao L, Kang Z, Liu Y, Song F, Zhang X, Cao X, Zhang Y, Yang Y, Sun X, Wang J, Hu K, Liu L, Chen W, Shao L, Xu B, Wang B. Seoul virus in rats (Rattus norvegicus), Hyesan, North Korea, 2009-2011. Emerg Infect Dis 2014; 19:1895-6. [PMID: 24229532 PMCID: PMC3837658 DOI: 10.3201/eid1911.130207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
48
|
Hantavirus reservoirs: current status with an emphasis on data from Brazil. Viruses 2014; 6:1929-73. [PMID: 24784571 PMCID: PMC4036540 DOI: 10.3390/v6051929] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/03/2014] [Accepted: 02/07/2014] [Indexed: 12/31/2022] Open
Abstract
Since the recognition of hantavirus as the agent responsible for haemorrhagic fever in Eurasia in the 1970s and, 20 years later, the descovery of hantavirus pulmonary syndrome in the Americas, the genus Hantavirus has been continually described throughout the World in a variety of wild animals. The diversity of wild animals infected with hantaviruses has only recently come into focus as a result of expanded wildlife studies. The known reservoirs are more than 80, belonging to 51 species of rodents, 7 bats (order Chiroptera) and 20 shrews and moles (order Soricomorpha). More than 80genetically related viruses have been classified within Hantavirus genus; 25 recognized as human pathogens responsible for a large spectrum of diseases in the Old and New World. In Brazil, where the diversity of mammals and especially rodents is considered one of the largest in the world, 9 hantavirus genotypes have been identified in 12 rodent species belonging to the genus Akodon, Calomys, Holochilus, Oligoryzomys, Oxymycterus, Necromys and Rattus. Considering the increasing number of animals that have been implicated as reservoirs of different hantaviruses, the understanding of this diversity is important for evaluating the risk of distinct hantavirus species as human pathogens.
Collapse
|
49
|
Changes in diversification patterns and signatures of selection during the evolution of murinae-associated hantaviruses. Viruses 2014; 6:1112-34. [PMID: 24618811 PMCID: PMC3970142 DOI: 10.3390/v6031112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022] Open
Abstract
In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses’ molecular evolution at different geographical scales (global and local). We then investigated whether these events were localized in particular geographic areas. Our phylogenetic analyses supported the assumption that RNA virus molecular variations were under strong evolutionary constraints and revealed changes in patterns of diversification during the evolutionary history of hantaviruses. These analyses provide new knowledge on the molecular evolution of hantaviruses at different scales of time and space.
Collapse
|
50
|
Chen ZH, Qin XC, Song R, Shen Y, Chen XP, Wang W, Zhao YX, Zhang JS, He JR, Li MH, Zhao XH, Liu DW, Fu XK, Tian D, Li XW, Xu J, Plyusnin A, Holmes EC, Zhang YZ. Co-circulation of multiple hemorrhagic fever diseases with distinct clinical characteristics in Dandong, China. PLoS One 2014; 9:e89896. [PMID: 24587107 PMCID: PMC3937409 DOI: 10.1371/journal.pone.0089896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/29/2014] [Indexed: 12/14/2022] Open
Abstract
Hemorrhagic fevers (HF) caused by viruses and bacteria are a major public health problem in China and characterized by variable clinical manifestations, such that it is often difficult to achieve accurate diagnosis and treatment. The causes of HF in 85 patients admitted to Dandong hospital, China, between 2011–2012 were determined by serological and PCR tests. Of these, 34 patients were diagnosed with Huaiyangshan hemorrhagic fever (HYSHF), 34 with Hemorrhagic Fever with Renal Syndrome (HFRS), one with murine typhus, and one with scrub typhus. Etiologic agents could not be determined in the 15 remaining patients. Phylogenetic analyses of recovered bacterial and viral sequences revealed that the causative infectious agents were closely related to those described in other geographical regions. As these diseases have no distinctive clinical features in their early stage, only 13 patients were initially accurately diagnosed. The distinctive clinical features of HFRS and HYSHF developed during disease progression. Enlarged lymph nodes, cough, sputum, and diarrhea were more common in HYSHF patients, while more HFRS cases presented with headache, sore throat, oliguria, percussion pain kidney area, and petechiae. Additionally, HYSHF patients displayed significantly lower levels of white blood cells (WBC), higher levels of creations kinase (CK) and alanine aminotransferase (ALT), while HFRS patients presented with an elevation of blood urea nitrogen (BUN) and creatinine (CREA). These clinical features will assist in the accurate diagnosis of both HYSHF and HFRS. Overall, our data reveal the complexity of pathogens causing HFs in a single Chinese hospital, and highlight the need for accurate early diagnosis and a better understanding of their distinctive clinical features.
Collapse
Affiliation(s)
- Zhi-Hai Chen
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xin-Cheng Qin
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rui Song
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yi Shen
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - Xiao-Ping Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong-Xiang Zhao
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - Jing-Shan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin-Rong He
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming-Hui Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue-Hua Zhao
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - De-Wei Liu
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - Xiao-Kang Fu
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Tian
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xing-Wang Li
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Alexander Plyusnin
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|