1
|
Kim SH, Jang HW, Park JJ, Nam DG, Lee SJ, Yeo SH, Kim SY. Antibiotic Resistance in Acetic Acid Bacteria Originating from Vinegar. Antibiotics (Basel) 2024; 13:626. [PMID: 39061308 PMCID: PMC11274321 DOI: 10.3390/antibiotics13070626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Acetic acid bacteria (AAB) are major contributors to the production of fermented vinegar, offering various cultural, culinary, and health benefits. Although the residual unpasteurized AAB after vinegar production are not pathogens, these are necessary and require safety evaluations, including antibiotic resistance, before use as a starter. In this research, we investigated the antibiotic resistance profiles of 26 AAB strains, including various species of Komagataeibacter and Acetobacter, against 10 different antibiotics using the E-test method. All strains exhibited resistance to aztreonam and clindamycin. Komagataeibacter species demonstrated a 50% resistance rate to ciprofloxacin, analogous to Acetobacter species, but showed twice the resistance rates to chloramphenicol and erythromycin. Genomic analysis of K. saccharivorans CV1 identified intrinsic resistance mechanisms, such as multidrug efflux pumps, thereby enhancing our understanding of antibiotic resistance in acetic acid-producing bacteria. These findings enhance understanding of antibiotic resistance in AAB for food safety and new antimicrobial strategies, suggesting the need for standardized testing methods and molecular genetic study.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| | - Hyun-Wook Jang
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| | - Jin-Ju Park
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| | - Dong-Geon Nam
- Division of Functional Food & Nutrition, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Su-Jeong Lee
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| | - Soo-Hwan Yeo
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| | - So-Young Kim
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| |
Collapse
|
2
|
Lam M, Leung KM, Lai GKK, Leung FCC, Griffin SDJ. Complete genome sequence of Gluconobacter frateurii ML.ISBL3, an endophytic strain isolated from aerial roots of Syngonium podophyllum. Microbiol Resour Announc 2024; 13:e0110623. [PMID: 38470266 PMCID: PMC11008163 DOI: 10.1128/mra.01106-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/02/2024] [Indexed: 03/13/2024] Open
Abstract
The endophytic strain Gluconobacter frateurii ML.ISBL3 was isolated from aerial roots of Syngonium podophyllum in Hong Kong. Its complete genome, established through hybrid assembly, comprises a single chromosome of 3,309,710 bp (56.30% G+C).
Collapse
Affiliation(s)
- M. Lam
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong SAR, China
| | - K. M. Leung
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong SAR, China
| | - G. K. K. Lai
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong SAR, China
| | - F. C. C. Leung
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong SAR, China
| | - S. D. J. Griffin
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong SAR, China
| |
Collapse
|
3
|
Lee J, An HE, Lee KH, Kim S, Park C, Kim CB, Yoo HY. Identification of Gluconacetobacter xylinus LYP25 and application to bacterial cellulose production in biomass hydrolysate with acetic acid. Int J Biol Macromol 2024; 261:129597. [PMID: 38266828 DOI: 10.1016/j.ijbiomac.2024.129597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Bacterial cellulose (BC) is a remarkable biomacromolecule with potential applications in food, biomedical, and other industries. However, the low economic feasibility of BC production processes hinders its industrialization. In our previous work, we obtained candidate strains with improved BC production through random mutations in Gluconacetobacter. In this study, the molecular identification of LYP25 strain with significantly improved productivity, the development of chestnut pericarp (CP) hydrolysate medium, and its application in BC fermentation were performed for cost-effective BC production process. As a result, the mutant strain was identified as Gluconacetobacter xylinus. The CP hydrolysate (CPH) medium contained 30 g/L glucose with 0.4 g/L acetic acid, whereas other candidates known to inhibit fermentation were not detected. Although acetic acid is generally known as a fermentation inhibitor, it improves the BC production by G. xylinus when present within about 5 g/L in the medium. Fermentation of G. xylinus LYP25 in CPH medium resulted in 17.3 g/L BC, a 33 % improvement in production compared to the control medium, and BC from the experimental and control groups had similar physicochemical properties. Finally, the overall process of BC production from biomass was evaluated and our proposed platform showed the highest yield (17.9 g BC/100 g biomass).
Collapse
Affiliation(s)
- Jeongho Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Hyung-Eun An
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Kang Hyun Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; Department of Bio-Convergence Engineering, Dongyang Mirae University, 445-8, Gyeongin-Ro, Guro-Gu, Seoul 08221, Republic of Korea
| | - Seunghee Kim
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea.
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea.
| |
Collapse
|
4
|
Hlangwani E, Abrahams A, Masenya K, Adebo OA. Analysis of the bacterial and fungal populations in South African sorghum beer (umqombothi) using full-length 16S rRNA amplicon sequencing. World J Microbiol Biotechnol 2023; 39:350. [PMID: 37864040 PMCID: PMC10589195 DOI: 10.1007/s11274-023-03764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/14/2023] [Indexed: 10/22/2023]
Abstract
There is a need to profile microorganisms which exist pre-and-post-production of umqombothi, to understand its microbial diversity and the interactions which subsequently influence the final product. Thus, this study sought to determine the relative microbial abundance in umqombothi and predict the functional pathways of bacterial and fungal microbiota present. Full-length bacterial 16S rRNA and internal transcribed spacer (ITS) gene sequencing using PacBio single-molecule, real-time (SMRT) technology was used to assess the microbial compositions. PICRUSt2 was adopted to infer microbial functional differences. A mixture of harmful and beneficial microorganisms was observed in all samples. The microbial diversity differed significantly between the mixed raw ingredients (MRI), customary beer brew (CB), and optimised beer brew (OPB). The highest bacterial species diversity was observed in the MRI, while the highest fungal species diversity was observed in the OPB. The dominant bacterial species in the MRI, CB, and OPB were Kosakonia cowanii, Apilactobacillus pseudoficulneus, and Vibrio alginolyticus, respectively, while the dominant fungal species was Apiotrichum laibachii. The predicted functional annotations revealed significant (p < 0.05) differences in the microbial pathways of the fermented and unfermented samples. The most abundant pathways in the MRI were the branched-chain amino acid biosynthesis super pathway and the pentose phosphate pathway. The CB sample was characterised by folate (vitamin B9) transformations III, and mixed acid fermentation. Biotin (vitamin B7) biosynthesis I and L-valine biosynthesis characterised the OPB sample. These findings can assist in identifying potential starter cultures for the commercial production of umqombothi. Specifically, A. pseudoficulneus can be used for controlled fermentation during the production of umqombothi. Likewise, the use of A. laibachii can allow for better control over the fermentation kinetics such as carbohydrate conversion and end-product characteristics, especially esters and aroma compounds.
Collapse
Affiliation(s)
- Edwin Hlangwani
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa
| | - Adrian Abrahams
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa
| | - Kedibone Masenya
- Neuroscience Institute, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa.
| |
Collapse
|
5
|
Kueneman JG, Bonadies E, Thomas D, Roubik DW, Wcislo WT. Neotropical bee microbiomes point to a fragmented social core and strong species-level effects. MICROBIOME 2023; 11:150. [PMID: 37452376 PMCID: PMC10347802 DOI: 10.1186/s40168-023-01593-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Individuals that band together create new ecological opportunities for microorganisms. In vertical transmission, theory predicts a conserved microbiota within lineages, especially social bees. Bees exhibit solitary to social behavior among and/or within species, while life cycles can be annual or perennial. Bee nests may be used over generations or only once, and foraging ecology varies widely. To assess which traits are associated with bee microbiomes, we analyzed microbial diversity within solitary and social bees of Apidae, Colletidae, and Halictidae, three bee families in Panama's tropical forests. Our analysis considered the microbiome of adult gut contents replicated through time, localities, and seasons (wet and dry) and included bee morphology and comparison to abdominal (dissected) microbiota. Diversity and distribution of tropical bee microbes (TBM) within the corbiculate bee clade were emphasized. RESULTS We found the eusocial corbiculate bees tended to possess a more conserved gut microbiome, attributable to vertical transmission, but microbial composition varied among closely related species. Euglossine bees (or orchid bees), corbiculates with mainly solitary behavior, had more variable gut microbiomes. Their shorter-tongued and highly seasonal species displayed greater diversity, attributable to flower-visiting habits. Surprisingly, many stingless bees, the oldest corbiculate clade, lacked bacterial genera thought to predate eusociality, while several facultatively social, and solitary bee species possessed those bacterial taxa. Indeed, nearly all bee species displayed a range of affinities for single or multiple variants of the "socially associated" bacterial taxa, which unexpectedly demonstrated high sequence variation. CONCLUSIONS Taken together, these results call into question whether specific bacterial associates facilitate eusocial behavior, or are subsequently adopted, or indicate frequent horizontal transmission between perennial eusocial colonies and other social, facultatively social, and solitary bees. Video Abstract.
Collapse
Affiliation(s)
- Jordan G Kueneman
- Smithsonian Tropical Research Institute, Panama City, Panama.
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY, 14853, Czech Republic.
| | - Ernesto Bonadies
- Smithsonian Tropical Research Institute, Panama City, Panama
- Biology Centre of the Czech Academy of Sciences, Branisovska, České Budějovice, Czech Republic
| | | | - David W Roubik
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
6
|
Kim S, Choi H, Kim Y, Lee D, Han BH, Hong SB, Kwon SW, Heo J. Draft Genome Sequences of Three Type Strains, Acetobacter farinalis KACC 21251, Acetobacter suratthaniensis KACC 21252, and Acetobacter thailandicus KACC 21253. Microbiol Resour Announc 2023:e0024623. [PMID: 37158738 DOI: 10.1128/mra.00246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
As part of a genome database construction of type strains, we report the draft genome sequences of three strains of acetic acid bacteria, i.e., Acetobacter farinalis KACC 21251T, Acetobacter suratthaniensis KACC 21252T, and Acetobacter thailandicus KACC 21253T.
Collapse
Affiliation(s)
- Seunghwan Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hyorim Choi
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
- Division of Biotechnology, Chonbuk National University, Iksan, Republic of Korea
| | - Yiseul Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Daseul Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Byeong-Hak Han
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
7
|
Klarenberg IJ, Keuschnig C, Salazar A, Benning LG, Vilhelmsson O. Moss and underlying soil bacterial community structures are linked to moss functional traits. Ecosphere 2023. [DOI: 10.1002/ecs2.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Affiliation(s)
- Ingeborg J. Klarenberg
- Natural Resource Sciences University of Akureyri Akureyri Iceland
- Faculty of Life and Environmental Sciences University of Iceland Reykjavík Iceland
- Department of Ecological Science Vrije Universiteit Amsterdam Amsterdam Netherlands
| | - Christoph Keuschnig
- Environmental Microbial Genomics Laboratoire Ampère, CNRS, École Centrale de Lyon Écully France
- German Research Centre for Geosciences (GFZ) Interface Geochemistry Potsdam Germany
| | - Alejandro Salazar
- Faculty of Environmental and Forest Sciences Agricultural University of Iceland Reykjavík Iceland
| | - Liane G. Benning
- German Research Centre for Geosciences (GFZ) Interface Geochemistry Potsdam Germany
- Department of Earth Sciences Free University of Berlin Berlin Germany
| | - Oddur Vilhelmsson
- Natural Resource Sciences University of Akureyri Akureyri Iceland
- BioMedical Center University of Iceland Reykjavík Iceland
| |
Collapse
|
8
|
Krusong W, La China S, Pothimon R, Gullo M. Defining Paenibacillus azoreducens (P8) and Acetobacter pasteurianus (UMCC 2951) strains performances in producing acetic acid. Front Microbiol 2022; 13:991688. [DOI: 10.3389/fmicb.2022.991688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, spore-forming bacteria isolated from saccharified rice were selected for producing acetic acid. From the screening of 15 strains, P8 strain was chosen as a candidate. The strain was identified as Paenibacillus azoreducens by 16S rRNA analysis (99.85% similarity with P. azoreducens CM1T). Acetic acid is the main component of vinegar but also an industrial commodity produced by chemical synthesis. Sustainable routes for obtaining acetic acid are of great interest for decreasing the environmental impact generated by chemical syntheses. Biological acetic acid production is effective for vinegar production by acetic acid bacteria, but it cannot economically compete with the chemical synthesis for producing it as a pure commodity. Considering the need to improve the yield of pure acetic acid produced by microbial conversions, in this study, P8 strain was chosen for designing processes in different fermentation conditions. Tests were conducted in single and semi-continuous systems, using rice wine as substrate. Acetic acid produced by P8 strain was compared with that of Acetobacter pasteurianus (UMCC 2951), a strain known for producing acetic acid from rice wine. Even though the fermentation performances of P. azoreducens P8 were slightly lower than those of acetic acid bacteria usually used for vinegar production, results highlight its suitability for producing acetic acid. The final acetic acid produced by P. azoreducens P8 was 73 g/L, in a single stage fermentation, without losses. In nine cycles of semi-continuous regime the average of acetification rate was 0.814 (g/L/days). Two main attributes of P. azoreducens P8 are of relevance for producing acetic acid, namely the ability to grow at temperature higher (+ 37°C), than mesophilic acetic acid bacteria, and the absence of cytoplasmic assimilation of acetic acid. These features allow to design multiple strains cultures, in which P. azoreducens can acts as a helper strain. Based on our results, the new isolate P. azoreducens P8 can be propagated in fermenting broths for boosting acetic acid production, under the selected conditions, and used in combination with acetic acid bacteria to produce biological acetic acid, as a non-food grade commodity.
Collapse
|
9
|
El-Naggar NEA, El-Malkey SE, Abu-Saied MA, Mohammed ABA. Exploration of a novel and efficient source for production of bacterial nanocellulose, bioprocess optimization and characterization. Sci Rep 2022; 12:18533. [PMID: 36323728 PMCID: PMC9630512 DOI: 10.1038/s41598-022-22240-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The demand for bacterial nanocellulose is expected to rise in the coming years due to its wide usability in many applications. Hence, there is a continuing need to screen soil samples from various sources to isolate a strain with a high capacity for bacterial nanocellulose production. Bacillus sp. strain SEE-12, which was isolated from a soil sample collected from Barhiem, Menoufia governorate, Egypt, displayed high BNC production under submerged fermentation. Bacillus sp. strain SEE-12 was identified as Bacillus tequilensis strain SEE-12. In static cultures, BNC was obtained as a layer grown in the air liquid interface of the fermentation medium. The response surface methodology was used to optimise the process parameters. The highest BNC production (22.8 g/L) was obtained using 5 g/L peptone, 5 g/L yeast extract, 50%, v/v Cantaloupe juice, 5 g/L Na2HPO4, 1.5 g/L citric acid, pH 5, medium volume of 100 mL/250 mL conical flask, inoculum size 5%, v/v, temperature 37 °C and incubation time 6 days. The BNC was purified and characterized by scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- grid.420020.40000 0004 0483 2576Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El- Arab City, Alexandria, 21934 Egypt
| | - Sahar E. El-Malkey
- grid.449877.10000 0004 4652 351XMicrobial Biotechnology Department, Genetic Engineering and Biotechnology, Research Institute, University of Sadat City, Sadat City, Egypt
| | - M. A. Abu-Saied
- grid.420020.40000 0004 0483 2576Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934 Egypt
| | - A. B. Abeer Mohammed
- grid.449877.10000 0004 4652 351XMicrobial Biotechnology Department, Genetic Engineering and Biotechnology, Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
10
|
Henry LP, Ayroles JF. Drosophila melanogaster microbiome is shaped by strict filtering and neutrality along a latitudinal cline. Mol Ecol 2022; 31:5861-5871. [PMID: 36094780 PMCID: PMC9643648 DOI: 10.1111/mec.16692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
Microbiomes affect many aspects of host biology, but the eco-evolutionary forces that shape their diversity in natural populations remain poorly understood. Geographical gradients, such as latitudinal clines, generate predictable patterns in biodiversity at macroecological scales, but whether these macroscale processes apply to host-microbiome interactions is an open question. To address this question, we sampled the microbiomes of 13 natural populations of Drosophila melanogaster along a latitudinal cline in the eastern United States. The microbiomes were surprisingly consistent across the cline, as latitude did not predict either alpha or beta diversity. Only a narrow taxonomic range of bacteria were present in all microbiomes, indicating that strict taxonomic filtering by the host and neutral ecological dynamics are the primary factors shaping the fly microbiome. Our findings reveal the complexity of eco-evolutionary interactions shaping microbial variation in D. melanogaster and highlight the need for additional sampling of the microbiomes in natural populations along environmental gradients.
Collapse
Affiliation(s)
- Lucas P Henry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
11
|
Martínez-Álvaro M, Mattock J, Auffret M, Weng Z, Duthie CA, Dewhurst RJ, Cleveland MA, Watson M, Roehe R. Microbiome-driven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions. MICROBIOME 2022; 10:166. [PMID: 36199148 PMCID: PMC9533493 DOI: 10.1186/s40168-022-01352-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function provides a permanent and accumulative solution, which may have also favourable consequences in other traits of interest (e.g. methane emissions). Possibly due to a lack of data, this strategy has never been explored. RESULTS This study provides a comprehensive identification of ruminal microbial mechanisms under host genomic influence that directly or indirectly affect the content of unsaturated fatty acids in beef associated with human dietary health benefits C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3 or cis-9, trans-11 C18:2 and trans-11 C18:1 in relation to hypercholesterolemic saturated fatty acids C12:0, C14:0 and C16:0, referred to as N3 and CLA indices. We first identified that ~27.6% (1002/3633) of the functional core additive log-ratio transformed microbial gene abundances (alr-MG) in the rumen were at least moderately host-genomically influenced (HGFC). Of these, 372 alr-MG were host-genomically correlated with the N3 index (n=290), CLA index (n=66) or with both (n=16), indicating that the HGFC influence on beef fatty acid composition is much more complex than the direct regulation of microbial lipolysis and biohydrogenation of dietary lipids and that N3 index variation is more strongly subjected to variations in the HGFC than CLA. Of these 372 alr-MG, 110 were correlated with the N3 and/or CLA index in the same direction, suggesting the opportunity for enhancement of both indices simultaneously through a microbiome-driven breeding strategy. These microbial genes were involved in microbial protein synthesis (aroF and serA), carbohydrate metabolism and transport (galT, msmX), lipopolysaccharide biosynthesis (kdsA, lpxD, lpxB), or flagellar synthesis (flgB, fliN) in certain genera within the Proteobacteria phyla (e.g. Serratia, Aeromonas). A microbiome-driven breeding strategy based on these microbial mechanisms as sole information criteria resulted in a positive selection response for both indices (1.36±0.24 and 0.79±0.21 sd of N3 and CLA indices, at 2.06 selection intensity). When evaluating the impact of our microbiome-driven breeding strategy to increase N3 and CLA indices on the environmental trait methane emissions (g/kg of dry matter intake), we obtained a correlated mitigation response of -0.41±0.12 sd. CONCLUSION This research provides insight on the possibility of using the ruminal functional microbiome as information for host genomic selection, which could simultaneously improve several microbiome-driven traits of interest, in this study exemplified with meat quality traits and methane emissions. Video Abstract.
Collapse
Affiliation(s)
| | - Jennifer Mattock
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
12
|
Chua KO, Liew YJM, See-Too WS, Tan JY, Yong HS, Yin WF, Chan KG. Formicincola oecophyllae gen. nov. sp. nov., a novel member of the family Acetobacteraceae isolated from the weaver ant Oecophylla smaragdina. Antonie van Leeuwenhoek 2022; 115:995-1007. [DOI: 10.1007/s10482-022-01750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
|
13
|
He Y, Xie Z, Zhang H, Liebl W, Toyama H, Chen F. Oxidative Fermentation of Acetic Acid Bacteria and Its Products. Front Microbiol 2022; 13:879246. [PMID: 35685922 PMCID: PMC9171043 DOI: 10.3389/fmicb.2022.879246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acetic acid bacteria (AAB) are a group of Gram-negative, strictly aerobic bacteria, including 19 reported genera until 2021, which are widely found on the surface of flowers and fruits, or in traditionally fermented products. Many AAB strains have the great abilities to incompletely oxidize a large variety of carbohydrates, alcohols and related compounds to the corresponding products mainly including acetic acid, gluconic acid, gulonic acid, galactonic acid, sorbose, dihydroxyacetone and miglitol via the membrane-binding dehydrogenases, which is termed as AAB oxidative fermentation (AOF). Up to now, at least 86 AOF products have been reported in the literatures, but no any monograph or review of them has been published. In this review, at first, we briefly introduce the classification progress of AAB due to the rapid changes of AAB classification in recent years, then systematically describe the enzymes involved in AOF and classify the AOF products. Finally, we summarize the application of molecular biology technologies in AOF researches.
Collapse
Affiliation(s)
- Yating He
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhen Xie
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Hirohide Toyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fusheng Chen
| |
Collapse
|
14
|
The Roles of the Various Cellulose Biosynthesis Operons in Komagataeibacter hansenii ATCC 23769. Appl Environ Microbiol 2022; 88:e0246021. [PMID: 35319232 DOI: 10.1128/aem.02460-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellulose is the most abundant biopolymer on earth and offers versatile applicability in biotechnology. Bacterial cellulose, especially, is an attractive material because it represents pure microcrystalline cellulose. The cellulose synthase complex of acetic acid bacteria serves as a model for general studies on (bacterial) cellulose synthesis. The genome of Komagataeibacter hansenii ATCC 23769 encodes three cellulose synthase (CS) operons of different sizes and gene compositions. This implies the question of which role each of the three CS-encoding operons, bcsAB1, bcsAB2, and bcsAB3, plays in overall cellulose synthesis. Therefore, we constructed markerless deletions in K. hansenii ATCC 23769, yielding mutant strains that expressed only one of the three CSs. Apparently, BcsAB1 is the only CS that produces fibers of crystalline cellulose. The markerless deletion of bcsAB1 resulted in a nonfiber phenotype in scanning electron microscopy analysis. Expression of the other CSs resulted in a different, nonfibrous extracellular polymeric substance (nfEPS) structure wrapping the cells, which is proposed to contain acetylated cellulose. Transcription analysis revealed that all CSs were expressed continuously and that bcsAB2 showed a higher transcription level than bcsAB1. Moreover, we were able to link the expression of diguanylate cyclase B (dgcB) to cellulose production. IMPORTANCE Acetic acid bacteria form a massive biofilm called "mother of vinegar," which is built of cellulose fibers. Bacterial cellulose is an appealing biomaterial with manifold applications in biomedicine and biotechnology. Because most cellulose-producing acetic acid bacteria express several cellulose synthase operons, a deeper understanding of their contribution to the synthesis of modified forms of cellulose fibers within a natural biofilm is of special interest. For the first time, we were able to identify the contribution of each of the three cellulose synthases to cellulose formation in Komagataeibacter hansenii ATCC 23769 after a chromosomal clean deletion. Moreover, we were able to depict their roles in spatial composition of the biofilm. These findings might be applicable in the future for naturally modified biomaterials with novel properties.
Collapse
|
15
|
Yukphan P, Charoenyingcharoen P, Kingcha Y, Likhitrattanapisal S, Muangham S, Tanasupawat S, Yamada Y. Acetobacter garciniae sp. nov., an acetic acid bacterium isolated from fermented mangosteen peel in Thailand. Int J Syst Evol Microbiol 2021; 71. [PMID: 34662265 DOI: 10.1099/ijsem.0.005052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two isolates, MS16-SU-2T and MS18-SU-3, obtained from fermented mangosteen peel in vinegar were suggested to constitute a new species assignable to the genus Acetobacter based on the results of 16S rRNA gene sequencing. The two isolates showed the highest sequence similarity (98.58%) to Acetobacter tropicalis NBRC 16470T and Acetobacter senegalensis LMG 23690T. However, the calculated similarity values were lower than the threshold for species demarcation. The phylogenetic analysis showed that the branches of the two isolates were separated from other Acetobacter species, and the two isolates constituted a new species in the genus Acetobacter. The genomic DNA of isolate MS16-SU-2T was sequenced. The assembled genome of the isolate was analysed, and the results showed that the highest average nucleotide identity value of 75.9 % was with Acetobacter papayae JCM 25143T and the highest digital DNA-DNA hybridization value of 25.1 % was with Acetobacter fallax LMG 1636T, which were lower than the cutoff values for species delineation. The phylogenetic tree based on the genome sequences showed that the lineage of isolate MS16-SU-2T was most closely related to A. papayae JCM 25143T and Acetobacter suratthaniensis TBRC 1719T, but separated from the branches of these two species. In addition, the two isolates could be distinguished from the type strains of closely related species by their phenotypic characteristics and MALDI-TOF profiles. Therefore, the two isolates, MS16-SU-2T (=TBRC 12339T=LMG 32243T) and MS18-SU-3 (=TBRC 12305), can be assigned to an independent species within the genus Acetobacter, and the name of Acetobacter garciniae sp. nov. is proposed for the two isolates.
Collapse
Affiliation(s)
- Pattaraporn Yukphan
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Piyanat Charoenyingcharoen
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Yutthana Kingcha
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Somsak Likhitrattanapisal
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Supattra Muangham
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand.,Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Yuzo Yamada
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand.,Japan International Cooperation Agency (JICA Senior Overseas Volunteer), Shibuya-ku, Tokyo 151-8558, Japan.,Laboratory of Applied Microbiology (Professor Emeritus), Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
16
|
Anaerobic 3-methylhopanoid production by an acidophilic photosynthetic purple bacterium. Arch Microbiol 2021; 203:6041-6052. [PMID: 34528111 PMCID: PMC8590665 DOI: 10.1007/s00203-021-02561-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022]
Abstract
Bacterial lipids are well-preserved in ancient rocks and certain ones have been used as indicators of specific bacterial metabolisms or environmental conditions existing at the time of rock deposition. Here we show that an anaerobic bacterium produces 3-methylhopanoids, pentacyclic lipids previously detected only in aerobic bacteria and widely used as biomarkers for methane-oxidizing bacteria. Both Rhodopila globiformis, a phototrophic purple nonsulfur bacterium isolated from an acidic warm spring in Yellowstone, and a newly isolated Rhodopila species from a geochemically similar spring in Lassen Volcanic National Park (USA), synthesized 3-methylhopanoids and a suite of related hopanoids and contained the genes encoding the necessary biosynthetic enzymes. Our results show that 3-methylhopanoids can be produced under anoxic conditions and challenges the use of 3-methylhopanoids as biomarkers of oxic conditions in ancient rocks and as prima facie evidence that methanotrophic bacteria were active when the rocks were deposited.
Collapse
|
17
|
Sauer S, Dlugosch L, Kammerer DR, Stintzing FC, Simon M. The Microbiome of the Medicinal Plants Achillea millefolium L. and Hamamelis virginiana L. Front Microbiol 2021; 12:696398. [PMID: 34354692 PMCID: PMC8329415 DOI: 10.3389/fmicb.2021.696398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
In the recent past many studies investigated the microbiome of plants including several medicinal plants (MP). Microbial communities of the associated soil, rhizosphere and the above-ground organs were included, but there is still limited information on their seasonal development, and in particular simultaneous investigations of different plant organs are lacking. Many studies predominantly addressed either the prokaryotic or fungal microbiome. A distinction of epi- and endophytic communities of above-ground plant organs has rarely been made. Therefore, we conducted a comprehensive investigation of the bacterial and fungal microbiome of the MP Achillea millefolium and studied the epi- and endophytic microbial communities of leaves, flower buds and flowers between spring and summer together with the microbiome of the associated soil at one location. Further, we assessed the core microbiome of Achillea from four different locations at distances up to 250 km in southern Germany and Switzerland. In addition, the bacterial and fungal epi- and endophytic leaf microbiome of the arborescent shrub Hamamelis virginiana and the associated soil was investigated at one location. The results show a generally decreasing diversity of both microbial communities from soil to flower of Achillea. The diversity of the bacterial and fungal endophytic leaf communities of Achillea increased from April to July, whereas that of the epiphytic leaf communities decreased. In contrast, the diversity of the fungal communities of both leaf compartments and that of epiphytic bacteria of Hamamelis increased over time indicating plant-specific differences in the temporal development of microbial communities. Both MPs exhibited distinct microbial communities with plant-specific but also common taxa. The core taxa of Achillea constituted a lower fraction of the total number of taxa than of the total abundance of taxa. The results of our study provide a basis to link interactions of the microbiome with their host plant in relation to the production of bioactive compounds.
Collapse
Affiliation(s)
- Simon Sauer
- WALA Heilmittel GmbH, Bad Boll, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | | | | | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
18
|
FNR-Type Regulator GoxR of the Obligatorily Aerobic Acetic Acid Bacterium Gluconobacter oxydans Affects Expression of Genes Involved in Respiration and Redox Metabolism. Appl Environ Microbiol 2021; 87:AEM.00195-21. [PMID: 33741613 DOI: 10.1128/aem.00195-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gene expression in the obligately aerobic acetic acid bacterium Gluconobacter oxydans responds to oxygen limitation, but the regulators involved are unknown. In this study, we analyzed a transcriptional regulator named GoxR (GOX0974), which is the only member of the fumarate-nitrate reduction regulator (FNR) family in this species. Evidence that GoxR contains an iron-sulfur cluster was obtained, suggesting that GoxR functions as an oxygen sensor similar to FNR. The direct target genes of GoxR were determined by combining several approaches, including a transcriptome comparison of a ΔgoxR mutant with the wild-type strain and detection of in vivo GoxR binding sites by chromatin affinity purification and sequencing (ChAP-Seq). Prominent targets were the cioAB genes encoding a cytochrome bd oxidase with low O2 affinity, which were repressed by GoxR, and the pnt operon, which was activated by GoxR. The pnt operon encodes a transhydrogenase (pntA1A2B), an NADH-dependent oxidoreductase (GOX0313), and another oxidoreductase (GOX0314). Evidence was obtained for GoxR being active despite a high dissolved oxygen concentration in the medium. We suggest a model in which the very high respiration rates of G. oxydans due to periplasmic oxidations cause an oxygen-limited cytoplasm and insufficient reoxidation of NAD(P)H in the respiratory chain, leading to inhibited cytoplasmic carbohydrate degradation. GoxR-triggered induction of the pnt operon enhances fast interconversion of NADPH and NADH by the transhydrogenase and NADH reoxidation by the GOX0313 oxidoreductase via reduction of acetaldehyde formed by pyruvate decarboxylase to ethanol. In fact, small amounts of ethanol were formed by G. oxydans under oxygen-restricted conditions in a GoxR-dependent manner.IMPORTANCE Gluconobacter oxydans serves as a cell factory for oxidative biotransformations based on membrane-bound dehydrogenases and as a model organism for elucidating the metabolism of acetic acid bacteria. Surprisingly, to our knowledge none of the more than 100 transcriptional regulators encoded in the genome of G. oxydans has been studied experimentally until now. In this work, we analyzed the function of a regulator named GoxR, which belongs to the FNR family. Members of this family serve as oxygen sensors by means of an oxygen-sensitive [4Fe-4S] cluster and typically regulate genes important for growth under anoxic conditions by anaerobic respiration or fermentation. Because G. oxydans has an obligatory aerobic respiratory mode of energy metabolism, it was tempting to elucidate the target genes regulated by GoxR. Our results show that GoxR affects the expression of genes that support the interconversion of NADPH and NADH and the NADH reoxidation by reduction of acetaldehyde to ethanol.
Collapse
|
19
|
Development of coffee kombucha containing Lactobacillus rhamnosus and Lactobacillus casei: Gastrointestinal simulations and DNA microbial analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Biotechnological Processes in Fruit Vinegar Production. Foods 2021; 10:foods10050945. [PMID: 33925896 PMCID: PMC8145929 DOI: 10.3390/foods10050945] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
The production of fruit vinegars as a way of making use of fruit by-products is an option widely used by the food industry, since surplus or second quality fruit can be used without compromising the quality of the final product. The acetic nature of vinegars and its subsequent impact on the organoleptic properties of the final product allows almost any type of fruit to be used for its elaboration. A growing number of scientific research studies are being carried out on this matrix, and they are revealing the importance of controlling the processes involved in vinegar elaboration. Thus, in this review, we will deal with the incidence of technological and biotechnological processes on the elaboration of fruit vinegars other than grapes. The preparation and production of the juice for the elaboration of the vinegar by means of different procedures is an essential step for the final quality of the product, among which crushing or pressing are the most employed. The different conditions and processing methods of both alcoholic and acetic fermentation also affect significantly the final characteristics of the vinegar produced. For the alcoholic fermentation, the choice between spontaneous or inoculated procedure, together with the microorganisms present in the process, have special relevance. For the acetic fermentation, the type of acetification system employed (surface or submerged) is one of the most influential factors for the final physicochemical properties of fruit vinegars. Some promising research lines regarding fruit vinegar production are the use of commercial initiators to start the acetic fermentation, the use of thermotolerant bacteria that would allow acetic fermentation to be carried out at higher temperatures, or the use of innovative technologies such as high hydrostatic pressure, ultrasound, microwaves, pulsed electric fields, and so on, to obtain high-quality fruit vinegars.
Collapse
|
21
|
Yan C, Li X, Zhang G, Zhu Y, Bi J, Hao H, Hou H. Quorum Sensing-Mediated and Growth Phase-Dependent Regulation of Metabolic Pathways in Hafnia alvei H4. Front Microbiol 2021; 12:567942. [PMID: 33737914 PMCID: PMC7960787 DOI: 10.3389/fmicb.2021.567942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing (QS) is a widespread regulatory mechanism in bacteria used to coordinate target gene expression with cell density. Thus far, little is known about the regulatory relationship between QS and cell density in terms of metabolic pathways in Hafnia alvei H4. In this study, transcriptomics analysis was performed under two conditions to address this question. The comparative transcriptome of H. alvei H4 wild-type at high cell density (OD600 = 1.7) relative to low cell density (OD600 = 0.3) was considered as growth phase-dependent manner (GPDM), and the transcriptome profile of luxI/R deletion mutant (ΔluxIR) compared to the wild-type was considered as QS-mediated regulation. In all, we identified 206 differentially expressed genes (DEGs) mainly presented in chemotaxis, TCA cycle, two-component system, ABC transporters and pyruvate metabolism, co-regulated by the both density-dependent regulation, and the results were validated by qPCR and swimming phenotypic assays. Aside from the co-regulated DEGs, we also found that 59 DEGs, mediated by density-independent QS, function in pentose phosphate and histidine metabolism and that 2084 cell-density-dependent DEGs involved in glycolysis/gluconeogenesis and phenylalanine metabolism were influenced only by GPDM from significantly enriched analysis of transcriptome data. The findings provided new information about the interplay between two density-dependent metabolic regulation, which could assist with the formulation of control strategies for this opportunistic pathogen, especially at high cell density.
Collapse
Affiliation(s)
- Congyang Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Xue Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Yaolei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| |
Collapse
|
22
|
Carrell AA, Schwartz GE, Cregger MA, Gionfriddo CM, Elias DA, Wilpiszeski RL, Klingeman DM, Wymore AM, Muller KA, Brooks SC. Nutrient Exposure Alters Microbial Composition, Structure, and Mercury Methylating Activity in Periphyton in a Contaminated Watershed. Front Microbiol 2021; 12:647861. [PMID: 33815336 PMCID: PMC8017159 DOI: 10.3389/fmicb.2021.647861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
The conversion of mercury (Hg) to monomethylmercury (MMHg) is a critical area of concern in global Hg cycling. Periphyton biofilms may harbor significant amounts of MMHg but little is known about the Hg-methylating potential of the periphyton microbiome. Therefore, we used high-throughput amplicon sequencing of the 16S rRNA gene, ITS2 region, and Hg methylation gene pair (hgcAB) to characterize the archaea/bacteria, fungi, and Hg-methylating microorganisms in periphyton communities grown in a contaminated watershed in East Tennessee (United States). Furthermore, we examined how nutrient amendments (nitrate and/or phosphate) altered periphyton community structure and function. We found that bacterial/archaeal richness in experimental conditions decreased in summer and increased in autumn relative to control treatments, while fungal diversity generally increased in summer and decreased in autumn relative to control treatments. Interestingly, the Hg-methylating communities were dominated by Proteobacteria followed by Candidatus Atribacteria across both seasons. Surprisingly, Hg methylation potential correlated with numerous bacterial families that do not contain hgcAB, suggesting that the overall microbiome structure of periphyton communities influences rates of Hg transformation within these microbial mats. To further explore these complex community interactions, we performed a microbial network analysis and found that the nitrate-amended treatment resulted in the highest number of hub taxa that also corresponded with enhanced Hg methylation potential. This work provides insight into community interactions within the periphyton microbiome that may contribute to Hg cycling and will inform future research that will focus on establishing mixed microbial consortia to uncover mechanisms driving shifts in Hg cycling within periphyton habitats.
Collapse
Affiliation(s)
- Alyssa A Carrell
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Grace E Schwartz
- Oak Ridge National Laboratory, Environmental Science Division, Oak Ridge, TN, United States.,Department of Chemistry, Wofford College, Spartanburg, SC, United States
| | - Melissa A Cregger
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Caitlin M Gionfriddo
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States.,Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Dwayne A Elias
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Regina L Wilpiszeski
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Dawn M Klingeman
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Ann M Wymore
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Katherine A Muller
- Pacific Northwest National Laboratory, Earth Systems Science Division, Richland, WA, United States
| | - Scott C Brooks
- Oak Ridge National Laboratory, Environmental Science Division, Oak Ridge, TN, United States
| |
Collapse
|
23
|
Hilgarth M, Redwitz J, Ehrmann MA, Vogel RF, Jakob F. Bombella favorum sp. nov. and Bombella mellum sp. nov., two novel species isolated from the honeycombs of Apis mellifera. Int J Syst Evol Microbiol 2021; 71. [PMID: 33439113 DOI: 10.1099/ijsem.0.004633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As part of a study investigating the microbiome of bee hives and honey, two novel strains (TMW 2.1880T and TMW 2.1889T) of acetic acid bacteria were isolated and subsequently taxonomically characterized by a polyphasic approach, which revealed that they cannot be assigned to known species. The isolates are Gram-stain-negative, aerobic, pellicle-forming, catalase-positive and oxidase-negative. Cells of TMW 2.1880T are non-motile, thin/short rods, and cells of TMW 2.1889T are motile and occur as rods and long filaments. Morphological, physiological and phylogenetic analyses revealed a distinct lineage within the genus Bombella. Strain TMW 2.1880T is most closely related to the type strain of Bombella intestini with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 94.16 and 56.3 %, respectively. The genome of TMW 2.1880T has a size of 1.98 Mb and a G+C content of 55.3 mol%. Strain TMW 2.1889T is most closely related to the type strain of Bombella apis with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 85.12 and 29.5 %, respectively. The genome of TMW 2.1889T has a size of 2.07 Mb and a G+C content of 60.4 mol%. Ubiquinone analysis revealed that both strains contained Q-10 as the main respiratory quinone. Major fatty acids for both strains were C16 : 0, C19 : 0 cyclo ω8c and summed feature 8, respectively, and additionally C14 : 0 2-OH only for TMW 2.1880T and C14 : 0 only for TMW 2.1889T. Based on polyphasic evidence, the two isolates from honeycombs of Apis mellifera represent two novel species of the genus Bombella, for which the names Bombella favorum sp. nov and Bombella mellum sp. nov. are proposed. The designated respective type strains are TMW 2.1880T (=LMG 31882T=CECT 30114T) and TMW 2.1889T (=LMG 31883T=CECT 30113T).
Collapse
Affiliation(s)
- Maik Hilgarth
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Johannes Redwitz
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Frank Jakob
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| |
Collapse
|
24
|
Qiu X, Zhang Y, Hong H. Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express 2021; 11:29. [PMID: 33595734 PMCID: PMC7889782 DOI: 10.1186/s13568-021-01189-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Acetic acid bacteria (AAB) are obligate aerobic Gram-negative bacteria that are commonly used in vinegar fermentation because of their strong capacity for ethanol oxidation and acetic acid synthesis as well as their acid resistance. However, low biomass and low production rate due to acid stress are still major challenges that must be overcome in industrial processes. Although acid resistance in AAB is important to the production of high acidity vinegar, the acid resistance mechanisms of AAB have yet to be fully elucidated. In this study, we discuss the classification of AAB species and their metabolic processes and review potential acid resistance factors and acid resistance mechanisms in various strains. In addition, we analyze the quorum sensing systems of Komagataeibacter and Gluconacetobacter to provide new ideas for investigation of acid resistance mechanisms in AAB in the form of signaling pathways. The results presented herein will serve as an important reference for selective breeding of high acid resistance AAB and optimization of acetic acid fermentation processes.
Collapse
Affiliation(s)
- Xiaoman Qiu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
- National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Yao Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
- National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Housheng Hong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China.
- National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China.
| |
Collapse
|
25
|
Stergiadis S, Cabeza-Luna I, Mora-Ortiz M, Stewart RD, Dewhurst RJ, Humphries DJ, Watson M, Roehe R, Auffret MD. Unravelling the Role of Rumen Microbial Communities, Genes, and Activities on Milk Fatty Acid Profile Using a Combination of Omics Approaches. Front Microbiol 2021; 11:590441. [PMID: 33552010 PMCID: PMC7859430 DOI: 10.3389/fmicb.2020.590441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/21/2020] [Indexed: 12/01/2022] Open
Abstract
Milk products are an important component of human diets, with beneficial effects for human health, but also one of the major sources of nutritionally undesirable saturated fatty acids (SFA). Recent discoveries showing the importance of the rumen microbiome on dairy cattle health, metabolism and performance highlight that milk composition, and potentially milk SFA content, may also be associated with microorganisms, their genes and their activities. Understanding these mechanisms can be used for the development of cost-effective strategies for the production of milk with less SFA. This work aimed to compare the rumen microbiome between cows producing milk with contrasting FA profile and identify potentially responsible metabolic-related microbial mechanisms. Forty eight Holstein dairy cows were fed the same total mixed ration under the same housing conditions. Milk and rumen fluid samples were collected from all cows for the analysis of fatty acid profiles (by gas chromatography), the abundances of rumen microbiome communities and genes (by whole-genome-shotgun metagenomics), and rumen metabolome (using 500 MHz nuclear magnetic resonance). The following groups: (i) 24 High-SFA (66.9-74.4% total FA) vs. 24 Low-SFA (60.2-66.6%% total FA) cows, and (ii) 8 extreme High-SFA (69.9-74.4% total FA) vs. 8 extreme Low-SFA (60.2-64.0% total FA) were compared. Rumen of cows producing milk with more SFA were characterized by higher abundances of the lactic acid bacteria Lactobacillus, Leuconostoc, and Weissella, the acetogenic Proteobacteria Acetobacter and Kozakia, Mycobacterium, two fungi (Cutaneotrichosporon and Cyphellophora), and at a lesser extent Methanobrevibacter and the protist Nannochloropsis. Cows carrying genes correlated with milk FA also had higher concentrations of butyrate, propionate and tyrosine and lower concentrations of xanthine and hypoxanthine in the rumen. Abundances of rumen microbial genes were able to explain between 76 and 94% on the variation of the most abundant milk FA. Metagenomics and metabolomics analyses highlighted that cows producing milk with contrasting FA profile under the same diet, also differ in their rumen metabolic activities in relation to adaptation to reduced rumen pH, carbohydrate fermentation, and protein synthesis and metabolism.
Collapse
Affiliation(s)
- Sokratis Stergiadis
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Animal, Dairy and Food Chain Sciences, Reading, United Kingdom
| | - Irene Cabeza-Luna
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Animal, Dairy and Food Chain Sciences, Reading, United Kingdom
- Beef and Sheep Research Centre, Scotland's Rural College (SRUC), Roslin Institute Building, Edinburgh, United Kingdom
| | - Marina Mora-Ortiz
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Animal, Dairy and Food Chain Sciences, Reading, United Kingdom
| | - Robert D. Stewart
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard J. Dewhurst
- Dairy Research and Innovation Centre, Scotland's Rural College (SRUC), Dumfries, United Kingdom
| | - David J. Humphries
- Centre for Dairy Research, University of Reading, Reading, United Kingdom
| | - Mick Watson
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rainer Roehe
- Beef and Sheep Research Centre, Scotland's Rural College (SRUC), Roslin Institute Building, Edinburgh, United Kingdom
| | - Marc D. Auffret
- Beef and Sheep Research Centre, Scotland's Rural College (SRUC), Roslin Institute Building, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Tragust S, Herrmann C, Häfner J, Braasch R, Tilgen C, Hoock M, Milidakis MA, Gross R, Feldhaar H. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife 2020; 9:e60287. [PMID: 33138912 PMCID: PMC7609056 DOI: 10.7554/elife.60287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Animals continuously encounter microorganisms that are essential for health or cause disease. They are thus challenged to control harmful microbes while allowing the acquisition of beneficial microbes. This challenge is likely especially important for social insects with respect to microbes in food, as they often store food and exchange food among colony members. Here we show that formicine ants actively swallow their antimicrobial, highly acidic poison gland secretion. The ensuing acidic environment in the stomach, the crop, can limit the establishment of pathogenic and opportunistic microbes ingested with food and improve the survival of ants when faced with pathogen contaminated food. At the same time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae, known bacterial gut associates of formicine ants. This suggests that swallowing of the poison in formicine ants acts as a microbial filter and that antimicrobials have a potentially widespread but so far underappreciated dual role in host-microbe interactions.
Collapse
Affiliation(s)
- Simon Tragust
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Claudia Herrmann
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Jane Häfner
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Ronja Braasch
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Christina Tilgen
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Maria Hoock
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Margarita Artemis Milidakis
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Roy Gross
- Microbiology, Biocenter, University of Würzburg, Am HublandWürzburgGermany
| | - Heike Feldhaar
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| |
Collapse
|
27
|
Oecophyllibacter saccharovorans gen. nov. sp. nov., a bacterial symbiont of the weaver ant Oecophylla smaragdina. J Microbiol 2020; 58:988-997. [DOI: 10.1007/s12275-020-0325-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/19/2020] [Accepted: 09/10/2020] [Indexed: 01/06/2023]
|
28
|
Laureys D, Britton SJ, De Clippeleer J. Kombucha Tea Fermentation: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1734150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- David Laureys
- Innovation centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Scott J. Britton
- Department of Research & Development, Brewery Duvel Moortgat, Puurs-Sint-Amands, Belgium
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Jessika De Clippeleer
- Innovation centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Innovation centre for Brewing & Fermentation, School of Bioscience and Industrial Technology, HOGENT University of Applied Sciences and Arts, Ghent, Belgium
| |
Collapse
|
29
|
Mikkelsen D, Lopez-Sanchez P, Wang D, Gidley MJ. Formation of Cellulose-Based Composites with Hemicelluloses and Pectins Using Komagataeibacter Fermentation. Methods Mol Biol 2020; 2149:73-87. [PMID: 32617930 DOI: 10.1007/978-1-0716-0621-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Komagataeibacter xylinus synthesizes cellulose in an analogous fashion to plants. Through fermentation of K. xylinus in media containing cell wall polysaccharides from the hemicellulose and/or pectin families, composites with cellulose can be produced. These serve as general models for the assembly, structure, and properties of plant cell walls. By studying structure/property relationships of cellulose composites, the effects of defined hemicellulose and/or pectin polysaccharide structures can be investigated. The macroscopic nature of the composites also allows composite mechanical properties to be characterized.The method for producing cellulose-based composites involves reviving and then culturing K. xylinus in the presence of desired hemicelluloses and/or pectins. Different conditions are required for construction of hemicellulose- and pectin-containing composites. Fermentation results in a floating mat or pellicle of cellulose-based composite that can be recovered, washed, and then studied under hydrated conditions without any need for intermediate drying.
Collapse
Affiliation(s)
- Deirdre Mikkelsen
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Patricia Lopez-Sanchez
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.,Product Design, Agrifood, Bioeconomy and Health, RISE Research Institutes of Sweden, Gothenburg, Sweden
| | - Dongjie Wang
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.,College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, TEDA, Tianjin, China
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
30
|
Rodriguez MV, Tano J, Ansaldi N, Carrau A, Srebot MS, Ferreira V, Martínez ML, Cortadi AA, Siri MI, Orellano EG. Anatomical and Biochemical Changes Induced by Gluconacetobacter diazotrophicus Stand Up for Arabidopsis thaliana Seedlings From Ralstonia solanacearum Infection. FRONTIERS IN PLANT SCIENCE 2019; 10:1618. [PMID: 31921261 PMCID: PMC6936193 DOI: 10.3389/fpls.2019.01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/18/2019] [Indexed: 05/09/2023]
Abstract
Nowadays, fertilization and pest control are carried out using chemical compounds that contaminate soil and deteriorate human health. Plant growth promoting bacteria endophytes (PGPBEs), are a well-studied group of bacteria that offers benefits to the host plant, such as phytostimulation, biofertilization, and protection against other microorganisms. The study of Gluconacetobacter diazotrophicus-which belongs to PGPBEs-aids the development of alternative strategies of an integrated approach for crop management practices. Ralstonia solanacearum is responsible for bacterial wilt disease. This phytopathogen is of great interest worldwide due to the enormous economic losses it causes. In this study the action of G. diazotrophicus as a growth promoting bacterium in Arabidopsis thaliana seedlings is analyzed, evaluating the antagonistic mechanisms of this beneficial endophytic bacterium during biotic stress produced by R. solanacearum. Effective colonization of G. diazotrophicus was determined through bacterial counting assays, evaluation of anatomical and growth parameters, and pigments quantification. Biocontrol assays were carried out with Ralstonia pseudosolanacearum GMI1000 model strain and R. solanacearum A21 a recently isolated strain. Inoculation of A. thaliana (Col 0) with G. diazotrophicus Pal 5 triggers a set of biochemical and structural changes in roots, stems, and leaves of seedlings. Discrete callose deposits as papillae were observed at specific sites of root hairs, trichomes, and leaf tissue. Upon R. pseudosolanacearum GMI1000 infection, endophyte-treated plants demonstrated being induced for defense through an augmented callose deposition at root hairs and leaves compared with the non-endophyte-treated controls. The endophytic bacterium appears to be able to prime callose response. Roots and stems cross sections showed that integrity of all tissues was preserved in endophyte-treated plants infected with R. solanacearum A21. The mechanisms of resistance elicited by the plant after inoculation with the endophyte would be greater lignification and sclerosis in tissues and reinforcement of the cell wall through the deposition of callose. As a consequence of this priming in plant defense response, viable phytopathogenic bacteria counting were considerably fewer in endophyte-inoculated plants than in not-inoculated controls. Our results indicate that G. diazotrophicus colonizes A. thaliana plants performing a protective role against the phytopathogenic bacterium R. solanacearum promoting the activation of plant defense system.
Collapse
Affiliation(s)
- María V. Rodriguez
- Área Biología Vegetal (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Josefina Tano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Nazarena Ansaldi
- Área Biología Vegetal (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Analía Carrau
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - María S. Srebot
- Área Biología Vegetal (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Virginia Ferreira
- Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - María L. Martínez
- Área Biología Vegetal (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Adriana A. Cortadi
- Área Biología Vegetal (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María I. Siri
- Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Elena G. Orellano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
- Área Biología Molecular (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
31
|
The effect of carbohydrate sources: Sucrose, invert sugar and components of mānuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS One 2019; 14:e0225845. [PMID: 31800608 PMCID: PMC6892475 DOI: 10.1371/journal.pone.0225845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Bacteria within the digestive tract of adult honey bees are likely to play a key role in the digestion of sugar-rich foods. However, the influence of diet on honey bee gut bacteria is not well understood. During periods of low floral abundance, beekeepers often supplement the natural sources of carbohydrate that honey bees collect, such as nectar, with various forms of carbohydrates such as sucrose (a disaccharide) and invert sugar (a mixture of the monosaccharides glucose and fructose). We compared the effect of these sugar supplements on the relative abundance of bacteria in the gut of bees by feeding bees from a single colony, two natural diets: mānuka honey, a monofloral honey with known antibacterial properties, and a hive diet; and artificial diets of invert sugar, sucrose solution, and sucrose solutions containing synthesised compounds associated with the antibacterial properties of mānuka honey. 16S ribosomal RNA (rRNA)-based sequencing showed that dietary regimes containing mānuka honey, sucrose and invert sugar did not alter the relative abundance of dominant core bacteria after 6 days of being fed these diets. However, sucrose-rich diets increased the relative abundances of three sub-dominant core bacteria, Rhizobiaceae, Acetobacteraceae, and Lactobacillus kunkeei, and decreased the relative abundance of Frischella perrara, all which significantly altered the bacterial composition. Acetogenic bacteria from the Rhizobiaceae and Acetobacteraceae families increased two- to five-fold when bees were fed sucrose. These results suggest that sucrose fuels the proliferation of specific low abundance primary sucrose-feeders, which metabolise sugars into monosaccharides, and then to acetate.
Collapse
|
32
|
Acetobacter sacchari sp. nov., for a plant growth-promoting acetic acid bacterium isolated in Vietnam. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01497-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
33
|
Sickel W, Van de Weyer AL, Bemm F, Schultz J, Keller A. Venus flytrap microbiotas withstand harsh conditions during prey digestion. FEMS Microbiol Ecol 2019; 95:5289860. [PMID: 30649283 DOI: 10.1093/femsec/fiz010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
The carnivorous Venus flytrap (Dionaea muscipula) overcomes environmental nutrient limitation by capturing small animals. Such prey is digested with an acidic enzyme-containing mucilage that is secreted into the closed trap. However, surprisingly little is known about associations with microorganisms. Therefore, we assessed microbiotas of traps and petioles for the Venus flytrap by 16S amplicon meta-barcoding. We also performed time-series assessments of dynamics during digestion in traps and experimental acidification of petioles. We found that the traps hosted distinct microbiotas that differed from adjacent petioles. Further, they showed a significant taxonomic turnover during digestion. Following successful catches, prey-associated bacteria had strong effects on overall composition. With proceeding digestion, however, microbiotas were restored to compositions resembling pre-digestion stages. A comparable, yet less extensive shift was found when stimulating digestion with coronatine. Artificial acidification of petioles did not induce changes towards trap-like communities. Our results show that trap microbiota were maintained during digestion despite harsh conditions and recovered after short-term disturbances through prey microbiota. This indicates trap-specific and resilient associations. By mapping to known genomes, we predicted putative adaptations and functional implications for the system, yet direct mechanisms and quantification of host benefits, like the involvement in digestion, remain to be addressed.
Collapse
Affiliation(s)
- Wiebke Sickel
- Molecular Biodiversity Group, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Felix Bemm
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jörg Schultz
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Germany
| | - Alexander Keller
- Molecular Biodiversity Group, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Germany
| |
Collapse
|
34
|
Alonso DP, Mancini MV, Damiani C, Cappelli A, Ricci I, Alvarez MVN, Bandi C, Ribolla PEM, Favia G. Genome Reduction in the Mosquito Symbiont Asaia. Genome Biol Evol 2019; 11:1-10. [PMID: 30476071 PMCID: PMC6317953 DOI: 10.1093/gbe/evy255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Symbiosis is now recognized as a driving force in evolution, a role that finds its ultimate expression in the variety of associations bonding insects with microbial symbionts. These associations have contributed to the evolutionary success of insects, with the hosts acquiring the capacity to exploit novel ecological niches, and the symbionts passing from facultative associations to obligate, mutualistic symbioses. In bacterial symbiont of insects, the transition from the free-living life style to mutualistic symbiosis often resulted in a reduction in the genome size, with the generation of the smallest bacterial genomes thus far described. Here, we show that the process of genome reduction is still occurring in Asaia, a group of bacterial symbionts associated with a variety of insects. Indeed, comparative genomics of Asaia isolated from different mosquito species revealed a substantial genome size and gene content reduction in Asaia from Anopheles darlingi, a South-American malaria vector. We thus propose Asaia as a novel model to study genome reduction dynamics, within a single bacterial taxon, evolving in a common biological niche.
Collapse
Affiliation(s)
- Diego Peres Alonso
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Maria Vittoria Mancini
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy.,MRC-University of Glasgow-Centre for Virus Research, Glasgow, United Kingdom
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Marcus Vinicius Niz Alvarez
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Claudio Bandi
- Clinical Pediatric Research Center Romeo and Enrica Invernizzi, Department of Biosciences, University of Milan, Italy
| | - Paulo Eduardo Martins Ribolla
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| |
Collapse
|
35
|
Martinez-Sañudo I, Simonato M, Squartini A, Mori N, Marri L, Mazzon L. Metagenomic analysis reveals changes of the Drosophila suzukii microbiota in the newly colonized regions. INSECT SCIENCE 2018; 25:833-846. [PMID: 28323391 DOI: 10.1111/1744-7917.12458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 05/10/2023]
Abstract
The spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a highly polyphagous pest of a wide variety of wild or cultivated berry and stone fruit. Originating from Southeast Asia, it has recently invaded a wide range of regions in Europe and North America. It is well known that insect microbiotas may significantly influence several aspects of the host biology and play an important role in invasive species introduction into new areas. However, in spite of the great economic importance of D. suzukii, a limited attention has been given so far to its microbiota. In this study, we present the first in-depth characterization of gut bacterial diversity from field (native and invasive range) and lab-reared populations of this insect. The gut bacterial communities of field insects were dominated, regardless of their origin, by 2 families of the phylum Proteobacteria: Acetobacteraceae and Enterobacteriaceae, while Firmicutes, mainly represented by the family Staphylococcaceae, prevailed in lab-reared population. Locality was the most significant factor in shaping the microbiota of wild flies. Moreover, a negative correlation between diversity and abundance of Enterobacteriaceae and the time elapsed since the establishment of D. suzukii in a new region was observed. Altogether our results indicate that habitat, food resources as well as the colonization phase of a new region contribute to shape the bacterial communities of the invasive species which, in turn, by evolving more quickly, could influence host adaptation in a new environment.
Collapse
Affiliation(s)
- Isabel Martinez-Sañudo
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, (PD), Italy
| | - Mauro Simonato
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, (PD), Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, (PD), Italy
| | - Nicola Mori
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, (PD), Italy
| | - Laura Marri
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| | - Luca Mazzon
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, (PD), Italy
| |
Collapse
|
36
|
Cousins CR, Fogel M, Bowden R, Crawford I, Boyce A, Cockell C, Gunn M. Biogeochemical probing of microbial communities in a basalt-hosted hot spring at Kverkfjöll volcano, Iceland. GEOBIOLOGY 2018; 16:507-521. [PMID: 29856116 DOI: 10.1111/gbi.12291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
We investigated bacterial and archaeal communities along an ice-fed surficial hot spring at Kverkfjöll volcano-a partially ice-covered basaltic volcano at Vatnajökull glacier, Iceland, using biomolecular (16S rRNA, apsA, mcrA, amoA, nifH genes) and stable isotope techniques. The hot spring environment is characterized by high temperatures and low dissolved oxygen concentrations at the source (68°C and <1 mg/L (±0.1%)) changing to lower temperatures and higher dissolved oxygen downstream (34.7°C and 5.9 mg/L), with sulfate the dominant anion (225 mg/L at the source). Sediments are comprised of detrital basalt, low-temperature alteration phases and pyrite, with <0.4 wt. % total organic carbon (TOC). 16S rRNA gene profiles reveal that organisms affiliated with Hydrogenobaculum (54%-87% bacterial population) and Thermoproteales (35%-63% archaeal population) dominate the micro-oxic hot spring source, while sulfur-oxidizing archaea (Sulfolobales, 57%-82%), and putative sulfur-oxidizing and heterotrophic bacterial groups dominate oxic downstream environments. The δ13 Corg (‰ V-PDB) values for sediment TOC and microbial biomass range from -9.4‰ at the spring's source decreasing to -12.6‰ downstream. A reverse effect isotope fractionation of ~3‰ between sediment sulfide (δ34 S ~0‰) and dissolved water sulfate (δ34 S +3.2‰), and δ18 O values of ~ -5.3‰ suggest pyrite forms abiogenically from volcanic sulfide, followed by abiogenic and microbial oxidation. These environments represent an unexplored surficial geothermal environment analogous to transient volcanogenic habitats during putative "snowball Earth" scenarios and volcano-ice geothermal environments on Mars.
Collapse
Affiliation(s)
- Claire R Cousins
- School of Earth and Environmental Science, University of St Andrews, St Andrews, UK
| | - Marilyn Fogel
- Department of Earth Sciences, University of California Riverside, Riverside, California
| | - Roxane Bowden
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia
| | | | | | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
37
|
Dent D. Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus. Symbiosis 2018. [DOI: 10.5772/intechopen.75813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Zhao X, Zhang X, Chen Z, Wang Z, Lu Y, Cheng D. The Divergence in Bacterial Components Associated with Bactrocera dorsalis across Developmental Stages. Front Microbiol 2018; 9:114. [PMID: 29449838 PMCID: PMC5799270 DOI: 10.3389/fmicb.2018.00114] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/18/2018] [Indexed: 11/13/2022] Open
Abstract
Eco-evolutionary dynamics of microbiotas at the macroscale level are largely driven by ecological variables. The diet and living environment of the oriental fruit fly, Bactrocera dorsalis, diversify during development, providing a natural system to explore convergence, divergence, and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny, and environment. Here, we characterized the microbiotas of 47 B. dorsalis individuals from three distinct populations by 16S rRNA amplicon sequencing. A significant deviation was found within the larvae, pupae, and adults of each population. Pupae were characterized by an increased bacterial taxonomic and functional diversity. Principal components analysis showed that the microbiotas of larvae, pupae, and adults clearly separated into three clusters. Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae were the predominant families in larval and adult samples, and PICRUSt analysis indicated that phosphoglycerate mutases and transketolases were significantly enriched in larvae, while phosphoglycerate mutases, transketolases, and proteases were significantly enriched in adults, which may support the digestive function of the microbiotas in larvae and adults. The abundances of Intrasporangiaceae, Dermabacteraceae (mainly Brachybacterium) and Brevibacteriaceae (mainly Brevibacterium) were significantly higher in pupae, and the antibiotic transport system ATP-binding protein and antibiotic transport system permease protein pathways were significantly enriched there as well, indicating the defensive function of microbiotas in pupae. Overall, differences in the microbiotas of the larvae, pupae, and adults are likely to contribute to differences in nutrient assimilation and living environments.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Zhang
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Zhenshi Chen
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Zhen Wang
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Daifeng Cheng
- Department of Entomology, South China Agricultural University, Guangzhou, China.,Grouped Microorganism Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
39
|
Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production. Sci Rep 2017; 7:7911. [PMID: 28801647 PMCID: PMC5554229 DOI: 10.1038/s41598-017-06918-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Bacterial cellulose (BC) is widely used in industries owing to its high purity and strength. Although Komagataeibacter nataicola is a representative species for BC production, its intracellular metabolism leading to BC secretion is unclear. In the present study, a genome-scale metabolic network of cellulose-producing K. nataicola strain RZS01 was reconstructed to understand its metabolic behavior. This model iHZ771 comprised 771 genes, 2035 metabolites, and 2014 reactions. Constraint-based analysis was used to characterize and evaluate the critical intracellular pathways. The analysis revealed that a total of 71 and 30 genes are necessary for cellular growth in a minimal medium and complex medium, respectively. Glycerol was identified as the optimal carbon source for the highest BC production. The minimization of metabolic adjustment algorithm identified 8 genes as potential targets for over-production of BC. Overall, model iHZ771 proved to be a useful platform for understanding the physiology and BC production of K. nataicola.
Collapse
|
40
|
Lenaerts M, Goelen T, Paulussen C, Herrera‐Malaver B, Steensels J, Van den Ende W, Verstrepen KJ, Wäckers F, Jacquemyn H, Lievens B. Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12933] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marijke Lenaerts
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular SystemsKU Leuven Sint‐Katelijne Waver Belgium
| | - Tim Goelen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular SystemsKU Leuven Sint‐Katelijne Waver Belgium
| | - Caroline Paulussen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular SystemsKU Leuven Sint‐Katelijne Waver Belgium
| | - Beatriz Herrera‐Malaver
- Lab for Systems BiologyVIB Center for Microbiology & Centre of Microbial and Plant Genetics (CMPG) Lab for Genetics and GenomicsDepartment of Microbial and Molecular SystemsKU Leuven Leuven Belgium
| | - Jan Steensels
- Lab for Systems BiologyVIB Center for Microbiology & Centre of Microbial and Plant Genetics (CMPG) Lab for Genetics and GenomicsDepartment of Microbial and Molecular SystemsKU Leuven Leuven Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant BiologyBiology DepartmentKU Leuven Leuven Belgium
| | - Kevin J. Verstrepen
- Lab for Systems BiologyVIB Center for Microbiology & Centre of Microbial and Plant Genetics (CMPG) Lab for Genetics and GenomicsDepartment of Microbial and Molecular SystemsKU Leuven Leuven Belgium
| | - Felix Wäckers
- Biobest Westerlo Belgium
- Lancaster Environment CentreLancaster University Lancaster UK
| | - Hans Jacquemyn
- Plant Conservation and Population BiologyBiology DepartmentKU Leuven Leuven Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular SystemsKU Leuven Sint‐Katelijne Waver Belgium
| |
Collapse
|
41
|
Yun JH, Lee JY, Hyun DW, Jung MJ, Bae JW. Bombella apis sp. nov., an acetic acid bacterium isolated from the midgut of a honey bee. Int J Syst Evol Microbiol 2017; 67:2184-2188. [PMID: 28671528 DOI: 10.1099/ijsem.0.001921] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As part of a study to investigate the microbial diversity in the intestine of Apis mellifera, we isolated strain MRM1T from the midgut. MRM1T was a Gram-stain-negative, strictly aerobic, non-motile, non-spore forming and rod-shaped bacteria. Creamy beige-coloured colonies were circular with entire margins in Lactobacilli MRS agar. The strain grew at 25-37 °C (optimum, 30-37 °C) and at a pH range of 4.0 to 9.0 (optimum pH, 7.0-8.5). The strain tolerated 0-1 % (w/v) NaCl (optimal growth occurred in the absence of NaCl). On the basis of the results of a phylogenetic analysis based on the 16S rRNA gene sequences, we determined that MRM1T represents a member of the genus Bombella with the highest sequence similarity to Bombella intestini LMG 28161T (98.8 %). The major quinone was Q10, and dominant fatty acids (>10 %) were C19 : 0cyclo ω8c (33.6 %), C16 : 0 (22.2 %), C18 : 1ω7c (15.9 %) and C14 : 0 (12.5 %). The polar lipid profile of MRM1T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified phospholipid and four unidentified lipids. The DNA G+C content of MRM1T was 59.5 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, MRM1T represents a novel species of the genus Bombella, for which the name Bombella apis sp. nov. is proposed with the type strain MRM1T (=KCTC 52452T=JCM 31623T).
Collapse
Affiliation(s)
- Ji-Hyun Yun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Dong-Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Mi-Ja Jung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
42
|
Zhang H, Xu X, Chen X, Yuan F, Sun B, Xu Y, Yang J, Sun D. Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01. Sci Rep 2017; 7:4431. [PMID: 28667320 PMCID: PMC5493696 DOI: 10.1038/s41598-017-04589-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
Komagataeibacter nataicola is an acetic acid bacterium (AAB) that can produce abundant bacterial cellulose and tolerate high concentrations of acetic acid. To globally understand its fermentation characteristics, we present a high-quality complete genome sequence of K. nataicola RZS01. The genome consists of a 3,485,191-bp chromosome and 6 plasmids, which encode 3,514 proteins and bear three cellulose synthase operons. Phylogenetic analysis at the genome level provides convincing evidence of the evolutionary position of K. nataicola with respect to related taxa. Genomic comparisons with other AAB revealed that RZS01 shares 36.1%~75.1% of sequence similarity with other AAB. The sequence data was also used for metabolic analysis of biotechnological substrates. Analysis of the resistance to acetic acid at the genomic level indicated a synergistic mechanism responsible for acetic acid tolerance. The genomic data provide a viable platform that can be used to understand and manipulate the phenotype of K. nataicola RZS01 to further improve bacterial cellulose production.
Collapse
Affiliation(s)
- Heng Zhang
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xuran Xu
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiao Chen
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanshu Yuan
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bianjing Sun
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yunhua Xu
- Department of Life Sciences, Lianyungang Normal College, Lianyungang, 222000, China
| | - Jiazhi Yang
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China. .,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China. .,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
43
|
Sugiyama J, Kiyuna T, Nishijima M, An KD, Nagatsuka Y, Tazato N, Handa Y, Hata-Tomita J, Sato Y, Kigawa R, Sano C. Polyphasic insights into the microbiomes of the Takamatsuzuka Tumulus and Kitora Tumulus. J GEN APPL MICROBIOL 2017; 63:63-113. [DOI: 10.2323/jgam.2017.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Yoshinori Sato
- Tokyo National Research Institute for Cultural Properties
| | - Rika Kigawa
- Tokyo National Research Institute for Cultural Properties
| | - Chie Sano
- Tokyo National Research Institute for Cultural Properties
| |
Collapse
|
44
|
Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Appl Environ Microbiol 2016; 83:AEM.02398-16. [PMID: 27793826 DOI: 10.1128/aem.02398-16] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022] Open
Abstract
The postharvest treatment and processing of fresh coffee cherries can impact the quality of the unroasted green coffee beans. In the present case study, freshly harvested Arabica coffee cherries were processed through two different wet and dry methods to monitor differences in the microbial community structure and in substrate and metabolite profiles. The changes were followed throughout the postharvest processing chain, from harvest to drying, by implementing up-to-date techniques, encompassing multiple-step metagenomic DNA extraction, high-throughput sequencing, and multiphasic metabolite target analysis. During wet processing, a cohort of lactic acid bacteria (i.e., Leuconostoc, Lactococcus, and Lactobacillus) was the most commonly identified microbial group, along with enterobacteria and yeasts (Pichia and Starmerella). Several of the metabolites associated with lactic acid bacterial metabolism (e.g., lactic acid, acetic acid, and mannitol) produced in the mucilage were also found in the endosperm. During dry processing, acetic acid bacteria (i.e., Acetobacter and Gluconobacter) were most abundant, along with Pichia and non-Pichia (Candida, Starmerella, and Saccharomycopsis) yeasts. Accumulation of associated metabolites (e.g., gluconic acid and sugar alcohols) took place in the drying outer layers of the coffee cherries. Consequently, both wet and dry processing methods significantly influenced the microbial community structures and hence the composition of the final green coffee beans. This systematic approach to dissecting the coffee ecosystem contributes to a deeper understanding of coffee processing and might constitute a state-of-the-art framework for the further analysis and subsequent control of this complex biotechnological process. IMPORTANCE Coffee production is a long process, starting with the harvest of coffee cherries and the on-farm drying of their beans. In a later stage, the dried green coffee beans are roasted and ground in order to brew a cup of coffee. The on-farm, postharvest processing method applied can impact the quality of the green coffee beans. In the present case study, freshly harvested Arabica coffee cherries were processed through wet and dry processing in four distinct variations. The microorganisms present and the chemical profiles of the coffee beans were analyzed throughout the postharvest processing chain. The up-to-date techniques implemented facilitated the investigation of differences related to the method applied. For instance, different microbial groups were associated with wet and dry processing methods. Additionally, metabolites associated with the respective microorganisms accumulated on the final green coffee beans.
Collapse
|
45
|
Babujia LC, Silva AP, Nakatani AS, Cantão ME, Vasconcelos ATR, Visentainer JV, Hungria M. Impact of long-term cropping of glyphosate-resistant transgenic soybean [Glycine max (L.) Merr.] on soil microbiome. Transgenic Res 2016; 25:425-40. [PMID: 26873023 DOI: 10.1007/s11248-016-9938-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/04/2016] [Indexed: 01/21/2023]
Abstract
The transgenic soybean [Glycine max (L.) Merrill] occupies about 80 % of the global area cropped with this legume, the majority comprising the glyphosate-resistant trait (Roundup Ready(®), GR or RR). However, concerns about possible impacts of transgenic crops on soil microbial communities are often raised. We investigated soil chemical, physical and microbiological properties, and grain yields in long-term field trials involving conventional and nearly isogenic RR transgenic genotypes. The trials were performed at two locations in Brazil, with different edaphoclimatic conditions. Large differences in physical, chemical and classic microbiological parameters (microbial biomass of C and N, basal respiration), as well as in grain production were observed between the sites. Some phyla (Proteobacteria, Actinobacteria, Acidobacteria), classes (Alphaproteobacteria, Actinomycetales, Solibacteres) and orders (Rhizobiales, Burkholderiales, Myxococcales, Pseudomonadales), as well as some functional subsystems (clustering-based subsystems, carbohydrates, amino acids and protein metabolism) were, in general, abundant in all treatments. However, bioindicators related to superior soil fertility and physical properties at Londrina were identified, among them a higher ratio of Proteobacteria:Acidobacteria. Regarding the transgene, the metagenomics showed differences in microbial taxonomic and functional abundances, but lower in magnitude than differences observed between the sites. Besides the site-specific differences, Proteobacteria, Firmicutes and Chlorophyta were higher in the transgenic treatment, as well as sequences related to protein metabolism, cell division and cycle. Although confirming effects of the transgenic trait on soil microbiome, no differences were recorded in grain yields, probably due to the buffering capacity associated with the high taxonomic and functional microbial diversity observed in all treatments.
Collapse
Affiliation(s)
- Letícia Carlos Babujia
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil
| | | | | | | | | | - Jesuí Vergilio Visentainer
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil
| | | |
Collapse
|
46
|
Abstract
Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens.
Collapse
|
47
|
Sickel W, Grafe TU, Meuche I, Steffan-Dewenter I, Keller A. Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies. MICROBIAL ECOLOGY 2016; 71:938-53. [PMID: 26790863 DOI: 10.1007/s00248-015-0723-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 12/21/2015] [Indexed: 05/25/2023]
Abstract
Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats.
Collapse
Affiliation(s)
- Wiebke Sickel
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - T Ulmar Grafe
- Faculty of Science, University Brunei Darussalam, Tungku Link, Gadong, BE, 1410, Brunei
| | - Ivonne Meuche
- Faculty of Science, University Brunei Darussalam, Tungku Link, Gadong, BE, 1410, Brunei
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Alexander Keller
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
48
|
Wang B, Shao Y, Chen T, Chen W, Chen F. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Sci Rep 2015; 5:18330. [PMID: 26691589 PMCID: PMC4686929 DOI: 10.1038/srep18330] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.
Collapse
Affiliation(s)
- Bin Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Tao Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Wanping Chen
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Fusheng Chen
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, Hubei Province, P. R. China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| |
Collapse
|
49
|
Dishisha T, Pyo SH, Hatti-Kaul R. Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb Cell Fact 2015; 14:200. [PMID: 26690945 PMCID: PMC4687118 DOI: 10.1186/s12934-015-0388-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 11/28/2022] Open
Abstract
Background 3-Hydroxypropionic acid (3HP) and acrylic acid (AA) are industrially important platform- and secondary chemical, respectively. Their production from renewable resources by environment-friendly processes is desirable. In the present study, both chemicals were almost quantitatively produced from biodiesel-derived glycerol by an integrated process involving microbial and chemical catalysis. Results Glycerol was initially converted in a fed-batch mode of operation to equimolar quantities of 3HP and 1,3-propanediol (1,3PDO) under anaerobic conditions using resting cells of Lactobacillus reuteri as a biocatalyst. The feeding rate of glycerol was controlled at 62.5 mg/gCDW.h which is half the maximum metabolic flux of glycerol to 3HP and 1,3PDO through the L. reuteri propanediol-utilization (pdu) pathway to prevent accumulation of the inhibitory intermediate, 3-hydroxypronionaldehyde (3HPA). Subsequently, the cell-free supernatant containing the mixture of 3HP and 1,3PDO was subjected to selective oxidation under aerobic conditions using resting cells of Gluconobacter oxydans where 1,3PDO was quantitatively converted to 3HP in a batch system. The optimum conditions for the bioconversion were 10 g/L substrate and 5.2 g/L cell dry weight. Higher substrate concentrations led to enzyme inhibition and incomplete conversion. The resulting solution of 3HP was dehydrated to AA over titanium dioxide (TiO2) at 230 °C with a yield of >95 %. Conclusions The present study represents the first report on an integrated process for production of acrylic acid at high purity and -yield from glycerol through 3HP as intermediate without any purification step. The proposed process could have potential for industrial production of 3HP and AA after further optimization.Integrated three-step process for conversion of biodiesel glycerol to 3-hydroxypropionic acid (3HP) and acrylic acid (AA). Glycerol was initially converted to equimolar quantities of 3HP and 1,3-propanediol (1,3PDO) using resting cells of Lactobacillus reuteri. Subsequently, the cell-free supernatant containing the mixture of 3HP and 1,3PDO was subjected to selective oxidation using resting cells of Gluconobacter oxydans where 1,3PDO was quantitatively converted to 3HP. The resulting solution of 3HP was dehydrated to AA over titanium dioxide (TiO2) at 230 °C. ![]() Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0388-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tarek Dishisha
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, 221 00, Lund, Sweden. .,Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511, Beni-Suef, Egypt.
| | - Sang-Hyun Pyo
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, 221 00, Lund, Sweden.
| | - Rajni Hatti-Kaul
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, 221 00, Lund, Sweden.
| |
Collapse
|
50
|
Kim SS, Lee SY, Park KJ, Park SM, An HJ, Hyun JM, Choi YH. Gluconacetobacter sp. gel_SEA623-2, bacterial cellulose producing bacterium isolated from citrus fruit juice. Saudi J Biol Sci 2015; 24:314-319. [PMID: 28149167 PMCID: PMC5272943 DOI: 10.1016/j.sjbs.2015.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 11/24/2022] Open
Abstract
Cellulose producing bacterial strain was isolated from citrus fruit juice fungus. The isolated strain was identified as Gluconacetobacter sp. gel_SEA623-2 based on several morphological characteristics, biochemical tests, and 16S rRNA conducted. Culture conditions for bacterial cellulose production by SEA623-2 were screened in static trays. Conditions were extensively optimized by varying the kind of fruit juice, pH, sugar concentration, and temperature for maximum cellulose production. SEA623-2 has a high productive capacity in citrus processing medium, but not in other fruits. The optimal combination of the media constituents for bacterial cellulose production is as follows: 10% citrus juice, 10% sucrose, 1% acetic acid, and 1% ethanol at 30 °C, pH 3.5. Bacterial cellulose produced by SEA623-2 has soft physical properties, high tensile strength, and high water retention value. The cellulose produced by the selected bacteria is suitable as a cosmetic and medical material.
Collapse
Affiliation(s)
- S S Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 697-943, Republic of Korea
| | - S Y Lee
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 697-943, Republic of Korea
| | - K J Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 697-943, Republic of Korea
| | - S M Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 697-943, Republic of Korea
| | - H J An
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 697-943, Republic of Korea
| | - J M Hyun
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 697-943, Republic of Korea
| | - Y H Choi
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 697-943, Republic of Korea
| |
Collapse
|