1
|
Liu Y, Guan W, Liu H. Subgenomic Flaviviral RNAs of Dengue Viruses. Viruses 2023; 15:2306. [PMID: 38140548 PMCID: PMC10747610 DOI: 10.3390/v15122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are produced during flavivirus infections in both arthropod and vertebrate cells. They are undegraded products originating from the viral 3' untranslated region (3' UTR), a result of the action of the host 5'-3' exoribonuclease, Xrn1, when it encounters specific RNA structures known as Xrn1-resistant RNAs (xrRNAs) within the viral 3' UTR. Dengue viruses generate three to four distinct species of sfRNAs through the presence of two xrRNAs and two dumbbell structures (DBs). The tertiary structures of xrRNAs have been characterized to form a ringlike structure around the 5' end of the viral RNA, effectively inhibiting the activity of Xrn1. The most important role of DENV sfRNAs is to inhibit host antiviral responses by interacting with viral and host proteins, thereby influencing viral pathogenicity, replicative fitness, epidemiological fitness, and transmission. In this review, we aimed to summarize the biogenesis, structures, and functions of DENV sfRNAs, exploring their implications for viral interference.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Wuxiang Guan
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| | - Haibin Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| |
Collapse
|
2
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
3
|
da Silva AG, Goulart LR, Löffler P, Code C, Neves AF. Development of a Molecular Aptamer Beacon Applied to Magnetic-Assisted RNA Extraction for Detection of Dengue and Zika Viruses Using Clinical Samples. Int J Mol Sci 2022; 23:13866. [PMID: 36430340 PMCID: PMC9693377 DOI: 10.3390/ijms232213866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Limitations in the detection of cocirculating flaviviruses such as Dengue and Zika lead us to propose the use of aptameric capture of the viral RNA in combination with RT-PCR (APTA-RT-PCR). Aptamers were obtained via SELEX and next-generation sequencing, followed by colorimetric and fluorescent characterizations. An APTA-RT-PCR assay was developed, optimized, and tested against the viral RNAs in 108 serum samples. After selection, sequence APTAZC10 was designed as a bifunctional molecular beacon (APTAZC10-MB), exhibiting affinity for the viral targets. APTA-RT-PCR was able to detect Dengue and Zika RNA in 43% and 8% of samples, respectively. Our results indicate that APTAZC10-MB and APTA-RT-PCR will be useful to improve the detection of Dengue and Zika viruses in a fast molecular assay for the improvement of infectious disease surveillance.
Collapse
Affiliation(s)
- Amanda Gabrielle da Silva
- Institute of Physics, Postgraduate Program in Exact and Technological Sciences, Universidade Federal de Catalão, Catalão 75704-020, Brazil
| | - Luiz Ricardo Goulart
- Nanobiotechnology Laboratory, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia 38402-022, Brazil
| | - Philipp Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Christian Code
- Dianox ApS, Fruebjergvej 3, 2100 København, Denmark
- PhyLife Physical Life Sciences, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Adriana Freitas Neves
- Institute of Biotechnology, Molecular Biology Laboratory, Universidade Federal de Catalão, Catalão 75704-020, Brazil
| |
Collapse
|
4
|
Zhu Z, Ge S, Cai Z, Wu Y, Lu C, Zhang Z, Fu P, Mao L, Wu X, Peng Y. Systematic identification and characterization of repeat sequences in African swine fever virus genomes. Vet Res 2022; 53:101. [PMID: 36461107 PMCID: PMC9717548 DOI: 10.1186/s13567-022-01119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
African swine fever virus (ASFV) is a large DNA virus that infects domestic pigs with high morbidity and mortality rates. Repeat sequences, which are DNA sequence elements that are repeated more than twice in the genome, play an important role in the ASFV genome. The majority of repeat sequences, however, have not been identified and characterized in a systematic manner. In this study, three types of repeat sequences, including microsatellites, minisatellites and short interspersed nuclear elements (SINEs), were identified in the ASFV genome, and their distribution, structure, function, and evolutionary history were investigated. Most repeat sequences were observed in noncoding regions and at the 5' end of the genome. Noncoding repeat sequences tended to form enhancers, whereas coding repeat sequences had a lower ratio of alpha-helix and beta-sheet and a higher ratio of loop structure and surface amino acids than nonrepeat sequences. In addition, the repeat sequences tended to encode penetrating and antimicrobial peptides. Further analysis of the evolution of repeat sequences revealed that the pan-repeat sequences presented an open state, showing the diversity of repeat sequences. Finally, CpG islands were observed to be negatively correlated with repeat sequence occurrences, suggesting that they may affect the generation of repeat sequences. Overall, this study emphasizes the importance of repeat sequences in ASFVs, and these results can aid in understanding the virus's function and evolution.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- grid.67293.39Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082 China
| | - Shengqiang Ge
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, Qingdao, 266032 China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Animal Biosafety Risk Prevention and Control (South), Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Zena Cai
- grid.67293.39Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082 China
| | - Yifan Wu
- grid.67293.39Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082 China
| | - Congyu Lu
- grid.67293.39Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082 China
| | - Zheng Zhang
- grid.67293.39Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082 China
| | - Ping Fu
- grid.67293.39Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082 China
| | - Longfei Mao
- grid.67293.39Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082 China
| | - Xiaodong Wu
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, Qingdao, 266032 China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Animal Biosafety Risk Prevention and Control (South), Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Yousong Peng
- grid.67293.39Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082 China
| |
Collapse
|
5
|
Zhang QY, Liu SQ, Li XD, Li JQ, Zhang YN, Deng CL, Zhang HL, Li XF, Fang CX, Yang FX, Zhang B, Xu Y, Ye HQ. Sequence duplication in 3' UTR modulates virus replication and virulence of Japanese encephalitis virus. Emerg Microbes Infect 2021; 11:123-135. [PMID: 34877923 PMCID: PMC8725919 DOI: 10.1080/22221751.2021.2016354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Japanese encephalitis virus (JEV), an important neurotropic pathogen, belongs to the genus Flavivirus of the family Flaviviridae and has caused huge threat to public health. It is still obscure regarding the functions of stem-loop (SL) and dumbbell (DB) domains of JEV 3' UTR in viral replication and virulence. In the current study, using the infectious clone of JEV SA14 strain as a backbone, we constructed a series of deletion mutants of 3' UTR to investigate their effects on virus replication. The results showed that partial deletions within SL or DB domain had no apparent effects on virus replication in both mammalian (BHK-21) and mosquito (C6/36) cells, suggesting that they were not involved in viral host-specific replication. However, the entire SL domain deletion (ΔVR) significantly reduced virus replication in both cell lines, indicating the important role of the complete SL domain in virus replication. The revertant of ΔVR mutant virus was obtained by serial passage in BHK-21 cells that acquired a duplication of DB domain (DB-dup) in the 3' UTR, which greatly restored virus replication as well as the capability to produce the subgenomic flavivirus RNAs (sfRNAs). Interestingly, the DB-dup mutant virus was highly attenuated in C57BL/6 mice despite replicating similar to WT JEV. These findings demonstrate the significant roles of the duplicated structures in 3' UTR in JEV replication and provide a novel strategy for the design of live-attenuated vaccines.
Collapse
Affiliation(s)
- Qiu-Yan Zhang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China.,The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Si-Qing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xiao-Dan Li
- School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Jia-Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Hong-Lei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xu-Fang Li
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Chun-Xiao Fang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Feng-Xia Yang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Bo Zhang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China.,The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yi Xu
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China.,The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Akiyama BM, Graham ME, O′Donoghue Z, Beckham J, Kieft J. Three-dimensional structure of a flavivirus dumbbell RNA reveals molecular details of an RNA regulator of replication. Nucleic Acids Res 2021; 49:7122-7138. [PMID: 34133732 PMCID: PMC8266583 DOI: 10.1093/nar/gkab462] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
Mosquito-borne flaviviruses (MBFVs) including dengue, West Nile, yellow fever, and Zika viruses have an RNA genome encoding one open reading frame flanked by 5' and 3' untranslated regions (UTRs). The 3' UTRs of MBFVs contain regions of high sequence conservation in structured RNA elements known as dumbbells (DBs). DBs regulate translation and replication of the viral RNA genome, functions proposed to depend on the formation of an RNA pseudoknot. To understand how DB structure provides this function, we solved the x-ray crystal structure of the Donggang virus DB to 2.1Å resolution and used structural modeling to reveal the details of its three-dimensional fold. The structure confirmed the predicted pseudoknot and molecular modeling revealed how conserved sequences form a four-way junction that appears to stabilize the pseudoknot. Single-molecule FRET suggests that the DB pseudoknot is a stable element that can regulate the switch between translation and replication during the viral lifecycle by modulating long-range RNA conformational changes.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Monica E Graham
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
| | - Zoe O′Donoghue
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
| | - J David Beckham
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
- Department of Medicine Division of Infectious Diseases, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Bakran-Lebl K, Camp JV, Kolodziejek J, Weidinger P, Hufnagl P, Cabal Rosel A, Zwickelstorfer A, Allerberger F, Nowotny N. Diversity of West Nile and Usutu virus strains in mosquitoes at an international airport in Austria. Transbound Emerg Dis 2021; 69:2096-2109. [PMID: 34169666 PMCID: PMC9540796 DOI: 10.1111/tbed.14198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Increased globalization and international transportation have resulted in the inadvertent introduction of exotic mosquitoes and new mosquito‐borne diseases. International airports are among the possible points of entry for mosquitoes and their pathogens. We established a mosquito and mosquito‐borne diseases monitoring programme at the largest international airport in Austria and report the results for the first two years, 2018 and 2019. This included weekly monitoring and sampling of adult mosquitoes, and screening them for the presence of viral nucleic acids by standard molecular diagnostic techniques. Additionally, we surveyed the avian community at the airport, as birds are potentially amplifying hosts. In 2018, West Nile virus (WNV) was detected in 14 pools and Usutu virus (USUV) was detected in another 14 pools of mosquitoes (minimum infection rate [MIR] of 6.8 for each virus). Of these 28 pools, 26 consisted of female Culex pipiens/torrentium, and two contained male Culex sp. mosquitoes. Cx. pipiens/torrentium mosquitoes were the most frequently captured mosquito species at the airport. The detected WNV strains belonged to five sub‐clusters within the sub‐lineage 2d‐1, and all detected USUV strains were grouped to at least seven sub‐clusters among the cluster Europe 2; all strains were previously shown to be endemic in Austria. In 2019, all mosquito pools were negative for any viral nucleic acids tested. Our study suggests that airports may serve as foci of arbovirus activity, particularly during epidemic years, and should be considered when designing mosquito control and arbovirus monitoring programmes.
Collapse
Affiliation(s)
- Karin Bakran-Lebl
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pia Weidinger
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Hufnagl
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Adriana Cabal Rosel
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| |
Collapse
|
8
|
The Pseudo-Circular Genomes of Flaviviruses: Structures, Mechanisms, and Functions of Circularization. Cells 2021; 10:cells10030642. [PMID: 33805761 PMCID: PMC7999817 DOI: 10.3390/cells10030642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
The circularization of viral genomes fulfills various functions, from evading host defense mechanisms to promoting specific replication and translation patterns supporting viral proliferation. Here, we describe the genomic structures and associated host factors important for flaviviruses genome circularization and summarize their functional roles. Flaviviruses are relatively small, single-stranded, positive-sense RNA viruses with genomes of approximately 11 kb in length. These genomes contain motifs at their 5′ and 3′ ends, as well as in other regions, that are involved in circularization. These motifs are highly conserved throughout the Flavivirus genus and occur both in mature virions and within infected cells. We provide an overview of these sequence motifs and RNA structures involved in circularization, describe their linear and circularized structures, and discuss the proteins that interact with these circular structures and that promote and regulate their formation, aiming to clarify the key features of genome circularization and understand how these affect the flaviviruses life cycle.
Collapse
|
9
|
Cerikan B, Goellner S, Neufeldt CJ, Haselmann U, Mulder K, Chatel-Chaix L, Cortese M, Bartenschlager R. A Non-Replicative Role of the 3' Terminal Sequence of the Dengue Virus Genome in Membranous Replication Organelle Formation. Cell Rep 2020; 32:107859. [PMID: 32640225 PMCID: PMC7351112 DOI: 10.1016/j.celrep.2020.107859] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV), members of the Flavivirus genus, rearrange endoplasmic reticulum membranes to induce invaginations known as vesicle packets (VPs), which are the assumed sites for viral RNA replication. Mechanistic information on VP biogenesis has so far been difficult to attain due to the necessity of studying their formation under conditions of viral replication, where perturbations reducing replication will inevitably impact VP formation. Here, we report a replication-independent expression system, designated pIRO (plasmid-induced replication organelle formation) that induces bona fide DENV and ZIKV VPs that are morphologically indistinguishable from those in infected cells. Using this system, we demonstrate that sequences in the 3' terminal RNA region of the DENV, but not the ZIKV genome, contribute to VP formation in a non-replicative manner. These results validate the pIRO system that opens avenues for mechanistically dissecting virus replication from membrane reorganization.
Collapse
Affiliation(s)
- Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Sarah Goellner
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Christopher John Neufeldt
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Klaas Mulder
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Laurent Chatel-Chaix
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg Partner Site, University, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Hosseini S, Muñoz-Soto RB, Oliva-Ramírez J, Vázquez-Villegas P, Aghamohammadi N, Rodriguez-Garcia A, Martinez-Chapa SO. Latest Updates in Dengue Fever Therapeutics: Natural, Marine and Synthetic Drugs. Curr Med Chem 2020; 27:719-744. [DOI: 10.2174/0929867325666180629124709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 11/22/2022]
Abstract
In this paper, we review the history of Dengue, the mechanism of infection, the
molecular characteristics and components of Dengue, the mechanism of entry to the target
cells, cyclization of the genome and replication process, as well as translation of the proteins
for virus assembly. The major emphasis of this work is on natural products and plant extracts,
which were used for as palliative or adjuvant treatment of Dengue. This review article also
summarizes the latest findings in regards to the marine products as effective drugs to target
different symptoms of Dengue. Furthermore, an update on synthetic drugs for treating Dengue
is provided in this review. As a novel alternative, we describe monoclonal antibody therapy
for Dengue management and treatment.
Collapse
Affiliation(s)
- Samira Hosseini
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, N.L. 64849, Mexico
| | - Rodrigo B. Muñoz-Soto
- Tecnologico de Monterrey, Campus Ciudad de México, Escuela de Ingeniería y Ciencias, Calle del Puente 222, Mexico City, Mexico
| | - Jacqueline Oliva-Ramírez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Lago de Guadalupe Km 3.5, Cd Lopez Mateos, Atizapan, Estado de Mexico, Mexico
| | | | - Nasrin Aghamohammadi
- Centre for Occupational and Environmental Health, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aida Rodriguez-Garcia
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Instituto de Biotecnología. Ave. Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza, N.L. 66455, Mexico
| | | |
Collapse
|
11
|
Abstract
Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus. It is a single-stranded positive-sense ribonucleic acid virus with 10,700 bases. The genus Flavivirus includes other arthropod borne viruses such as yellow fever virus, West Nile virus, Zika virus, tick-borne encephalitis virus. It infects ~50–200 million people annually, putting over 3.6 billion people living in tropical regions at risk and causing ~20,000 deaths annually. The expansion of dengue is attributed to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement, and also viral evolution. There are four antigenically different serotypes of DENV based on the differences in their viral structural and nonstructural proteins. DENV infection causes a spectrum of illness ranging from asymptomatic to dengue fever to severe dengue shock syndrome. Infection with one serotype confers lifelong immunity against that serotype, but heterologus infection leads to severe dengue hemorrhagic fever due to antibody-dependent enhancement. Diagnosis of dengue infections is based mainly on serological detection of either antigen in acute cases or antibodies in both acute and chronic infection. Viral detection and real-time PCR detection though helpful is not feasible in resource poor setup. Treatment of dengue depends on symptomatic management along with fluid resuscitation and may require platelet transfusion. Although vaccine development is in late stages of development, developing a single vaccine against four serotypes often causes serious challenges to researchers; hence, the main stay of prevention is vector control and management.
Collapse
|
12
|
Finol E, Ooi EE. Evolution of Subgenomic RNA Shapes Dengue Virus Adaptation and Epidemiological Fitness. iScience 2019; 16:94-105. [PMID: 31154208 PMCID: PMC6545344 DOI: 10.1016/j.isci.2019.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 02/02/2019] [Accepted: 05/13/2019] [Indexed: 01/07/2023] Open
Abstract
Changes in dengue virus (DENV) genome affect viral fitness both clinically and epidemiologically. Even in the 3′ untranslated region (3′ UTR), mutations could affect subgenomic flaviviral RNA (sfRNA) production and its affinity for host proteins, which are necessary for successful viral replication. Indeed, we recently showed that mutations in DENV2 3′ UTR of epidemic strains increased sfRNA ability to bind host proteins and reduce interferon expression. However, whether 3′ UTR differences shape the overall DENV evolution remains incompletely understood. Herein, we combined RNA phylogeny with phylogenetics to gain insights on sfRNA evolution. We found that sfRNA structures are under purifying selection and highly conserved despite sequence divergence. Only the second flaviviral nuclease-resistant RNA (fNR2) structure of DENV2 sfRNA has undergone strong positive selection. Epidemiological reports suggest that substitutions in fNR2 may drive DENV2 epidemiological fitness, possibly through sfRNA-protein interactions. Collectively, our findings indicate that 3′ UTRs are important determinants of DENV fitness in human-mosquito cycles. Dengue viruses (DENVs) preserve RNA elements in their 3′ untranslated region (UTR). Quantification of natural selection revealed positive selection on DENV2 sfRNA Flaviviral nuclease-resistant RNAs (fNR) in the 3′ UTRs contribute to DENV speciation A highly evolving fNR structure appears to increase DENV2 epidemiological fitness
Collapse
Affiliation(s)
- Esteban Finol
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Swiss Tropical and Public Health Institute, University of Basel, Basel 4051, Switzerland; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
| |
Collapse
|
13
|
Abstract
Flaviviruses include a diverse group of medically important viruses that cycle between mosquitoes and humans. During this natural process of switching hosts, each species imposes different selective forces on the viral population. Using dengue virus (DENV) as model, we found that paralogous RNA structures originating from duplications in the viral 3' untranslated region (UTR) are under different selective pressures in the two hosts. These RNA structures, known as dumbbells (DB1 and DB2), were originally proposed to be enhancers of viral replication. Analysis of viruses obtained from infected mosquitoes showed selection of mutations that mapped in DB2. Recombinant viruses carrying the identified variations confirmed that these mutations greatly increase viral replication in mosquito cells, with low or no impact in human cells. Use of viruses lacking each of the DB structures revealed opposite viral phenotypes. While deletion of DB1 reduced viral replication about 10-fold, viruses lacking DB2 displayed a great increase of fitness in mosquitoes, confirming a functional diversification of these similar RNA elements. Mechanistic analysis indicated that DB1 and DB2 differentially modulate viral genome cyclization and RNA replication. We found that a pseudoknot formed within DB2 competes with long-range RNA-RNA interactions that are necessary for minus-strand RNA synthesis. Our results support a model in which a functional diversification of duplicated RNA elements in the viral 3' UTR is driven by host-specific requirements. This study provides new ideas for understanding molecular aspects of the evolution of RNA viruses that naturally jump between different species.IMPORTANCE Flaviviruses constitute the most relevant group of arthropod-transmitted viruses, including important human pathogens such as the dengue, Zika, yellow fever, and West Nile viruses. The natural alternation of these viruses between vertebrate and invertebrate hosts shapes the viral genome population, which leads to selection of different viral variants with potential implications for epidemiological fitness and pathogenesis. However, the selective forces and mechanisms acting on the viral RNA during host adaptation are still largely unknown. Here, we found that two almost identical tandem RNA structures present at the viral 3' untranslated region are under different selective pressures in the two hosts. Mechanistic studies indicated that the two RNA elements, known as dumbbells, contain sequences that overlap essential RNA cyclization elements involved in viral RNA synthesis. The data support a model in which the duplicated RNA structures differentially evolved to accommodate distinct functions for viral replication in the two hosts.
Collapse
|
14
|
Liu X, Liu Y, Zhang Q, Zhang B, Xia H, Yuan Z. Homologous RNA secondary structure duplications in 3′ untranslated region influence subgenomic RNA production and replication of dengue virus. Virology 2018; 524:114-126. [DOI: 10.1016/j.virol.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
|
15
|
Dwivedi VD, Tripathi IP, Tripathi RC, Bharadwaj S, Mishra SK. Genomics, proteomics and evolution of dengue virus. Brief Funct Genomics 2018; 16:217-227. [PMID: 28073742 DOI: 10.1093/bfgp/elw040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The genome of a pathogenic organism possesses a specific order of nucleotides that contains not only information about the synthesis and expression of proteomes, which are required for its growth and survival, but also about its evolution. Inhibition of any particular protein, which is required for the survival of that pathogenic organism, can be used as a potential therapeutic target for the development of effective drugs to treat its infections. In this review, the genomics, proteomics and evolution of dengue virus have been discussed, which will be helpful in better understanding of its origin, growth, survival and evolution, and may contribute toward development of new efficient anti-dengue drugs.
Collapse
|
16
|
Pollett S, Melendrez MC, Maljkovic Berry I, Duchêne S, Salje H, Cummings DAT, Jarman RG. Understanding dengue virus evolution to support epidemic surveillance and counter-measure development. INFECTION GENETICS AND EVOLUTION 2018; 62:279-295. [PMID: 29704626 DOI: 10.1016/j.meegid.2018.04.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022]
Abstract
Dengue virus (DENV) causes a profound burden of morbidity and mortality, and its global burden is rising due to the co-circulation of four divergent DENV serotypes in the ecological context of globalization, travel, climate change, urbanization, and expansion of the geographic range of the Ae.aegypti and Ae.albopictus vectors. Understanding DENV evolution offers valuable opportunities to enhance surveillance and response to DENV epidemics via advances in RNA virus sequencing, bioinformatics, phylogenetic and other computational biology methods. Here we provide a scoping overview of the evolution and molecular epidemiology of DENV and the range of ways that evolutionary analyses can be applied as a public health tool against this arboviral pathogen.
Collapse
Affiliation(s)
- S Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Marie Bashir Institute, University of Sydney, NSW, Australia; Institute for Global Health Sciences, University of California at San Francisco, CA, USA.
| | - M C Melendrez
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - I Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - S Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
| | - H Salje
- Institut Pasteur, Paris, France; Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - D A T Cummings
- Johns Hopkins School of Public Health, Baltimore, MD, USA; University of Florida, FL, USA
| | - R G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
17
|
Pelliccia S, Wu YH, Coluccia A, La Regina G, Tseng CK, Famiglini V, Masci D, Hiscott J, Lee JC, Silvestri R. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities. J Enzyme Inhib Med Chem 2017; 32:1091-1101. [PMID: 28776445 PMCID: PMC6010079 DOI: 10.1080/14756366.2017.1355791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/01/2017] [Accepted: 07/12/2017] [Indexed: 11/26/2022] Open
Abstract
Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes - NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.
Collapse
Affiliation(s)
- Sveva Pelliccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Giuseppe La Regina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Valeria Famiglini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Domiziana Masci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - John Hiscott
- Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
18
|
Fernández-Sanlés A, Ríos-Marco P, Romero-López C, Berzal-Herranz A. Functional Information Stored in the Conserved Structural RNA Domains of Flavivirus Genomes. Front Microbiol 2017; 8:546. [PMID: 28421048 PMCID: PMC5376627 DOI: 10.3389/fmicb.2017.00546] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
The genus Flavivirus comprises a large number of small, positive-sense single-stranded, RNA viruses able to replicate in the cytoplasm of certain arthropod and/or vertebrate host cells. The genus, which has some 70 member species, includes a number of emerging and re-emerging pathogens responsible for outbreaks of human disease around the world, such as the West Nile, dengue, Zika, yellow fever, Japanese encephalitis, St. Louis encephalitis, and tick-borne encephalitis viruses. Like other RNA viruses, flaviviruses have a compact RNA genome that efficiently stores all the information required for the completion of the infectious cycle. The efficiency of this storage system is attributable to supracoding elements, i.e., discrete, structural units with essential functions. This information storage system overlaps and complements the protein coding sequence and is highly conserved across the genus. It therefore offers interesting potential targets for novel therapeutic strategies. This review summarizes our knowledge of the features of flavivirus genome functional RNA domains. It also provides a brief overview of the main achievements reported in the design of antiviral nucleic acid-based drugs targeting functional genomic RNA elements.
Collapse
Affiliation(s)
- Alba Fernández-Sanlés
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| | - Pablo Ríos-Marco
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| | - Cristina Romero-López
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| | - Alfredo Berzal-Herranz
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| |
Collapse
|
19
|
Wang CC, Hsu YC, Wu HC, Wu HN. Insights into the coordinated interplay of the sHP hairpin and its co-existing and mutually-exclusive dengue virus terminal RNA elements for viral replication. Virology 2017; 505:56-70. [PMID: 28235683 DOI: 10.1016/j.virol.2017.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022]
Abstract
Terminal RNA elements of the dengue virus (DENV) genome are necessary for balanced stability of linear and circular conformations during replication. We examined the small hairpin (sHP) and co-existing and mutually-exclusive terminal RNA elements by mutagenesis analysis, compensatory mutation screening, and by probing with RNA fragments to explore localized RNA folding and long-range RNA interactions. We found that the first base pair of the sHP and the stability of SLB and the 3'SL bottom stem affected circularization; sHPgc/C10631G+G10644C prohibited circularization, sHPuG accelerated and stabilized 5'-to-3' RNA hybridization, while C94A and A97G and C10649 mutations loosened SLB and 3'SL, respectively, for circularization. sHPuG+C10649G induced circularization and impeded replication, whereas point mutations that loosened the UAR or DAR ds region, strengthened the sHP, or reinforced the 3'SL bottom stem, rescued the replication deficiency. Overall, we reveal structural and sequence features and interplay of DENV genome terminal RNA elements essential to viral replication.
Collapse
Affiliation(s)
- Chun-Chung Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hsin-Chieh Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China; Faculty of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Huey-Nan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
20
|
Olagnier D, Amatore D, Castiello L, Ferrari M, Palermo E, Diamond MS, Palamara AT, Hiscott J. Dengue Virus Immunopathogenesis: Lessons Applicable to the Emergence of Zika Virus. J Mol Biol 2016; 428:3429-48. [PMID: 27130436 DOI: 10.1016/j.jmb.2016.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 01/07/2023]
Abstract
Dengue is the leading mosquito-transmitted viral infection in the world. There are more than 390 million new infections annually; while the majority of infected individuals are asymptomatic or develop a self-limited dengue fever, up to 1 million clinical cases develop severe manifestations, including dengue hemorrhagic fever and shock syndrome, resulting in ~25,000 deaths annually, mainly in children. Gaps in our understanding of the mechanisms that contribute to dengue infection and immunopathogenesis have hampered the development of vaccines and antiviral agents. Some of these limitations are highlighted by the explosive re-emergence of another arthropod-borne flavivirus-Zika virus-spread by the same vector, the Aedes aegypti mosquito, that also carries dengue, yellow fever and chikungunya viruses. This review will discuss the early virus-host interactions in dengue infection, with emphasis on the interrelationship between oxidative stress and innate immune pathways, and will provide insight as to how lessons learned from dengue research may expedite therapeutic strategies for Zika virus.
Collapse
Affiliation(s)
- David Olagnier
- Lady Davis Institute, Jewish General Hospital, McGill University Montreal, Canada
| | - Donatella Amatore
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Matteo Ferrari
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Enrico Palermo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University at St. Louis, St. Louis, MO, USA
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - John Hiscott
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
21
|
Pyke AT, Moore PR, Taylor CT, Hall-Mendelin S, Cameron JN, Hewitson GR, Pukallus DS, Huang B, Warrilow D, van den Hurk AF. Highly divergent dengue virus type 1 genotype sets a new distance record. Sci Rep 2016; 6:22356. [PMID: 26924208 PMCID: PMC4770315 DOI: 10.1038/srep22356] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/12/2016] [Indexed: 11/30/2022] Open
Abstract
Dengue viruses (DENVs) are the leading cause of mosquito-borne viral disease of humans. They exist in both endemic and sylvatic ecotypes. In 2014, a viremic patient who had recently visited the rainforests of Brunei returned to Australia displaying symptoms consistent with DENV infection. A unique DENV strain was subsequently isolated from the patient, which we propose belongs to a new genotype within DENV serotype 1 (DENV-1). Bayesian evolutionary phylogenetic analysis suggests that the putative sylvatic DENV-1 Brunei 2014 (Brun2014) is the most divergent DENV-1 yet recorded and increases the time to the most recent common ancestor (MRCA) for DENV-1 from ≈120 years to ≈315 years. DENV-1 classification of the Brun2014 strain was further supported by monoclonal antibody serotyping data. Phenotypic characterization demonstrated that Brun2014 replication rates in mosquito cells and infection rates in Aedes aegypti mosquitoes were not significantly different from an epidemic DENV-1 strain. Given its ability to cause human illness and infect Ae. aegypti, potential urban spillover and clinical disease from further Brun2014 transmission cannot be discounted.
Collapse
Affiliation(s)
- Alyssa T. Pyke
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Peter R. Moore
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Carmel T. Taylor
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Jane N. Cameron
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Glen R. Hewitson
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Dennis S. Pukallus
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Andrew F. van den Hurk
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| |
Collapse
|
22
|
Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa. mBio 2016; 7:e01938-15. [PMID: 26838717 PMCID: PMC4742707 DOI: 10.1128/mbio.01938-15] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Usutu virus (USUV), one of the most neglected Old World encephalitic flaviviruses, causes epizootics among wild and captive birds and sporadic infection in humans. The dynamics of USUV spread and evolution in its natural hosts are unknown. Here, we present the phylogeny and evolutionary history of all available USUV strains, including 77 newly sequenced complete genomes from a variety of host species at a temporal and spatial scaled resolution. The results showed that USUV can be classified into six distinct lineages and that the most recent common ancestor of the recent European epizootics emerged in Africa at least 500 years ago. We demonstrated that USUV was introduced regularly from Africa into Europe in the last 50 years, and the genetic diversity of European lineages is shaped primarily by in situ evolution, while the African lineages have been driven by extensive gene flow. Most of the amino acid changes are deleterious polymorphisms removed by purifying selection, with adaptive evolution restricted to the NS5 gene and several others evolving under episodic directional selection, indicating that the ecological or immunological factors were mostly the key determinants of USUV dispersal and outbreaks. Host-specific mutations have been detected, while the host transition analysis identified mosquitoes as the most likely origin of the common ancestor and birds as the source of the recent European USUV lineages. Our results suggest that the major migratory bird flyways could predict the continental and intercontinental dispersal patterns of USUV and that migratory birds might act as potential long-distance dispersal vehicles. Usutu virus (USUV), a mosquito-borne flavivirus of the Japanese encephalitis virus antigenic group, caused massive bird die-offs, mostly in Europe. There is increasing evidence that USUV appears to be pathogenic for humans, becoming a potential public health problem. The emergence of USUV in Europe allows us to understand how an arbovirus spreads, adapts, and evolves in a naive environment. Thus, understanding the epidemiological and evolutionary processes that contribute to the emergence, maintenance, and further spread of viral diseases is the sine qua non to develop and implement surveillance strategies for their control. In this work, we performed an expansive phylogeographic and evolutionary analysis of USUV using all published sequences and those generated during this study. Subsequently, we described the genetic traits, reconstructed the potential pattern of geographic spread between continents/countries of the identified viral lineages and the drivers of viral migration, and traced the origin of outbreaks and transition events between different hosts.
Collapse
|
23
|
Sarathy VV, Milligan GN, Bourne N, Barrett ADT. Mouse models of dengue virus infection for vaccine testing. Vaccine 2015; 33:7051-60. [PMID: 26478201 PMCID: PMC5563257 DOI: 10.1016/j.vaccine.2015.09.112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023]
Abstract
Dengue is a mosquito-borne disease caused by four serologically and genetically related viruses termed DENV-1 to DENV-4. With an annual global burden of approximately 390 million infections occurring in the tropics and subtropics worldwide, an effective vaccine to combat dengue is urgently needed. Historically, a major impediment to dengue research has been development of a suitable small animal infection model that mimics the features of human illness in the absence of neurologic disease that was the hallmark of earlier mouse models. Recent advances in immunocompromised murine infection models have resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice that are deficient in both the interferon-α/β receptor (IFN-α/β R) and the interferon-γ receptor (IFN-γR). These models mimic many hallmark features of dengue disease in humans, such as viremia, thrombocytopenia, vascular leakage, and cytokine storm. Importantly AG129 mice develop lethal, acute, disseminated infection with systemic viral loads, which is characteristic of typical dengue illness. Infected AG129 mice generate an antibody response to DENV, and antibody-dependent enhancement (ADE) models have been established by both passive and maternal transfer of DENV-immune sera. Several steps have been taken to refine DENV mouse models. Viruses generated by peripheral in vivo passages incur substitutions that provide a virulent phenotype using smaller inocula. Because IFN signaling has a major role in immunity to DENV, mice that generate a cellular immune response are desired, but striking the balance between susceptibility to DENV and intact immunity is complicated. Great strides have been made using single-deficient IFN-α/βR mice for DENV-2 infection, and conditional knockdowns may offer additional approaches to provide a panoramic view that includes viral virulence and host immunity. Ultimately, the DENV AG129 mouse models result in reproducible lethality and offer multiple disease parameters to evaluate protection by candidate vaccines.
Collapse
Affiliation(s)
- Vanessa V Sarathy
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States; Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gregg N Milligan
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nigel Bourne
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alan D T Barrett
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States; Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
24
|
de Bruycker-Nogueira F, Nogueira RMR, Faria NRDC, Simões JBS, Nunes PCG, de Filippis AMB, dos Santos FB. Insights of the genetic diversity of DENV-1 detected in Brazil in 25 years: Analysis of the envelope domain III allows lineages characterization. INFECTION GENETICS AND EVOLUTION 2015; 34:126-36. [PMID: 26160541 DOI: 10.1016/j.meegid.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 01/03/2023]
Abstract
Dengue virus type 1 (DENV-1) was first isolated in Brazil in 1986 in the state of Rio de Janeiro (RJ) and during 25years, this serotype emerged and re-emerged causing explosive epidemics in the country. Here, we aimed to present the phylogeny and molecular characterization based on the envelope gene (E) of DENV-1 (n=48) isolated during epidemics occurred from 1986 to 2011. Six full coding region genomes of DENV-1 were fully sequenced and possible genomic recombination events were analyzed. The results showed that the Brazilian DENV-1 isolates analyzed belong to genotype V (Americas/Africa), but grouping into distinct clades. Three groups were identified, one dating from 1986 to 2002 (lineage 1a), a second group isolated from 2009 to 2011 and a representative strain isolated in 2002 (lineage 2), and a group of strains isolated from 2010 to 2011 (lineage 1b). The lineages 1a and 1b were more closely related to the American strains, while lineage 2 to the Asian strains. Amino acids (aa) substitutions were observed in the domains I and III of the E protein and were associated to the lineages segregation. A substitution on E297 differentiated the lineage 1a from the lineages 1b and 2. Substitutions on E338, E394 (domain III), E428 and E436 (stem region) differentiated lineages 1a, 1b and 2. With the exception of the C gene, all the others genes analyzed allowed the DENV-1 classification into the distinct genotypes. Interestingly, the E gene's domain III and stem regions alone were able to characterize the distinct lineages, as observed by the analysis of the entire E gene and the complete coding region. No recombinant events were detected, but a strain belonging to lineage 1a was closely related to a known recombinant strain (AF513110/BR/2001).
Collapse
Affiliation(s)
| | - Rita Maria Ribeiro Nogueira
- Laboratory of Flavivirus, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | - Ana Maria Bispo de Filippis
- Laboratory of Flavivirus, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Flávia Barreto dos Santos
- Laboratory of Flavivirus, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
25
|
Overlapping local and long-range RNA-RNA interactions modulate dengue virus genome cyclization and replication. J Virol 2015; 89:3430-7. [PMID: 25589642 DOI: 10.1128/jvi.02677-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The dengue virus genome is a dynamic molecule that adopts different conformations in the infected cell. Here, using RNA folding predictions, chemical probing analysis, RNA binding assays, and functional studies, we identified new cis-acting elements present in the capsid coding sequence that facilitate cyclization of the viral RNA by hybridization with a sequence involved in a local dumbbell structure at the viral 3' untranslated region (UTR). The identified interaction differentially enhances viral replication in mosquito and mammalian cells.
Collapse
|
26
|
Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog 2014; 10:e1004566. [PMID: 25521078 PMCID: PMC4270780 DOI: 10.1371/journal.ppat.1004566] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is a re-emerging arthropod borne flavivirus that infects more than 300 million people worldwide, leading to 50,000 deaths annually. Because dendritic cells (DC) in the skin and blood are the first target cells for DENV, we sought to investigate the early molecular events involved in the host response to the virus in primary human monocyte-derived dendritic cells (Mo-DC). Using a genome-wide transcriptome analysis of DENV2-infected human Mo-DC, three major responses were identified within hours of infection - the activation of IRF3/7/STAT1 and NF-κB-driven antiviral and inflammatory networks, as well as the stimulation of an oxidative stress response that included the stimulation of an Nrf2-dependent antioxidant gene transcriptional program. DENV2 infection resulted in the intracellular accumulation of reactive oxygen species (ROS) that was dependent on NADPH-oxidase (NOX). A decrease in ROS levels through chemical or genetic inhibition of the NOX-complex dampened the innate immune responses to DENV infection and facilitated DENV replication; ROS were also essential in driving mitochondrial apoptosis in infected Mo-DC. In addition to stimulating innate immune responses to DENV, increased ROS led to the activation of bystander Mo-DC which up-regulated maturation/activation markers and were less susceptible to viral replication. We have identified a critical role for the transcription factor Nrf2 in limiting both antiviral and cell death responses to the virus by feedback modulation of oxidative stress. Silencing of Nrf2 by RNA interference increased DENV-associated immune and apoptotic responses. Taken together, these data demonstrate that the level of oxidative stress is critical to the control of both antiviral and apoptotic programs in DENV-infected human Mo-DC and highlight the importance of redox homeostasis in the outcome of DENV infection. Dengue virus (DENV), the leading arthropod-borne viral infection in the world, represents a major human health concern with a global at risk population of over 3 billion people. Currently, there are no antivirals or vaccines available to treat patients with dengue fever, nor is it possible to predict which patients will progress to life-threatening severe dengue fever. Markers associated with oxidative stress responses have been reported in patients with severe DENV infection, suggesting a relationship between oxidative stress and viral pathogenesis. In order to uncover biological processes that determine the outcome of disease in patients, we utilized human dendritic cells, the primary target of DENV infection, in an in vitro model. Transcriptional analysis of pathways activated upon de novo DENV infection revealed a major role for cellular oxidative stress in the induction of antiviral, inflammatory, and cell death responses. We also demonstrated that antioxidant mechanisms play a critical role in controlling antiviral and cell death responses to the virus, acting as feedback regulators of the oxidative stress response. This report highlights the importance of oxidative stress responses in the outcome of DENV infection, and identifies this pathway as a potential new entry-point for treating dengue-associated diseases.
Collapse
|
27
|
Elevated dengue virus nonstructural protein 1 serum levels and altered toll-like receptor 4 expression, nitric oxide, and tumor necrosis factor alpha production in dengue hemorrhagic Fever patients. J Trop Med 2014; 2014:901276. [PMID: 25580138 PMCID: PMC4279176 DOI: 10.1155/2014/901276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022] Open
Abstract
Background. During dengue virus (DV) infection, monocytes produce tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1) on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1) serum levels and innate immune response (TLR4 expression and TNF-α/NO production) of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA), TNF-α production by peripheral blood mononuclear cells (PBMCs), and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF) was detected compared to patients with dengue hemorrhagic fever (DHF). Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production) when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes.
Collapse
|
28
|
Selisko B, Wang C, Harris E, Canard B. Regulation of Flavivirus RNA synthesis and replication. Curr Opin Virol 2014; 9:74-83. [PMID: 25462437 DOI: 10.1016/j.coviro.2014.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/21/2023]
Abstract
RNA synthesis and replication of the members of the Flavivirus genus (including dengue, West Nile and Japanese encephalitis viruses) is regulated by a wide variety of mechanisms and actors. These include the sequestration of the RNA-dependent RNA polymerase (RdRp) for functions other than RNA synthesis, regulatory interactions with other viral and host proteins within the replication complex (RC), and regulatory elements within the RNA genome itself. In this review, we discuss our current knowledge of the multiple levels at which Flavivirus RNA synthesis is controlled. We aim to bring together two active research fields: the structural and functional biology of individual proteins of the RC and the impressive wealth of knowledge acquired regarding the viral genomic RNA.
Collapse
Affiliation(s)
- Barbara Selisko
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, Berkeley, CA 94720-3370, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, Berkeley, CA 94720-3370, USA
| | - Bruno Canard
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
29
|
Are viral small RNA regulating Dengue virus replication beyond serotype 2? Proc Natl Acad Sci U S A 2014; 111:E2915-6. [PMID: 25024232 DOI: 10.1073/pnas.1409972111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Sztuba-Solinska J, Teramoto T, Rausch JW, Shapiro BA, Padmanabhan R, Le Grice SFJ. Structural complexity of Dengue virus untranslated regions: cis-acting RNA motifs and pseudoknot interactions modulating functionality of the viral genome. Nucleic Acids Res 2013; 41:5075-89. [PMID: 23531545 PMCID: PMC3643606 DOI: 10.1093/nar/gkt203] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Dengue virus (DENV) genome contains multiple cis-acting elements required for translation and replication. Previous studies indicated that a 719-nt subgenomic minigenome (DENV-MINI) is an efficient template for translation and (−) strand RNA synthesis in vitro. We performed a detailed structural analysis of DENV-MINI RNA, combining chemical acylation techniques, Pb2+ ion-induced hydrolysis and site-directed mutagenesis. Our results highlight protein-independent 5′–3′ terminal interactions involving hybridization between recognized cis-acting motifs. Probing analyses identified tandem dumbbell structures (DBs) within the 3′ terminus spaced by single-stranded regions, internal loops and hairpins with embedded GNRA-like motifs. Analysis of conserved motifs and top loops (TLs) of these dumbbells, and their proposed interactions with downstream pseudoknot (PK) regions, predicted an H-type pseudoknot involving TL1 of the 5′ DB and the complementary region, PK2. As disrupting the TL1/PK2 interaction, via ‘flipping’ mutations of PK2, previously attenuated DENV replication, this pseudoknot may participate in regulation of RNA synthesis. Computer modeling implied that this motif might function as autonomous structural/regulatory element. In addition, our studies targeting elements of the 3′ DB and its complementary region PK1 indicated that communication between 5′–3′ terminal regions strongly depends on structure and sequence composition of the 5′ cyclization region.
Collapse
Affiliation(s)
- Joanna Sztuba-Solinska
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA and CCR Nanobiology Program, Computational RNA Structure Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tadahisa Teramoto
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA and CCR Nanobiology Program, Computational RNA Structure Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jason W. Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA and CCR Nanobiology Program, Computational RNA Structure Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA and CCR Nanobiology Program, Computational RNA Structure Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Radhakrishnan Padmanabhan
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA and CCR Nanobiology Program, Computational RNA Structure Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stuart F. J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA and CCR Nanobiology Program, Computational RNA Structure Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- *To whom correspondence should be addressed. Tel: +1 301 846 5256; Fax: +1 301 846 5256;
| |
Collapse
|
31
|
de Castro MG, de Nogueira FB, Nogueira RMR, Lourenço-de-Oliveira R, dos Santos FB. Genetic variation in the 3' untranslated region of dengue virus serotype 3 strains isolated from mosquitoes and humans in Brazil. Virol J 2013; 10:3. [PMID: 23282086 PMCID: PMC3547765 DOI: 10.1186/1743-422x-10-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 12/27/2012] [Indexed: 11/17/2022] Open
Abstract
Summary
Collapse
|
32
|
Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, Khor CC, Petric R, Hibberd ML, Nagarajan N. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 2012; 40:11189-201. [PMID: 23066108 PMCID: PMC3526318 DOI: 10.1093/nar/gks918] [Citation(s) in RCA: 889] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The study of cell-population heterogeneity in a range of biological systems, from viruses to bacterial isolates to tumor samples, has been transformed by recent advances in sequencing throughput. While the high-coverage afforded can be used, in principle, to identify very rare variants in a population, existing ad hoc approaches frequently fail to distinguish true variants from sequencing errors. We report a method (LoFreq) that models sequencing run-specific error rates to accurately call variants occurring in <0.05% of a population. Using simulated and real datasets (viral, bacterial and human), we show that LoFreq has near-perfect specificity, with significantly improved sensitivity compared with existing methods and can efficiently analyze deep Illumina sequencing datasets without resorting to approximations or heuristics. We also present experimental validation for LoFreq on two different platforms (Fluidigm and Sequenom) and its application to call rare somatic variants from exome sequencing datasets for gastric cancer. Source code and executables for LoFreq are freely available at http://sourceforge.net/projects/lofreq/.
Collapse
Affiliation(s)
- Andreas Wilm
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Anoop M, Mathew AJ, Jayakumar B, Issac A, Nair S, Abraham R, Anupriya MG, Sreekumar E. Complete genome sequencing and evolutionary analysis of dengue virus serotype 1 isolates from an outbreak in Kerala, South India. Virus Genes 2012; 45:1-13. [PMID: 22729802 DOI: 10.1007/s11262-012-0756-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/05/2012] [Indexed: 11/26/2022]
Abstract
In this study, dengue virus (DENV) isolates from a localized, small-scale, non-seasonal dengue outbreak were genetically characterized. The outbreak occurred during the pre-monsoon months (April-May) in a medical college campus in Kerala, South India in 2009 affecting 76 people. Analysis of 39 viral RNA positive serum samples by a serotype specific reverse-transcription polymerase chain reaction identified dengue virus serotype 1 (DENV1) as the causative strain. Formation of a distinct genetic clade was revealed in the initial phylogenetic analysis using nucleotide sequences of a partial (303 bp) Capsid-Pre-membrane protein (C-PrM) coding region of 37 outbreak strains. The sequences of these strains clustered with that of the Genotype III DENV-1 strains from India, and 32 among them formed a single major sub-clade. Whole-genome sequencing (10,693 bp) of two strains (RGCB585/2009 and RGCB592/2009) selected from this major sub-clade, and subsequent phylogenetic analysis using the full-length coding region sequence showed that the sequences grouped with that of the isolates from Thailand (1980), Comoros (1993), Singapore (1993), and Brunei (2005) among the Indo-Pacific isolates. The sequences of the two strains had a nucleotide identity of 97-98 % and an amino acid identity of 98-99 % with these closely related strains. Maximum amino acid similarity was shown with the Singapore 8114/93 isolate (99.6 %). Four mutations-L46M in the capsid, D278N in the NS1, L123I, and L879S in the NS5 protein coding regions-were seen as signature substitutions uniformly in RGCB585/2009 and RGCB592/2009; in another isolate from Kerala (RGCB419/2008) and in the Brunei isolate (DS06-210505). These four isolates also had in common a 21-nucleotide deletion in the hyper-variable region of the 3'-non-translated region. This first report on the complete genome characterization of DENV-1 isolates from India reveals a dengue outbreak caused by a genetically different viral strain. The results point to the possibility of exotic introduction of these circulating viral strains in the region.
Collapse
Affiliation(s)
- M Anoop
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, 695014 Kerala, India
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Warren TK, Shurtleff AC, Bavari S. Advanced morpholino oligomers: a novel approach to antiviral therapy. Antiviral Res 2012; 94:80-8. [PMID: 22353544 PMCID: PMC7114334 DOI: 10.1016/j.antiviral.2012.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 01/21/2023]
Abstract
Phosphorodiamidate morpholino oligomers (PMOs) are synthetic antisense oligonucleotide analogs that are designed to interfere with translational processes by forming base-pair duplexes with specific RNA sequences. Positively charged PMOs (PMOplus™) are effective for the postexposure protection of two fulminant viral diseases, Ebola and Marburg hemorrhagic fever in nonhuman primates, and this class of antisense agent may also have possibilities for treatment of other viral diseases. PMOs are highly stable, are effective by a variety of routes of administration, can be readily formulated in common isotonic delivery vehicles, and can be rapidly designed and synthesized. These are properties which may make PMOs good candidates for use during responses to emerging or reemerging viruses that may be insensitive to available therapies or for use during outbreaks, especially in regions that lack a modern medical infrastructure. While the efficacy of sequence-specific therapies can be limited by target-site sequence variations that occur between variants or by the emergence of resistant mutants during infections, various PMO design strategies can minimize these impacts. These strategies include the use of promiscuous bases such as inosine to compensate for predicted base-pair mismatches, the use of sequences that target conserved sites between viral strains, and the use of sequences that target host products that viruses utilize for infection.
Collapse
Affiliation(s)
| | | | - Sina Bavari
- Corresponding author. Tel.: +1 301 619 4246.
| |
Collapse
|
35
|
Rossi SL, Nasar F, Cardosa J, Mayer SV, Tesh RB, Hanley KA, Weaver SC, Vasilakis N. Genetic and phenotypic characterization of sylvatic dengue virus type 4 strains. Virology 2011; 423:58-67. [PMID: 22178263 DOI: 10.1016/j.virol.2011.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 11/27/2022]
Abstract
Four serotypes of dengue virus (DENV 1-4) currently circulate between humans and domestic/peridomestic Aedes mosquitoes, resulting in 100 million infections per year. All four serotypes emerged, independently, from sylvatic progenitors transmitted among non-human primates by arboreal Aedes mosquitoes. This study investigated the genetic and phenotypic changes associated with emergence of human DENV-4 from its sylvatic ancestors. Analysis of complete genomes of 3 sylvatic and 4 human strains revealed high conservation of both the 5'- and 3'-untranslated regions but considerable divergence within the open reading frame. Additionally, the two ecotypes did not differ significantly in replication dynamics in cultured human liver (Huh-7), monkey kidney (Vero) or mosquito (C6/36) cells, although significant inter-strain variation within ecotypes was detected. These findings are in partial agreement with previous studies of DENV-2, where human strains produced a larger number of progeny than sylvatic strains in human liver cells but not in monkey or mosquito cells.
Collapse
Affiliation(s)
- S L Rossi
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kato F, Kotaki A, Yamaguchi Y, Shiba H, Hosono K, Harada S, Saijo M, Kurane I, Takasaki T, Tajima S. Identification and characterization of the short variable region of the Japanese encephalitis virus 3' NTR. Virus Genes 2011; 44:191-7. [PMID: 22057659 DOI: 10.1007/s11262-011-0685-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 10/24/2011] [Indexed: 11/25/2022]
Abstract
Since the 1980s, the Japanese encephalitis virus (JEV) variants with slightly short variable regions (VR) of the 3' non-translated region (NTR) have been found; however, the implications of these short VR remain unclear. We recently identified two novel types of short VR (5 and 9 nt shorter than that of major group of genotype I JEV strains) of genotype I JEV isolates. To elucidate the impact of these short VR on the replication and virulence of JEV, we generated five recombinant JEV viruses: M41-d5 and M41-d9 have deletions in the VR that correspond to those observed in some recent JEV isolates, M41-d5d9 has both the 5- and 9-nt deletions in the VR, M41-d27 has a large deletion that encompasses both the 5- and 9-nt deletion regions, and M41-a13 has a 13-nt sequence insertion of the genotype III JEV strain Beijing-1 into the parent genotype I JEV strain Mie/41/2002 genome. The recombinant viruses and the parent virus, except for the M41-d27 mutant, showed similar growth properties in mammalian and mosquito cell lines. Mouse challenge experiments indicated that no significant differences among the recombinant viruses M41-d5d9, M41-d27, M41-a13, and the parent virus. Our results suggest that the short VR in JEV 3' NTR do not affect its growth in vitro or its pathogenicity in mice.
Collapse
Affiliation(s)
- Fumihiro Kato
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gebhard LG, Filomatori CV, Gamarnik AV. Functional RNA elements in the dengue virus genome. Viruses 2011; 3:1739-56. [PMID: 21994804 PMCID: PMC3187688 DOI: 10.3390/v3091739] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) genome amplification is a process that involves the viral RNA, cellular and viral proteins, and a complex architecture of cellular membranes. The viral RNA is not a passive template during this process; it plays an active role providing RNA signals that act as promoters, enhancers and/or silencers of the replication process. RNA elements that modulate RNA replication were found at the 5′ and 3′ UTRs and within the viral coding sequence. The promoter for DENV RNA synthesis is a large stem loop structure located at the 5′ end of the genome. This structure specifically interacts with the viral polymerase NS5 and promotes RNA synthesis at the 3′ end of a circularized genome. The circular conformation of the viral genome is mediated by long range RNA-RNA interactions that span thousands of nucleotides. Recent studies have provided new information about the requirement of alternative, mutually exclusive, structures in the viral RNA, highlighting the idea that the viral genome is flexible and exists in different conformations. In this article, we describe elements in the promoter SLA and other RNA signals involved in NS5 polymerase binding and activity, and provide new ideas of how dynamic secondary and tertiary structures of the viral RNA participate in the viral life cycle.
Collapse
Affiliation(s)
- Leopoldo G Gebhard
- Fundación Instituto Leloir-CONICET, Avenida Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina.
| | | | | |
Collapse
|
38
|
Co-existence of major and minor viral populations from two different origins in patients secondarily infected with dengue virus serotype 2 in Bangkok. Biochem Biophys Res Commun 2011; 413:136-42. [PMID: 21872571 DOI: 10.1016/j.bbrc.2011.08.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 11/22/2022]
Abstract
Generally, RNA viruses exhibit significant genetic diversity that sometimes effect viral fitness in infected hosts and probably also pathogenesis. Dengue viruses (DENVs) consist of four antigenically distinct serotypes. All the serotypes of DENV can cause mild to severe dengue illnesses. In this study, we examined the sequence variation of DENV in plasma obtained from four patients living in Bangkok who had been secondarily infected with serotype 2 (DENV-2) in 2010. The plasma-derived RNA was directly subjected to reverse transcriptase (RT)-polymerase chain reaction (PCR) at a region including most of domain III of the envelope (E) protein gene, and the PCR products obtained were subjected to clonal sequencing. Using 19-20 clones sequenced from each patient (78 total) plus 601 corresponding sequences from a public database, phylogenetic analysis revealed that the nucleic acid sequences fell into two clusters with clearly different origins. Interestingly, all patients gave sequences indicating that they carried viral populations containing 2, 3 or 5 genetic variants that consisted of one major variant plus one or more minor variants. Three patients showed a major variant from one cluster plus one or more minor components from the other while one showed major and minor variants from a single cluster. Thus, it can be concluded that DENV belonging to two different genetic lineages were co-circulated in Bangkok in 2010. For these two genotype clusters there was also a clear difference in H or Y at the deduced amino acid position 346 (i.e. H346Y) that was consistent for our sequences and 601 sequences from the public database. Thus, one among the mixed viral genotypes introduced into human individuals seems to be variably selected as the predominant component of the carried viral population, and it is possible that the dynamics of this process could influence virus evolution and disease severity.
Collapse
|
39
|
Manzano M, Reichert ED, Polo S, Falgout B, Kasprzak W, Shapiro BA, Padmanabhan R. Identification of cis-acting elements in the 3'-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem 2011; 286:22521-34. [PMID: 21515677 PMCID: PMC3121397 DOI: 10.1074/jbc.m111.234302] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/21/2011] [Indexed: 12/30/2022] Open
Abstract
Using the massively parallel genetic algorithm for RNA folding, we show that the core region of the 3'-untranslated region of the dengue virus (DENV) RNA can form two dumbbell structures (5'- and 3'-DBs) of unequal frequencies of occurrence. These structures have the propensity to form two potential pseudoknots between identical five-nucleotide terminal loops 1 and 2 (TL1 and TL2) and their complementary pseudoknot motifs, PK2 and PK1. Mutagenesis using a DENV2 replicon RNA encoding the Renilla luciferase reporter indicated that all four motifs and the conserved sequence 2 (CS2) element within the 3'-DB are important for replication. However, for translation, mutation of TL1 alone does not have any effect; TL2 mutation has only a modest effect in translation, but translation is reduced by ∼60% in the TL1/TL2 double mutant, indicating that TL1 exhibits a cooperative synergy with TL2 in translation. Despite the variable contributions of individual TL and PK motifs in translation, WT levels are achieved when the complementarity between TL1/PK2 and TL2/PK1 is maintained even under conditions of inhibition of the translation initiation factor 4E function mediated by LY294002 via a noncanonical pathway. Taken together, our results indicate that the cis-acting RNA elements in the core region of DENV2 RNA that include two DB structures are required not only for RNA replication but also for optimal translation.
Collapse
Affiliation(s)
- Mark Manzano
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Erin D. Reichert
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Stephanie Polo
- the Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, Maryland 20892
| | - Barry Falgout
- the Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, Maryland 20892
| | | | - Bruce A. Shapiro
- the Center for Cancer Research Nanobiology Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Radhakrishnan Padmanabhan
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| |
Collapse
|
40
|
Phylogenetic characterization of dengue virus type 2 in Espírito Santo, Brazil. Mol Biol Rep 2011; 39:71-80. [DOI: 10.1007/s11033-011-0711-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
|
41
|
Piekna-Przybylska D, Bambara RA. Requirements for efficient minus strand strong-stop DNA transfer in human immunodeficiency virus 1. RNA Biol 2011; 8:230-6. [PMID: 21444998 DOI: 10.4161/rna.8.2.14802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
After HIV-1 enters a human cell, its RNA genome is converted into double stranded DNA during the multistep process of reverse transcription. First (minus) strand DNA synthesis is initiated near the 5' end of the viral RNA, where only a short fragment of the genome is copied. In order to continue DNA synthesis the virus employs a complicated mechanism, which enables transferring of the growing minus strand DNA to a remote position at the genomic 3' end. This is called minus strand DNA transfer. The transfer enables regeneration of long terminal repeat sequences, which are crucial for viral genomic DNA integration into the host chromosome. Numerous factors have been identified that stimulate minus strand DNA transfer. In this review we focus on describing protein-RNA and RNA-RNA interactions, as well as RNA structural features, known to facilitate this step in reverse transcription.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Biochemistry and Biophysics, and the Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
42
|
Hu Z, Nordström H, Nowotny N, Falk KI, Sandström G. Anchored pan dengue RT-PCR and fast sanger sequencing for detection of dengue RNA in human serum. J Med Virol 2010; 82:1701-10. [PMID: 20827768 DOI: 10.1002/jmv.21882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A large number of human infections are caused by different dengue virus strains, mainly in the tropical and subtropical parts of the world, but also outside the endemic regions. RT-PCR methods are used widely for detection of dengue virus RNA in acute-phase serum samples; however, new sequence variation can inhibit these methods. An assay was developed integrating an anchored Pan Dengue RT-PCR with a new Fast Sanger sequencing protocol. For broad detection and identification of dengue virus RNA, including new strains of all serotypes, the conserved 3' genome end was targeted for highly specific cDNA synthesis. A combination of degenerated primers was used for second strand synthesis, followed by tag primed amplification. The mixture of generated amplicons was identified directly by the Fast Sanger sequencing from the anchored 3' genome end. Evaluating the assay on human serum RNA spiked with viral RNA representing the four dengue serotypes demonstrated a detection limit of 44-124 copies viral RNA per reaction for a two-step format of the anchored Pan Dengue RT-PCR and 100-500 copies for a one-step protocol, respectively. The different serotypes were clearly identified from the generated sequences. Further, the 5-hr procedure was evaluated and compared to standard real-time RT-PCR protocols on acute-phase serum samples from patients with confirmed dengue infections. This assay demonstrates a strategy for virus detection, which combines nucleic acid amplification adapted for dengue virus RNA with direct and rapid sequencing. It provides a tolerance for new sequence variation and the strategy should be applicable for other RNA viruses.
Collapse
Affiliation(s)
- Zhe Hu
- Key Laboratory of Zoonosis, Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
43
|
Evidence for inter- and intra-genotypic variations in dengue serotype 4 viruses representing predominant and non-predominant genotypes co-circulating in Thailand from 1977 to 2001. Virus Genes 2010; 41:5-13. [PMID: 20336481 DOI: 10.1007/s11262-010-0473-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 03/08/2010] [Indexed: 12/14/2022]
Abstract
In order to characterize viral genetic variation among predominant and non-predominant genotypes of Thai dengue serotype 4 viruses (DENV-4) and follow mutations that occur during virus evolution, we performed a comparative analysis of the complete genomic sequences of six DENV-4 isolates representing three genotypes (I, IIA, and III) co-circulating in Thailand over a 24-year period. The results revealed [1] remarkable genetic variation in the viral genome between predominant and non-predominant genotypes; [2] inter-genotype-specific amino acid and nucleotide mutations in most regions of the viral genome; [3] more amino acid and nucleotide substitutions in later as compared to earlier isolates for predominant genotype I strains; [4] a single nucleotide substitution at nucleotide position 77 of the 5-'NTR of two non-predominant genotype III strains that disrupted a small conserved 3'stem-loop (SL) in the cyclization sequence required for virus replication; [5] a high degree of conservation of PrM/M and NS2B proteins, and the 5'-NTR in predominant genotype I strains with no mutations observed over the 24-year period of observation; and [6] no molecular markers that appeared to correlate with disease severity. Several mutations identified in this study might have a significant impact on the persistence of virus in the population, including one in the 5'-NTR that disrupted a small, highly conserved 3'SL2 structure at the terminus of the cyclized 5'-3' RNA sequences in two genotype III strains, and three amino acid (aa) charge change mutations in the E and NS5 proteins of genotype I strains. The conserved 3'-SL structure may be a target for antiviral drug development.
Collapse
|
44
|
Abstract
Dengue poses an increasing threat to public health worldwide. Studies conducted over the past several decades have improved our knowledge of the mechanisms of dengue virus translation and replication. New methodologies have facilitated advances in our understanding of the RNA elements and viral and host factors that modulate dengue virus replication and translation. This review integrates research findings and explores future directions for research into the cellular and molecular mechanisms of dengue virus infection. Lessons learned from dengue virus will inform approaches to other viruses and expand our understanding of the ways in which viruses co-opt host cells during the course of infection. In addition, knowledge about the molecular mechanisms of dengue virus translation and replication and the role of host cell factors in these processes will facilitate development of antiviral strategies.
Collapse
|
45
|
Abstract
The increased spread of dengue fever and its more severe form, dengue hemorrhagic fever, have made the study of the mosquito-borne dengue viruses that cause these diseases a public health priority. Little is known about how or why the four different (serotypes 1-4) dengue viruses cause pathology in humans only, and there have been no animal models of disease to date. Therefore, there are no vaccines or antivirals to prevent or treat infection and mortality rates of dengue hemorrhagic fever patients can reach up to 20%. Cases occur mainly in tropical zones within developing countries worldwide, and control measures have been limited to the elimination of the mosquito vectors. Thus, it is imperative that we develop new methods of studying dengue virus pathogenicity. This article presents new approaches that may help us to understand dengue virus virulence and the specific mechanisms that lead to dengue fever and severe disease.
Collapse
Affiliation(s)
- Rebeca Rico-Hesse
- Department of Virology & Immunology, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78245, USA
| |
Collapse
|
46
|
Pankhong P, Weiner DB, Ramanathan MP, Nisalak A, Kalayanarooj S, Nimmannitya S, Attatippaholkun W. Molecular genetic relationship of the 3' untranslated region among Thai dengue-3 virus, Bangkok isolates, during 1973-2000. DNA Cell Biol 2009; 28:481-91. [PMID: 19563250 DOI: 10.1089/dna.2008.0835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dengue virus serotype 3 (DENV-3) was associated with severe dengue epidemics in Thailand during 1973-1999. We studied Thai DENV-3 viruses isolated from hospitalized children in Bangkok with differing disease severity during that period. Viruses were sequenced at their 5' and 3' untranslated regions (UTRs), which are regions that play a pivotal role in viral replication. Our results indicated that the primary sequences as well as the secondary structures at both ends of Thai DENV-3 viruses were highly conserved over almost three decades. We found nucleotide insertions and deletions at the variable region (VR) that is located just downstream of the nonstructural protein 5 (NS5) stop codon among these viruses. The phylogenetic tree derived from the size heterogeneity of VR in the 3' UTR divided DENV-3 into four genotypes, and Thai DENV-3 viruses in this study belonged to genotype II. The replication efficiency of the candidate viruses with different lengths at the VR were assessed in the mosquito (C6/36) and human (HepG2) cell lines. Our results show that the viruses with nucleotide insertions at VR replicated better than the virus that contained deletions. Our findings indicate that Thai DENV-3 demonstrated a remarkable conservation of nucleotides over 28 years. Correlation with disease severity suggests that both primary sequences and secondary structures of the 3' UTR do not appear correlated with disease severity in humans.
Collapse
Affiliation(s)
- Panyupa Pankhong
- Department of Clinical Chemistry, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
47
|
Schuh AJ, Li L, Tesh RB, Innis BL, Barrett ADT. Genetic characterization of early isolates of Japanese encephalitis virus: genotype II has been circulating since at least 1951. J Gen Virol 2009; 91:95-102. [PMID: 19776238 PMCID: PMC2885061 DOI: 10.1099/vir.0.013631-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Japanese encephalitis virus (JEV) consists of five genotypes (GI-V). Phylogenetic characterization of 16 JEV strains isolated from the 'USSR', Japan and Korea during the 1930-1970s revealed that 15 strains fell into GIII, confirming that GIII was the predominant genotype of JEV in Japan and Korea between 1935 (isolation of the prototype strain; a GIII virus) and the 1990s (when GI supplanted GIII). One of the Korean isolates fell into GII, demonstrating that GII has been circulating for at least 19 years longer than previously thought. Formerly, GII was associated with endemic disease and this genotype had never been isolated north of Southern Thailand. Additionally, the northern border of GIII prevalence was extended from Japan to the 'USSR'.
Collapse
Affiliation(s)
- Amy J Schuh
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | |
Collapse
|
48
|
Coffey LL, Mertens E, Brehin AC, Fernandez-Garcia MD, Amara A, Després P, Sakuntabhai A. Human genetic determinants of dengue virus susceptibility. Microbes Infect 2009; 11:143-56. [DOI: 10.1016/j.micinf.2008.12.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 12/05/2008] [Indexed: 01/20/2023]
|
49
|
Pepin KM, Hanley KA. Density-dependent competitive suppression of sylvatic dengue virus by endemic dengue virus in cultured mosquito cells. Vector Borne Zoonotic Dis 2009; 8:821-8. [PMID: 18620509 DOI: 10.1089/vbz.2008.0016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mosquito-borne dengue viruses are maintained in two discrete transmission cycles: a sylvatic cycle between nonhuman primates and sylvatic Aedes mosquitoes, and an endemic cycle between humans and peridomestic Aedes (primarily Ae. aegypti and Ae. albopictus). Most sylvatic strains are genetically distinct from endemic strains, and human infections with sylvatic strains have been detected only rarely. Interestingly, sylvatic strains replicate as well as endemic strains in Ae. aegypti and experimental models of replication in humans, suggesting that adaptive constraints may not explain the limited spillover of sylvatic strains into the endemic cycle. Within-host competition is another mechanism known to decrease emergence of strains into occupied niches. In the current study, we examined the magnitude of competitive suppression between sylvatic and endemic dengue strains of different serotypes in pair-wise mixed infections of cultured Ae. albopictus cells to test whether the ecotype or the initial ratio of the two strains influenced the outcome of competition. Strains isolated from nonhuman primates were competitively inferior to those isolated from humans. Moreover, competition was density-dependent; the magnitude of suppression increased as the starting density of a strain relative to its competitor decreased. These data suggest that competitive inferiority in endemic vectors coupled with a numerical disadvantage relative to resident endemic strains could restrict reemergence of sylvatic strains into the endemic cycle and contribute to the ecologically correlated genetic divergence between sylvatic and endemic strains.
Collapse
Affiliation(s)
- Kim M Pepin
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA.
| | | |
Collapse
|
50
|
Abstract
Dengue is a spectrum of disease caused by four serotypes of the most prevalent arthropod-borne virus affecting humans today, and its incidence has increased dramatically in the past 50 years. Due in part to population growth and uncontrolled urbanization in tropical and subtropical countries, breeding sites for the mosquitoes that transmit dengue virus have proliferated, and successful vector control has proven problematic. Dengue viruses have evolved rapidly as they have spread worldwide, and genotypes associated with increased virulence have expanded from South and Southeast Asia into the Pacific and the Americas. This review explores the human, mosquito, and viral factors that contribute to the global spread and persistence of dengue, as well as the interaction between the three spheres, in the context of ecological and climate changes. What is known, as well as gaps in knowledge, is emphasized in light of future prospects for control and prevention of this pandemic disease.
Collapse
Affiliation(s)
- Jennifer L Kyle
- Division of Infectious Diseases, School of Public Health, and Graduate Group in Microbiology, University of California, Berkeley, California 94720-7354, USA.
| | | |
Collapse
|