1
|
Walser M, Karlsson L, Motalleb R, Isgaard J, Kuhn HG, Svensson J, Åberg ND. Running in mice increases the expression of brain hemoglobin-related genes interacting with the GH/IGF-1 system. Sci Rep 2024; 14:25464. [PMID: 39462081 PMCID: PMC11513053 DOI: 10.1038/s41598-024-77489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
The beneficial effects of exercise are partly mediated via local or systemic functions of the insulin-like growth factor-1 (IGF-1) system. As IGF-1 increases local brain hemoglobin beta (Hbb) transcripts, we hypothesized that exercise could have similar effects. Mice were single-housed with free access to running wheels for seven days. After sacrifice and saline perfusion, the expression of 13 genes was quantified using real-time quantitative polymerase chain reaction (RT-qPCR) in three brain regions: the prefrontal cortex, motor cortex, and hippocampus. In addition, plasma insulin, glucose, homeostatic model assessment of IR (HOMA-IR), C-peptide, and IGF-1 were investigated. We show that hemoglobin-related transcripts (Hbb and 5'-aminolevulinate synthase 2 [Alas2]) increased 46-63% in the running group, while IGF-1-related genes [Igf1 / growth hormone receptor (Ghr)] decreased slightly (7%). There were also moderate to large correlations between Hbb- and IGF-1-related genes in the running group but not in the sedentary group. HOMA-IR, plasma glucose, and insulin changed marginally and non-significantly, but there was a trend toward an increase in plasma-IGF-1 in the running group. In conclusion, seven days of running increased Hbb-related transcripts in three brain regions. Hbb-related transcripts correlated with components of the brain IGF-1 system only in the running group.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Laboratory of Experimental Endocrinology, Bruna Stråket 16, 413 45 , Gothenburg, Sweden.
| | - Lars Karlsson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - N David Åberg
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Acute Medicine and Geriatrics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Liang J, Wang H, Zeng Y, Qu Y, Liu Q, Zhao F, Duan J, Jiang Y, Li S, Ying J, Li J, Mu D. Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins. Rev Neurosci 2021; 32:615-629. [PMID: 33583156 DOI: 10.1515/revneuro-2020-0099] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023]
Abstract
Exercise has been shown to have beneficial effects on brain functions in humans and animals. Exercise can improve memory and learning in age-related neurodegenerative diseases. In animal models, physical exercise regulates epigenetics, promotes synaptic plasticity and hippocampal neurogenesis, regulates the expression levels of neurotrophic factors, and improves cognitive function. Therefore, exercise is very important for brain rehabilitation and remodeling. The purpose of this review is to explore the mechanisms by which exercise exerts positive effects on brain function. This knowledge implies that physical exercise can be used as a non-drug therapy for neurological diseases.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Yan Zeng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Qian Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Fengyan Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Jianan Duan
- West China Hospital, Sichuan University, Chengdu610041, China
| | - Yin Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| |
Collapse
|
3
|
Gasco V, Cambria V, Bioletto F, Ghigo E, Grottoli S. Traumatic Brain Injury as Frequent Cause of Hypopituitarism and Growth Hormone Deficiency: Epidemiology, Diagnosis, and Treatment. Front Endocrinol (Lausanne) 2021; 12:634415. [PMID: 33790864 PMCID: PMC8005917 DOI: 10.3389/fendo.2021.634415] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI)-related hypopituitarism has been recognized as a clinical entity for more than a century, with the first case being reported in 1918. However, during the 20th century hypopituitarism was considered only a rare sequela of TBI. Since 2000 several studies strongly suggest that TBI-mediated pituitary hormones deficiency may be more frequent than previously thought. Growth hormone deficiency (GHD) is the most common abnormality, followed by hypogonadism, hypothyroidism, hypocortisolism, and diabetes insipidus. The pathophysiological mechanisms underlying pituitary damage in TBI patients include a primary injury that may lead to the direct trauma of the hypothalamus or pituitary gland; on the other hand, secondary injuries are mainly related to an interplay of a complex and ongoing cascade of specific molecular/biochemical events. The available data describe the importance of GHD after TBI and its influence in promoting neurocognitive and behavioral deficits. The poor outcomes that are seen with long standing GHD in post TBI patients could be improved by GH treatment, but to date literature data on the possible beneficial effects of GH replacement therapy in post-TBI GHD patients are currently scarce and fragmented. More studies are needed to further characterize this clinical syndrome with the purpose of establishing appropriate standards of care. The purpose of this review is to summarize the current state of knowledge about post-traumatic GH deficiency.
Collapse
|
4
|
Castilla-Cortázar I, Aguirre GA, Femat-Roldán G, Martín-Estal I, Espinosa L. Is insulin-like growth factor-1 involved in Parkinson's disease development? J Transl Med 2020; 18:70. [PMID: 32046737 PMCID: PMC7014772 DOI: 10.1186/s12967-020-02223-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2019] [Accepted: 01/10/2020] [Indexed: 02/09/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results in the death of dopaminergic neurons within the substantia nigra pars compacta and the reduction in dopaminergic control over striatal output neurons, leading to a movement disorder most commonly characterized by akinesia or bradykinesia, rigidity and tremor. Also, PD is less frequently depicted by sensory symptoms (pain and tingling), hyposmia, sleep alterations, depression and anxiety, and abnormal executive and working memory related functions. On the other hand, insulin-like growth factor 1 (IGF-1) is an endocrine, paracrine and autocrine hormone with several functions including tissue growth and development, insulin-like activity, proliferation, pro-survival, anti-aging, antioxidant and neuroprotection, among others. Herein this review tries to summarize all experimental and clinical data to understand the pathophysiology and development of PD, as well as its clear association with IGF-1, supported by several lines of evidence: (1) IGF-1 decreases with age, while aging is the major risk for PD establishment and development; (2) numerous basic and translational data have appointed direct protective and homeostasis IGF-1 roles in all brain cells; (3) estrogens seem to confer women strong protection to PD via IGF-1; and (4) clinical correlations in PD cohorts have confirmed elevated IGF-1 levels at the onset of the disease, suggesting an ongoing compensatory or "fight-to-injury" mechanism.
Collapse
Affiliation(s)
- Inma Castilla-Cortázar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico.
- Fundación de Investigación HM Hospitales, Madrid, Spain.
| | - Gabriel A Aguirre
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovana Femat-Roldán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
- Neurocenter, Monterrey, Nuevo Leon, Mexico
| | - Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
| | - Luis Espinosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
| |
Collapse
|
5
|
Systemic IGF-1 gene delivery by rAAV9 improves spontaneous autoimmune peripheral polyneuropathy (SAPP). Sci Rep 2018; 8:5408. [PMID: 29615658 PMCID: PMC5883061 DOI: 10.1038/s41598-018-23607-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 02/01/2023] Open
Abstract
Spontaneous autoimmune peripheral polyneuropathy (SAPP) is a mouse model of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) in non-obese diabetic (NOD) mice null for costimulatory molecule, B7-2 gene (B7-2−/−). SAPP is a chronic progressive and multifocal inflammatory and demyelinating polyneuropathy of spontaneous onset with secondary axonal degeneration. Insulin-like growth factor 1(IGF-1) is a pleiotropic factor with neuroprotective, regenerative, and anti-inflammatory effects with extensive experience in its preclinical and clinical use. Systemic delivery of recombinant adeno-associated virus serotype 9 (rAAV9) provides robust and widespread gene transfer to central and peripheral nervous systems making it suitable for gene delivery in neurological diseases. A significant proportion of patients with inflammatory neuropathies like CIDP do not respond to current clinical therapies and there is a need for new treatments. In this study, we examined the efficacy IGF-1 gene therapy by systemic delivery with rAAV9 in SAPP model. The rAAV9 construct also contained a reporter gene to monitor the surrogate expression of IGF-1. We found significant improvement in neuropathic disease after systemic delivery of rAAV9/IGF-1 gene at presymptomatic and symptomatic stages of SAPP model. These findings support that IGF-1 treatment (including gene therapy) is a viable therapeutic option in immune neuropathies such as CIDP.
Collapse
|
6
|
Olsen LC, O'Reilly KC, Liabakk NB, Witter MP, Sætrom P. MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex. Brain Struct Funct 2017; 222:3107-3126. [PMID: 28260163 PMCID: PMC5585308 DOI: 10.1007/s00429-017-1389-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2016] [Accepted: 02/13/2017] [Indexed: 01/23/2023]
Abstract
The medial entorhinal cortex (MEC) is important in spatial navigation and memory formation and its layers have distinct neuronal subtypes, connectivity, spatial properties, and disease susceptibility. As little is known about the molecular basis for the development of these laminar differences, we analyzed microRNA (miRNA) and messenger RNA (mRNA) expression differences between rat MEC layer II and layers III–VI during postnatal development. We identified layer and age-specific regulation of gene expression by miRNAs, which included processes related to neuron specialization and locomotor behavior. Further analyses by retrograde labeling and expression profiling of layer II stellate neurons and in situ hybridization revealed that the miRNA most up-regulated in layer II, miR-143, was enriched in stellate neurons, whereas the miRNA most up-regulated in deep layers, miR-219-5p, was expressed in ependymal cells, oligodendrocytes and glia. Bioinformatics analyses of predicted mRNA targets with negatively correlated expression patterns to miR-143 found that miR-143 likely regulates the Lmo4 gene, which is known to influence hippocampal-based spatial learning.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Nina B Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Computer and Information Science, Norwegian University for Science and Technology, Trondheim, Norway. .,Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
7
|
Dyer AH, Vahdatpour C, Sanfeliu A, Tropea D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience 2016; 325:89-99. [DOI: 10.1016/j.neuroscience.2016.03.056] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2015] [Revised: 02/29/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
|
8
|
Watanabe M, Fukuda A. Development and regulation of chloride homeostasis in the central nervous system. Front Cell Neurosci 2015; 9:371. [PMID: 26441542 PMCID: PMC4585146 DOI: 10.3389/fncel.2015.00371] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the mature central nervous system (CNS). The developmental switch of GABAergic transmission from excitation to inhibition is induced by changes in Cl− gradients, which are generated by cation-Cl− co-transporters. An accumulation of Cl− by the Na+-K+-2Cl− co-transporter (NKCC1) increases the intracellular Cl− concentration ([Cl−]i) such that GABA depolarizes neuronal precursors and immature neurons. The subsequent ontogenetic switch, i.e., upregulation of the Cl−-extruder KCC2, which is a neuron-specific K+-Cl− co-transporter, with or without downregulation of NKCC1, results in low [Cl−]i levels and the hyperpolarizing action of GABA in mature neurons. Development of Cl− homeostasis depends on developmental changes in NKCC1 and KCC2 expression. Generally, developmental shifts (decreases) in [Cl−]i parallel the maturation of the nervous system, e.g., early in the spinal cord, hypothalamus and thalamus, followed by the limbic system, and last in the neocortex. There are several regulators of KCC2 and/or NKCC1 expression, including brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF), and cystic fibrosis transmembrane conductance regulator (CFTR). Therefore, regionally different expression of these regulators may also contribute to the regional developmental shifts of Cl− homeostasis. KCC2 and NKCC1 functions are also regulated by phosphorylation by enzymes such as PKC, Src-family tyrosine kinases, and WNK1–4 and their downstream effectors STE20/SPS1-related proline/alanine-rich kinase (SPAK)-oxidative stress responsive kinase-1 (OSR1). In addition, activation of these kinases is modulated by humoral factors such as estrogen and taurine. Because these transporters use the electrochemical driving force of Na+ and K+ ions, topographical interaction with the Na+-K+ ATPase and its modulators such as creatine kinase (CK) should modulate functions of Cl− transporters. Therefore, regional developmental regulation of these regulators and modulators of Cl− transporters may also play a pivotal role in the development of Cl− homeostasis.
Collapse
Affiliation(s)
- Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| |
Collapse
|
9
|
Maturana-Teixeira S, Braga LEG, Carpi Santos R, Calaza KDC, Giestal-de-Araujo E, Leão-Ferreira LR. The (Na(+)/K (+))-ATPase activity in the developing rat retina: the role of insulin-like growth factor-I (IGF-I). Cell Mol Neurobiol 2015; 35:243-54. [PMID: 25274047 DOI: 10.1007/s10571-014-0119-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
Abstract
In this work, the (Na(+)/K(+))-ATPase activity was evaluated during the early stages of the postnatal development of rat retina and showed an almost three-time increase from P0 to P14. Expression of the three catalytic subunit isoforms (α1, α2, and α3) of the (Na(+)/K(+))-ATPase was also evaluated by immunoblot in the same period, but no correlation to the catalytic activity increment was observed. On the other hand, immunolocalization of these three α-catalytic isoforms in the developing retina showed an age-related pattern. Involvement of IGF-I in the stimulation of the (Na(+)/K(+))-ATPase was investigated. Our results demonstrate that the exogenous IGF-I (10 ng/mL) stimulates enzyme activity at the age of P7 only. Incubation of retinas with 10 μM I-OMe-AG 538 (inhibitor of the IGF-I receptor) indicates that the basal (Na(+)/K(+))-ATPase activity is sustained by endogenous IGF-I in P7 animals. These data were corroborated by an age-dependent decrease in the immunodetection of endogenous IGF-I as well as in the phosphorylation level of its cognate receptor in rat retina homogenates. The signaling pathway involved in IGF-I-induced modulation of the (Na(+)/K(+))-ATPase was also investigated. Our data show that the inhibitory effects induced by I-OMe-AG 538 and the PI 3-kinase inhibitor Ly 294002 on the basal (Na(+)/K(+))-ATPase activity were non-cumulative. Furthermore, IGF-I induced phosphorylation of PKB in a Ly 294002-sensitive manner. Together, these data demonstrate that the PI 3-kinase/PKB signaling pathway is involved in the IGF-I-sustained basal (Na(+)/K(+))-ATPase activity during the first 7 days of the postnatal development of rat retina.
Collapse
Affiliation(s)
- Sheila Maturana-Teixeira
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio De Janeiro, CEP 24020-140, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Xie L, Antonow-Schlorke I, Schwab M, McDonald TJ, Nathanielsz PW, Li C. The frontal cortex IGF system is down regulated in the term, intrauterine growth restricted fetal baboon. Growth Horm IGF Res 2013; 23:187-192. [PMID: 23911858 PMCID: PMC3919499 DOI: 10.1016/j.ghir.2013.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/03/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The IGF system exerts systemic and local actions during development. We previously demonstrated that fetal cerebral cortical IGF1 is reduced at 0.5 gestation in our IUGR baboon nonhuman primate model. We hypothesized that by term protein expression of several key IGF system stimulatory peptide pathway components and downstream nutrient signaling effectors of IGF, mammalian target of rapamycin (mTOR) and S6, would decrease, indicating reduced cellular nutrient uptake and protein synthesis. DESIGN We fed 7 control baboons ad libitum while 6 baboons ate a globally reduced diet (70% of feed eaten by controls) from 0.16 gestation through pregnancy that produces IUGR. Fetuses were removed at Cesarean section at 0.9 gestation. Frontal cortex sections were stained for IGFI, IGFII, IGFRI, IGFR2, IGFBP2, 3, 5 and 6, and mTOR and ribosomal protein S6 and double stained with NeuN a neuron-specific nuclear antigen. RESULTS All proteins stained neuronal cytoplasm except IGFRI which showed only glial cell cytoplasmic and blood vessel staining. IUGR fetuses showed decreased frontal cortical immunoreactive IGFI, IGFII, IGFRI, IGFBP2, 5 and 6, and mTOR and S6 (p < 0.05). IGFBP3 increased (p < 0.05) and IGFR2 was unchanged (p > 0.05). There were no differences between male and female fetal brains. CONCLUSIONS When fetal nutrient availability is decreased, IUGR down regulates the IGF system and its mTOR signaling pathway in the fetal frontal cortex coincident with slowed growth. These findings emphasize the importance of the local tissue IGF system in fetal primate brain development.
Collapse
Affiliation(s)
- L Xie
- The University of Texas Health Science Center San Antonio, Center for Pregnancy and Newborn Research, Dept. OB/GYN, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
11
|
Devesa J, Reimunde P, Devesa P, Barberá M, Arce V. Growth hormone (GH) and brain trauma. Horm Behav 2013; 63:331-44. [PMID: 22405763 DOI: 10.1016/j.yhbeh.2012.02.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/21/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/27/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone with known neurotrophic effects. We aimed to study whether GH administration might be useful together with rehabilitation in the recovery of TBI patients. 13 TBI patients (8 M, 5 F; age: 6-53 years old) were studied. Time after TBI: 2.5 months to 11 years; 5 patients showed acquired GH-deficiency (GHD). Disabilities observed: cognitive disorders; motor plegias; neurogenic dysphagia (n=5), vegetative coma (n=2) and amaurosis (n=1). All but one TBI patient followed intense rehabilitation for years. Treatment consisted of GH administration (maximal dose 1 mg/day, 5 days/week, resting 15-days every 2-months, until a maximum of 8 months) and clinical rehabilitation according to the individual needs (3-4 h/day, 5 days/week, during 6-12 months). Informed consent was obtained before commencing GH administration. GH significantly increased plasma IGF-1 values (ng.mL(-1)) in both GHD and no GHD patients, being then similar between both groups (GHD: 275.6±35.6 [p<0.01 vs. baseline], no GHD: 270.2±64 [p<0.05 vs. baseline]). In all the cases clear significant improvements were observed during and at the end of the combined treatment. Cognitive improvements appeared earlier and were more important than motor improvements. Swallowing improved significantly in all TBI patients with neurogenic dysphagia (2 of them in a vegetative state). Visual performance was ameliorated in the patient with amaurosis. No undesirable side-effects were observed. Our data indicate that GH can be combined with rehabilitation for improving disabilities in TBI patients, regardless of whether or not they are GHD.
Collapse
Affiliation(s)
- Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
12
|
Puche JE, Castilla-Cortázar I. Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 2012; 10:224. [PMID: 23148873 PMCID: PMC3543345 DOI: 10.1186/1479-5876-10-224] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2012] [Accepted: 11/07/2012] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range.
Collapse
Affiliation(s)
- Juan E Puche
- Applied Molecular Medicine Institute (IMMA), School of Medicine, Department of Medical Physiology, Universidad CEU San Pablo, Madrid, Spain
| | - Inma Castilla-Cortázar
- Applied Molecular Medicine Institute (IMMA), School of Medicine, Department of Medical Physiology, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
13
|
O’Kusky J, Ye P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol 2012; 33:230-51. [PMID: 22710100 PMCID: PMC3677055 DOI: 10.1016/j.yfrne.2012.06.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/27/2012] [Revised: 05/09/2012] [Accepted: 06/07/2012] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development.
Collapse
Affiliation(s)
- John O’Kusky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1M9
| | - Ping Ye
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
14
|
Signalling through the type 1 insulin-like growth factor receptor (IGF1R) interacts with canonical Wnt signalling to promote neural proliferation in developing brain. ASN Neuro 2012; 4:AN20120009. [PMID: 22625652 PMCID: PMC3392751 DOI: 10.1042/an20120009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
Signalling through the IGF1R [type 1 IGF (insulin-like growth factor) receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice) the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i) the activity of a LacZ (β-galactosidase) reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene) and (ii) the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I) in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic) mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β) significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i) retarded brain growth, (ii) reduced precursor proliferation and (iii) decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.
Collapse
|
15
|
Hami J, Sadr-Nabavi A, Sankian M, Haghir H. Sex differences and left-right asymmetries in expression of insulin and insulin-like growth factor-1 receptors in developing rat hippocampus. Brain Struct Funct 2011; 217:293-302. [PMID: 22042446 DOI: 10.1007/s00429-011-0358-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2011] [Accepted: 10/19/2011] [Indexed: 12/22/2022]
Abstract
Sex differences and laterality of rat hippocampus with respect to insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression as two important contributors to/regulators of developmental and cognitive functions were examined using real-time PCR and western blot analysis at P0, P7 and P14. Expression of the IGF-1R gene was lowest at P0 in all studied hippocampi. In males, we found the highest expression at P7 in the right hippocampus, and at P14 in the left one. In contrast, the peaked IGF-1R expression occurred at P7 in female hippocampi independent of laterality. Hippocampal InsR expression in males decreased significantly between P0 and P7, followed by a marked upregulation at P14. Conversely, the expression of InsR in females peaked at P7 and then decreased again significantly at P14. We found significant interhemispheric differences in IGF-1R mRNA levels in both male and female hippocampi at different time points. In contrast, we only found significant interhemispheric differences in InsR mRNA expression in P14 male rats, with higher values in the left hippocampus. Interestingly, changes in mRNA expression and in protein levels followed the same developmental pattern, indicating that IGF-1R and InsR transcription is not subject to modulatory effects during the first two weeks of development. These findings indicate that there are prominent interhemispheric and sex differences in IGF-1R and InsR expression in the developing rat hippocampus, suggesting a probable mechanism for the control of gender and laterality differences in development and function of the hippocampus.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi square, Mashhad, Iran
| | | | | | | |
Collapse
|
16
|
Growth hormone and prolactin regulate human neural stem cell regenerative activity. Neuroscience 2011; 190:409-27. [PMID: 21664953 DOI: 10.1016/j.neuroscience.2011.05.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 12/18/2022]
Abstract
We have previously shown that the growth hormone (GH)/prolactin (PRL) axis has a significant role in regulating neuroprotective and/or neurorestorative mechanisms in the brain and that these effects are mediated, at least partly, via actions on neural stem cells (NSCs). Here, using NSCs with properties of neurogenic radial glia derived from fetal human forebrains, we show that exogenously applied GH and PRL promote the proliferation of NSCs in the absence of epidermal growth factor or basic fibroblast growth factor. When applied to differentiating NSCs, they both induce neuronal progenitor proliferation, but only PRL has proliferative effects on glial progenitors. Both GH and PRL also promote NSC migration, particularly at higher concentrations. Since human GH activates both GH and PRL receptors, we hypothesized that at least some of these effects may be mediated via the latter. Migration studies using receptor-specific antagonists confirmed that GH signals via the PRL receptor promote migration. Mechanisms of receptor signaling in NSC proliferation, however, remain to be elucidated. In summary, GH and PRL have complex stimulatory and modulatory effects on NSC activity and as such may have a role in injury-related recovery processes in the brain.
Collapse
|
17
|
Activation of proteasome by insulin-like growth factor-I may enhance clearance of oxidized proteins in the brain. Mech Ageing Dev 2010; 130:793-800. [PMID: 19896963 DOI: 10.1016/j.mad.2009.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 11/20/2022]
Abstract
The insulin-like growth factor type 1 (IGF-I) plays an important role in neuronal physiology. Reduced IGF-I levels are observed during aging and this decrease may be important to age-related changes in the brain. We studied the effects of IGF-I on total protein oxidation in brain tissues and in cell cultures. Our results indicate that in frontal cortex the level of oxidized proteins is significantly reduced in transgenic mice designed to overproduce IGF-I compared with wild-type animals. The frontal cortex of IGF-I-overproducing mice exhibited high chymotrypsin-like activity of the 20S and 26S proteasomes. The proteasome can also be activated in response to IGF-I in cell cultures. Kinetic studies revealed peak activation of the proteasome within 15 min following IGF-I stimulation. The effects of IGF-I on proteasome were not observed in R(-) cells lacking the IGF-I receptor. Experiments using specific kinase inhibitors suggested that activation of proteasome by IGF-I involves phosphatidyl inositol 3-kinase and mammalian target of rapamycin signaling. IGF-I also attenuated the increase in protein carbonyl content induced by proteasome inhibition. Thus, appropriate levels of IGF-I may be important for the elimination of oxidized proteins in the brain in a process mediated by activation of the proteasome.
Collapse
|
18
|
Liu W, Ye P, O'Kusky JR, D'Ercole AJ. Type 1 insulin-like growth factor receptor signaling is essential for the development of the hippocampal formation and dentate gyrus. J Neurosci Res 2010; 87:2821-32. [PMID: 19437543 DOI: 10.1002/jnr.22129] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
Type 1 insulin-like growth factor receptor (IGF1R) signaling in neuronal development was studied in mutant mice with blunted igf1r gene expression in nestin-expressing neuronal precursors. At birth [postnatal (P) day 0] brain weights were reduced to 37% and 56% of controls in mice homozygous (nes-igf1r(-/-)) and heterozygous (nes-igf1r(-/Wt)) for the null mutation, respectively, and this brain growth retardation persisted postnatally. Stereological analysis demonstrated that the volumes of the hippocampal formation, CA fields 1-3, dentate gyrus (DG), and DG granule cell layer (GCL) were decreased by 44-54% at P0 and further by 65-69% at P90 in nes-igf1r(-/Wt) mice. In nes-igf1r(-/-) mice, volumes were 29-31% of controls at P0 and, in the two mice that survived to P90, 6-19% of controls, although the hilus could not be identified. Neuron density did not differ among the mice at any age studied; therefore, decreased volumes were due to reduced cell number. In postnatal nes-igf1r(-/Wt) mice, the percentage of apoptotic cells, as judged by activated caspase-3 immunostaining, was increased by 3.5-5.3-fold. The total number of proliferating DG progenitors (labeled by BrdU incorporation and Ki67 staining) was reduced by approximately 50%, but the percentage of these cells was similar to the percentages in littermate controls. These findings suggest that 1) the postnatal reduction in DG size is due predominantly to cell death, pointing to the importance of the IGF1R in regulating postnatal apoptosis, 2) surviving DG progenitors remain capable of proliferation despite reduced IGF1R expression, and 3) IGF1R signaling is necessary for normal embryonic brain development.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pediatrics, Division of Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Signaling through the type 1 IGF receptor (IGF1R) after interaction with IGF-I is crucial to the normal brain development. Manipulations of the mouse genome leading to changes in the expression of IGF-I or IGF1R significantly alters brain growth, such that IGF-I overexpression leads to brain overgrowth, whereas null mutations in either IGF-I or the IGF1R result in brain growth retardation. IGF-I signaling stimulates the proliferation, survival, and differentiation of each of the major neural lineages, neurons, oligodendrocytes, and astrocytes, as well as possibly influencing neural stem cells. During embryonic life, IGF-I stimulates neuron progenitor proliferation, whereas later it promotes neuron survival, neuritic outgrowth, and synaptogenesis. IGF-I also stimulates oligodendrocyte progenitor proliferation although inhibiting apoptosis in oligodendrocyte lineage cells and stimulating myelin production. These pleiotropic IGF-I activities indicate that other factors provide instructive signals for specific cellular events and that IGF-I acts to facilitate them. Studies of the few humans with IGF-I and/or IGF1R gene mutations indicate that IGF-I serves a similar role in man.
Collapse
Affiliation(s)
- A Joseph D'Ercole
- Department of Pediatrics, CB 7039, University of North Carolina, Chapel Hill, North Carolina 27599-7039, USA.
| | | |
Collapse
|
20
|
Zeger M, Popken G, Zhang J, Xuan S, Lu QR, Schwab MH, Nave KA, Rowitch D, D’Ercole AJ, Ye P. Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 2007; 55:400-11. [PMID: 17186502 PMCID: PMC1774584 DOI: 10.1002/glia.20469] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
Insulin-like growth factor-I (IGF-I) has been shown to be a potent agent in promoting the growth and differentiation of oligodendrocyte precursors, and in stimulating myelination during development and following injury. To definitively determine whether IGF-I acts directly on the cells of oligodendrocyte lineage, we generated lines of mice in which the type 1 IGF receptor gene (igf1r) was conditionally ablated either in Olig1 or proteolipid protein expressing cells (termed IGF1R(pre-oligo-ko) and IGF1R(oligo-ko) mice, respectively). Compared with wild type mice, IGF1R(pre-oligo-ko) mice had a decreased volume (by 35-55%) and cell number (by 54-70%) in the corpus callosum (CC) and anterior commissure at 2 and 6 weeks of age, respectively. IGF1R(oligo-ko) mice by 25 weeks of age also showed reductions, albeit less marked, in CC volume and cell number. Unlike astrocytes, the percentage of NG2(+) oligodendrocyte precursors was decreased by approximately 13% in 2-week-old IGF1R(pre-oligo-ko) mice, while the percentage of CC1(+) mature oligodendrocytes was decreased by approximately 24% in 6-week-old IGF1R(pre-oligo-ko) mice and approximately 25% in 25-week-old IGF1R(oligo-ko) mice. The reduction in these cells is apparently a result of decreased proliferation and increased apoptosis. These results indicate that IGF-I directly affects oligodendrocytes and myelination in vivo via IGF1R, and that IGF1R signaling in the cells of oligodendrocyte lineage is required for normal oligodendrocyte development and myelination. These data also provide a fundamental basis for developing strategies with the potential to target IGF-IGF1R signaling pathways in oligodendrocyte lineage cells for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Martha Zeger
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Greg Popken
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jihui Zhang
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shouhong Xuan
- Dept of Genetics and Development, Columbia University, New York, New York
| | - Q. Richard Lu
- Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - Markus H. Schwab
- Dept of Neurogenetics, Max Planck Institute of Experimental Medicine, Germany
| | - Klaus-Armin Nave
- Dept of Neurogenetics, Max Planck Institute of Experimental Medicine, Germany
| | - David Rowitch
- Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - A. Joseph D’Ercole
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ping Ye
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Correspondence should be addressed to Dr. Ping Ye, Department of Pediatrics, CB# 7039, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039, Tel: (919) 966-4435, Fax: (919) 966-2423, E-mail:
| |
Collapse
|