1
|
LaPointe A, Gale M, Kell AM. Orthohantavirus Replication in the Context of Innate Immunity. Viruses 2023; 15:1130. [PMID: 37243216 PMCID: PMC10220641 DOI: 10.3390/v15051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Orthohantaviruses are rodent-borne, negative-sense RNA viruses that are capable of causing severe vascular disease in humans. Over the course of viral evolution, these viruses have tailored their replication cycles in such a way as to avoid and/or antagonize host innate immune responses. In the rodent reservoir, this results in life long asymptomatic infections. However, in hosts other than its co-evolved reservoir, the mechanisms for subduing the innate immune response may be less efficient or absent, potentially leading to disease and/or viral clearance. In the case of human orthohantavirus infection, the interaction of the innate immune response with viral replication is thought to give rise to severe vascular disease. The orthohantavirus field has made significant advancements in understanding how these viruses replicate and interact with host innate immune responses since their identification by Dr. Ho Wang Lee and colleagues in 1976. Therefore, the purpose of this review, as part of this special issue dedicated to Dr. Lee, was to summarize the current knowledge of orthohantavirus replication, how viral replication activates innate immunity, and how the host antiviral response, in turn, impacts viral replication.
Collapse
Affiliation(s)
- Autumn LaPointe
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Barker J, daSilva LLP, Crump CM. Mechanisms of bunyavirus morphogenesis and egress. J Gen Virol 2023; 104. [PMID: 37083579 DOI: 10.1099/jgv.0.001845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Unlike many segmented negative-sense RNA viruses, most members of the Bunyavirales bud at Golgi membranes, as opposed to the plasma membrane. Central players in this assembly process are the envelope glycoproteins, Gn and Gc, which upon translation undergo proteolytic processing, glycosylation and trafficking to the Golgi, where they interact with ribonucleoprotein genome segments and bud into Golgi-derived compartments. The processes involved in genome packaging during virion assembly can lead to the generation of reassorted viruses, if a cell is co-infected with two different bunyaviruses, due to mismatching of viral genome segment packaging. This can lead to viruses with high pathogenic potential, as demonstrated by the emergence of Schmallenberg virus. This review focuses on the assembly pathways of tri-segmented bunyaviruses, highlighting some areas in need of further research to understand these important pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Jake Barker
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Luis L P daSilva
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, State of São Paulo, Brazil
| | - Colin M Crump
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Menke L, Sperber HS, Aji AK, Chiantia S, Schwarzer R, Sieben C. Advances in fluorescence microscopy for orthohantavirus research. Microscopy (Oxf) 2023:6987530. [PMID: 36639937 DOI: 10.1093/jmicro/dfac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Orthohantaviruses are important zoonotic pathogens responsible for a considerable disease burden globally. Partly due to our incomplete understanding of orthohantavirus replication, there is currently no effective antiviral treatment available. Recently, novel microscopy techniques and cutting-edge, automated image analysis algorithms have emerged, enabling to study cellular, subcellular and even molecular processes in unprecedented detail and depth. To date, fluorescence light microscopy allows us to visualize viral and cellular components and macromolecular complexes in live cells which in turn enables the study of specific steps of the viral replication cycle such as particle entry or protein trafficking at high temporal and spatial resolution. In this review, we highlight how fluorescence microscopy has provided new insights and improved our understanding of orthohantavirus biology. We discuss technical challenges such as studying live infected cells, give alternatives with recombinant protein expression and highlight future opportunities for example the application of super-resolution microscopy techniques, which has shown great potential in studies of different cellular processes and viral pathogens.
Collapse
Affiliation(s)
- Laura Menke
- Nanoscale Infection Biology Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hannah S Sperber
- Institute for Translational HIV Research, University Hospital Essen, Essen, Germany
| | - Amit Koikkarah Aji
- University of Potsdam, Institute of Biochemistry and Biology, Department of Physical Biochemistry, Potsdam, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Department of Physical Biochemistry, Potsdam, Germany
| | - Roland Schwarzer
- Institute for Translational HIV Research, University Hospital Essen, Essen, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
Assembly and Cellular Exit of Coronaviruses: Hijacking an Unconventional Secretory Pathway from the Pre-Golgi Intermediate Compartment via the Golgi Ribbon to the Extracellular Space. Cells 2021; 10:cells10030503. [PMID: 33652973 PMCID: PMC7996754 DOI: 10.3390/cells10030503] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses (CoVs) assemble by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface. However, why CoVs have chosen the IC as their intracellular site of assembly and how progeny viruses are delivered from this compartment to the extracellular space has remained unclear. Here we address these enigmatic late events of the CoV life cycle in light of recently described properties of the IC. Of particular interest are the emerging spatial and functional connections between IC elements and recycling endosomes (REs), defined by the GTPases Rab1 and Rab11, respectively. The establishment of IC-RE links at the cell periphery, around the centrosome and evidently also at the noncompact zones of the Golgi ribbon indicates that—besides traditional ER-Golgi communication—the IC also promotes a secretory process that bypasses the Golgi stacks, but involves its direct connection with the endocytic recycling system. The initial confinement of CoVs to the lumen of IC-derived large transport carriers and their preferential absence from Golgi stacks is consistent with the idea that they exit cells following such an unconventional route. In fact, CoVs may share this pathway with other intracellularly budding viruses, lipoproteins, procollagen, and/or protein aggregates experimentally introduced into the IC lumen.
Collapse
|
5
|
Detection of Envelope Glycoprotein Assembly from Old-World Hantaviruses in the Golgi Apparatus of Living Cells. J Virol 2021; 95:JVI.01238-20. [PMID: 33239451 PMCID: PMC7851546 DOI: 10.1128/jvi.01238-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hantaviruses are emerging pathogens that occasionally cause deadly outbreaks in the human population. While the structure of the viral envelope has been characterized with high precision, protein-protein interactions leading to the formation of new virions in infected cells are not fully understood yet. We use quantitative fluorescence microscopy (i.e., Number&Brightness analysis and fluorescence fluctuation spectroscopy) to monitor the interactions that lead to oligomeric spike complex formation in the physiological context of living cells. To this aim, we quantified protein-protein interactions for the glycoproteins Gn and Gc from Puumala and Hantaan orthohantaviruses in several cellular models. The oligomerization of each protein was analyzed in relation to subcellular localization, concentration, and the concentration of its interaction partner. Our results indicate that when expressed separately, Gn and Gc form respectively homo-tetrameric and homo-dimeric complexes, in a concentration-dependent manner. Site-directed mutations or deletion mutants showed the specificity of their homotypic interactions. When both glycoproteins were co-expressed, we observed in the Golgi apparatus clear indication of Gn-Gc interactions and the formation of Gn-Gc multimeric protein complexes of different sizes, while using various labeling schemes to minimize the influence of the fluorescent tags. Such large glycoprotein multimers may be identified as multiple Gn viral spikes interconnected via Gc-Gc contacts. This observation provides a possible first evidence for the initial assembly steps of the viral envelope, within this organelle, directly in living cells.IMPORTANCE In this work, we investigate protein-protein interactions that drive the assembly of the hantaviruses envelope. These emerging pathogens have the potential to cause deadly outbreaks in the human population. Therefore, it is important to improve our quantitative understanding of the viral assembly process in infected cells, from a molecular point of view. By applying advanced fluorescence microscopy methods, we monitored the formation of viral spike complexes in different cell types. Our data support a model for hantavirus assembly according to which viral spikes are formed via the clustering of hetero-dimers of the two viral glycoproteins Gn and Gc. Furthermore, the observation of large Gn-Gc hetero-multimers provide a possible first evidence for the initial assembly steps of the viral envelope, directly in the Golgi apparatus of living cells.
Collapse
|
6
|
Taylor MK, Williams EP, Wongsurawat T, Jenjaroenpun P, Nookaew I, Jonsson CB. Amplicon-Based, Next-Generation Sequencing Approaches to Characterize Single Nucleotide Polymorphisms of Orthohantavirus Species. Front Cell Infect Microbiol 2020; 10:565591. [PMID: 33163416 PMCID: PMC7591466 DOI: 10.3389/fcimb.2020.565591] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Whole-genome sequencing (WGS) of viruses from patient or environmental samples can provide tremendous insight into the epidemiology, drug resistance or evolution of a virus. However, we face two common hurdles in obtaining robust sequence information; the low copy number of viral genomes in specimens and the error introduced by WGS techniques. To optimize detection and minimize error in WGS of hantaviruses, we tested four amplification approaches and different amplicon pooling methods for library preparation and examined these preparations using two sequencing platforms, Illumina MiSeq and Oxford Nanopore Technologies MinION. First, we tested and optimized primers used for whole segment PCR or one kilobase amplicon amplification for even coverage using RNA isolated from the supernatant of virus-infected cells. Once optimized we assessed two sources of total RNA, virus-infected cells and supernatant from the virus-infected cells, with four variations of primer pooling for amplicons, and six different amplification approaches. We show that 99-100% genome coverage was obtained using a one-step RT-PCR reaction with one forward and reverse primer. Using a two-step RT-PCR with three distinct tiling approaches for the three genomic segments (vRNAs), we optimized primer pooling approaches for PCR amplification to achieve a greater number of aligned reads, average depth of genome, and genome coverage. The single nucleotide polymorphisms identified from MiSeq and MinION sequencing suggested intrinsic mutation frequencies of ~10-5-10-7 per genome and 10-4-10-5 per genome, respectively. We noted no difference in the coverage or accuracy when comparing WGS results with amplicons amplified from RNA extracted from infected cells or supernatant of these infected cells. Our results show that high-throughput diagnostics requiring the identification of hantavirus species or strains can be performed using MiSeq or MinION using a one-step approach. However, the two-step MiSeq approach outperformed the MinION in coverage depth and accuracy, and hence would be superior for assessment of genomes for epidemiology or evolutionary questions using the methods developed herein.
Collapse
Affiliation(s)
- Mariah K. Taylor
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
7
|
Wang K, Ma H, Liu H, Ye W, Li Z, Cheng L, Zhang L, Lei Y, Shen L, Zhang F. The Glycoprotein and Nucleocapsid Protein of Hantaviruses Manipulate Autophagy Flux to Restrain Host Innate Immune Responses. Cell Rep 2020; 27:2075-2091.e5. [PMID: 31091447 DOI: 10.1016/j.celrep.2019.04.061] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Hantavirus infection, which causes severe zoonotic diseases with high mortality in humans, has become a global public health concern. Here, we demonstrate that Hantaan virus (HTNV), the prevalent prototype of the hantavirus in Asia, can restrain innate immune responses by manipulating host autophagy flux. HTNV induces complete mitophagy at the early stage of infection but incomplete autophagy at the late stage, and these responses involve the viral glycoprotein (Gn) and nucleocapsid protein (NP), respectively. Gn translocates to mitochondria and interacts with TUFM, recruiting LC3B and promoting mitophagy. Gn-induced mitophagy inhibits type I interferon (IFN) responses by degrading MAVS. Additionally, we found that NP competes with Gn for binding to LC3B, which inhibits Gn-mediated autophagosome formation, and interacts with SNAP29, which prevents autophagosome-lysosome fusion. Thus, NP disturbs the autophagic degradation of Gn. These findings highlight how hantaviruses repurpose host autophagy and evade innate immune responses for their life cycle and pathogenesis.
Collapse
Affiliation(s)
- Kerong Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhuo Li
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
8
|
Development of small-molecule inhibitors against hantaviruses. Microbes Infect 2020; 22:272-277. [PMID: 32445882 DOI: 10.1016/j.micinf.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022]
Abstract
Hantavirus (HV), a pathogen of animal infectious diseases that poses a threat to humans, has attracted extensive attention. Clinically, HV can cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), between which HFRS is mostly in Eurasia, and HPS is mostly in the Americas. This paper reviews the research progress of small-molecule inhibitors of HV.
Collapse
|
9
|
Mittler E, Dieterle ME, Kleinfelter LM, Slough MM, Chandran K, Jangra RK. Hantavirus entry: Perspectives and recent advances. Adv Virus Res 2019; 104:185-224. [PMID: 31439149 DOI: 10.1016/bs.aivir.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (β1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lara M Kleinfelter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
10
|
Sperber HS, Welke RW, Petazzi RA, Bergmann R, Schade M, Shai Y, Chiantia S, Herrmann A, Schwarzer R. Self-association and subcellular localization of Puumala hantavirus envelope proteins. Sci Rep 2019; 9:707. [PMID: 30679542 PMCID: PMC6345964 DOI: 10.1038/s41598-018-36879-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy imaging and Number&Brightness analysis. We demonstrate that Gc is significantly enriched in the Golgi apparatus in absence of other viral components, while Gn is mainly restricted to the endoplasmic reticulum (ER). Importantly, upon co-expression both glycoproteins were found in the Golgi apparatus. Furthermore, we show that an intact CT of Gc is necessary for efficient Golgi localization, while the CT of Gn influences protein stability. Finally, we found that Gn assembles into higher-order homo-oligomers, mainly dimers and tetramers, in the ER while Gc was present as mixture of monomers and dimers within the Golgi apparatus. Our findings suggest that PUUV Gc is the driving factor of the targeting of Gc and Gn to the Golgi region, while Gn possesses a significantly stronger self-association potential.
Collapse
Affiliation(s)
- Hannah Sabeth Sperber
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany.,Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA, 94118, USA
| | - Robert-William Welke
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Roberto Arturo Petazzi
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Ronny Bergmann
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Matthias Schade
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Andreas Herrmann
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany.
| | - Roland Schwarzer
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany. .,Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel. .,Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA, 95158, USA.
| |
Collapse
|
11
|
Xu L, Wu J, Li Q, Wei Y, Tan Z, Cai J, Guo H, Yang L, Huang X, Chen J, Zhang F, He B, Tu C. Seroprevalence, cross antigenicity and circulation sphere of bat-borne hantaviruses revealed by serological and antigenic analyses. PLoS Pathog 2019; 15:e1007545. [PMID: 30668611 PMCID: PMC6358112 DOI: 10.1371/journal.ppat.1007545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/01/2019] [Accepted: 12/24/2018] [Indexed: 01/06/2023] Open
Abstract
Bats are newly identified reservoirs of hantaviruses (HVs) among which very divergent HVs have been discovered in recent years. However, their significance for public health remains unclear since their seroprevalence as well as antigenic relationship with human-infecting HVs have not been investigated. In the present study archived tissues of 1,419 bats of 22 species from 6 families collected in 5 south and southwest provinces in China were screened by pan-HV RT-PCR following viral metagenomic analysis. As a result nine HVs have been identified in two bat species in two provinces and phylogenetically classified into two species, Laibin virus (LAIV, ICTV approved species, 1 strain) and Xuan son virus (XSV, proposed species, 8 strains). Additionally, 709 serum samples of these bats were also analyzed by ELISA to investigate the seroprevalence and cross-reactivity between different HVs using expressed recombinant nucleocapsid proteins (rNPs) of LAIV, XSV and Seoul virus (SEOV). The cross-reactivity of some bat sera were further confirmed by western blot (WB) using three rNPs followed by fluorescent antibody virus neutralization test (FAVNT) against live SEOV. Results showed that the total HV seropositive rate of bat sera was 18.5% (131/709) with many cross reacting with two or all three rNPs and several able to neutralize SEOV. WB analysis using the three rNPs and their specific hyperimmune sera demonstrated cross-reactivity between XSV/SEOV and LAIV/XSV, but not LAIV/SEOV, indicating that XSV is antigenically closer to human-infecting HVs. In addition a study of the distribution of the viruses identified an area covering the region between Chinese Guangxi and North Vietnam, in which XSV and LAIV circulate within different bat colonies with a high seroprevalence. A circulation sphere of bat-borne HVs has therefore been proposed. Some HVs are life-threatening pathogens predominantly carried and transmitted by rodents. In recent years bat-borne HVs have been identified in a broad range of bat species. To understand their significance to public health the present study conducted extensive investigations on genetic diversity, seroprevalence, distribution and cross antigenicity of bat-borne HVs in south and southwest China. The results provide the first profiling of cross-reactivity between bat-borne and human-infecting HVs, demonstrating that some bat sera can neutralize SEOV in cell culture. They also revealed that divergent bat-borne HVs co-exist and are widely distributed in Chinese Guangxi/Yunnan as well as in north Vietnam, resulting in identification of an area between China and Vietnam in which natural circulation of bat-borne HVs is maintained. Given the existence of bat-borne HVs genetically and antigenically close to human-infecting HVs, the need for extensive future studies is emphasized in order to assess the potential risk of these viruses to public health.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Jianmin Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Qi Li
- Institute for Viral Disease Prevention and Control, Hebei Province Center for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Yamei Wei
- Institute for Viral Disease Prevention and Control, Hebei Province Center for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Zhizhou Tan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Jianqiu Cai
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Huancheng Guo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Ling’en Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Xiaohong Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong, China
| | - Fuqiang Zhang
- Center for Disease Control and Prevention of Southern Theater Command, Kunming, Yunnan, China
- * E-mail: (FZ); (BH); (CT)
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (FZ); (BH); (CT)
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (FZ); (BH); (CT)
| |
Collapse
|
12
|
Two Point Mutations in Old World Hantavirus Glycoproteins Afford the Generation of Highly Infectious Recombinant Vesicular Stomatitis Virus Vectors. mBio 2019; 10:mBio.02372-18. [PMID: 30622188 PMCID: PMC6325249 DOI: 10.1128/mbio.02372-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human hantavirus infections cause hantavirus pulmonary syndrome in the Americas and hemorrhagic fever with renal syndrome (HFRS) in Eurasia. No FDA-approved vaccines and therapeutics exist for these deadly viruses, and their development is limited by the requirement for high biocontainment. In this study, we identified and characterized key amino acid changes in the surface glycoproteins of HFRS-causing Hantaan virus that enhance their incorporation into recombinant vesicular stomatitis virus (rVSV) particles. The replication-competent rVSVs encoding Hantaan virus and Dobrava-Belgrade virus glycoproteins described in this work provide a powerful and facile system to study hantavirus entry under lower biocontainment and may have utility as hantavirus vaccines. Rodent-to-human transmission of hantaviruses is associated with severe disease. Currently, no FDA-approved, specific antivirals or vaccines are available, and the requirement for high biocontainment (biosafety level 3 [BSL-3]) laboratories limits hantavirus research. To study hantavirus entry in a BSL-2 laboratory, we set out to generate replication-competent, recombinant vesicular stomatitis viruses (rVSVs) bearing the Gn and Gc (Gn/Gc) entry glycoproteins. As previously reported, rVSVs bearing New World hantavirus Gn/Gc were readily rescued from cDNAs, but their counterparts bearing Gn/Gc from the Old World hantaviruses, Hantaan virus (HTNV) or Dobrava-Belgrade virus (DOBV), were refractory to rescue. However, serial passage of the rescued rVSV-HTNV Gn/Gc virus markedly increased its infectivity and capacity for cell-to-cell spread. This gain in viral fitness was associated with the acquisition of two point mutations: I532K in the cytoplasmic tail of Gn and S1094L in the membrane-proximal stem of Gc. Follow-up experiments with rVSVs and single-cycle VSV pseudotypes confirmed these results. Mechanistic studies revealed that both mutations were determinative and contributed to viral infectivity in a synergistic manner. Our findings indicate that the primary mode of action of these mutations is to relocalize HTNV Gn/Gc from the Golgi complex to the cell surface, thereby affording significantly enhanced Gn/Gc incorporation into budding VSV particles. Finally, I532K/S1094L mutations in DOBV Gn/Gc permitted the rescue of rVSV-DOBV Gn/Gc, demonstrating that incorporation of cognate mutations into other hantaviral Gn/Gc proteins could afford the generation of rVSVs that are otherwise challenging to rescue. The robust replication-competent rVSVs, bearing HTNV and DOBV Gn/Gc, reported herein may also have utility as vaccines.
Collapse
|
13
|
Crystal Structure of Glycoprotein C from a Hantavirus in the Post-fusion Conformation. PLoS Pathog 2016; 12:e1005948. [PMID: 27783673 PMCID: PMC5081248 DOI: 10.1371/journal.ppat.1005948] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/22/2016] [Indexed: 01/02/2023] Open
Abstract
Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens. Hantaviruses (family: Bunyaviridae) encompass pathogens responsible to serious human diseases and economic burden worldwide. Following endocytosis, these enveloped RNA viruses are directed to an endosomal compartment where a sequence of pH-dependent conformational changes of the viral envelope glycoproteins mediates the fusion between the viral and endosomal membranes. The lack of high-resolution structural information for the entry of hantaviruses impair our ability to rationalize new treatments and prevention strategies. We determined the three-dimensional structure of a glycoprotein C from Puumala virus (PUUV) using X-ray crystallography. The two structures (at pH 6.0 and 8.0) were determined to 1.8 Å and 2.3 Å resolutions, respectively. Both structures reveal a class II membrane fusion protein in its post-fusion trimeric conformation with novel structural features in the trimer assembly and stabilization. Our structures suggest that neutralizing antibodies against GC target its conformational changes as inhibition mechanism and highlight new molecular targets for hantavirus-specific membrane fusion inhibitors. Furthermore, combined with the available structures of other class II proteins, we remodeled the evolutionary relationships between virus families encompassing these proteins.
Collapse
|
14
|
Abstract
Hantaviruses are emerging zoonotic pathogens that belong to the Bunyaviridae family. They have been classified as category A pathogens by CDC (centers for disease control and prevention). Hantaviruses pose a serious threat to human health because their infection causes two highly fatal diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). These pathogens are transmitted to humans through aerosolized excreta of their infected rodent hosts. Hantaviruses have a tripartite-segmented negative-sense RNA genome. The three genomic RNA segments, S, M, and L, encode a nucleocapsid protein (N), a precursor glycoprotein that is processed into two envelope glycoproteins (Gn and Gc) and the viral RNA-dependent RNA polymerase (RdRp), respectively. N protein is the major structural component of the virus, its main function is to protect and encapsidate the three genomic RNAs forming three viral ribonucleocapsids. Recent studies have proposed that N in conjunction with RdRp plays important roles in the transcription and replication of viral genome. In addition, N preferentially facilitates the translation of viral mRNA in cells. Glycoproteins, Gn and Gc, play major roles in viral attachment and entry to the host cells, virulence, and assembly and packaging of new virions in infected cells. RdRp functions as RNA replicase and transcriptase to replicate and transcribe the viral RNA and is also thought to have endonuclease activity. Currently, no antiviral therapy or vaccine is available for the treatment of hantavirus-associated diseases. Understanding the molecular details of hantavirus life cycle will help in the identification of targets for antiviral therapeutics and in the design of potential antiviral drug for the treatment of HFRS and HCPS. Due to the alarming fatality of hantavirus diseases, development of an effective vaccine against hantaviruses is a necessity.
Collapse
|
15
|
Paneth Iheozor-Ejiofor R, Levanov L, Hepojoki J, Strandin T, Lundkvist Å, Plyusnin A, Vapalahti O. Vaccinia virus-free rescue of fluorescent replication-defective vesicular stomatitis virus and pseudotyping with Puumala virus glycoproteins for use in neutralization tests. J Gen Virol 2016; 97:1052-1059. [PMID: 26916544 DOI: 10.1099/jgv.0.000437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Puumala virus (PUUV) grows slowly in cell culture. To study antigenic properties of PUUV, an amenable method for their expression would be beneficial. To achieve this, a replication-defective recombinant vesicular stomatitis virus, rVSVΔG*EGFP, was rescued using BSRT7/5 and encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES)-enabled rescue plasmids. Using these particles, pseudotypes bearing PUUV Sotkamo strain glycoproteins were produced, with titres in the range 105-108, and were used in pseudotype focus reduction neutralization tests (pFRNTs) with neutralizing monoclonal antibodies and patient sera. The results were compared with those from orthodox focus reduction neutralization tests (oFRNTs) using native PUUV with the same samples and showed a strong positive correlation (rs = 0.82) between the methods. While developing the system we identified three amino acids which were mutated in the Vero E6 cell culture adapted PUUV prototype Sotkamo strain sequence, and changing these residues was critical for expression and neutralizing antibody binding of PUUV glycoproteins.
Collapse
Affiliation(s)
| | - Lev Levanov
- Department of Virology, Medicum, Helsinki, Finland
| | | | | | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Microbiology-Immunology, Uppsala University, Sweden
| | - Alexander Plyusnin
- Department of Virology, Medicum, Helsinki, Finland.,Department of Medical Biochemistry and Microbiology, Microbiology-Immunology, Uppsala University, Sweden
| | - Olli Vapalahti
- Department of Virology, Medicum, Helsinki, Finland.,Department of Virology and Immunology, HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Muyangwa M, Martynova EV, Khaiboullina SF, Morzunov SP, Rizvanov AA. Hantaviral Proteins: Structure, Functions, and Role in Hantavirus Infection. Front Microbiol 2015; 6:1326. [PMID: 26640463 PMCID: PMC4661284 DOI: 10.3389/fmicb.2015.01326] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
Hantaviruses are the members of the family Bunyaviridae that are naturally maintained in the populations of small mammals, mostly rodents. Most of these viruses can easily infect humans through contact with aerosols or dust generated by contaminated animal waste products. Depending on the particular Hantavirus involved, human infection could result in either hemorrhagic fever with renal syndrome or in Hantavirus cardiopulmonary syndrome. In the past few years, clinical cases of the Hantavirus caused diseases have been on the rise. Understanding structure of the Hantavirus genome and the functions of the key viral proteins are critical for the therapeutic agents’ research. This paper gives a brief overview of the current knowledge on the structure and properties of the Hantavirus nucleoprotein and the glycoproteins.
Collapse
Affiliation(s)
- Musalwa Muyangwa
- Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Ekaterina V Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Svetlana F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia ; Nevada Center for Biomedical Research, Reno NV, USA
| | - Sergey P Morzunov
- Department of Pathology and Nevada State Public Health Laboratory, University of Nevada School of Medicine, Reno NV, USA
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| |
Collapse
|
17
|
Beltrán-Ortiz CE, Starck-Mendez MF, Fernández Y, Farnós O, González EE, Rivas CI, Camacho F, Zuñiga FA, Toledo JR, Sánchez O. Expression and purification of the surface proteins from Andes virus. Protein Expr Purif 2015; 139:63-70. [PMID: 26374989 DOI: 10.1016/j.pep.2015.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/17/2022]
Abstract
Andes virus is the main causative agent of Hantavirus cardiopulmonary syndrome in South America. There are currently no vaccines or treatments against Andes virus. However, there are several evidences suggesting that antibodies against Andes virus envelope glycoproteins may be enough to confer full protection against Hantavirus cardiopulmonary syndrome. The goal of the present work was to express, purify and characterize the extracellular domains of Andes virus glycoproteins Gn and Gc. We generated two adenoviral vectors encoding the extracellular domains of Andes virus glycoproteins Gn and Gc. Both molecules were expressed by adenoviral transduction in SiHa cells. We found that sGc ectodomain was mainly secreted into the culture medium, whereas sGn was predominantly retained inside the cells. Both molecules were expressed at very low concentrations (below 1 μg/mL). Treatment with the proteasome inhibitor ALLN raised sGc concentration in the cell culture medium, but did not affect expression levels of sGn. Both ectodomains were purified by immobilized metal ion affinity chromatography, and were recognized by sera from persons previously exposed to Andes virus. To our knowledge, this is the first work that addresses the expression and purification of Andes virus glycoproteins Gn and Gc. Our results demonstrate that sGn and sGc maintain epitopes that are exposed on the surface of the viral envelope. However, our work also highlights the need to explore new strategies to achieve high-level expression of these proteins for development of a vaccine candidate against Andes virus.
Collapse
Affiliation(s)
- Camila E Beltrán-Ortiz
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Chile
| | - Maria F Starck-Mendez
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Chile
| | - Yaiza Fernández
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Chile
| | - Omar Farnós
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Chile
| | - Eddy E González
- Department of Physiopathology, School of Biological Sciences, University of Concepcion, Chile
| | - Coralia I Rivas
- Department of Physiopathology, School of Biological Sciences, University of Concepcion, Chile
| | - F Camacho
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Chile
| | - Felipe A Zuñiga
- Department of Clinical Biochemistry and Immunology, School of Pharmacia, University of Concepcion, Chile
| | - Jorge R Toledo
- Department of Physiopathology, School of Biological Sciences, University of Concepcion, Chile; Center for Biotechnology and Biomedicine Spa., Chile
| | - Oliberto Sánchez
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Chile; Center for Biotechnology and Biomedicine Spa., Chile.
| |
Collapse
|
18
|
Changes in diversification patterns and signatures of selection during the evolution of murinae-associated hantaviruses. Viruses 2014; 6:1112-34. [PMID: 24618811 PMCID: PMC3970142 DOI: 10.3390/v6031112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022] Open
Abstract
In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses’ molecular evolution at different geographical scales (global and local). We then investigated whether these events were localized in particular geographic areas. Our phylogenetic analyses supported the assumption that RNA virus molecular variations were under strong evolutionary constraints and revealed changes in patterns of diversification during the evolutionary history of hantaviruses. These analyses provide new knowledge on the molecular evolution of hantaviruses at different scales of time and space.
Collapse
|
19
|
Yao M, Liu X, Li S, Xu Y, Zhou Y, Zhou X, Tao X. Rice stripe tenuivirus NSvc2 glycoproteins targeted to the golgi body by the N-terminal transmembrane domain and adjacent cytosolic 24 amino acids via the COP I- and COP II-dependent secretion pathway. J Virol 2014; 88:3223-34. [PMID: 24390331 PMCID: PMC3957912 DOI: 10.1128/jvi.03006-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/24/2013] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED The NSvc2 glycoproteins encoded by Rice stripe tenuivirus (RSV) share many characteristics common to the glycoproteins found among Bunyaviridae. Within this viral family, glycoproteins targeting to the Golgi apparatus play a pivotal role in the maturation of the enveloped spherical particles. RSV particles, however, adopt a long filamentous morphology. Recently, RSV NSvc2 glycoproteins were shown to localize exclusively to the ER in Sf9 insect cells. Here, we demonstrate that the amino-terminal NSvc2 (NSvc2-N) targets to the Golgi apparatus in Nicotiana benthamiana cells, whereas the carboxyl-terminal NSvc2 (NSvc2-C) accumulates in the endoplasmic reticulum (ER). Upon coexpression, NSvc2-N redirects NSvc2-C from the ER to the Golgi bodies. The NSvc2 glycoproteins move together with the Golgi stacks along the ER/actin network. The targeting of the NSvc2 glycoproteins to the Golgi bodies was strictly dependent on functional anterograde traffic out of the ER to the Golgi bodies or on a retrograde transport route from the Golgi apparatus. The analysis of truncated and chimeric NSvc2 proteins demonstrates that the Golgi targeting signal comprises amino acids 269 to 315 of NSvc2-N, encompassing the transmembrane domain and 24 adjacent amino acids in the cytosolic tail. Our findings demonstrate for the first time that the glycoproteins from an unenveloped Tenuivirus could target Golgi bodies in plant cells. IMPORTANCE NSvc2 glycoprotein encoded by unenveloped Rice stripe tenuivirus (RSV) share many characteristics in common with glycoprotein found among Bunyaviridae in which all members have membrane-enveloped sphere particle. Recently, RSV NSvc2 glycoproteins were shown to localize exclusively to the ER in Sf9 insect cells. In this study, we demonstrated that the RSV glycoproteins could target Golgi bodies in plant cells. The targeting of NSvc2 glycoproteins to the Golgi bodies was dependent on active COP II or COP I. The Golgi targeting signal was mapped to the 23-amino-acid transmembrane domain and the adjacent 24 amino acids of the cytosolic tail of the NSvc2-N. In light of the evidence from viruses in Bunyaviridae that targeting Golgi bodies is important for the viral particle assembly and vector transmission, we propose that targeting of RSV glycoproteins into Golgi bodies in plant cells represents a physiologically relevant mechanism in the maturation of RSV particle complex for insect vector transmission.
Collapse
Affiliation(s)
- Min Yao
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaofan Liu
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaorong Tao
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Zvirbliene A, Kucinskaite-Kodze I, Razanskiene A, Petraityte-Burneikiene R, Klempa B, Ulrich RG, Gedvilaite A. The use of chimeric virus-like particles harbouring a segment of hantavirus Gc glycoprotein to generate a broadly-reactive hantavirus-specific monoclonal antibody. Viruses 2014; 6:640-60. [PMID: 24513568 PMCID: PMC3939476 DOI: 10.3390/v6020640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/07/2014] [Accepted: 01/18/2014] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (MAbs) against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV) Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs) harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa)-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80-89) or site #4 (aa 280-289). The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8) of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications.
Collapse
Affiliation(s)
- Aurelija Zvirbliene
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| | - Indre Kucinskaite-Kodze
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| | - Ausra Razanskiene
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| | | | - Boris Klempa
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité Medical School, Berlin 10117, Germany.
| | - Rainer G Ulrich
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Alma Gedvilaite
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, Vilnius LT-02241, Lithuania.
| |
Collapse
|
21
|
Carnec X, Ermonval M, Kreher F, Flamand M, Bouloy M. Role of the cytosolic tails of Rift Valley fever virus envelope glycoproteins in viral morphogenesis. Virology 2013; 448:1-14. [PMID: 24314631 DOI: 10.1016/j.virol.2013.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 08/05/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022]
Abstract
The correct folding, heterodimerization and trafficking of Gn/Gc envelope glycoproteins of Rift Valley fever virus, RVFV (Bunyaviridae and Phlebovirus genus) are essential for Golgi assembly and budding of viral particles. The Gn and Gc carboxy-terminus contain a Golgi targeting and an ER-retrieval signal, respectively. We generated RVFV-like particles with mutations in the cytosolic tails of Gn or Gc and identified regions important for release of infectious particles. The role of specific amino-acids in these regions was further investigated by creating recombinant mutant viruses by reverse-genetics. Residues outside the suspected Golgi targeting motif, i.e. the di-lysine K29-K30 motif and the N43, R44 and I46 residues of the Gn cytosolic domain, appeared important for Golgi localization and RNP packaging. Concerning the Gc tail, replacement of K2 or K3 in the di-lysine motif, had a drastic impact on Gn trafficking and induced an important organelle redistribution and cell remodeling, greatly affecting particle formation and release.
Collapse
Affiliation(s)
- Xavier Carnec
- Institut Pasteur, Unité de Génétique Moléculaire des Bunyavirus, 25 rue du Docteur Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
22
|
Efficient production of Hantaan and Puumala pseudovirions for viral tropism and neutralization studies. Virology 2011; 423:134-42. [PMID: 22209230 DOI: 10.1016/j.virol.2011.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/07/2011] [Accepted: 08/18/2011] [Indexed: 02/06/2023]
Abstract
Puumala (PUUV) and Hantaan (HTNV) viruses are hantaviruses within the family Bunyaviridae and associated with Hemorrhagic Fever with Renal Syndrome (HFRS) in humans. Little is known about how these viruses interact with host cells, though pathogenic hantaviruses interact with α(v)β(3) integrin. To study host cell interactions and rapidly test the ability of antibodies to prevent infection, we produced HTNV and PUUV pseudovirions on a vesicular stomatitis virus (VSV) core. Similar to replication-competent hantaviruses, infection was low-pH-dependent. Despite broad cell tropism, several human T cell lines were poorly permissive to hantavirus pseudovirions, compared to VSV, indicating a relative block to infection at the level of entry. Stable expression of α(v)β(3) integrin in SupT1 cells did not restore infectivity. Finally, the pseudovirion system provided a rapid, quantitative, and specific method to screen for neutralizing antibodies in immune sera.
Collapse
|
23
|
Walter CT, Barr JN. Recent advances in the molecular and cellular biology of bunyaviruses. J Gen Virol 2011; 92:2467-2484. [PMID: 21865443 DOI: 10.1099/vir.0.035105-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The family Bunyaviridae of segmented, negative-stranded RNA viruses includes over 350 members that infect a bewildering variety of animals and plants. Many of these bunyaviruses are the causative agents of serious disease in their respective hosts, and are classified as emerging viruses because of their increased incidence in new populations and geographical locations throughout the world. Emerging bunyaviruses, such as Crimean-Congo hemorrhagic fever virus, tomato spotted wilt virus and Rift Valley fever virus, are currently attracting great interest due to migration of their arthropod vectors, a situation possibly linked to climate change. These and other examples of continued emergence suggest that bunyaviruses will probably continue to pose a sustained global threat to agricultural productivity, animal welfare and human health. The threat of emergence is particularly acute in light of the lack of effective preventative or therapeutic treatments for any of these viruses, making their study an important priority. This review presents recent advances in the understanding of the bunyavirus life cycle, including aspects of their molecular, cellular and structural biology. Whilst special emphasis is placed upon the emerging bunyaviruses, we also describe the extensive body of work involving model bunyaviruses, which have been the subject of major contributions to our overall understanding of this important group of viruses.
Collapse
Affiliation(s)
- Cheryl T Walter
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - John N Barr
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
24
|
Hantaviruses in the americas and their role as emerging pathogens. Viruses 2010; 2:2559-86. [PMID: 21994631 PMCID: PMC3185593 DOI: 10.3390/v2122559] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/15/2010] [Accepted: 11/24/2010] [Indexed: 12/17/2022] Open
Abstract
The continued emergence and re-emergence of pathogens represent an ongoing, sometimes major, threat to populations. Hantaviruses (family Bunyaviridae) and their associated human diseases were considered to be confined to Eurasia, but the occurrence of an outbreak in 1993–94 in the southwestern United States led to a great increase in their study among virologists worldwide. Well over 40 hantaviral genotypes have been described, the large majority since 1993, and nearly half of them pathogenic for humans. Hantaviruses cause persistent infections in their reservoir hosts, and in the Americas, human disease is manifest as a cardiopulmonary compromise, hantavirus cardiopulmonary syndrome (HCPS), with case-fatality ratios, for the most common viral serotypes, between 30% and 40%. Habitat disturbance and larger-scale ecological disturbances, perhaps including climate change, are among the factors that may have increased the human caseload of HCPS between 1993 and the present. We consider here the features that influence the structure of host population dynamics that may lead to viral outbreaks, as well as the macromolecular determinants of hantaviruses that have been regarded as having potential contribution to pathogenicity.
Collapse
|
25
|
Development of a lentiviral vector system to study the role of the Andes virus glycoproteins. Virus Res 2010; 153:29-35. [PMID: 20619306 DOI: 10.1016/j.virusres.2010.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/24/2010] [Accepted: 07/01/2010] [Indexed: 01/29/2023]
Abstract
To infect target cells, enveloped viruses use their virion surface proteins to direct cell attachment and subsequent entry via virus-cell membrane fusion. How hantaviruses enter cells has been largely unexplored. To study early steps of Andes virus (ANDV) cell infection, a lentiviral vector system was developed based on a Simian immunodeficiency virus (SIV) vector pseudotyped with the ANDV-Gn/Gc envelope glycoproteins. The incorporation of Gn and Gc onto SIV-derived vector particles was assessed using newly generated monoclonal antibodies against ANDV glycoproteins. In addition, sera of ANDV infected humans were able to block cell entry of the SIV vector pseudotyped with ANDV glycoproteins, suggesting that their antigenic conformation is similar to that in the native virus. The use of such SIV vector pseudotyped with ANDV-Gn/Gc glycoproteins should facilitate studies on ANDV cell entry. Along this line, it was found that depletion of cholesterol from target cells strongly diminished cell infection, indicating a possible role of lipid rafts in ANDV cell entry. The Gn/Gc pseudotyped SIV vector has several advantages, notably high titer vector production and easy quantification of cell infection by monitoring GFP reporter gene expression by flow cytometry. Such pseudotyped SIV vectors can be used to identify functional domains in the Gn/Gc glycoproteins and to screen for potential hantavirus cell entry inhibitors.
Collapse
|
26
|
Visualizing the replication cycle of bunyamwera orthobunyavirus expressing fluorescent protein-tagged Gc glycoprotein. J Virol 2010; 84:8460-9. [PMID: 20573824 DOI: 10.1128/jvi.00902-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The virion glycoproteins Gn and Gc of Bunyamwera virus (BUNV), the prototype of the Bunyaviridae family and also of the Orthobunyavirus genus, are encoded by the medium (M) RNA genome segment and are involved in both viral attachment and entry. After their synthesis Gn and Gc form a heterodimer in the endoplasmic reticulum (ER) and transit to the Golgi compartment for virus assembly. The N-terminal half of the Gc ectodomain was previously shown to be dispensable for virus replication in cell culture (X. Shi, J. Goli, G. Clark, K. Brauburger, and R. M. Elliott, J. Gen. Virol. 90:2483-2492, 2009.). In this study, the coding sequence for a fluorescent protein, either enhanced green fluorescent protein (eGFP) or mCherry fluorescent protein, was fused to the N terminus of truncated Gc, and two recombinant BUNVs (rBUNGc-eGFP and rBUNGc-mCherry) were rescued by reverse genetics. The recombinant viruses showed bright autofluorescence under UV light and were competent for replication in various mammalian cell lines. rBUNGc-mCherry was completely stable over 10 passages, whereas internal, in-frame deletions occurred in the chimeric Gc-eGFP protein of rBUNGc-eGFP, resulting in loss of fluorescence between passages 5 and 7. Autofluorescence of the recombinant viruses allowed visualization of different stages of the infection cycle, including virus attachment to the cell surface, budding of virus particles in Golgi membranes, and virus-induced morphological changes to the Golgi compartment at later stages of infection. The fluorescent protein-tagged viruses will be valuable reagents for live-cell imaging studies to investigate virus entry, budding, and morphogenesis in real time.
Collapse
|
27
|
Wang H, Alminaite A, Vaheri A, Plyusnin A. Interaction between hantaviral nucleocapsid protein and the cytoplasmic tail of surface glycoprotein Gn. Virus Res 2010; 151:205-12. [PMID: 20566401 DOI: 10.1016/j.virusres.2010.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 01/07/2023]
Abstract
Hantaviral N and Gn proteins were shown to interact, thus providing the long-awaited evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Using pull-down assay and point mutagenesis it was demonstrated that intact, properly folded zinc fingers in the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80-248) are essential for the interaction.
Collapse
Affiliation(s)
- Hao Wang
- Department of Virology, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
28
|
Hepojoki J, Strandin T, Wang H, Vapalahti O, Vaheri A, Lankinen H. Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. J Gen Virol 2010; 91:2341-50. [PMID: 20444994 DOI: 10.1099/vir.0.021006-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we characterize the interaction between the glycoproteins (Gn and Gc) and the ribonucleoprotein (RNP) of Puumala virus (PUUV; genus Hantavirus, family Bunyaviridae). The interaction was initially established with native proteins by co-immunoprecipitating PUUV nucleocapsid (N) protein with the glycoprotein complex. Mapping of the interaction sites revealed that the N protein has multiple binding sites in the cytoplasmic tail (CT) of Gn and is also able to bind to the predicted CT of Gc. The importance of Gn- and Gc-CTs to the recognition of RNP was further verified in pull-down assays using soluble peptides with binding capacity to both recombinant N protein and the RNPs of PUUV and Tula virus. Additionally, the N protein of PUUV was demonstrated to interact with peptides of Gn and Gc from a variety of hantavirus species, suggesting a conserved RNP-recognition mechanism within the genus. Based on these and our previous results, we suggest that the complete hetero-oligomeric (Gn-Gc)(4) spike complex of hantaviruses mediates the packaging of RNP into virions.
Collapse
Affiliation(s)
- J Hepojoki
- Department of Virology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
29
|
Bouloy M, Weber F. Molecular biology of rift valley Fever virus. Open Virol J 2010; 4:8-14. [PMID: 20517489 PMCID: PMC2878978 DOI: 10.2174/1874357901004020008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 12/25/2022] Open
Abstract
Rift Valley fever virus (RVFV) causes large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in sub-saharan Africa and the Arabian peninsula. RVFV is a member of the family Bunyaviridae, genus Phlebovirus. Like all members of this large virus family, it contains a three-segmented genome of negative/ambisense strand RNA, packaged into viral nucleocapsid protein, and enveloped by a lipid bilayer containing two viral glycoproteins. During the past years, there was an increased interest in RVFV epidemiology, molecular biology, and virulence mechanisms. Here, we will try to provide an overview over the basic features of this significant pathogen, and review the latest developments in this highly active research field.
Collapse
Affiliation(s)
- Michele Bouloy
- Unite de Genetique Moleculaire des Bunyavirus, Institut Pasteur, Paris, France
| | - Friedemann Weber
- Department of Virology, University of Freiburg, D-79008 Freiburg, Germany
| |
Collapse
|
30
|
Electron cryotomography of Tula hantavirus suggests a unique assembly paradigm for enveloped viruses. J Virol 2010; 84:4889-97. [PMID: 20219926 DOI: 10.1128/jvi.00057-10] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hantaviruses (family Bunyaviridae) are rodent-borne emerging viruses that cause a serious, worldwide threat to human health. Hantavirus diseases include hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. Virions are enveloped and contain a tripartite single-stranded negative-sense RNA genome. Two types of glycoproteins, G(N) and G(C), are embedded in the viral membrane and form protrusions, or "spikes." The membrane encloses a ribonucleoprotein core, which consists of the RNA segments, the nucleocapsid protein, and the RNA-dependent RNA polymerase. Detailed information on hantavirus virion structure and glycoprotein spike composition is scarce. Here, we have studied the structures of Tula hantavirus virions using electron cryomicroscopy and tomography. Three-dimensional density maps show how the hantavirus surface glycoproteins, membrane, and ribonucleoprotein are organized. The structure of the G(N)-G(C) spike complex was solved to 3.6-nm resolution by averaging tomographic subvolumes. Each spike complex is a square-shaped assembly with 4-fold symmetry. Spike complexes formed ordered patches on the viral membrane by means of specific lateral interactions. These interactions may be sufficient for creating membrane curvature during virus budding. In conclusion, the structure and assembly principles of Tula hantavirus exemplify a unique assembly paradigm for enveloped viruses.
Collapse
|
31
|
Abstract
In this report the basis for the structural architecture of the envelope of hantaviruses, family Bunyaviridae, is systematically studied by the interactions of two glycoproteins N and C (Gn and Gc, respectively) and their respective disulfide bridge-mediated homo- and heteromeric oligomerizations. In virion extracts Gn and Gc associated in both homo- and hetero-oligomers which were, at least partially, thiol bridge mediated. Due to strong homo-oligomerization, the hetero-oligomers of Gn and Gc are likely to be mediated by homo-oligomeric subunits. A reversible pH-induced disappearance of a neutralizing epitope in Gc and dissociation of the Gn-Gc complex at pH values below 6.2 provide proteochemical evidence for the fusogenicity of Gc. Incomplete inactivation of virions at acidic pH indicates that additional factors are required for hantavirus fusion, as in the case of pestiviruses of the Flaviviridae. Based on similarities to class II fusion proteins, a structure model was created of hantavirus Gc using the Semliki Forest virus E1 protein as a template. In total, 10 binding regions for Gn were found by peptide scanning, of which five represent homotypic (Gn(I) to Gn(V)) and five represent heterotypic (Gc(I) to Gc(V)) interaction sites that we assign as intra- and interspike connections, respectively. In conclusion, the glycoprotein associations were compiled to a model wherein the surface of hantaviruses is formed of homotetrameric Gn complexes interconnected with Gc homodimers. This organization would create the grid-like surface pattern described earlier for hantaviruses in negatively stained electron microscopy specimens.
Collapse
|
32
|
Degradation and aggresome formation of the Gn tail of the apathogenic Tula hantavirus. J Gen Virol 2009; 90:2995-3001. [DOI: 10.1099/vir.0.012179-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic tails of envelope glycoprotein Gn of pathogenic hantaviruses but not of the apathogenic Prospect Hill virus (PHV) were recently reported to be proteasomally degraded in simian COS7 cells. Here, we show that the cytoplasmic tails of the glycoproteins of the apathogenic hantaviruses Tula virus (TULV) and PHV are also degraded through the ubiquitin-proteasome pathway, both in human HEK-293 and in simian Vero E6 cells. TULV Gn tails formed aggresomes in cells with proteasomal inhibitors. We conclude that degradation upon aggregation of Gn tails, which may represent a general cellular response to misfolded protein used by hantaviruses to control maturation of virions, is unrelated to pathogenicity.
Collapse
|
33
|
Eifan SA, Elliott RM. Mutational analysis of the Bunyamwera orthobunyavirus nucleocapsid protein gene. J Virol 2009; 83:11307-17. [PMID: 19710139 PMCID: PMC2772805 DOI: 10.1128/jvi.01460-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/19/2009] [Indexed: 12/17/2022] Open
Abstract
The bunyavirus nucleocapsid protein, N, is a multifunctional protein that encapsidates each of the three negative-sense genome segments to form ribonucleoprotein complexes that are the functional templates for viral transcription and replication. In addition, N protein molecules interact with themselves to form oligomers, with the viral L (RNA polymerase) protein, with the carboxy-terminal regions of either or both of the virion glycoproteins, and probably also with host cell proteins. Bunyamwera virus (BUNV), the prototype bunyavirus, encodes an N protein of 233 amino acids in length. To learn more about the roles of individual amino acids in the different interactions of N, we performed a wide-scale mutagenic analysis of the protein, and 110 single-point mutants were obtained. When the mutants were employed in a minireplicon assay to examine their effects on viral RNA synthesis, a wide range of activities compared to those of wild-type N protein were observed; changes at nine amino acid positions resulted in severely impaired RNA synthesis. Seventy-seven mutant clones were selected for use in the bunyavirus reverse genetics system, and 57 viable recombinant viruses were recovered. The recombinant viruses displayed a range of plaque sizes and titers in cell culture (from approximately 10(3) to 10(8) PFU/ml), and a number of viruses were shown to be temperature sensitive. Different assays were applied to determine why 20 mutant N proteins could not be recovered into infectious virus. Based on these results, a preliminary domain map of the BUNV N protein is proposed.
Collapse
Affiliation(s)
- Saleh A. Eifan
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland, United Kingdom
| | - Richard M. Elliott
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland, United Kingdom
| |
Collapse
|
34
|
Shi X, Goli J, Clark G, Brauburger K, Elliott RM. Functional analysis of the Bunyamwera orthobunyavirus Gc glycoprotein. J Gen Virol 2009; 90:2483-2492. [PMID: 19570952 PMCID: PMC2885756 DOI: 10.1099/vir.0.013540-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The virion glycoproteins Gn and Gc of Bunyamwera orthobunyavirus (family Bunyaviridae) are encoded by the M RNA genome segment and have roles in both viral attachment and membrane fusion. To investigate further the structure and function of the Gc protein in viral replication, we generated 12 mutants that contain truncations from the N terminus. The effects of these deletions were analysed with regard to Golgi targeting, low pH-dependent membrane fusion, infectious virus-like particle (VLP) formation and virus infectivity. Our results show that the N-terminal half (453 residues) of the Gc ectodomain (909 residues in total) is dispensable for Golgi trafficking and cell fusion. However, deletions in this region resulted in a significant reduction in VLP formation. Four mutant viruses that contained N-terminal deletions in their Gc proteins were rescued, and found to be attenuated to different degrees in BHK-21 cells. Taken together, our data indicate that the N-terminal half of the Gc ectodomain is dispensable for replication in cell culture, whereas the C-terminal half is required to mediate cell fusion. A model for the domain structure of the Gc ectodomain is proposed.
Collapse
Affiliation(s)
- Xiaohong Shi
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland, UK
| | - Josthna Goli
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland, UK
| | - Gordon Clark
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland, UK
| | - Kristina Brauburger
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland, UK
| | - Richard M Elliott
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland, UK
| |
Collapse
|
35
|
Shi X, Elliott RM. Generation and analysis of recombinant Bunyamwera orthobunyaviruses expressing V5 epitope-tagged L proteins. J Gen Virol 2009; 90:297-306. [PMID: 19141438 PMCID: PMC2885054 DOI: 10.1099/vir.0.007567-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The L protein of Bunyamwera virus (BUNV; family Bunyaviridae) is an RNA-dependent RNA polymerase, 2238 aa in length, that catalyses transcription and replication of the negative-sense, tripartite RNA genome. To learn more about the molecular interactions of the L protein and to monitor its intracellular distribution we inserted a 14 aa V5 epitope derived from parainfluenza virus type 5, against which high-affinity antibodies are available, into different regions of the protein. Insertion of the epitope at positions 1935 or 2046 resulted in recombinant L proteins that retained functionality in a minireplicon assay. Two viable recombinant viruses, rBUNL4V5 and rBUNL5V5, expressing the tagged L protein were rescued by reverse genetics, and characterized with respect to their plaque size, growth kinetics and protein synthesis profile. The recombinant viruses behaved similarly to wild-type (wt) BUNV in BHK-21 cells, but formed smaller plaques and grew to lower titres in Vero E6 cells compared with wt BUNV. Immunofluorescent staining of infected cells showed the L protein to have a punctate to reticular distribution in the cytoplasm, and cell fractionation studies indicated that the L protein was present in both soluble and microsomal fractions. Co-immunoprecipitation and confocal microscopic assays confirmed an interaction between BUNV L and N proteins. The recombinant viruses expressing tagged L protein will be highly valuable reagents for the detailed dissection of the role of the BUNV L protein in virus replication.
Collapse
Affiliation(s)
- Xiaohong Shi
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST, UK
| | - Richard M Elliott
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST, UK
| |
Collapse
|
36
|
Rowe RK, Suszko JW, Pekosz A. Roles for the recycling endosome, Rab8, and Rab11 in hantavirus release from epithelial cells. Virology 2008; 382:239-49. [PMID: 18951604 PMCID: PMC2648827 DOI: 10.1016/j.virol.2008.09.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/25/2008] [Accepted: 09/05/2008] [Indexed: 01/13/2023]
Abstract
Hantavirus structural proteins are believed to localize to intracellular membranes often identified as Golgi membranes, in virus-infected cells. After virus budding into the Golgi luminal space, virus-containing vesicles are transported to the plasma membrane via trafficking pathways that are not well defined. Using the New World hantavirus, Andes virus, we have investigated the role of various Rab proteins in the release of hantavirus particles from infected cells. Rabs 8 and 11 were found to colocalize with Andes virus proteins in virus infected cells and when expressed from cDNA, implicating the recycling endosome as an organelle important for hantavirus infection. Small interfering RNA-mediated downregulation of Rab11a alone or Rab11a and Rab11b together resulted in a decrease in infectious virus particle secretion from infected cells. Downregulation of Rab8a did not alter infectious virus release but reduction of both isoforms did. These data implicate the recycling endosome and the Rab proteins associated with vesicular transport to or from this intracellular organelle as an important pathway for hantavirus trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Regina K Rowe
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
37
|
Ramsden C, Holmes EC, Charleston MA. Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence. Mol Biol Evol 2008; 26:143-53. [PMID: 18922760 DOI: 10.1093/molbev/msn234] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hantaviruses are considered one of the best examples of a long-term association between RNA viruses and their hosts. Based on the appearance of strong host specificity, it has been suggested that hantaviruses cospeciated with the rodents and insectivores they infect since these mammals last shared a common ancestor, approximately 100 million years ago. We tested this hypothesis of host-virus codivergence in two ways: 1) we used cophylogenetic reconciliation analysis to assess the fit of the virus tree onto that of the host and 2) we estimated the evolutionary rates and divergence times for the Hantavirus genus using a Bayesian Markov Chain Monte Carlo method and similarly compared these with those of their hosts. Our reconciliation analysis provided no evidence for a history of codivergence between hantaviruses and their hosts. Further, the divergence times for the Hantavirus genus were many orders of magnitude too recent to correspond with the timescale of their hosts' speciation. We therefore propose that apparent similarities between the phylogenies of hantaviruses and their mammalian hosts are the result of a more recent history of preferential host switching and local adaptation. Based on the presence of clade-defining amino acids in all genomic segments, we propose that the patterns of amino acid replacement in these viruses are also compatible with a history of host-specific adaptation.
Collapse
Affiliation(s)
- Cadhla Ramsden
- Center for Infectious Disease Dynamics, Department of Biology, Mueller Laboratory, The Pennsylvania State University, USA.
| | | | | |
Collapse
|
38
|
Shi X, Kohl A, Li P, Elliott RM. Role of the cytoplasmic tail domains of Bunyamwera orthobunyavirus glycoproteins Gn and Gc in virus assembly and morphogenesis. J Virol 2007; 81:10151-60. [PMID: 17609275 PMCID: PMC2045389 DOI: 10.1128/jvi.00573-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M RNA genome segment of Bunyamwera virus (BUNV), the prototype of the Bunyaviridae family, encodes a precursor polyprotein that is proteolytically cleaved to yield two structural proteins, Gn and Gc, and a nonstructural protein called NSm. Gn and Gc are type I integral transmembrane glycoproteins. The Gn protein contains a predicted cytoplasmic tail (CT) of 78 residues, and Gc has a shorter CT of 25 residues. Little is known about the role of the Gn and Gc CT domains in the virus replication cycle. We generated a series of mutant glycoprotein precursor constructs containing either deletions or alanine substitutions in the CT domains of Gn and Gc. We examined the effects of these mutations on glycoprotein maturation, cell surface expression, and low pH-induced syncytium formation. In addition, the effects of these mutations were also assessed using a reverse genetics-based virus assembly assay and a virus rescue system. Our results show that the CT domains of both Gn and Gc play crucial roles in BUNV-mediated membrane fusion, virus assembly, and morphogenesis.
Collapse
Affiliation(s)
- Xiaohong Shi
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, North Haugh, St. Andrews, Scotland, United Kingdom
| | | | | | | |
Collapse
|
39
|
Abstract
The membrane glycoproteins (Gn and Gc) of viruses in the family Bunyaviridae form projections on the virion envelope and are involved in virus entry and eliciting protective immunity. The glycoproteins are modified by N-linked glycosylation and accumulate in the Golgi complex where virions mature and bud. In this chapter, we describe the methods that have been used in our laboratory for the study of the glycoproteins of Bunyamwera virus, the prototype of the family. The protocols cover the expression of viral glycoproteins, examination of intracellular localization by immnunofluorescent confocal microscopy, radiolabeling, immunoprecipitation, and SDS-PAGE analysis of the proteins, and the improved reverse genetic system to rescue recombinant viruses that contain mutations at N-linked glycosylation sites.
Collapse
Affiliation(s)
- Xiaohong Shi
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, UK
| | | |
Collapse
|
40
|
Snippe M, Smeenk L, Goldbach R, Kormelink R. The cytoplasmic domain of tomato spotted wilt virus Gn glycoprotein is required for Golgi localisation and interaction with Gc. Virology 2007; 363:272-9. [PMID: 17331557 DOI: 10.1016/j.virol.2006.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/02/2006] [Accepted: 12/04/2006] [Indexed: 11/12/2022]
Abstract
Envelopment of tomato spotted wilt virus nucleocapsids occurs at the Golgi stacks of infected cells. This is also the place where the two membrane glycoproteins Gn and Gc accumulate upon coexpression. The required Golgi retention signal has previously been demonstrated to reside within Gn. Using a series of truncated Gn proteins, the Golgi retention signal was mapped to a stretch of 10 amino acids on this protein's cytoplasmic tail, 20 residues downstream the transmembrane domain. Studies on the intracellular distribution of chimeric Gc proteins in which the cytoplasmic tail and/or transmembrane domain were exchanged by those from Gn, demonstrated the additional requirement of the Gn transmembrane domain for Golgi targeting. Truncated Gn constructs lacking the C-terminal 20 amino acids but still localising to the Golgi were no longer able to redirect Gc, suggesting the requirement of this domain for interaction with Gc.
Collapse
Affiliation(s)
- Marjolein Snippe
- Wageningen University, Laboratory of Virology, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
41
|
Shi X, Kohl A, Léonard VHJ, Li P, McLees A, Elliott RM. Requirement of the N-terminal region of orthobunyavirus nonstructural protein NSm for virus assembly and morphogenesis. J Virol 2006; 80:8089-99. [PMID: 16873265 PMCID: PMC1563826 DOI: 10.1128/jvi.00579-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonstructural protein NSm of Bunyamwera virus (BUNV), the prototype of the Bunyaviridae family, is encoded by the M segment in a polyprotein precursor, along with the virion glycoproteins, in the order Gn-NSm-Gc. As little is known of its function, we examined the intracellular localization, membrane integrality, and topology of NSm and its role in virus replication. We confirmed that NSm is an integral membrane protein and that it localizes in the Golgi complex, together with Gn and Gc. Coimmunoprecipitation assays and yeast two-hybrid analysis demonstrated that NSm was able to interact with other viral proteins. NSm is predicted to contain three hydrophobic (I, III, and V) and two nonhydrophobic (II and IV) domains. The N-terminal nonhydrophobic domain II was found in the lumen of an intracellular compartment. A novel BUNV assembly assay was developed to monitor the formation of infectious virus-like-particles (VLPs). Using this assay, we showed that deletions of either the complete NSm coding region or domains I, II, and V individually seriously compromised VLP production. Consistently, we were unable to rescue viable viruses by reverse genetics from cDNA constructs that contained the same deletions. However, we could generate mutant BUNV with deletions in NSm domains III and IV and also a recombinant virus with the green fluorescent protein open reading frame inserted into NSm domain IV. The mutant viruses displayed differences in their growth properties. Overall, our data showed that the N-terminal region of NSm, which includes domain I and part of domain II, is required for virus assembly and that the C-terminal hydrophobic domain V may function as an internal signal sequence for the Gc glycoprotein.
Collapse
Affiliation(s)
- Xiaohong Shi
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Kohl A, Lowen AC, Léonard VHJ, Elliott RM. Genetic elements regulating packaging of the Bunyamwera orthobunyavirus genome. J Gen Virol 2006; 87:177-187. [PMID: 16361430 DOI: 10.1099/vir.0.81227-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genome of Bunyamwera virus (BUN; family Bunyaviridae, genus Orthobunyavirus) comprises three segments of negative-sense, single-stranded RNA. The RNA segments are encapsidated by the viral nucleocapsid (N) protein and form panhandle-like structures through interaction of complementary sequences at their 5' and 3' termini. Transcription and replication of a BUN genome analogue (minireplicon), comprising the viral non-coding sequences flanking a reporter gene, requires just the viral RNA polymerase (L protein) and N protein. Here, sequences of Bunyamwera serogroup M segment RNAs were compared and conserved elements within nt 20-33 of the 3' and 5' non-coding regions that can affect packaging of minireplicons into virions were identified. RNA-folding models suggest that a conserved sequence within nt 20-33 of the 5' end of the genome segments maintains conserved structural features necessary for efficient transcription. Competitive packaging experiments using M, L and S segment-derived minireplicons that encode different reporter genes showed variable packaging efficiencies of the three segments. Packaging of a particular segment appeared to be independent of the presence of other segments and, for the S segment, packaging efficiency was unaffected by the inclusion of viral coding sequences in the minireplicon.
Collapse
Affiliation(s)
- Alain Kohl
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 5JR, Scotland, UK
| | - Anice C Lowen
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 5JR, Scotland, UK
| | - Vincent H J Léonard
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 5JR, Scotland, UK
| | - Richard M Elliott
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 5JR, Scotland, UK
| |
Collapse
|
43
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
44
|
Snippe M, Goldbach R, Kormelink R. Tomato spotted wilt virus particle assembly and the prospects of fluorescence microscopy to study protein-protein interactions involved. Adv Virus Res 2006; 65:63-120. [PMID: 16387194 DOI: 10.1016/s0065-3527(05)65003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marjolein Snippe
- Department of Asthma, Allergy, and Respiratory Diseases, King's College, London, WC2R 2LS United Kingdom
| | | | | |
Collapse
|
45
|
Tischler ND, Gonzalez A, Perez-Acle T, Rosemblatt M, Valenzuela PDT. Hantavirus Gc glycoprotein: evidence for a class II fusion protein. J Gen Virol 2006; 86:2937-2947. [PMID: 16227214 DOI: 10.1099/vir.0.81083-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hantavirus cell entry is promoted by its envelope glycoproteins, Gn and Gc, through cell attachment and by fusion between viral and endosomal membranes at low pH. However, the role of Gn and Gc in receptor binding and cell fusion has not yet been defined. In this work, a sequence presenting characteristics similar to those of class II fusion peptides (FPs) of alphavirus E1 and flavivirus E proteins is identified within the hantavirus Gc glycoprotein. A three-dimensional comparative molecular model based on crystallographic data of tick-borne encephalitis virus E protein is proposed for the Andes virus (ANDV) Gc ectodomain, which supports a feasible class II fusion-protein fold. In vitro experimental evidence is provided for the binding activity of the ANDV FP candidate to artificial membranes, as demonstrated by fluorescence anisotropy assays. Taken together, these results support the hypothesis that the Gc glycoprotein of hantaviruses and of other members of the family Bunyaviridae directs the viral fusion activity and that it may be classified as a class II viral fusion protein.
Collapse
Affiliation(s)
- Nicole D Tischler
- Instituto Milenio MIFAB, Zañartu 1482, Santiago, Chile
- Fundación Ciencia para la Vida, Zañartu 1482, Santiago, Chile
| | - Angel Gonzalez
- Centro de Genómica y Bioinformática, Pontificia Universidad Católica, Zañartu 1482, Santiago, Chile
| | - Tomas Perez-Acle
- Centro de Genómica y Bioinformática, Pontificia Universidad Católica, Zañartu 1482, Santiago, Chile
| | - Mario Rosemblatt
- Universidad Andrés Bello, Zañartu 1482, Santiago, Chile
- Instituto Milenio MIFAB, Zañartu 1482, Santiago, Chile
- Fundación Ciencia para la Vida, Zañartu 1482, Santiago, Chile
| | - Pablo D T Valenzuela
- Fundación Ciencia para la Vida, Zañartu 1482, Santiago, Chile
- Centro de Genómica y Bioinformática, Pontificia Universidad Católica, Zañartu 1482, Santiago, Chile
- Instituto Milenio MIFAB, Zañartu 1482, Santiago, Chile
- Universidad Andrés Bello, Zañartu 1482, Santiago, Chile
| |
Collapse
|
46
|
Shi X, Brauburger K, Elliott RM. Role of N-linked glycans on bunyamwera virus glycoproteins in intracellular trafficking, protein folding, and virus infectivity. J Virol 2005; 79:13725-34. [PMID: 16227292 PMCID: PMC1262612 DOI: 10.1128/jvi.79.21.13725-13734.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane glycoproteins (Gn and Gc) of Bunyamwera virus (BUN, family Bunyaviridae) contain three potential sites for the attachment of N-linked glycans: one site (N60) on Gn and two (N624 and N1169) on Gc. We determined that all three sites are glycosylated. Digestion of the glycoproteins with endo-beta-N-acetylglucosaminidase H (endo H) or peptide:N-glycosidase F revealed that Gn and Gc differ significantly in their glycan status and that late in infection Gc glycans remain endo H sensitive. The roles of the N-glycans in intracellular trafficking of the glycoproteins to the Golgi, protein folding, and virus replication were investigated by mutational analysis and confocal immunofluorescence. Elimination of the glycan on Gn, by changing N60 to a Q residue, resulted in the protein misfolding and failure of both Gn and Gc proteins to traffic to the Golgi complex. We were unable to rescue a viable virus by reverse genetics from a cDNA containing the N60Q mutation. In contrast, mutant Gc proteins lacking glycans on either N624 or N1169, or both sites, were able to target to the Golgi. Gc proteins containing mutations N624Q and N1169Q acquired endo H resistance. Three viable N glycosylation-site-deficient viruses, lacking glycans on one site or both sites on Gc, were created by reverse genetics. The viability of these recombinant viruses and analysis of growth kinetics indicates that the glycans on Gc are not essential for BUN replication, but they do contribute to the efficiency of virus infection.
Collapse
Affiliation(s)
- Xiaohong Shi
- Division of Virology, Institute of Virology, University of Glasgow, Church St., Glasgow G11 5JR, Scotland, United Kingdom
| | | | | |
Collapse
|
47
|
Kaukinen P, Vaheri A, Plyusnin A. Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch Virol 2005; 150:1693-713. [PMID: 15931462 DOI: 10.1007/s00705-005-0555-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 04/12/2005] [Indexed: 01/10/2023]
Abstract
In recent years important progress has been made studying the nucleocapsid (N) protein of hantaviruses. The N protein presents a good example of a multifunctional viral macromolecule. It is a major structural component of a virion that encapsidates viral RNA (vRNA). It also interacts with the virus polymerase (L protein) and one of the glycoproteins. On top of these "house keeping" duties, the N protein performs interactive "ambassadorial" functions interfering with important regulatory pathways in the infected cells.
Collapse
Affiliation(s)
- P Kaukinen
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | | | | |
Collapse
|
48
|
Nelson CA, Pekosz A, Lee CA, Diamond MS, Fremont DH. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure 2005; 13:75-85. [PMID: 15642263 PMCID: PMC7125549 DOI: 10.1016/j.str.2004.10.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 10/18/2004] [Accepted: 10/19/2004] [Indexed: 11/17/2022]
Abstract
The open reading frame (ORF) 7a of the SARS-associated coronavirus (SARS-CoV) encodes a unique type I transmembrane protein of unknown function. We have determined the 1.8 Å resolution crystal structure of the N-terminal ectodomain of orf7a, revealing a compact seven-stranded β sandwich unexpectedly similar in fold and topology to members of the Ig superfamily. We also demonstrate that, in SARS-CoV- infected cells, the orf7a protein is expressed and retained intracellularly. Confocal microscopy studies using orf7a and orf7a/CD4 chimeras implicate the short cytoplasmic tail and transmembrane domain in trafficking of the protein within the endoplasmic reticulum and Golgi network. Taken together, our findings provide a structural and cellular framework in which to explore the role of orf7a in SARS-CoV pathogenesis.
Collapse
Affiliation(s)
- Christopher A. Nelson
- Department of Pathology and Immunology , 660 South Euclid Avenue, St. Louis, Missouri 63110
| | - Andrew Pekosz
- Department of Pathology and Immunology , 660 South Euclid Avenue, St. Louis, Missouri 63110
- Department of Molecular Microbiology , 660 South Euclid Avenue, St. Louis, Missouri 63110
| | - Chung A. Lee
- Department of Pathology and Immunology , 660 South Euclid Avenue, St. Louis, Missouri 63110
| | - Michael S. Diamond
- Department of Pathology and Immunology , 660 South Euclid Avenue, St. Louis, Missouri 63110
- Department of Molecular Microbiology , 660 South Euclid Avenue, St. Louis, Missouri 63110
- Department of Medicine , 660 South Euclid Avenue, St. Louis, Missouri 63110
| | - Daved H. Fremont
- Department of Pathology and Immunology , 660 South Euclid Avenue, St. Louis, Missouri 63110
- Department of Biochemistry , and Molecular Biophysics , Washington University School of Medicine , 660 South Euclid Avenue , St. Louis, Missouri 63110
- Ph: (314) 747-6547; Fax: (314) 362-8888
| |
Collapse
|
49
|
Deyde VM, Rizvanov AA, Chase J, Otteson EW, St Jeor SC. Interactions and trafficking of Andes and Sin Nombre Hantavirus glycoproteins G1 and G2. Virology 2005; 331:307-15. [PMID: 15629773 DOI: 10.1016/j.virol.2004.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 09/01/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
This study was designed to investigate the trafficking of Andes virus (ANDV) and Sin Nombre virus (SNV) glycoproteins and to determine if ANDV or SNV glycoproteins G1 and G2 could be substituted for each other while still retaining normal trafficking. Trafficking of Hantaan virus (HNTV) and SNV glycoproteins has been studied and conflicting results were published regarding the Golgi targeting of G1 and G2 when expressed individually. The results reported in this manuscript suggest that both SNV and ANDV G1 and G2 expressed together, either from a single glycoprotein precursor (GPC) or from separate cDNAs, co-localize to the Golgi complex (GC). When expressed individually, neither G1 nor G2 was able to translocate from the endoplasmic reticulum (ER) to the GC. Interestingly, when ANDV G1 and SNV G2 or ANDV G2 and SNV G1 are co-expressed, they interact and are colocalized in the GC.
Collapse
Affiliation(s)
- Varough M Deyde
- Microbiology and Immunology Department, and the Cell and Molecular Biology Program, Microbiology 320, School of Medicine, University of Nevada, Howard Building 208, 1664 North Virginia Street, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
50
|
Shi X, Lappin DF, Elliott RM. Mapping the Golgi targeting and retention signal of Bunyamwera virus glycoproteins. J Virol 2004; 78:10793-802. [PMID: 15367646 PMCID: PMC516397 DOI: 10.1128/jvi.78.19.10793-10802.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane glycoproteins (Gn and Gc) of Bunyamwera virus (BUN; family Bunyaviridae) accumulate in the Golgi complex, where virion maturation occurs. The Golgi targeting and retention signal has previously been shown to reside within the Gn protein. A series of truncated Gn and glycoprotein precursor cDNAs were constructed by progressively deleting the coding region of the transmembrane domain (TMD) and the cytoplasmic tail. We also constructed chimeric proteins of BUN Gc, enhanced green fluorescent protein (EGFP), and human respiratory syncytial virus (HRSV) fusion (F) protein that contain the Gn TMD with various lengths of its adjacent cytoplasmic tails. The subcellular localization of mutated BUN glycoproteins and chimeric proteins was investigated by double-staining immunofluorescence with antibodies against BUN glycoproteins or the HRSV F protein and with antibodies specific for the Golgi complex. The results revealed that Gn and all truncated Gn proteins that contained the intact TMD (residues 206 to 224) were able to translocate to the Golgi complex and also rescued the Gc protein, which is retained in the endoplasmic reticulum when expressed alone, to this organelle. The rescued Gc proteins acquired endo-beta-N-acetylglucosaminidase H resistance. The Gn TMD could also target chimeric EGFP to the Golgi and retain the F protein, which is characteristically expressed on the surface of HRSV-infected cells, in the Golgi. However, chimeric BUN Gc did not translocate to the Golgi, suggesting that an interaction with Gn is involved in Golgi retention of the Gc protein. Collectively, these data demonstrate that the Golgi targeting and retention signal of BUN glycoproteins resides in the TMD of the Gn protein.
Collapse
Affiliation(s)
- Xiaohong Shi
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church St., Glasgow G11 5JR, Scotland, United Kingdom
| | | | | |
Collapse
|