1
|
Brüggemann Y, Klöhn M, Wedemeyer H, Steinmann E. Hepatitis E virus: from innate sensing to adaptive immune responses. Nat Rev Gastroenterol Hepatol 2024; 21:710-725. [PMID: 39039260 DOI: 10.1038/s41575-024-00950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Hepatitis E virus (HEV) infections are a major cause of acute viral hepatitis in humans worldwide. In immunocompetent individuals, the majority of HEV infections remain asymptomatic and lead to spontaneous clearance of the virus, and only a minority of individuals with infection (5-16%) experience symptoms of acute viral hepatitis. However, HEV infections can cause up to 30% mortality in pregnant women, become chronic in immunocompromised patients and cause extrahepatic manifestations. A growing body of evidence suggests that the host immune response to infection with different HEV genotypes is a critical determinant of distinct HEV infection outcomes. In this Review, we summarize key components of the innate and adaptive immune responses to HEV, including the underlying immunological mechanisms of HEV associated with acute and chronic liver failure and interactions between T cell and B cell responses. In addition, we discuss the current status of vaccines against HEV and raise outstanding questions regarding the immune responses induced by HEV and treatment of the disease, highlighting areas for future investigation.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
- German Center for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
2
|
Zahmanova G, Takova K, Tonova V, Koynarski T, Lukov LL, Minkov I, Pishmisheva M, Kotsev S, Tsachev I, Baymakova M, Andonov AP. The Re-Emergence of Hepatitis E Virus in Europe and Vaccine Development. Viruses 2023; 15:1558. [PMID: 37515244 PMCID: PMC10383931 DOI: 10.3390/v15071558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Valeria Tonova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Laura L Lukov
- Faculty of Sciences, Brigham Young University-Hawaii, Laie, HI 96762, USA
| | - Ivan Minkov
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Stanislav Kotsev
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| | - Anton P Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Sultana R, Biswas J, Uddin MG, Efaz FM, Ali MA, Hossain M, Islam MT, Shekhar HU, Hossain MW, Karim MM, Sajib AA, Halim MA, Mannoor K. Q531L mutation in the capsid protein of hepatitis E virus genotype 1 causes infections in patients with altered immunity and immunosuppressive condition: Mechanism based on wet lab and in-silico findings. GENE REPORTS 2023; 31:101779. [DOI: 10.1016/j.genrep.2023.101779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
|
4
|
Cao YF, Zhou YF, Zhao DY, Chang JL, Tang JG, Chang DY, Zhang XM, Wang XP. Expression and immunogenicity of hepatitis E virus-like particles based on recombinant truncated ORF2 capsid protein. Protein Expr Purif 2023; 203:106214. [PMID: 36526214 DOI: 10.1016/j.pep.2022.106214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Hepatitis E is an emerging zoonotic disease, posing a severe threat to public health in the world. Since there are no specific treatments available for HEV infection, it is crucial to develop vaccine to prevent this infection. In this study, the truncated ORF2 encoded protein of 439aa∼617aa (HEV3-179) from HEV CCJD-517 isolates was expressed as VLPs in E. coli with diameters of approximate 20 nm. HEV3-179 protein was immunized with mice, and the results showed that a higher titre of antibody was induced in NIH mice in comparison with that of KM mice (P < 0.01) and BALB/c mice (P < 0.01). The induced antibody titer is much higher in subcutaneous immunization mice than that in the mice inoculated via abdominal immunization (P < 0.05) and muscles immunization (P < 0.01). Mice immunized with 12 μg and 6 μg candidate vaccine induced higher level of antibody titer than that of 3 μg dosage group (P < 0.01, P < 0.05). Antibody change curve showed that HEV IgG antibody titer increased from 14 days post immunization (dpi) to 1:262144 and reached the peak level on 42 dpi before gradually retreated with the same level antibody titer with 1:131072 until 84 dpi. Mice inoculated with HEV3-179 produced higher titer of cytokines than the mock group, and the concentration of IL-1β (P < 0.01) and IFN-γ (P < 0.01) further increased after stimulated by candidate vaccine. The result indicated that HEV3-179 possesses good immunogenicity, which could be used as a potential candidate for future HEV vaccine development.
Collapse
Affiliation(s)
- Yu-Feng Cao
- College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China; Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China; Immune-Path Biotechnology (Suzhou) Co., Ltd, Suzhou, 215000, PR China
| | - Yong-Fei Zhou
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China; School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Dan-Ying Zhao
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China
| | - Jun-Liang Chang
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China
| | - Jian-Guang Tang
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China
| | - Dong-Ying Chang
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China
| | - Xue-Mei Zhang
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China.
| | - Xin-Ping Wang
- College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China; Key Laboratory for Zoonosis, Ministry of Education, Institute for Zoonosis of Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
5
|
Zhang J, Zheng Z, Xia N. Prophylactic Hepatitis E Vaccine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:227-245. [PMID: 37223870 DOI: 10.1007/978-981-99-1304-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals, two of them were tested in human and evidenced to be well-tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin® (HEV 239 vaccine), was licensed in China and launched in 2012.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Zhao C, Wang Y. Laboratory Diagnosis of HEV Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:199-213. [PMID: 37223868 DOI: 10.1007/978-981-99-1304-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Serological and nucleic acid tests for detecting hepatitis E virus (HEV) have been developed for both epidemiologic and diagnostic purposes. The laboratory diagnosis of HEV infection depends on the detection of HEV antigen or HEV RNA in the blood, stool, and other body fluids, and serum antibodies against HEV (immunoglobulin [Ig]A, IgM, and IgG). Anti-HEV IgM antibodies and low avidity IgG can be detected during the acute phase of the illness and can last approximately 12 months, representing primary infection, whereas anti-HEV IgG antibodies can last more than several years, representing remote exposure. Thus, the diagnosis of acute infection is based on the presence of anti-HEV IgM, low avidity IgG, HEV antigen, and HEV RNA, while epidemiological investigations are mainly based on anti-HEV IgG. Although significant progress has been made in developing and optimizing different formats of HEV assays, improving their sensitivity and specificity, there are many shortcomings and challenges in inter-assay concordance, validation, and standardization. This article reviews the current knowledge on the diagnosis of HEV infection, including the most common available laboratory diagnostic techniques.
Collapse
Affiliation(s)
- Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
7
|
He Q, Zhang Y, Gong W, Zeng H, Wang L. Genetic Evolution of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:59-72. [PMID: 37223859 DOI: 10.1007/978-981-99-1304-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Comparative analysis of the genomic sequences of multiple hepatitis E virus (HEV) isolates has revealed extensive genomic diversity among them. Recently, a variety of genetically distinct HEV variants have also been isolated and identified from large numbers of animal species, including birds, rabbits, rats, ferrets, bats, cutthroat trout, and camels, among others. Furthermore, it has been reported that recombination in HEV genomes takes place in animals and in human patients. Also, chronic HEV infection in immunocompromised individuals has revealed the presence of viral strains carrying insertions from human genes. This paper reviews current knowledge on the genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yulin Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wanyun Gong
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hang Zeng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
8
|
Zhou YH, Zhao H. Immunobiology and Host Response to HEV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:93-118. [PMID: 37223861 DOI: 10.1007/978-981-99-1304-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) usually causes acute self-limiting hepatitis but sometimes leads to chronic infection in immunocompromised persons. HEV is not directly cytopathic. Immunologically mediated events after HEV infection are believed to play important roles in the pathogenesis and clearance of infection. The anti-HEV antibody responses have been largely clarified since the determination of major antigenic determinant of HEV, which is located in the C-terminal portion of ORF2. This major antigenic determinant also forms the conformational neutralization epitopes. Robust anti-HEV immunoglobulin M (IgM) and IgG responses usually develop 3-4 weeks after infection in experimentally infected nonhuman primates. In humans, potent specific IgM and IgG responses occur in the very early phase of the disease and are critical in eliminating the virus, in concert with the innate and adaptive T-cell immune responses. Testing anti-HEV IgM is valuable in the diagnosis of acute hepatitis E. The long-term persistence and protection of anti-HEV IgG provide the basis for estimating the prevalence of HEV infection and for the development of a hepatitis E vaccine. Although human HEV has four genotypes, all the viral strains are considered to belong to a single serotype. It is becoming increasingly clear that the innate and adaptive T-cell immune responses play critical roles in the clearance of the virus. Potent and multispecific CD4+ and CD8+ T cell responses to the ORF2 protein occur in patients with acute hepatitis E, and weaker HEV-specific CD4+ and CD8+ T cell responses appear to be associated with chronic hepatitis E in immunocompromised individuals.
Collapse
Affiliation(s)
- Yi-Hua Zhou
- Departments of Experimental Medicine and Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Hong Zhao
- Department of Infectious Diseases, Second Hospital of Nanjing, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
9
|
High-Yield Production of Chimeric Hepatitis E Virus-Like Particles Bearing the M2e Influenza Epitope and Receptor Binding Domain of SARS-CoV-2 in Plants Using Viral Vectors. Int J Mol Sci 2022; 23:ijms232415684. [PMID: 36555326 PMCID: PMC9779006 DOI: 10.3390/ijms232415684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Capsid protein of Hepatitis E virus (HEV) is capable of self-assembly into virus-like particles (VLPs) when expressed in Nicotiana benthamiana plants. Such VLPs could be used as carriers of antigens for vaccine development. In this study, we obtained VLPs based on truncated coat protein of HEV bearing the M2e peptide of Influenza A virus or receptor-binding domain of SARS-CoV-2 spike glycoprotein (RBD). We optimized the immunogenic epitopes' presentation by inserting them into the protruding domain of HEV ORF2 at position Tyr485. The fusion proteins were expressed in Nicotiana benthamiana plants using self-replicating potato virus X (PVX)-based vector. The fusion protein HEV/M2, targeted to the cytosol, was expressed at the level of about 300-400 μg per gram of fresh leaf tissue and appeared to be soluble. The fusion protein was purified using metal affinity chromatography under native conditions with the final yield about 200 μg per gram of fresh leaf tissue. The fusion protein HEV/RBD, targeted to the endoplasmic reticulum, was expressed at about 80-100 μg per gram of fresh leaf tissue; the yield after purification was up to 20 μg per gram of fresh leaf tissue. The recombinant proteins HEV/M2 and HEV/RBD formed nanosized virus-like particles that could be recognized by antibodies against inserted epitopes. The ELISA assay showed that antibodies of COVID-19 patients can bind plant-produced HEV/RBD virus-like particles. This study shows that HEV capsid protein is a promising carrier for presentation of foreign antigen.
Collapse
|
10
|
Yan H, Chi Z, Zhao H, Zhang Y, Zhang Y, Wang Y, Chang S, Zhao P. Application of ORF3 Subunit Vaccine for Avian Hepatitis E Virus. Vet Sci 2022; 9:vetsci9120676. [PMID: 36548837 PMCID: PMC9784926 DOI: 10.3390/vetsci9120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Avian hepatitis E virus (HEV) is the main etiologic pathogen of chicken big liver and spleen disease which is widely prevalent in China in recent years. However, due to the lack of a highly effective culture system in vitro, a genetically engineered subunit vaccine is the main direction of vaccine development. In this study, ORF3 genes of VaHEV strain from laying hens and YT-aHEV strain from broilers were amplified, respectively, and ORF3 protein was successfully expressed by Escherichia coli prokaryotic expression system. The serum samples were collected periodically to detect avian HEV antibodies by indirect immunofluorescence after specific pathogen free chickens immunized with the two proteins and their mixed proteins, the results showed that all serum samples were positive for antibodies to avian HEV. The antibody-positive chickens were artificially challenged with the cell-adapted strain YT-aHEV strain. The chickens from the immunized control group were infected successfully; no fecal detoxification was detected in the immunized group. In this study, two representative strains of ORF3 subunit vaccines of laying hens and broilers were prepared by prokaryotic expression, the immune effects of different proteins of these were evaluated through immunization and challenge studies in vivo, which provided a new technical possibility for prevention and control of avian HEV.
Collapse
Affiliation(s)
- Hongjian Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Zengna Chi
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Hui Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Yuduo Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
- Correspondence: (S.C.); (P.Z.)
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
- Correspondence: (S.C.); (P.Z.)
| |
Collapse
|
11
|
Shata MTM, Hetta HF, Sharma Y, Sherman KE. Viral hepatitis in pregnancy. J Viral Hepat 2022; 29:844-861. [PMID: 35748741 PMCID: PMC9541692 DOI: 10.1111/jvh.13725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/17/2021] [Accepted: 06/13/2022] [Indexed: 12/09/2022]
Abstract
Viral hepatitis is caused by a heterogenous group of viral agents representing a wide range of phylogenetic groups. Many viruses can involve the liver and cause liver injury but only a subset are delineated as 'hepatitis viruses' based upon their primary site of replication and tropism for hepatocytes which make up the bulk of the liver cell population. Since their discovery, beginning with the agent that caused serum hepatitis in the 1960s, the alphabetic designations have been utilized. To date, we have five hepatitis viruses, A through E, though it is postulated that others may exist. This chapter will focus on those viruses. Note that hepatitis D is included as a subset of hepatitis B, as it cannot exist without concurrent hepatitis B infection. Pregnancy has the potential to affect all aspects of these viral agents due to the unique immunologic and physiologic changes that occur during and after the gestational period. In this review, we will discuss the most common viral hepatitis and their effects during pregnancy.
Collapse
Affiliation(s)
- Mohamed Tarek M. Shata
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Helal F. Hetta
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA,Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Yeshika Sharma
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Kenneth E. Sherman
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
12
|
Gordeychuk I, Kyuregyan K, Kondrashova A, Bayurova E, Gulyaev S, Gulyaeva T, Potemkin I, Karlsen A, Isaeva O, Belyakova A, Lyashenko A, Sorokin A, Chumakov A, Morozov I, Isaguliants M, Ishmukhametov A, Mikhailov M. Immunization with recombinant ORF2 p551 protein protects common marmosets (Callithrix jacchus) against homologous and heterologous hepatitis E virus challenge. Vaccine 2022; 40:89-99. [PMID: 34836660 DOI: 10.1016/j.vaccine.2021.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 11/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a major causative agent of acute hepatitis worldwide, prompting continuous HEV vaccine efforts. Vaccine development is hampered by the lack of convenient animal models susceptible to infection with different HEV genotypes. We produced recombinant open reading frame 2 protein (pORF2; p551) of HEV genotype (GT) 3 and assessed its immunogenicity and protectivity against HEV challenge in common marmosets (Callithrix jacchus, CM). METHODS p551 with consensus sequence corresponding to amino acid residues 110-660 of HEV GT3 pORF2 was expressed in E. coli and purified by affinity chromatography. CMs were immunized intramuscularly with 20 μg of p551 VLPs with alum adjuvant (n = 4) or adjuvant alone (n = 2) at weeks 0, 3, 7 and 19. At week 27, p551-immunized and control animals were challenged with HEV GT1 or GT3 and thereafter longitudinally screened for markers of liver function, anti-HEV IgG and HEV RNA in feces and sera. RESULTS Purified p551 formed VLPs with particle size of 27.71 ± 2.42 nm. Two immunizations with p551 induced anti-HEV IgG mean titer of 1:1810. Immunized CMs challenged with homologous and heterologous HEV genotype did not develop HEV infection during the follow-up. Control CMs infected with both HEV GT1 and GT3 demonstrated signs of HEV infection with virus shedding and elevation of the levels of liver enzymes. High levels of anti-HEV IgG persisted in vaccinated CMs and control CMs that resolved HEV infection, for up to two years post challenge. CONCLUSIONS CMs are shown to be a convenient laboratory animal model susceptible to infection with HEV GT1 and GT3. Immunization with HEV GT3 ORF2/p551 triggers potent anti-HEV antibody response protecting CMs from homologous and heterologous HEV challenge. This advances p551 in VLPs as a prototype vaccine against HEV.
Collapse
Affiliation(s)
- Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Karen Kyuregyan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Stanislav Gulyaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Tatiana Gulyaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Ilya Potemkin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Anastasia Karlsen
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia
| | - Olga Isaeva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Belyakova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Anna Lyashenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Alexey Sorokin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Alexey Chumakov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Igor Morozov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Maria Isaguliants
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Aydar Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Mikhail Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| |
Collapse
|
13
|
Antigenic Characterization of ORF2 and ORF3 Proteins of Hepatitis E Virus (HEV). Viruses 2021; 13:v13071385. [PMID: 34372591 PMCID: PMC8310276 DOI: 10.3390/v13071385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
To evaluate the antigenic properties of Hepatitis E Virus (HEV) Open Reading Frame 2 and 3 (ORF2 and ORF3) codified proteins, we expressed different portions of ORF2 and the entire ORF3 in E. coli, a truncated ORF2, was also expressed in baculovirus. A panel of 37 monoclonal antibodies (MAbs) was raised against ORF2 (1-660 amino acids) and MAbs were mapped and characterized using the ORF2 expressed portions. Selected HEV positive and negative swine sera were used to evaluate ORF2 and ORF3 antigens' immunogenicity. The MAbs were clustered in six groups identifying six antigenic regions along the ORF2. Only MAbs binding to the sixth ORF2 antigenic region (394-608 aa) were found to compete with HEV positive sera and efficiently catch the recombinant antigen expressed in baculovirus. The ORF2 portion from 394-608 aa demonstrated to include most immunogenic epitopes with 85% of HEV positive swine sera reacting against the region from 461-544 aa. Only 5% of the selected HEV sera reacted against the ORF3 antigen.
Collapse
|
14
|
Production of capsid proteins of rat hepatitis E virus in Escherichia coli and characterization of self-assembled virus-like particles. Virus Res 2021; 302:198483. [PMID: 34146611 DOI: 10.1016/j.virusres.2021.198483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Rat hepatitis E virus (HEV) has been isolated from wild rats worldwide and the potential of zoonotic transmission has been documented. Escherichia coli (E. coli) is utilized as an effective system for producing HEV-like particles. However, the production of rat HEV ORF2 proteins in E. coli forming virus-like particles (VLPs) has not yet been reported. In this study, nine rat HEV ORF2 proteins of the ratELOMB-131L strain with truncated N- and C-termini (amino acids 339-594, 349-594, 351-594, 354-594, 357-594, 357-599, 357-604, 357-609, and 357-614 of ORF2 protein) were expressed in E. coli and the 357-614 protein self-assembled most efficiently. A bioanalyzer showed that the purified 357-614 protein has a molecular weight of 33.5 kDa and a purity of 93.2%. Electron microscopy revealed that the purified 33.5 kDa protein formed VLPs with a diameter of 21-52 (average 32) nm, and immunoelectron microscopy using an anti-rat HEV ORF2 monoclonal antibody (TA7014) indicated that the observed VLPs were derived from rat HEV ORF2. The VLPs attached to and entered the PLC/PRF/5 cells and blocked the neutralization of rat HEV by TA7014, suggesting that the VLPs possess the antigenic structure of infectious rat HEV particles. In addition, rat HEV VLPs showed high immunogenicity in mice. The present results would be useful for future studies on the development of VLP-based vaccines for HEV prevention in a rat model and for the prevention of rat HEV infection in humans.
Collapse
|
15
|
Advances in Hepatitis E Virus Biology and Pathogenesis. Viruses 2021; 13:v13020267. [PMID: 33572257 PMCID: PMC7915517 DOI: 10.3390/v13020267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the causative agents for liver inflammation across the world. HEV is a positive-sense single-stranded RNA virus. Human HEV strains mainly belong to four major genotypes in the genus Orthohepevirus A, family Hepeviridae. Among the four genotypes, genotype 1 and 2 are obligate human pathogens, and genotype 3 and 4 cause zoonotic infections. HEV infection with genotype 1 and 2 mainly presents as acute and self-limiting hepatitis in young adults. However, HEV infection of pregnant women with genotype 1 strains can be exacerbated to fulminant hepatitis, resulting in a high rate of case fatality. As pregnant women maintain the balance of maternal-fetal tolerance and effective immunity against invading pathogens, HEV infection with genotype 1 might dysregulate the balance and cause the adverse outcome. Furthermore, HEV infection with genotype 3 can be chronic in immunocompromised patients, with rapid progression, which has been a challenge since it was reported years ago. The virus has a complex interaction with the host cells in downregulating antiviral factors and recruiting elements to generate a conducive environment of replication. The virus-cell interactions at an early stage might determine the consequence of the infection. In this review, advances in HEV virology, viral life cycle, viral interference with the immune response, and the pathogenesis in pregnant women are discussed, and perspectives on these aspects are presented.
Collapse
|
16
|
Zahmanova G, Mazalovska M, Takova K, Toneva V, Minkov I, Peyret H, Lomonossoff G. Efficient Production of Chimeric Hepatitis B Virus-Like Particles Bearing an Epitope of Hepatitis E Virus Capsid by Transient Expression in Nicotiana benthamiana. Life (Basel) 2021; 11:life11010064. [PMID: 33477348 PMCID: PMC7830250 DOI: 10.3390/life11010064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
The core antigen of hepatitis B virus (HBcAg) is capable of self-assembly into virus-like particles (VLPs) when expressed in a number of heterologous systems. Such VLPs are potential carriers of foreign antigenic sequences for vaccine design. In this study, we evaluated the production of chimeric HBcAg VLPs presenting a foreign epitope on their surface, the 551–607 amino acids (aa) immunological epitope of the ORF2 capsid protein of hepatitis E virus. A chimeric construct was made by the insertion of 56 aa into the immunodominant loop of the HBcAg. The sequences encoding the chimera were inserted into the pEAQ-HT vector and infiltrated into Nicotiana benthamiana leaves. The plant-expressed chimeric HBcHEV ORF2 551–607 protein was recognized by an anti-HBcAg mAb and anti-HEV IgG positive swine serum. Electron microscopy showed that plant-produced chimeric protein spontaneously assembled into “knobbly” ~34 nm diameter VLPs. This study shows that HBcAg is a promising carrier platform for the neutralizing epitopes of hepatitis E virus (HEV) and the chimeric HBcAg/HEV VLPs could be a candidate for a bivalent vaccine.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.M.); (K.T.); (V.T.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria;
- Correspondence: (G.Z.); (G.L.); Tel.: +359-32-261529 (G.Z.); +44-1603-450351 (G.L.)
| | - Milena Mazalovska
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.M.); (K.T.); (V.T.)
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.M.); (K.T.); (V.T.)
| | - Valentina Toneva
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.M.); (K.T.); (V.T.)
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Ivan Minkov
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria;
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney NR4 7UH, UK;
| | - George Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney NR4 7UH, UK;
- Correspondence: (G.Z.); (G.L.); Tel.: +359-32-261529 (G.Z.); +44-1603-450351 (G.L.)
| |
Collapse
|
17
|
Xu M, Sun L, Wang Y, Gao S, Yang W, Li M. Different mutations at position 562 of the hepatitis E virus capsid proteins exhibit differential effects on viral neutralizing activity. Exp Ther Med 2020; 21:110. [PMID: 33335573 PMCID: PMC7739852 DOI: 10.3892/etm.2020.9542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/16/2020] [Indexed: 11/15/2022] Open
Abstract
The hepatitis E virus (HEV) capsid protein pORF2 comprises three potential N-linked glycosylation sites. One site, N562, is located at the cell attachment and neutralizing antigenic regions. The present study performed detailed analyses of the effects of specific amino acid substitutions at position 562 in the homodimerization, glycosylation, antigenicity, immunogenicity and neutralization activities of HEV pORF2. Recombinant HEV pORF2 glycoprotein E1 (amino acids 439-617) and three mutant variants (N562L, N562C and N562K) were expressed in Pichia pastoris (P. pastoris) and SDS-PAGE, Western blot analysis, tunicamycin assay, double-antibody sandwich ELISA and in vitro PCR-based neutralization assay were performed to characterize the different constructs. All proteins were indicated to be secreted by P. pastoris and formed homodimers. Tunicamycin assay revealed the glycosylated status of the wild-type protein, but the mutants were indicated to be non-glycosylated. All proteins were immunoreactive with a neutralizing monoclonal antibody but were not recognized by the antibody after denaturation into monomers. An in vitro PCR-based neutralization assay using mouse antibodies indicated efficient neutralization against N562L, whereas antibodies against N562C and N562K were revealed to be non-neutralizing. Collectively, the present study indicated that specific amino acid substitutions at position 562 serve crucial roles in the activity of the HEV neutralizing epitope.
Collapse
Affiliation(s)
- Mingjie Xu
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Lizhi Sun
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Yan Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Shuchun Gao
- Department of Liver Disease, Jinan Infectious Disease Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Digestive Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Weihua Yang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Meng Li
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
18
|
Wen J, Lu W, Meng J. Establishment of competitive binding assay to detect and differentiate hepatitis E virus infection. Ann Hepatol 2020; 18:590-594. [PMID: 31126881 DOI: 10.1016/j.aohep.2019.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES This study was undertaken to demonstrate a promising approach for detection and differentiation the serum immunoglobulin G (IgG) against hepatitis E virus (anti-HEV IgG) using a competitive binding assay established with known genotype-specific monoclonal antibodies (mAbs) 2B1 and 4C5. MATERIALS AND METHODS The mAb 2B1 derived from genotype 1 hepatitis E virus (HEV) antigen and specifically reacted with genotype 1, 2 antigens; 4C5 induced by genotype 4 HEV antigen was specific to genotypes 3, 4 antigens. The 2B1 and 4C5 were labeled with Horseradish peroxidase (HRP), respectively. Subsequently, the titers of coated antigens and HRP-conjugated mAbs for establishment of competitive binding assay were determined by enzyme linked immunosorbent assay (ELISA). And then, the competitive binding assay was performed to assess the inhibition percentage of mAbs binding to antigens inhibited by different genotypes anti-HEV IgG. RESULTS The results of competitive binding assay revealed that genotype 1 anti-HEV IgG could inhibit the binding of mAb 2B1 to genotype 1 antigen more strongly than that of mAb 4C5 to genotype 4 antigen. Whereas, the genotype 3 or 4 anti-HEV IgG could inhibit the binding of mAb 4C5 to genotype 4 antigen more remarkably than that of mAb 2B1 to genotype 1 antigen. CONCLUSIONS These findings provided us a valuable approach for detection and differentiation the HEV infection derived from genotypes 1, 2 (human) or genotypes 3, 4 (zoonosis).
Collapse
Affiliation(s)
- Jiyue Wen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Weizhuo Lu
- Department of Medical Branch, Hefei Technology College, Hefei, Anhui, China
| | - Jihong Meng
- Department of Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China.
| |
Collapse
|
19
|
Progress in the Production of Virus-Like Particles for Vaccination against Hepatitis E Virus. Viruses 2020; 12:v12080826. [PMID: 32751441 PMCID: PMC7472025 DOI: 10.3390/v12080826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV), a pathogen that causes acute viral hepatitis, is a small icosahedral, quasi-enveloped, positive ssRNA virus. Its genome has three open reading frames (ORFs), with ORF1 and ORF3 encoding for nonstructural and regulatory proteins, respectively, while ORF2 is translated into the structural, capsid protein. ORF2 is most widely used for vaccine development in viral hepatitis. Hepatitis E virus-like particles (VLPs) are potential vaccine candidates against HEV infection. VLPs are composed of capsid subunits mimicking the natural configuration of the native virus but lack the genetic material needed for replication. As a result, VLPs are unable to replicate and cause disease, constituting safe vaccine platforms. Currently, the recombinant VLP-based vaccine Hecolin® against HEV is only licensed in China. Herein, systematic information about the expression of various HEV ORF2 sequences and their ability to form VLPs in different systems is provided.
Collapse
|
20
|
Behloul N, Baha S, Liu Z, Wei W, Zhu Y, Rao Y, Shi R, Meng J. Design and development of a chimeric vaccine candidate against zoonotic hepatitis E and foot-and-mouth disease. Microb Cell Fact 2020; 19:137. [PMID: 32653038 PMCID: PMC7352093 DOI: 10.1186/s12934-020-01394-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Zoonotic hepatitis E virus (HEV) infection emerged as a serious threat in the industrialized countries. The aim of this study is exploring a new approach for the control of zoonotic HEV in its main host (swine) through the design and development of an economically interesting chimeric vaccine against HEV and against a devastating swine infection: the foot-and-mouth disease virus (FMDV) infection. Results First, we adopted a computational approach for rational and effective screening of the different HEV-FMDV chimeric proteins. Next, we further expressed and purified the selected chimeric immunogens in Escherichia coli (E. coli) using molecular cloning techniques. Finally, we assessed the antigenicity and immunogenicity profiles of the chimeric vaccine candidates. Following this methodology, we designed and successfully produced an HEV-FMDV chimeric vaccine candidate (Seq 8-P222) that was highly over-expressed in E. coli as a soluble protein and could self-assemble into virus-like particles. Moreover, the vaccine candidate was thermo-stable and exhibited optimal antigenicity and immunogenicity properties. Conclusion This study provides new insights into the vaccine development technology by using bioinformatics for the selection of the best candidates from larger sets prior to experimentation. It also presents the first HEV-FMDV chimeric protein produced in E. coli as a promising chimeric vaccine candidate that could participate in reducing the transmission of zoonotic HEV to humans while preventing the highly contagious foot-and-mouth disease in swine.
Collapse
Affiliation(s)
- Nouredine Behloul
- College of Basic Medicine, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.,Department of Gastroenterology, Zhongda Hospital, Southeast University, 87 Dijiaqiao Road, Nanjing, Jiangsu Province, 210009, China
| | - Sarra Baha
- Department of Gastroenterology, Zhongda Hospital, Southeast University, 87 Dijiaqiao Road, Nanjing, Jiangsu Province, 210009, China
| | - Zhenzhen Liu
- Department of Gastroenterology, Zhongda Hospital, Southeast University, 87 Dijiaqiao Road, Nanjing, Jiangsu Province, 210009, China
| | - Wenjuan Wei
- Department of Gastroenterology, Zhongda Hospital, Southeast University, 87 Dijiaqiao Road, Nanjing, Jiangsu Province, 210009, China
| | - Yuanyuan Zhu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Yuliang Rao
- College of Basic Medicine, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, 87 Dijiaqiao Road, Nanjing, Jiangsu Province, 210009, China.
| | - Jihong Meng
- College of Basic Medicine, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China. .,Department of Gastroenterology, Zhongda Hospital, Southeast University, 87 Dijiaqiao Road, Nanjing, Jiangsu Province, 210009, China.
| |
Collapse
|
21
|
Synthetic Peptides Containing Three Neutralizing Epitopes of Genotype 4 Swine Hepatitis E Virus ORF2 induced Protection against Swine HEV Infection in Rabbit. Vaccines (Basel) 2020; 8:vaccines8020178. [PMID: 32294910 PMCID: PMC7348971 DOI: 10.3390/vaccines8020178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Genotype 4 hepatitis E virus (HEV) is a zoonotic pathogen transmitted to humans through food and water. Previously, three genotype 4 swine HEV ORF2 peptides (407EPTV410, 410VKLYTS415, and 458PSRPF462) were identified as epitopes of virus-neutralizing monoclonal antibodies that partially blocked rabbit infection with swine HEV. Here, individual and tandem fused peptides were synthesized, conjugated to keyhole limpet hemocyanin (KLH), then evaluated for immunoprotection of rabbits against swine HEV infection. Forty New Zealand White rabbits were randomly assigned to eight groups; groups 1 thru 5 received three immunizations with EPTV-KLH, VKLYTS-KLH, PSRPF-KLH, EPTVKLYTS-KLH, or EPTVKLYTSPSRPF-KLH, respectively; group 6 received truncated swine HEV ORF2 protein (sp239), and group 7 received phosphate-buffered saline. After an intravenous swine HEV challenge, all group 7 rabbits exhibited viremia and fecal virus shedding by 2–4 weeks post challenge (wpc), seroconversion by 4–9 wpc, elevated alanine aminotransferase (ALT) at 2 wpc, and severe liver lymphocytic venous periphlebitis. Only 1–2 rabbits/group in groups 1–4 exhibited delayed viremia, fecal shedding, seroconversion, increased ALT levels, and slight liver lymphocytic venous periphlebitis; groups 5–6 showed no pathogenic effects. Collectively, these results demonstrate that immunization with a polypeptide containing three genotype 4 HEV ORF2 neutralizing epitopes completely protected rabbits against swine HEV infection.
Collapse
|
22
|
Gupta J, Kaul S, Srivastava A, Kaushik N, Ghosh S, Sharma C, Batra G, Banerjee M, Shalimar, Nayak B, Ranjith-Kumar CT, Surjit M. Expression, Purification and Characterization of the Hepatitis E Virus Like-Particles in the Pichia pastoris. Front Microbiol 2020; 11:141. [PMID: 32117160 PMCID: PMC7017414 DOI: 10.3389/fmicb.2020.00141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is associated with acute hepatitis disease, which may lead to chronic disease in immunocompromised individuals. The disease is particularly severe among pregnant women (20-30% mortality). The only licensed vaccine against HEV, which is available in China, is the Escherichia coli purified recombinant virus-like particles (VLPs) encompassing the 368-660 amino acids (aa) of the viral ORF2 protein. The viral capsid is formed by the ORF2 protein, which harbors three glycosylation sites. Baculo virus expression system has been employed to generate a glycosylated VLP, which encompasses 112-608aa of the ORF2 protein. Here, we sought to produce a recombinant VLP containing 112-608aa of the ORF2 protein in Pichia pastoris (P. pastoris) expression system. The cDNA sequence encoding 112-608aa of the ORF2 protein was fused with the α-mating factor secretion signal coding sequence (for release of the fusion protein to the culture medium) and cloned into the yeast vector pPICZα. Optimum expression of recombinant protein was obtained at 72 h induction in 1.5% methanol using inoculum density (A600) of 80 and at pH-3.0 of the culture medium. Identity of the purified protein was confirmed by mass spectrometry analysis. Further studies revealed the glycosylation pattern and VLP nature of the purified protein. Immunization of BALB/c mice with these VLPs induced potent immune response as evidenced by the high ORF2 specific IgG titer and augmented splenocyte proliferation in a dose dependent manner. 112-608aa ORF2 VLPs produced in P. pastoris appears to be a suitable candidate for development of diagnostic and prophylactic reagents against the hepatitis E.
Collapse
Affiliation(s)
- Jyoti Gupta
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sheetal Kaul
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Akriti Srivastava
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Neha Kaushik
- Centre for Bio-Design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- School of Life Sciences, Manipal University, Manipal, India
| | - Sukanya Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Chandresh Sharma
- Centre for Bio-Design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Gaurav Batra
- Centre for Bio-Design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - C. T. Ranjith-Kumar
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
23
|
Bohm K, Strömpl J, Krumbholz A, Zell R, Krause G, Sievers C. Establishment of a Highly Sensitive Assay for Detection of Hepatitis E Virus-Specific Immunoglobulins. J Clin Microbiol 2020; 58:e01029-19. [PMID: 31694975 PMCID: PMC6989076 DOI: 10.1128/jcm.01029-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E, a liver disease caused by infection with the hepatitis E virus (HEV), is a worldwide emerging disease. The diagnosis is based on the detection of viral RNA and of HEV-specific immunoglobulins (Ig). For the latter, various assays are commercially available but still lack harmonization. In this study, a Luminex-based multiplex serological assay was established that measures the presence of total IgG, IgA, and IgM antibodies, targeting a short peptide derived from the viral E2 protein. For the validation, 160 serum samples with a known HEV serostatus were used to determine the assay cutoff and accuracy. Thereby, HEV IgG- and RNA-positive sera were identified with a sensitivity of 100% and a specificity of 98% (95% confidence interval [CI], 94% to 100%). Application of the assay by retesting 514 serum samples previously characterized with different HEV-IgG or total antibody tests revealed a high level of agreement between the assays (Cohen's kappa, 0.58 to 0.99). The established method is highly sensitive and specific and can be easily implemented in a multiplex format to facilitate rapid differential diagnostics with a few microliters of sample input.
Collapse
Affiliation(s)
- Katrin Bohm
- Department of Epidemiology, Helmholtz Centre for Infectious Research, Brunswick, Germany
| | - Julia Strömpl
- Department of Epidemiology, Helmholtz Centre for Infectious Research, Brunswick, Germany
| | - Andi Krumbholz
- Institute of Infection Medicine, University of Kiel, University Hospital Schleswig Holstein, Kiel, Germany
| | - Roland Zell
- Division of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infectious Research, Brunswick, Germany
- Institute for Infectious Disease Epidemiology, TWINCORE, Hanover, Germany
- Translational Infrastructure Epidemiology, German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Claudia Sievers
- Department of Epidemiology, Helmholtz Centre for Infectious Research, Brunswick, Germany
| |
Collapse
|
24
|
Rapid High-Yield Transient Expression of Swine Hepatitis E ORF2 Capsid Proteins in Nicotiana benthamiana Plants and Production of Chimeric Hepatitis E Virus-Like Particles Bearing the M2e Influenza Epitope. PLANTS 2019; 9:plants9010029. [PMID: 31878256 PMCID: PMC7020208 DOI: 10.3390/plants9010029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/21/2019] [Indexed: 12/27/2022]
Abstract
The Hepatitis E virus (HEV) is a causative agent of acute hepatitis, mainly transmitted by the fecal-oral route or zoonotic. Open reading frame (ORF) 2 encodes the viral capsid protein, which is essential for virion assembly, host interaction, and inducing neutralizing antibodies. In this study, we investigated whether full-length and N- and C-terminally modified versions of the capsid protein transiently expressed in N. benthamiana plants could assemble into highly-immunogenic, virus-like particles (VLPs). We also assessed whether such VLPs can act as a carrier of foreign immunogenic epitopes, such as the highly-conserved M2e peptide from the Influenza virus. Plant codon-optimized HEV ORF2 capsid genes were constructed in which the nucleotides coding the N-terminal, the C-terminal, or both parts of the protein were deleted. The M2e peptide was inserted into the P2 loop after the residue Gly556 of HEV ORF2 protein by gene fusion, and three different chimeric constructs were designed. Plants expressed all versions of the HEV capsid protein up to 10% of total soluble protein (TSP), including the chimeras, but only the capsid protein consisting of aa residues 110 to 610 (HEV 110–610) and chimeric M2 HEV 110–610 spontaneously assembled in higher order structures. The chimeric VLPs assembled into particles with 22–36 nm in diameter and specifically reacted with the anti-M2e antibody.
Collapse
|
25
|
Hepatitis E in Pregnant Women and the Potential Use of HEV Vaccine to Prevent Maternal Infection and Mortality. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Liu Z, Behloul N, Baha S, Wei W, Shi R, Meng J. Design and immunogenicity analysis of the combined vaccine against zoonotic hepatitis E and foot-and-mouth disease. Vaccine 2019; 37:6922-6930. [PMID: 31604580 DOI: 10.1016/j.vaccine.2019.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
AIM Design and immunogenicity assessment of the combined vaccine candidate against zoonotic hepatitis E virus (HEV) and foot-and-mouth disease virus (FMDV). METHODS Using the molecular cloning technology, we produced and purified 9 HEV ORF2-truncated proteins (HEV genotype 4). Then, we compared their thermal stability, antigenicity, and immunogenicity to select the best HEV immunogen. Next, we used the adjuvant Montanide ISA-206 to prepare different formulations of HEV vaccine alone, FMDV vaccine alone and HEV-FMDV combined vaccine. The formulations were injected into mice and the induced humoral immune responses were monitored up 12 weeks post-immunization. RESULTS The HEV p222 protein could self-assemble into VLPs (∼34 nm) and showed higher stability and better antigenicity/immunogenicity than the other HEV antigens, thus it was selected as the best HEV immunogen. Mice immunization with the FMDV vaccine alone induced high FMDV-specific antibody titers in a dose-dependent manner; the HEV p222 protein also induced high levels of anti-HEV antibodies but in a dose-independent manner. The HEV-FMDV combination induced anti-FMDV antibody titers 7-16-fold higher than the titers induced by the FMDV vaccine alone, and HEV-specific antibody titers 2.4-fold higher than those induced by the HEV p222 antigen alone. CONCLUSION Herein, we proposed a new approach for the control of zoonotic HEV infection through its control in its main host (pig). We also designed the first HEV-FMDV combined vaccine and the preliminary analyses revealed a synergistic effect on the immunogenicity of both HEV and FMDV antigens.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Nouredine Behloul
- College of Basic Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Sarra Baha
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Wenjuan Wei
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| | - Jihong Meng
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China; College of Basic Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
27
|
Rogers E, Todd SM, Pierson FW, Kenney SP, Heffron CL, Yugo DM, Matzinger SR, Mircoff E, Ngo I, Kirby C, Jones M, Siegel P, Jobst P, Hall K, Etches RJ, Meng XJ, LeRoith T. CD8 + lymphocytes but not B lymphocytes are required for protection against chronic hepatitis E virus infection in chickens. J Med Virol 2019; 91:1960-1969. [PMID: 31317546 DOI: 10.1002/jmv.25548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis E is an important global disease, causing outbreaks of acute hepatitis in many developing countries and sporadic cases in industrialized countries. Hepatitis E virus (HEV) infection typically causes self-limiting acute hepatitis but can also progress to chronic disease in immunocompromised individuals. The immune response necessary for the prevention of chronic infection is T cell-dependent; however, the arm of cellular immunity responsible for this protection is not currently known. To investigate the contribution of humoral immunity in control of HEV infection and prevention of chronicity, we experimentally infected 20 wild-type (WT) and 18 immunoglobulin knockout (JH-KO) chickens with a chicken strain of HEV (avian HEV). Four weeks postinfection (wpi) with avian HEV, JH-KO chickens were unable to elicit anti-HEV antibody but had statistically significantly lower liver lesion scores than the WT chickens. At 16 wpi, viral RNA in fecal material and liver, and severe liver lesions were undetectable in both groups. To determine the role of cytotoxic lymphocytes in the prevention of chronicity, we infected 20 WT and 20 cyclosporine and CD8+ antibody-treated chickens with the same strain of avian HEV. The CD8 + lymphocyte-depleted, HEV-infected chickens had higher incidences of prolonged fecal viral shedding and statistically significantly higher liver lesion scores than the untreated, HEV-infected birds at 16 wpi. The results indicate that CD8 + lymphocytes are required for viral clearance and reduction of liver lesions in HEV infection while antibodies are not necessary for viral clearance but may contribute to the development of liver lesions in acute HEV infection.
Collapse
Affiliation(s)
- Eda Rogers
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Stephanie Michelle Todd
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Frank William Pierson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Scott P Kenney
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Connie Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Danielle M Yugo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Shannon R Matzinger
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Elena Mircoff
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Irene Ngo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Charles Kirby
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Michaela Jones
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Paul Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Peter Jobst
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Karen Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | | | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
28
|
Sun P, Lin S, He S, Zhou EM, Zhao Q. Avian Hepatitis E Virus: With the Trend of Genotypes and Host Expansion. Front Microbiol 2019; 10:1696. [PMID: 31396195 PMCID: PMC6668596 DOI: 10.3389/fmicb.2019.01696] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Avian hepatitis E virus (HEV) is a single-stranded, positive-sense RNA virus with a complete genome of approximately 6.6 kb in size. To date, four major genotypes of avian HEV have been identified and classified into the Orthohepevirus B genus of the family Hepeviridae. The avian HEV associated with hepatitis-splenomegaly syndrome, big liver and spleen disease or hepatic rupture hemorrhage syndrome in chickens is genetically and antigenically related to mammalian HEV. With the increased genotypes of avian HEV identified, a broader host tropism is also notable in the epidemiological studies. Due to the lack of an efficient cell culture system, the mechanisms of avian HEV replication and pathogenesis are still poorly understood. The recent identification and characterization of animal strains of avian HEV has demonstrated the virus' ability of cross-species infection. Although it has not yet been detected in humans, the potential threat of a zoonotic HEV capable of transmission to humans needs to be taken into consideration. This review article focuses on the current knowledge regarding avian HEV in virology, epidemiology, pathogenesis, clinical presentation, transmission, diagnosis and prevention. HIGHLIGHTS - The mechanisms of avian HEV replication and pathogenesis are still poorly understood due to the lack of an efficient cell culture system.- A broader host tropism is also notable in the epidemiological studies with the increased genotypes of avian HEV identified.- The recent identification and characterization of animal strains of avian HEV has demonstrated the virus' ability of cross-species infection.- The potential threat of a zoonotic HEV capable of transmission to humans needs to be taken into consideration.
Collapse
Affiliation(s)
- Peng Sun
- School of Agriculture, Ningxia University, Yinchuan, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Shaoli Lin
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Shenghu He
- School of Agriculture, Ningxia University, Yinchuan, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
29
|
Hepatitis E: Current Status in India and Other Asian Countries. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
30
|
Abstract
Soon after the 1991 molecular cloning of hepatitis E virus (HEV), recombinant viral capsid antigens were expressed and tested in nonhuman primates for protection against liver disease and infection. Two genotype 1 subunit vaccine candidates entered clinical development: a 56 kDA vaccine expressed in insect cells and HEV 239 vaccine expressed in Escherichia coli Both were highly protective against hepatitis E and acceptably safe. The HEV 239 vaccine was approved in China in 2011, but it is not yet prequalified by the World Health Organization, a necessary step for introduction into those low- and middle-income countries where the disease burden is highest. Nevertheless, the stage is set for the final act in the hepatitis E vaccine story-policymaking, advocacy, and pilot introduction of vaccine in at-risk populations, in which it is expected to be cost-effective.
Collapse
Affiliation(s)
- Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, Washington, D.C. 20001
| | - Julia A Lynch
- International Vaccine Institute, SNU Research Park, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
31
|
Wang D, Zhang Y, Ma C, Ma D, Zhao Q, Wang F, Huang Y, Li J, Zhang L, Zhou EM. Live recombinant Lactococcuslactis expressing avian hepatitis virus ORF2 protein: Immunoprotection against homologous virus challenge in chickens. Vaccine 2018; 36:1108-1115. [PMID: 29406242 DOI: 10.1016/j.vaccine.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022]
Abstract
Avian hepatitis E virus (aHEV) is a pathogen associated with hepatitis-splenomegaly syndrome in chickens. To date, no commercial vaccine is available for preventing aHEV infection. In this study, three recombinant LactococcuslactisNZ9000experimental live vaccines expressing cytoplasmic, secreted, and cell wall-anchored forms of aHEV truncated ORF2 protein spanning amino acids 249-606 (ΔORF2) were constructed using pTX8048 vector and characterized. Each chicken was immunized three times at two-week intervals with one of the three live aHEV ORF2 vaccines (experimental group) or with live vaccine containing empty vector only (control group). Both groups were then challenged with aHEV and evaluated to compare immune responses and immunogenic effects. Serum IgG levels, secretory IgA (sIgA) levels in bile and jejunal lavage fluid, and mRNA expression levels ofIL-2 and IFN-γ in liver and spleen were significantly higher in experimental chickens than in controls. Meanwhile, post-challenge serum and fecal virus loads were significantly lower in experimental chickens versus controls. Moreover, on day 7 post infection (PI), serum lactose dehydrogenase (LDH) levels were significantly higher in controls than experimental chickens. Furthermore, at day 28 PI, obvious gross pathological lesions and histopathological changes typical for aHEV infection were observed in control livers and spleens, with only moderate pathological changes observed in the experimental group. The results of this study collectively demonstrate that an oral vaccineusing L.lactisNZ9000 as a delivery vector for aHEV immunogenic antigen could effectively control aHEV infection of chickens.
Collapse
Affiliation(s)
- Dian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Chunli Ma
- Food College, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China.
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, PR China
| | - Fen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Yuchen Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Jian Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Lili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, PR China.
| |
Collapse
|
32
|
Bigoraj E, Rzeżutka A. Application of ELISA recomWell HEV IgG (Human) for Detection of Virus-Specific Antibodies in Sera of Slaughtered Rabbits. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1367-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Abstract
Hepatitis E virus (HEV) infection is an emerging zoonotic disease posing a severe threat to public health in the world, especially to pregnant women. Currently, no specific treatments are available for HEV infection. Therefore, it is crucial to develop vaccine to prevent this infection. Although several potential candidate vaccines against HEV have been studied for their immunogenicity and efficacy, only Hecolin® which is developed by Xiamen Innovax Biotech Co., Ltd. and approved by China Food and Drug Administration (CFDA) in 2012, is the licensed HEV vaccine in the world so far. Extensive studies on safety, immunogenicity and efficacy in phase III clinical trials have shown that Hecolin® is a promising vaccine for HEV prevention and control. In this article, the advances on HEV vaccine development and research are briefly reviewed.
Collapse
Affiliation(s)
- Yufeng Cao
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,b Changchun Institute of Biological Products Co. Ltd. , Changchun , Jilin , PR China
| | - Zhenhong Bing
- c Changchun Institute of Biological Products , Changchun , Jilin , PR China
| | - Shiyu Guan
- c Changchun Institute of Biological Products , Changchun , Jilin , PR China
| | - Zecai Zhang
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,d Key laboratory for Zoonosis , Ministry of Education, and Institute for Zoonosis of Jilin University , Changchun , Jilin , PR China
| | - Xinping Wang
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,d Key laboratory for Zoonosis , Ministry of Education, and Institute for Zoonosis of Jilin University , Changchun , Jilin , PR China
| |
Collapse
|
34
|
Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus. J Virol 2018; 92:JVI.00251-18. [PMID: 29669835 DOI: 10.1128/jvi.00251-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/10/2018] [Indexed: 01/13/2023] Open
Abstract
Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection, with domestic animals, including swine and rabbits, being a reservoir. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs), three novel, 1E4, 2C7, and 2G9, and one previously characterized, 1B5, were evaluated for binding to the capsid protein from genotype 4 swine HEV. The results indicated that 625DFCP628, 458PSRPF462, and 407EPTV410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368 to 606) can exist in multimeric forms. Preincubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross-reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and antiviral design.IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of the antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within genotype 4 swine HEV capsid protein were characterized. Moreover, the neutralizing abilities of three MAbs specific for this protein, 2C7, 2G9, and 1B5, were studied in vitro and in vivo Collectively, these findings reveal structural details of genotype 4 HEV capsid protein and should facilitate development of applications for the design of vaccines and antiviral drugs for broader prevention, detection, and treatment of HEV infection of diverse human and animal hosts.
Collapse
|
35
|
Fenaux H, Chassaing M, Berger S, Jeulin H, Gentilhomme A, Bensenane M, Bronowicki J, Gantzer C, Bertrand I, Schvoerer E. Molecular features of Hepatitis E Virus circulation in environmental and human samples. J Clin Virol 2018; 103:63-70. [PMID: 29656087 DOI: 10.1016/j.jcv.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
|
36
|
Zheng M, Jiang J, Zhang X, Wang N, Wang K, Li Q, Li T, Lin Q, Wang Y, Yu H, Gu Y, Zhang J, Li S, Xia N. Characterization of capsid protein (p495) of hepatitis E virus expressed in Escherichia coli and assembling into particles in vitro. Vaccine 2018; 36:2104-2111. [PMID: 29544686 DOI: 10.1016/j.vaccine.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/18/2018] [Accepted: 03/04/2018] [Indexed: 12/11/2022]
Abstract
Hepatitis E virus (HEV) is associated with acute hepatitis disease. Numerous truncated HEV capsid proteins have been successfully expressed using different expression systems. Among these, p495, a protein truncated at its N- and C-termini by 111 and 54 amino acids (aa), respectively (HEV ORF2 aa 112-606) can self-assemble into T = 1 virus-like particles (VLPs) when expressed by insect cells. A shorter p239 (aa 368-606) protein is a particulate antigen that we have previously used in our commercialized HEV vaccine, Hecolin. Here, we sought to express p495 in its soluble form (named Ep495) in E. coli and in baculovirus-infected Tn5 insect cells (named BTp495) as a back-to-back control. Characterization of p495 particles derived from these two expression systems showed similarities in particle size, morphology, and sedimentation coefficient. Antigenicity assays using a panel of anti-HEV monoclonal antibodies also showed similar strong reactivities for Ep495 and BTp495, as well as similar binding profiles that were congruent with p239. Mouse immunization results showed that Ep495 particles had comparable immunogenicity with that of BTp495 VLPs, as well as p239. Overall, our findings suggest that p495 particles produced in E. coli are ideal for the development of next-generation prophylactic vaccines against hepatitis E.
Collapse
Affiliation(s)
- Minghua Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Jiang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiao Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Nan Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Kaihang Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qiong Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qingshan Lin
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yingbin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
37
|
Wen J, Lu W, Liu Z, Meng J. Establishment of a Competitive Binding Assay Identifying the Different Characteristics of Neutralizing Epitopes of Hepatitis E Virus. Intervirology 2018; 60:190-195. [PMID: 29510392 DOI: 10.1159/000487050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
AIMS To confirm the different characteristics of genotype-specific and common neutralizing epitopes of hepatitis E virus (HEV). METHODS A competitive binding assay was established with known genotype-common neutralizing monoclonal antibodies (mAbs) 3G1 and 5G5 as well as genotype-specific neutralizing mAbs 2B1 and 4C5. HEV ORF2 recombinant p166W01 derived from genotype 1 and p166Chn derived from genotype 4 were used as coated antigens, to determine whether the mAbs recognize independent, similar, or overlapping epitopes. mAbs were produced, purified, and conjugated with horseradish peroxidase (HRP). HRP-conjugated 2B1 could react only with p166W01 but not p166Chn, HRP-conjugated 4C5 could react only with p166Chn but not p166W01, while HRP-conjugated 3G1 and 5G5 could react both with p166W01 and p166Chn. Thus, competitive binding assays were performed successively using p166W01 and p166Chn antigen. RESULTS AND CONCLUSION The results of competitive binding assays revealed that the binding of HRP-conjugated 2B1 to p166W01 could not be inhibited by 5G5 or 3G1. Similarly, the binding of HRP-conjugated 4C5 to p166Chn could not be inhibited by 5G5 or 3G1. However, the mAbs 5G5 and 3G1 blocked each other's binding to p166W01 and p166Chn, suggesting that common and genotype-specific neutralizing mAbs recognize independent epitopes.
Collapse
Affiliation(s)
- Jiyue Wen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | | | - Zhenzhen Liu
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Jihong Meng
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
38
|
Rodríguez-Castro E, Trastoy R, Rodríguez-Osorio X, Domínguez-Santalla MJ, Fernández-Lebrero A, González-Alba JM, Aguilera A. Meningitis due to autochthonous acute infection with hepatitis E virus in a chef: a case report. J Antimicrob Chemother 2018; 73:1726-1728. [DOI: 10.1093/jac/dky052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
| | - Rocio Trastoy
- Microbiology Department, Complejo Hospitalario Universitario de Santiago de Compostela, Spain
| | - Xiana Rodríguez-Osorio
- Neurology Department, Complejo Hospitalario Universitario de Santiago de Compostela, Spain
| | | | - Aida Fernández-Lebrero
- Neurology Department, Complejo Hospitalario Universitario de Santiago de Compostela, Spain
| | | | - Antonio Aguilera
- Microbiology Department, Complejo Hospitalario Universitario de Santiago de Compostela, Spain
- Microbiology and Parasitology Department, Universidade de Santiago de Compostela, Spain
| |
Collapse
|
39
|
Wei W, Behloul N, Baha S, Liu Z, Aslam MS, Meng J. Dimerization: a structural feature for the protection of hepatitis E virus capsid protein against trypsinization. Sci Rep 2018; 8:1738. [PMID: 29379064 PMCID: PMC5788867 DOI: 10.1038/s41598-018-20137-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/09/2018] [Indexed: 01/16/2023] Open
|
40
|
Lu W, Wen J. The divergence of epidemiological, antigenic and immunogenic characteristics of hepatitis E virus of different genotypes. Future Virol 2018. [DOI: 10.2217/fvl-2017-0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis E virus (HEV) is an enterically transmitted pathogen that causes hepatitis E (HE). HEVs infecting mammals have been classified into four genotypes. Numerously diverse behaviors have been found among HEV genotypes; the first two genotypes are endemic in developing countries and only infect humans, whereas genotypes 3 and 4 infect other mammalian species as well. It is still unclear why only HEV genotypes 3 and 4 can infect across species. This article comprehensively: reviews the divergence of epidemiological and immunogenic characteristics of HEV infection derived from different genotypes; provides the current knowledge on the antigenic and immunogenic differences between different HEV genotypes; and will give useful information on serological diagnosis development and vaccines preparation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
41
|
Generation in yeast and antigenic characterization of hepatitis E virus capsid protein virus-like particles. Appl Microbiol Biotechnol 2017; 102:185-198. [PMID: 29143081 DOI: 10.1007/s00253-017-8622-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
Abstract
Hepatitis E is a globally distributed human disease caused by hepatitis E virus (HEV). In Europe, it spreads through undercooked pork meat or other products and with blood components through transfusions. There are no approved or golden standard serologic systems for HEV diagnostics. Commercially available HEV tests often provide inconsistent results which may differ among the assays. In this study, we describe generation in yeast and characterization of HEV genotype 3 (HEV-3) and rat HEV capsid proteins self-assembled into virus-like particles (VLPs) and the development of HEV-specific monoclonal antibodies (MAbs). Full-length HEV-3 and rat HEV capsid proteins and their truncated variants comprising amino acids (aa) 112-608 were produced in yeast S. cerevisiae. The yeast-expressed rat HEV capsid protein was found to be glycosylated. The full-length HEV-3 capsid protein and both full-length and truncated rat HEV capsid proteins were capable to self-assemble into VLPs. All recombinant proteins contained HEV genotype-specific linear epitopes and cross-reactive conformational epitopes recognized by serum antibodies from HEV-infected reservoir animals. Two panels of MAbs against HEV-3 and rat HEV capsid proteins were generated. Their cross-reactivity pattern was investigated by Western blot, ELISA, and immunofluorescence assay on HEV-3-infected cell cultures. The analysis revealed cross-reactive, genotype-specific, and virus-reactive MAbs. MAb epitopes were localized within S, M, and P domains of HEV-3 and rat HEV capsid proteins. Yeast-generated recombinant VLPs of HEV-3 and rat HEV capsid proteins and HEV-specific MAbs might be employed to develop novel HEV detection systems.
Collapse
|
42
|
Wang H, Zhang W, Gu H, Chen W, Zeng M, Ji C, Song R, Zhang G. Identification and characterization of two linear epitope motifs in hepatitis E virus ORF2 protein. PLoS One 2017; 12:e0184947. [PMID: 28957334 PMCID: PMC5619941 DOI: 10.1371/journal.pone.0184947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/02/2017] [Indexed: 12/23/2022] Open
Abstract
Hepatitis E virus (HEV) is responsible for hepatitis E, which represents a global public health problem. HEV genotypes 3 and 4 are reported to be zoonotic, and animals are monitored for HEV infection in the interests of public hygiene and food safety. The development of novel diagnostic methods and vaccines for HEV in humans is thus important topics of research. Opening reading frame (ORF) 2 of HEV includes both linear and conformational epitopes and is regarded as the primary candidate for vaccines and diagnostic tests. We investigated the precise location of the HEV epitopes in the ORF2 protein. We prepared four monoclonal antibodies (mAbs) against genotype 4 ORF2 protein and identified two linear epitopes, G438IVIPHD444 and Y457DNQH461, corresponding to two of these mAbs using phage display biopanning technology. Both these epitopes were speculated to be universal to genotypes 1, 2, 3, 4, and avian HEVs. We also used two 12-mer fragments of ORF2 protein including these two epitopes to develop a peptide-based enzyme-linked immunosorbent assay (ELISA) to detect HEV in serum. This assay demonstrated good specificity but low sensitivity compared with the commercial method, indicating that these two epitopes could serve as potential candidate targets for diagnosis. Overall, these results further our understanding of the epitope distribution of HEV ORF2, and provide important information for the development of peptide-based immunodiagnostic tests to detect HEV in serum.
Collapse
Affiliation(s)
- Heng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
- * E-mail: (GZ); (HW)
| | - Weidong Zhang
- Hospital of South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Honglang Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province, People’s Republic of China
| | - Wanli Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
| | - Meng Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
| | - Chihai Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ruyue Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province, People’s Republic of China
- * E-mail: (GZ); (HW)
| |
Collapse
|
43
|
A Recombinant HAV Expressing a Neutralization Epitope of HEV Induces Immune Response against HAV and HEV in Mice. Viruses 2017; 9:v9090260. [PMID: 28914805 PMCID: PMC5618026 DOI: 10.3390/v9090260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/03/2017] [Accepted: 09/09/2017] [Indexed: 01/29/2023] Open
Abstract
Hepatitis A virus (HAV) and hepatitis E virus (HEV) are causative agents of acute viral hepatitis transmitted via the fecal–oral route. Both viruses place a heavy burden on the public health and economy of developing countries. To test the possibility that HAV could be used as an expression vector for the development of a combination vaccine against hepatitis A and E infections, recombinant HAV-HEp148 was created as a vector to express an HEV neutralization epitope (HEp148) located at aa 459–606 of the HEV capsid protein. The recombinant virus expressed the HEp148 protein in a partially dimerized state in HAV-susceptible cells. Immunization with the HAV-HEp148 virus induced a strong HAV- and HEV-specific immune response in mice. Thus, the present study demonstrates a novel approach to the development of a combined hepatitis A and E vaccine.
Collapse
|
44
|
Zhang J, Zhao Q, Xia N. Prophylactic Hepatitis E Vaccine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 948:223-246. [PMID: 27738988 DOI: 10.1007/978-94-024-0942-0_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection-associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals; two of them were tested in human and evidenced to be well tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin® (HEV 239 vaccine), was licensed in China and launched in 2012.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
45
|
Immunobiology and Host Response to HEV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 948:113-141. [PMID: 27738982 DOI: 10.1007/978-94-024-0942-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis E virus (HEV) causes acute self-limiting hepatitis in most cases and chronic infection in rare circumstances. It is believed to be noncytopathic, so immunologically mediated events should play important roles in its pathogenesis and infection outcomes. The anti-HEV antibody response was clarified when the major antigenic determinants on the ORF2 polypeptide were determined, which are located in its C-terminal portion. This subregion also forms the conformational neutralization epitopes. Robust anti-HEV immunoglobulin M (IgM) and IgG responses usually develop 3-4 weeks after infection in experimentally infected nonhuman primates. In humans, potent specific IgM and IgG responses occur in the very early phase of the disease and are critical in eliminating the virus, in concert with the innate and adaptive T-cell immune responses. They are also very valuable in the diagnosis of acute hepatitis E, when patients are tested for both anti-HEV IgM and IgG. The long-term persistence and protection of anti-HEV IgG provide the basis for estimating the prevalence of HEV infection and for the development of a hepatitis E vaccine. Although HEV has four genotypes, all the viral strains are considered to belong to a single serotype. It is becoming increasingly clear that the innate and adaptive T-cell immune responses play critical roles in the clearance of the virus. Potent and multispecific CD4+ and CD8+ T-cell responses to the ORF2 protein occur in patients with acute hepatitis E, and weaker HEV-specific CD4+ and CD8+ T-cell responses appear to be associated with chronic hepatitis E in immunocompromised individuals.
Collapse
|
46
|
Abstract
Serological and nucleic acid tests for detecting hepatitis E virus (HEV) have been developed for both epidemiologic and diagnostic purposes. The laboratory diagnosis of HEV infection depends on the detection of HEV antigen, HEV RNA, and serum antibodies against HEV (immunoglobulin [Ig]A, IgM, and IgG). Anti-HEV IgM antibodies can be detected during the acute phase of the illness and can last approximately 4 or 5 months, representing recent exposure, whereas anti-HEV IgG antibodies can last more than 10 years, representing remote exposure. Thus, the diagnosis of acute infection is based on the presence of anti-HEV IgM, HEV antigen, and HEV RNA, while epidemiological investigations are mainly based on anti-HEV IgG. Although significant progress has been made in developing and optimizing different formats of HEV assays, improving their sensitivity and specificity, there are many shortcomings and challenges in inter-assay concordance, validation, and standardization. This article reviews the current knowledge on the diagnosis of HEV infection, including the most common available laboratory diagnostic techniques.
Collapse
Affiliation(s)
- Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
47
|
A phase 1 randomized open-label clinical study to evaluate the safety and tolerability of a novel recombinant hepatitis E vaccine. Vaccine 2017; 35:5073-5080. [PMID: 28803715 DOI: 10.1016/j.vaccine.2017.05.072] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/11/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study aimed to evaluate the safety and tolerability for variable dosages of a novel hepatitis E vaccine p179. METHODS The randomized open-label parallel control phase 1 clinical trial enrolled 120 eligible participants aged 16-65years in Jiangsu Province, China. The experimental groups were randomized to receive different dosages of 20μg, 30μg, and 40μg Hepatitis E Virus (HEV) p179 vaccines, with the 30μgHEV vaccine p239 Hecolin as control, and vaccinated at 0, 1 and 6month intervals. Participants were observed for solicited local and systemic adverse reactions (ARs) occurring within 7days after each vaccination, and any serious adverse events (SAEs) occurring within 6months post-vaccination. Blood samples were collected from participants 3days before and after each injection, to determine the blood routine and serum biochemical indexes. RESULTS The solicited local ARs incidence in experimental groups were significantly lower than that of the control group (P=0.027). The difference between solicited total and systemic ARs incidence of experimental groups and the control group were not significant (P>0.05). Similar patterns were observed when the analyses were performed on the group having ARs of varying grades and symptoms. All changes in blood biochemical indexes and routine blood tests before and after different vaccinations were mild (grade 1) or moderate (grade 2), and the difference in experimental groups and the control group were not statistically significant. No vaccine related SAEs occurred in any of the subjects during the study. CONCLUSION Three different dosages of HEV p179 vaccine were deemed safe and well tolerated. No vaccine-associated SAEs were identified, and the 30μg dosage formulation was selected for further investigation for efficacy. Clinical trials registration number: 2012L01657.
Collapse
|
48
|
Mazalovska M, Varadinov N, Koynarski T, Minkov I, Teoharov P, Lomonossoff GP, Zahmanova G. Detection of Serum Antibodies to Hepatitis E Virus Based on HEV Genotype 3 ORF2 Capsid Protein Expressed in Nicotiana benthamiana. Ann Lab Med 2017; 37:313-319. [PMID: 28445010 PMCID: PMC5409023 DOI: 10.3343/alm.2017.37.4.313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/08/2016] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. There have been recent reports on the zoonotic spread of the virus, and several animal species, primarily pigs, have been recognized as reservoirs of HEV. Because of its possible spread, there is an urgent need of a method for the cost-effective production of HEV proteins that can be used as diagnostic antigens for the serological detection of anti-HEV antibodies. METHODS The HEV open reading frame (ORF)2 protein was purified from plant tissue by using immobilized metal-anion chromatography (IMAC). The recombinant protein was used to develop an in-house ELISA for testing anti-HEV antibodies in both human and swine sera. Thirty-six serum samples collected from patients with serologically proven HEV infection with commercial kits were tested for anti-HEV IgG antibodies by using the plant-expressed protein. Forty-five serum samples collected from apparently healthy pigs in Bulgarian farms were also tested. RESULTS We confirmed the transient expression and purification of a truncated version of the HEV genotype 3 capsid protein in Nicotiana benthamiana and its usefulness as a diagnostic antigen. ELISA showed the presence of anti-HEV IgG antibodies in 29 of the 36 human samples. The in-house ELISA showed anti-HEV IgG antibodies in 34 of the 45 pigs. CONCLUSIONS We describe a method for the production of HEV ORF2 protein in N. benthamiana and the usefulness of this protein for the serological detection of anti-HEV antibodies in both humans and swine.
Collapse
Affiliation(s)
- Milena Mazalovska
- Department of Plant Physiology and Molecular Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria
| | - Nikola Varadinov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Ivan Minkov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria
| | - Pavel Teoharov
- National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria.
| |
Collapse
|
49
|
Wu X, Chen P, Lin H, Su Y, Hao X, Cao Y, Li L, Zhu F, Liang Z. Dynamics of 8G12 competitive antibody in "prime-boost" vaccination of Hepatitis E vaccine. Hum Vaccin Immunother 2017; 13:1-6. [PMID: 28272983 DOI: 10.1080/21645515.2017.1291105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus still poses a great threat to public health worldwide. To date, Hecolin® is the only licensed HEV vaccine in China. Total anti-HEV antibody has been used to reflect vaccine induced immune response in clinical trials for the lack of robust HEV neutralizing antibody detection methods. In this study, we applied a broad neutralizing mouse monoclonal antibody 8G12 to develop a competitive ELSIA assay and quantified 8G12 competitive antibody (8G12-like antibody) in serum samples. The presence of 8G12-like antibody was detected both from participants from HEV vaccine clinical trial and mice immunized with HEV vaccine. Furthermore, 8G12-like antibody was found to have a similar dynamic pattern as anti-HEV antibody during "prime-boost" vaccination, and the proportion of 8G12-like antibody in anti-HEV antibody increased along boost vaccination. Together with previously reported finding that 8G12 could block the most binding of HEV vaccine induced serum antibody to vaccine antigen, we proposed that 8G12-like antibody might be a promising surrogate for vaccine induced HEV neutralizing antibody and had potential to be used as a convenient indicator for HEV vaccine potency evaluation.
Collapse
Affiliation(s)
- Xing Wu
- a National Institutes for Food and Drug Control , Beijing , China
| | - Pan Chen
- a National Institutes for Food and Drug Control , Beijing , China
| | - Huijuan Lin
- b R&D Department , Shanghai Institute of Biological Products Co., Ltd. , Shanghai , China
| | - Yao Su
- c Changchun Institute of Biological Products Co. Ltd., China National Biotech Corporation , Changchun , China
| | - Xiaotian Hao
- a National Institutes for Food and Drug Control , Beijing , China
| | - Yufeng Cao
- c Changchun Institute of Biological Products Co. Ltd., China National Biotech Corporation , Changchun , China
| | - Li Li
- c Changchun Institute of Biological Products Co. Ltd., China National Biotech Corporation , Changchun , China
| | - Fengcai Zhu
- d Jiangsu Provincial Center for Disease Prevention and Control , Nanjing , China
| | - Zhenglun Liang
- a National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|
50
|
Pelosi E, Clarke I. Hepatitis E: a complex and global disease. EMERGING HEALTH THREATS JOURNAL 2017. [DOI: 10.3402/ehtj.v1i0.7069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- E Pelosi
- Department of Microbiology and Virology, Health Protection Agency, Southeast Regional Laboratory, Southampton General Hospital, Southampton, UK; and
| | - I Clarke
- Department of Molecular Microbiology, Southampton Medical School, Southampton General Hospital, Southampton, UK
| |
Collapse
|