1
|
Tirsi A, Gliagias V, Zhu D, Wong B, Gupta R, Park SC, Obstbaum S, Tello C. Correlations between Steady-State Pattern Electroretinogram and Humphrey Visual Field Analyzer Global Indices and Their Associations with Retinal Ganglion Cell Layer-Inner Plexiform Layer Thickness in Glaucoma Suspects. J Ophthalmol 2024; 2024:2443887. [PMID: 38500553 PMCID: PMC10948225 DOI: 10.1155/2024/2443887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose The purpose of this study was to investigate the utility of steady state pattern electroretinogram (ss-PERG) in detecting retinal ganglion cell (RGC) dysfunction in glaucoma suspects (GS) who had normal 24-2 Humphrey Visual Fields (HFA). Materials and Methods This was a prospective cohort study of GS patients who were identified based on optic disc appearance with normal HFAs. Patients received a complete eye examination, standard automated perimetry (SAP), optical coherence tomography (OCT), and ss-PERG measurements. The ss-PERG parameters, Magnitude (Mag), Magnitude D (MagD), and MagD/Mag ratio, were examined, along with their relationships between HFA and OCT measurements. Results Twenty-five patients were included in this study, with a total of 49 eyes. Fifteen eyes had abnormal ss-PERG parameters and when compared to GS eyes with normal ss-PERG parameters, there were significant differences in HFA 24-2, retinal nerve fiber layer (RNFL) thickness, and ganglion cell layer and inner plexiform layer (GCL + IPL) thickness. All ss-PERG parameters were significantly correlated with 24-2 VF mean deviation (MD) and visual field index (VFI), as well as 10-2 VF MD after controlling for age, sex, intraocular pressure, central corneal thickness, and spherical equivalent. When controlled for age, spherical equivalent, and IOP, MagD/Mag ratio significantly contributed to the variance in average GCL + IPL thicknesses, whereas 24-2 VF MD and 10-2 VF MD did not. MagD/Mag ratio also significantly accounted for variance in all macular GCL + IPL sectors, while 10-2 VF MD did not. Conclusions ss-PERG has significant correlations with HFA global indices and was predictive of GCL + IPL thickness in GS patients. Clinical Significance. ss-PERG may serve as a useful functional tool for detecting and measuring RGC dysfunction in GS. It appears to be more sensitive than HFA in the detection of early changes in GCL + IPL thicknesses and may be helpful to use in conjunction with current diagnostic studies to improve the ability of monitoring GS progression.
Collapse
Affiliation(s)
- Andrew Tirsi
- Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell Health, New Hyde Park, NY, USA
| | | | - Daniel Zhu
- Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
| | - Benny Wong
- Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
| | - Rohun Gupta
- Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell Health, New Hyde Park, NY, USA
| | - Sung Chul Park
- Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell Health, New Hyde Park, NY, USA
| | - Stephen Obstbaum
- Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell Health, New Hyde Park, NY, USA
| | - Celso Tello
- Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell Health, New Hyde Park, NY, USA
| |
Collapse
|
2
|
Cimaglia G, Bevan RJ, Want A, Morgan JE. Gene Gun DiOlistic Labelling of Retinal Ganglion Cells. Methods Mol Biol 2023; 2708:33-40. [PMID: 37558957 DOI: 10.1007/978-1-0716-3409-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Gene gun DiOlistic labelling enables the detailed visualization of retinal ganglion cells (RGCs) dendritic structure. Since the level of labelling is independent of cellular health, it is useful for the characterization of neuronal structure in degenerating neurons where expressed reporters may be inadequate. The method uses compressed helium gas to fire tungsten or gold microparticles coated in carbocyanine dyes (DiD, DiI, DiO) into flat mounted retinas. Here we describe the methods to optimize labelling and ensure a high yield of adequately labelled cells, with a focus on retinal ganglion cells.
Collapse
Affiliation(s)
- Gloria Cimaglia
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Ryan J Bevan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK.
| | - Andrew Want
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Kovalevskaya MA, Antonyan VB, Muntianova EV, Zueva MV. Risk factors as glaucoma predictors in myopic students. RUSSIAN OPHTHALMOLOGICAL JOURNAL 2022. [DOI: 10.21516/2072-0076-2022-15-4-30-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: identification of early risk factors — predictors of POAG development in students with myopic refraction based on questionnaire and functional test data and the effects of fractal photostimulation (FS). Material and methods. The study involved two clinical groups: the main group of 24 students (48 eyes) with mild to moderate myopia, averagely aged 21.3 ± 0.7 years, and the comparison group (according to FS effects) of 29 patients (58 eyes) with an established diagnosis of stage I–III POAG, averagely aged 58 ± 18 years, and a control group consisting of 66 people (132 eyes, mean age 21.2 ± 1.3 years). The case history of patients and typical complaints were found in questionnaire data. For the two clinical groups, the impact of 10 low-intensity FS sessions was evaluated. Results. A set of features viewed as risk factors for POAG development was determined using the data of the questionaries filled in by the main and comparison groups. The changes in mean IOP values measured before and after an FS course were found to be greater in POAG patients than in myopic students. FS was shown to contribute to IOP stabilization in patients with pre-existing morphological and functional glaucoma changes and the occurrence of accompanying pathologies such as vasospasm, blood pressure fluctuations, and migraine-like pain. After a course of FS, overall photosensitivity increased significantly as compared with the baseline in students with mild and moderate myopia (p < 0.05). Also, a positive effect of an FS course on MD indices in patients with stages IIa and IIIa POAG was confirmed. Conclusion. The research results confirm the need to identify clinical and functional predictors of POAG with a progressive glaucomatous process in students with myopic refraction.
Collapse
Affiliation(s)
| | | | | | - M. V. Zueva
- Helmholtz National Medical Research Center of Eye Diseases
| |
Collapse
|
4
|
Niu F, Han P, Zhang J, She Y, Yang L, Yu J, Zhuang M, Tang K, Shi Y, Yang B, Liu C, Peng B, Ji SJ. The m 6A reader YTHDF2 is a negative regulator for dendrite development and maintenance of retinal ganglion cells. eLife 2022; 11:75827. [PMID: 35179492 PMCID: PMC8906807 DOI: 10.7554/elife.75827] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
The precise control of growth and maintenance of the retinal ganglion cell (RGC) dendrite arborization is critical for normal visual functions in mammals. However, the underlying mechanisms remain elusive. Here, we find that the N6-methyladenosine (m6A) reader YTHDF2 is highly expressed in the mouse RGCs. Conditional knockout (cKO) of Ythdf2 in the retina leads to increased RGC dendrite branching, resulting in more synapses in the inner plexiform layer. Interestingly, the Ythdf2 cKO mice show improved visual acuity compared with control mice. We further demonstrate that Ythdf2 cKO in the retina protects RGCs from dendrite degeneration caused by the experimental acute glaucoma model. We identify the m6A-modified YTHDF2 target transcripts which mediate these effects. This study reveals mechanisms by which YTHDF2 restricts RGC dendrite development and maintenance. YTHDF2 and its target mRNAs might be valuable in developing new treatment approaches for glaucomatous eyes.
Collapse
Affiliation(s)
- Fugui Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Peng Han
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuanchu She
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Lixin Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jun Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Mengru Zhuang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kezhen Tang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuwei Shi
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Baisheng Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chunqiao Liu
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- Department of Neurosurgery, Fudan University, Shanghai, China
| | - Sheng-Jian Ji
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Henderson DCM, Vianna JR, Gobran J, Pierdomenico JD, Hooper ML, Farrell SRM, Chauhan BC. Longitudinal In Vivo Changes in Retinal Ganglion Cell Dendritic Morphology After Acute and Chronic Optic Nerve Injury. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34232261 PMCID: PMC8267182 DOI: 10.1167/iovs.62.9.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize in vivo dendritic changes in retinal ganglion cells (RGCs) after acute (optic nerve transection, ONT) and chronic (experimental glaucoma, EG) optic nerve injury. Methods ONT and EG (microbead model) were carried out in Thy1-YFP mice in which the entire RGC dendritic arbor was imaged with confocal fluorescence scanning laser ophthalmoscopy over two weeks in the ONT group and over two and six months, respectively, in two (groups 1 and 2) EG groups. Sholl analysis was used to quantify dendritic structure with the parameters: area under the curve (AUC), radius of the dendritic field, peak number of intersections (PI), and distance to the PI (PD). Results Dendritic changes were observed after three days post-ONT with significant decreases in all parameters at two weeks. In group 1 EG mice, mean (SD) intraocular pressure (IOP) was 15.2 (1.1) and 9.8 (0.3) mmHg in the EG and untreated contralateral eyes, respectively, with a significant corresponding decrease in AUC, PI, and PD, but not radius. In group 2 mice, the respective IOP was 13.1 (1.0) and 8.8 (0.1) mmHg, peaking at two months before trending towards baseline. Over the first two months, AUC, PI, and PD decreased significantly, with no further subsequent changes. The rates of change of the parameters after ONT was 5 to 10 times faster than in EG. Conclusions Rapid dendritic changes occurred after ONT, while changes in EG were slower and associated with level of IOP increase. The earliest alterations were loss of inner neurites without change in dendritic field.
Collapse
Affiliation(s)
- Delaney C M Henderson
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jayme R Vianna
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John Gobran
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Johnny Di Pierdomenico
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michele L Hooper
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Spring R M Farrell
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Balwantray C Chauhan
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Kumar S, Ramakrishnan H, Viswanathan S, Akopian A, Bloomfield SA. Neuroprotection of the Inner Retina Also Prevents Secondary Outer Retinal Pathology in a Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:35. [PMID: 34297802 PMCID: PMC8300060 DOI: 10.1167/iovs.62.9.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose We examined structural and functional changes in the outer retina of a mouse model of glaucoma. We examined whether these changes are a secondary consequence of damage in the inner retina and whether neuroprotection of the inner retina also prevents outer retinal changes. Methods We used an established microbead occlusion model of glaucoma whereby intraocular pressure (IOP) was elevated. Specific antibodies were used to label rod and cone bipolar cells (BCs), horizontal cells (HCs), and retinal ganglion cells (RGCs), as well as synaptic components in control and glaucomatous eyes, to assess structural damage and cell loss. ERG recordings were made to assess outer retina function. Results We found structural and functional damage of BCs, including significant cell loss and dendritic/axonal remodeling of HCs, following IOP elevation. The first significant loss of both BCs occurred at 4 to 5 weeks after microbead injection. However, early changes in the dendritic structure of RGCs were observed at 3 weeks, but significant changes in the rod BC axon terminal structure were not seen until 4 weeks. We found that protection of inner retinal neurons in glaucomatous eyes by pharmacological blockade of gap junctions or genetic ablation of connexin 36 largely prevented outer retinal damage. Conclusions Together, our results indicate that outer retinal impairments in glaucoma are a secondary sequalae of primary damage in the inner retina. The finding that neuroprotection of the inner retina can also prevent outer retinal damage has important implications with regard to the targets for effective neuroprotective therapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Hariharasubramanian Ramakrishnan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Suresh Viswanathan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Abram Akopian
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Stewart A. Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| |
Collapse
|
7
|
Tribble JR, Vasalauskaite A, Redmond T, Young RD, Hassan S, Fautsch MP, Sengpiel F, Williams PA, Morgan JE. Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma. Brain Commun 2019; 1:fcz035. [PMID: 31894207 PMCID: PMC6928391 DOI: 10.1093/braincomms/fcz035] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022] Open
Abstract
Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma. Whether this occurs in human glaucoma has yet to be elucidated. Serial block face scanning electron microscopy is well established as a method to determine neuronal connectivity at high resolution but so far has only been performed in normal retina from animal models. To assess the structure-function relationship of early human glaucomatous neurodegeneration, regions of inner retina assessed to have none-to-moderate loss of retinal ganglion cell number were processed using serial block face scanning electron microscopy (n = 4 normal retinas, n = 4 glaucoma retinas). This allowed detailed 3D reconstruction of retinal ganglion cells and their intracellular components at a nanometre scale. In our datasets, retinal ganglion cell dendrites degenerate early in human glaucoma, with remodelling and redistribution of the mitochondria. We assessed the relationship between visual sensitivity and retinal ganglion cell density and discovered that this only partially conformed to predicted models of structure-function relationships, which may be affected by these early neurodegenerative changes. In this study, human glaucomatous retinal ganglion cells demonstrate compartmentalized degenerative changes as observed in animal models. Importantly, in these models, many of these changes have been demonstrated to be reversible, increasing the likelihood of translation to viable therapies for human glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden
| | | | - Tony Redmond
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK
| | - Robert D Young
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK
| | - Shoaib Hassan
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XW Wales, UK
| | | | - Frank Sengpiel
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX Wales, UK
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XW Wales, UK
| |
Collapse
|
8
|
Agostinone J, Alarcon-Martinez L, Gamlin C, Yu WQ, Wong ROL, Di Polo A. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 2019; 141:1963-1980. [PMID: 29931057 PMCID: PMC6022605 DOI: 10.1093/brain/awy142] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Jessica Agostinone
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Park HYL, Kim SW, Kim JH, Park CK. Increased levels of synaptic proteins involved in synaptic plasticity after chronic intraocular pressure elevation and modulation by brain-derived neurotrophic factor in a glaucoma animal model. Dis Model Mech 2019; 12:dmm.037184. [PMID: 31142572 PMCID: PMC6602315 DOI: 10.1242/dmm.037184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
The dendrites of retinal ganglion cells (RGCs) synapse with the axon terminals of bipolar cells in the inner plexiform layer (IPL). Changes in the RGC dendrites and synapses between the bipolar cells in the inner retinal layer may critically alter the function of RGCs in glaucoma. The present study attempted to discover changes in the synapse using brain-derived neurotrophic factor (BDNF) after glaucoma induction by chronic intraocular pressure elevation in a rat model. Immunohistochemical staining revealed that the BDNF-injected group had a significant increase in the level of synaptophysin, which is a presynaptic vesicle protein, in the innermost IPL compared with the phosphate-buffered saline (PBS)-injected group. SMI-32, which is a marker of RGCs, was colocalized with synaptophysin in RGC dendrites, and this colocalization significantly increased in the BDNF-injected group. After the induction of glaucoma, the BDNF-injected group exhibited increases in the total number of ribbon synapses, as seen using electron microscopy. Expression of calcium/calmodulin-dependent protein kinase II (CaMKII), cAMP-response element binding protein (CREB) and F-actin, which are key molecules involved in synaptic changes were upregulated after BDNF injection. These initial findings show the capability of BDNF to induce beneficial synaptic changes in glaucoma. Summary: Application of BDNF increased the expression of synaptic vesicle proteins in the inner retina via the p-Akt, CaMKII and CREB pathways, increasing F-actin in RGC dendrites.
Collapse
Affiliation(s)
- Hae-Young Lopilly Park
- Department of Ophthalmology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Si Won Kim
- Department of Ophthalmology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jie Hyun Kim
- Department of Ophthalmology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Chan Kee Park
- Department of Ophthalmology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
10
|
Christensen I, Lu B, Yang N, Huang K, Wang P, Tian N. The Susceptibility of Retinal Ganglion Cells to Glutamatergic Excitotoxicity Is Type-Specific. Front Neurosci 2019; 13:219. [PMID: 30930737 PMCID: PMC6429039 DOI: 10.3389/fnins.2019.00219] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the only output neurons that conduct visual signals from the eyes to the brain. RGC degeneration occurs in many retinal diseases leading to blindness and increasing evidence suggests that RGCs are susceptible to various injuries in a type-specific manner. Glutamate excitotoxicity is the pathological process by which neurons are damaged and killed by excessive stimulation of glutamate receptors and it plays a central role in the death of neurons in many CNS and retinal diseases. The purpose of this study is to characterize the susceptibility of genetically identified RGC types to the excitotoxicity induced by N-methyl-D-aspartate (NMDA). We show that the susceptibility of different types of RGCs to NMDA excitotoxicity varies significantly, in which the αRGCs are the most resistant type of RGCs to NMDA excitotoxicity while the J-RGCs are the most sensitive cells to NMDA excitotoxicity. These results strongly suggest that the differences in the genetic background of RGC types might provide valuable insights for understanding the selective susceptibility of RGCs to pathological insults and the development of a strategy to protect RGCs from death in disease conditions. In addition, our results show that RGCs lose dendrites before death and the sequence of the morphological and molecular events during RGC death suggests that the initial insult of NMDA excitotoxicity might set off a cascade of events independent of the primary insults. However, the kinetics of dendritic retraction in RGCs does not directly correlate to the susceptibility of type-specific RGC death.
Collapse
Affiliation(s)
- Ian Christensen
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Bo Lu
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States.,Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ning Yang
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States.,Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Kevin Huang
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States.,Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ping Wang
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States.,Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ning Tian
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States.,Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Guo C, Qu X, Rangaswamy N, Leehy B, Xiang C, Rice D, Prasanna G. A murine glaucoma model induced by rapid in vivo photopolymerization of hyaluronic acid glycidyl methacrylate. PLoS One 2018; 13:e0196529. [PMID: 29949582 PMCID: PMC6021085 DOI: 10.1371/journal.pone.0196529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/13/2018] [Indexed: 12/04/2022] Open
Abstract
Glaucoma is an optic neuropathy commonly associated with elevated intraocular pressure (IOP) resulting in progressive loss of retinal ganglion cells (RGCs) and optic nerve degeneration, leading to blindness. New therapeutic approaches that better preserve the visual field by promoting survival and health of RGCs are highly needed since RGC death occurs despite good IOP control in glaucoma patients. We have developed a novel approach to reliably induce chronic IOP elevation in mouse using a photopolymerizable biomatrix, hyaluronic acid glycidyl methacrylate. This is achieved by rapid in vivo crosslinking of the biomatrix at the iridocorneal angle by a flash of ultraviolet A (UVA) light to impede the aqueous outflow pathway with a controllable manner. Sustained IOP elevation was induced after a single manipulation and was maintained at ~45% above baseline for >4 weeks. Significant thinning of the inner retina and ~35% reduction in RGCs and axons was noted within one month of IOP elevation. Optic nerve degeneration showed positive correlation with cumulative IOP elevation. Activation of astrocytes and microglia appeared to be an early event in response to IOP elevation preceding detectable RGC and axon loss. Attenuated glial reactivity was noted at later stage where significant RGC/axon loss had occurred suggesting astrocytes and microglia may play different roles over the course of glaucomatous degeneration. This novel murine glaucoma model is reproducible and displays cellular changes that recapitulate several pathophysiological features of glaucoma.
Collapse
Affiliation(s)
- Chenying Guo
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
- * E-mail: (GP); (CG)
| | - Xin Qu
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Nalini Rangaswamy
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Barrett Leehy
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Chuanxi Xiang
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Dennis Rice
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Ganesh Prasanna
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
- * E-mail: (GP); (CG)
| |
Collapse
|
12
|
Je S, Ennis FA, Woodhouse JM, Sengpiel F, Redmond T. Spatial summation across the visual field in strabismic and anisometropic amblyopia. Sci Rep 2018; 8:3858. [PMID: 29497120 PMCID: PMC5832776 DOI: 10.1038/s41598-018-21620-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/07/2018] [Indexed: 11/26/2022] Open
Abstract
Ricco's area (the largest area of visual space in which stimulus area and intensity are inversely proportional at threshold) has previously been hypothesised to be a result of centre/surround antagonism in retinal ganglion cell receptive fields, but recent evidence suggests a sizeable cortical contribution. Here, Ricco's area was measured in amblyopia, a condition in which retinal receptive fields are normal, to better understand its physiological basis. Spatial summation functions were determined at 12 visual field locations in both eyes of 14 amblyopic adults and 15 normal-sighted controls. Ricco's area was significantly larger in amblyopic eyes than in fellow non-amblyopic eyes. Compared to the size of Ricco's area in control eyes, Ricco's area measured significantly larger in amblyopic eyes. Additionally, Ricco's area in the fellow, non-amblyopic eye of amblyopic participants measured significantly smaller than in control eyes. Compared to controls, Ricco's area was larger in amblyopic eyes and smaller in fellow non-amblyopic eyes. Amblyopia type, binocularity, and inter-ocular difference in visual acuity were significantly associated with inter-ocular differences in Ricco's area in amblyopes. The physiological basis for Ricco's area is unlikely to be confined to the retina, but more likely representative of spatial summation at multiple sites along the visual pathway.
Collapse
Affiliation(s)
- Shindy Je
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Fergal A Ennis
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - J Margaret Woodhouse
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Tony Redmond
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
13
|
Morgan JE, Tribble J, Fergusson J, White N, Erchova I. The optical detection of retinal ganglion cell damage. Eye (Lond) 2017; 31:199-205. [PMID: 28060357 PMCID: PMC5306469 DOI: 10.1038/eye.2016.290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 11/08/2022] Open
Abstract
We provide an overview of developments in the use optical coherence tomography (OCT) imaging for the detection of retinal ganglion cell (RGC) damage in vivo that avoid use of any exogenous ligands to label cells. The method employs high-resolution OCT using broad spectral light sources to deliver axial resolution of under 5 μm. The resolution approximates that of cellular organelles, which undergo degenerative changes that progress to apoptosis as a result of axon damage. These degenerative changes are manifest as the loss of RGC dendrites and fragmentation of the subcellular network of organelles, in particular, the mitochondria that support dendritic structure. These changes can alter the light-scattering behavior of degenerating neurons. Using OCT imaging techniques to identify these signals in cultured neurons, we have demonstrated changes in cultured cells and in retinal explants. Pilot studies in human glaucoma suggest that similar changes are detectable in the clinical setting. High-resolution OCT can be used to detect optical scatter signals that derive from the RGC/inner plexiform layer and are associated with neuronal damage. These findings suggest that OCT instruments can be used to derive quantitative measurements of RGC damage. Critically, these signals can be detected at an early stage of RGC degeneration when cells could be protected or remodeled to support visual recovery.
Collapse
Affiliation(s)
- J E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, UK
| | - J Tribble
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, UK
| | - J Fergusson
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, UK
| | - N White
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, UK
| | - I Erchova
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, UK
| |
Collapse
|
14
|
Liu H, He Z, Nguyen CTO, Vingrys AJ, Bui BV. Reversal of functional loss in a rat model of chronic intraocular pressure elevation. Ophthalmic Physiol Opt 2016; 37:71-81. [DOI: 10.1111/opo.12331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/17/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Hsin‐Hua Liu
- Department of Optometry & Vision Sciences University of Melbourne Parkville Australia
| | - Zheng He
- Department of Optometry & Vision Sciences University of Melbourne Parkville Australia
| | | | - Algis J. Vingrys
- Department of Optometry & Vision Sciences University of Melbourne Parkville Australia
| | - Bang V. Bui
- Department of Optometry & Vision Sciences University of Melbourne Parkville Australia
| |
Collapse
|
15
|
Predegenerated Schwann cells--a novel prospect for cell therapy for glaucoma: neuroprotection, neuroregeneration and neuroplasticity. Sci Rep 2016; 6:23187. [PMID: 27034151 PMCID: PMC4817039 DOI: 10.1038/srep23187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is an optic neuropathy that leads to irreversible blindness. Because the current therapies are not sufficient to protect against glaucoma-induced visual impairment, new treatment approaches are necessary to prevent disease progression. Cell transplantation techniques are currently considered to be among the most promising opportunities for nervous system damage treatment. The beneficial effects of undifferentiated cells have been investigated in experimental models of glaucoma, however experiments were accompanied by various barriers, which would make putative treatment difficult or even impossible to apply in a clinical setting. The novel therapy proposed in our study creates conditions to eliminate some of the identified barriers described for precursor cells transplantation and allows us to observe direct neuroprotective and pro-regenerative effects in ongoing optic neuropathy without additional modifications to the transplanted cells. We demonstrated that the proposed novel Schwann cell therapy might be promising, effective and easy to apply, and is safer than the alternative cell therapies for the treatment of glaucoma.
Collapse
|
16
|
Retinal ganglion cell dendrite pathology and synapse loss: Implications for glaucoma. PROGRESS IN BRAIN RESEARCH 2015; 220:199-216. [PMID: 26497792 DOI: 10.1016/bs.pbr.2015.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dendrites are exquisitely specialized cellular compartments that critically influence how neurons collect and process information. Retinal ganglion cell (RGC) dendrites receive synaptic inputs from bipolar and amacrine cells, thus allowing cell-to-cell communication and flow of visual information. In glaucoma, damage to RGC axons results in progressive neurodegeneration and vision loss. Recent data indicate that axonal injury triggers rapid structural alterations in RGC dendritic arbors, prior to manifest axonal loss, which lead to synaptic rearrangements and functional deficits. Here, we provide an update on recent work addressing the role of RGC dendritic degeneration in models of acute and chronic optic nerve damage as well as novel mechanisms that regulate RGC dendrite stability. A better understanding of how defects in RGC dendrites contribute to neurodegeneration in glaucoma might provide new insights into disease onset and progression, while informing the development of novel therapies to prevent vision loss.
Collapse
|
17
|
Lindsey JD, Duong-Polk KX, Hammond D, Leung CKS, Weinreb RN. Protection of injured retinal ganglion cell dendrites and unfolded protein response resolution after long-term dietary resveratrol. Neurobiol Aging 2015; 36:1969-81. [PMID: 25772060 DOI: 10.1016/j.neurobiolaging.2014.12.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 01/27/2023]
Abstract
Long-term dietary supplementation with resveratrol protects against cardiovascular disease, osteoporesis, and metabolic decline. This study determined how long-term dietary resveratrol treatment protects against retinal ganglion cell (RGC) dendrite loss after optic nerve injury and alters the resolution of the unfolded protein response. Associated changes in markers of endoplasmic reticulum stress in RGCs also were investigated. Young-adult Thy1-yellow fluorescent protein (YFP) and C57BL/6 mice received either control diet or diet containing resveratrol for approximately 1 year. Both groups then received optic nerve crush (ONC). Fluorescent RGC dendrites in the Thy1-YFP mice were imaged weekly for 4 weeks after ONC. There was progressive loss of dendrite length in all RGC types within the mice that received control diet. Resveratrol delayed loss of dendrite complexity and complete dendrite loss for most RGC types. However, there were variations in the rate of retraction among different RGC types. Three weeks after ONC, cytoplasmic binding immunoglobulin protein (BiP) suppression observed in control diet ganglion cell layer neurons was reversed in mice that received resveratrol, nuclear C/EBP homologous protein (CHOP) was near baseline in control diet eyes but was moderately increased by resveratrol; and increased nuclear X-box-binding protein-1 (XBP-1) observed in control diet eyes was reduced in eyes that received resveratrol to the same level as in control diet uncrushed eyes. These results indicate that protection of dendrites by resveratrol after ONC differs among RGC types and suggest that alterations in long-term expression of binding immunoglobulin protein, CHOP, and XBP-1 may contribute to the resveratrol-mediated protection of RGC dendrites after ONC.
Collapse
Affiliation(s)
- James D Lindsey
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California-San Diego, La Jolla, CA, USA.
| | - Karen X Duong-Polk
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California-San Diego, La Jolla, CA, USA
| | - Dustin Hammond
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California-San Diego, La Jolla, CA, USA
| | | | - Robert N Weinreb
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Chen H, Zhao Y, Liu M, Feng L, Puyang Z, Yi J, Liang P, Zhang HF, Cang J, Troy JB, Liu X. Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. Invest Ophthalmol Vis Sci 2015; 56:1971-84. [PMID: 25722210 DOI: 10.1167/iovs.14-15691] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE We investigated the progressive degeneration of retinal and superior collicular functions in a mouse model of sustained ocular hypertension. METHODS Focal laser illumination and injection of polystyrene microbeads were used to induce chronic ocular hypertension. Retinal ganglion cell (RGC) loss was characterized by in vivo optical coherence tomography (OCT) and immunohistochemistry. Retinal dysfunction was also monitored by the full-field ERG. Retinal ganglion cell light responses were recorded using a 256-channel multielectrode array (MEA), and RGC subtypes were characterized by noncentered spike-triggered covariance (STC-NC) analysis. Single-unit extracellular recordings from superficial layers of the superior colliculus (SC) were performed to examine the receptive field (RF) properties of SC neurons. RESULTS The elevation of intraocular pressure (IOP) lasted 4 months in mice treated with a combination of laser photocoagulation and microbead injection. Progressive RGC loss and functional degeneration were confirmed in ocular hypertensive (OHT) mice. These mice had fewer visually responsive RGCs than controls. Using the STC-NC analysis, we classified RGCs into ON, OFF, and ON-OFF functional subtypes. We showed that ON and OFF RGCs were more susceptible to the IOP elevation than ON-OFF RGCs. Furthermore, SC neurons of OHT mice had weakened responses to visual stimulation and exhibited mismatched ON and OFF subfields and irregular RF structure. CONCLUSIONS We demonstrated that the functional degeneration of RGCs is subtype-dependent and that the ON and OFF pathways from the retina to the SC were disrupted. Our study provides a foundation to investigate the mechanisms underlying the progressive vision loss in experimental glaucoma.
Collapse
Affiliation(s)
- Hui Chen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Yan Zhao
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States
| | - Mingna Liu
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States
| | - Liang Feng
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Zhen Puyang
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Yi
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States
| | - Peiji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao F Zhang
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States
| | - Jianhua Cang
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States
| | - John B Troy
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States
| | - Xiaorong Liu
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States
| |
Collapse
|
19
|
Abstract
AbstractRetinal ganglion cell (RGC) dendritic atrophy is an early feature of many forms of retinal degeneration, providing a challenge to RGC classification. The characterization of these changes is complicated by the possibility that selective labeling of any particular class can confound the estimation of dendritic remodeling. To address this issue we have developed a novel, robust, and quantitative RGC classification based on proximal dendritic features which are resistant to early degeneration. RGCs were labeled through the ballistic delivery of DiO and DiI coated tungsten particles to whole retinal explants of 20 adult Brown Norway rats. RGCs were grouped according to the Sun classification system. A comprehensive set of primary and secondary dendrite features were quantified and a new classification model derived using principal component (PCA) and discriminant analyses, to estimate the likelihood that a cell belonged to any given class. One-hundred and thirty one imaged RGCs were analyzed; according to the Sun classification, 24% (n = 31) were RGCA, 29% (n = 38) RGCB, 32% (n = 42) RGCC, and 15% (n = 20) RGCD. PCA gave a 3 component solution, separating RGCs based on descriptors of soma size and primary dendrite thickness, proximal dendritic field size and dendritic tree asymmetry. The new variables correctly classified 73.3% (n = 74) of RGCs from a training sample and 63.3% (n = 19) from a hold out sample indicating an effective model. Soma and proximal dendritic tree morphological features provide a useful surrogate measurement for the classification of RGCs in disease. While a definitive classification is not possible in every case, the technique provides a useful safeguard against sample bias where the normal criteria for cell classification may not be reliable.
Collapse
|
20
|
Morquette B, Morquette P, Agostinone J, Feinstein E, McKinney RA, Kolta A, Di Polo A. REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury. Cell Death Differ 2014; 22:612-25. [PMID: 25257176 PMCID: PMC4572858 DOI: 10.1038/cdd.2014.149] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022] Open
Abstract
Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.
Collapse
Affiliation(s)
- B Morquette
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] University of Montreal Hospital Research Center (CR-CHUM), Montreal, QC, Canada [3] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| | - P Morquette
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| | - J Agostinone
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] University of Montreal Hospital Research Center (CR-CHUM), Montreal, QC, Canada [3] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| | - E Feinstein
- Quark Pharmaceuticals Inc., Research Division, Ness Ziona, Israel
| | - R A McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Kolta
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada [3] Department of Stomatology, Faculty of Dentistry, University of Montreal, Montreal, QC, Canada
| | - A Di Polo
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] University of Montreal Hospital Research Center (CR-CHUM), Montreal, QC, Canada [3] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
21
|
Park HYL, Kim JH, Park CK. Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Mol Brain 2014; 7:53. [PMID: 25116810 PMCID: PMC4237962 DOI: 10.1186/s13041-014-0053-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dendrites of retinal ganglion cells (RGCs) synapse with axon terminals of bipolar cells in the inner plexiform layer (IPL). Changes in RGC dendrites and synapses between bipolar cells in the inner retinal layer may critically alter the function of RGCs in glaucoma. Recently, synaptic plasticity has been observed in the adult central nervous system, including the outer retinal layers. However, few studies have focused on changes in the synapses between RGCs and bipolar cells in glaucoma. In the present study, we used a rat model of ocular hypertension induced by episcleral vein cauterization to investigate changes in synaptic structure and protein expression in the inner retinal layer at various time points after moderate intraocular pressure (IOP) elevation. RESULTS Synaptophysin, a presynaptic vesicle protein, increased throughout the IPL, outer plexiform layer, and outer nuclear layer after IOP elevation. Increased synaptophysin after IOP elevation was expressed in bipolar cells in the innermost IPL. The RGC marker, SMI-32, co-localized with synaptophysin in RGC dendrites and were significantly increased at 1 week and 4 weeks after IOP elevation. Both synaptophysin and postsynaptic vesicle protein, PSD-95, were increased after IOP elevation by western blot analysis. Ribbon synapses in the IPL were quantified and structurally evaluated in retinal sections by transmission electron microscopy. After IOP elevation the total number of ribbon synapses decreased. There were increases in synapse diameter and synaptic vesicle number and decreases in active zone length and the number of docked vesicles after IOP elevation. CONCLUSIONS Although the total number of synapses decreased as RGCs were lost after IOP elevation, there are attempts to increase synaptic vesicle proteins and immature synapse formation between RGCs and bipolar cells in the inner retinal layers after glaucoma induction.
Collapse
Affiliation(s)
| | | | - Chan Kee Park
- Department of Ophthalmology and Visual Science, Seoul St, Mary's Hospital, College of Medicine, The Catholic University of Korea, #505 Banpo-dong, Seocho-gu, Seoul 137-701, Korea.
| |
Collapse
|
22
|
Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging. Eye (Lond) 2014; 28:1190-200. [PMID: 25060843 DOI: 10.1038/eye.2014.169] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 04/28/2014] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To determine whether there are differences in retinal vascular oxygen saturation measurements, estimated using a hyperspectral fundus camera, between normal eyes and treated eyes of subjects with asymmetrical primary open-angle glaucoma (POAG). METHODS A noninvasive hyperspectral fundus camera was used to acquire spectral images of the retina at wavelengths between 556 and 650 nm in 2-nm increments. In total, 14 normal eyes and both eyes of 11 treated POAG subjects were imaged and analyzed using algorithms that use the spectral variation of the optical densities of blood vessels to estimate the oxygen saturation of blood within the retinal vasculature. In the treated POAG group, each of the eyes were categorized, based on the mean deviation of the Humphrey visual-field analyzer result, as either more-advanced or less-advanced, glaucomatous eyes. Unpaired t-tests (two-tailed) with Welch's correction were used to compare the mean oxygen saturation between the normal subjects and the treated POAG subgroups. RESULTS In less-advanced and more-advanced-treated POAG eyes, mean retinal venular oxygen saturations (48.2±21.6% and 42.6±18.8%, respectively) were significantly higher than in normal eyes (27.9±9.9%; P=0.03 and 0.01, respectively). Arteriolar oxygen saturation was not significantly different between normal eyes and treated POAG eyes. CONCLUSIONS The increased oxygen saturation of the retinal venules in advanced-treated POAG eyes may indicate reduced metabolic consumption of oxygen in the inner retinal tissues.
Collapse
|
23
|
Liu M, Guo L, Salt TE, Cordeiro MF. Dendritic changes in rat visual pathway associated with experimental ocular hypertension. Curr Eye Res 2014; 39:953-63. [PMID: 24754236 DOI: 10.3109/02713683.2014.884594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Increasing evidence shows that structural changes in dendrites play an important role in neuronal degenerative processes. The aims of this study were to characterize and delineate morphological changes of dendrites in retinal ganglion cells (RGCs) and their central target neurons in the superior colliculus (SC) and lateral geniculate nucleus (LGN) in experimental rat glaucoma. METHODS Chronic ocular hypertension (OHT) was surgically induced in rats and animals were sacrificed at 1, 4, 8, 16 and 32 weeks following IOP elevation. Animals without IOP elevation served as normal control. Dendritic morphology of neurons was visualized by ex vivo DiI labelling using confocal microscopy and dendritic length and number was quantified using Image J. RESULTS We found significant dendritic shrinkage (p < 0.001) and loss (p < 0.001) in RGCs and neurons in the SC and LGN in OHT animals compared to age-matched controls. Analysis of the temporal morphological profiles among them revealed the RGCs to have the earliest changes compared to the SC and LGN although the most prominent changes occurred in the SC. CONCLUSION Our study has demonstrated that OHT results in dendritic changes of the neurons throughout the visual pathways, from RGCs to SC cells and LGN cells, suggesting that both the retina and the brain should be targeted when considering diagnosis and therapeutic strategies for glaucoma.
Collapse
Affiliation(s)
- Meng Liu
- Glaucoma and Retinal Neurodegeneration Research Group, UCL Institute of Ophthalmology , London , United Kingdom
| | | | | | | |
Collapse
|
24
|
Williams PA, Howell GR, Barbay JM, Braine CE, Sousa GL, John SWM, Morgan JE. Retinal ganglion cell dendritic atrophy in DBA/2J glaucoma. PLoS One 2013; 8:e72282. [PMID: 23977271 PMCID: PMC3747092 DOI: 10.1371/journal.pone.0072282] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Glaucoma is a complex disease affecting an estimated 70 million people worldwide, characterised by the progressive degeneration of retinal ganglion cells and accompanying visual field loss. The common site of damage to retinal ganglion cells is thought to be at the optic nerve head, however evidence from other optic neuropathies and neurodegenerative disorders suggests that dendritic structures undergo a prolonged period of atrophy that may accompany or even precede soma loss and neuronal cell death. Using the DBA/2J mouse model of glaucoma this investigation aims to elucidate the impact of increasing intraocular pressure on retinal ganglion cell dendrites using DBA/2J mice that express YFP throughout the retinal ganglion cells driven by Thy1 (DBA/2J.Thy1(YFP)) and DiOlistically labelled retinal ganglion cells in DBA/2J mice. Here we show retinal ganglion cell dendritic degeneration in DiOlistically labelled DBA/2J retinal ganglion cells but not in the DBA/2J.Thy1(YFP) retinal ganglion cells suggesting that a potential downregulation of Thy1 allows only ‘healthy’ retinal ganglion cells to express YFP. These data may highlight alternative pathways to retinal ganglion cell loss in DBA/2J glaucoma.
Collapse
Affiliation(s)
- Pete A. Williams
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Gregory L. Sousa
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Simon W. M. John
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- The Howard Hughes Medical Institute, Bar Habor, Maine, United States of America
- Department of Ophthalmology, Tufts University of Medicine, Boston, Massachusetts, United States of America
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
- Cardiff Eye Unit, University Hospital of Wales, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer's disease. Neurobiol Aging 2013; 34:1799-806. [DOI: 10.1016/j.neurobiolaging.2013.01.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 12/30/2022]
|
26
|
Feng L, Zhao Y, Yoshida M, Chen H, Yang JF, Kim TS, Cang J, Troy JB, Liu X. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest Ophthalmol Vis Sci 2013; 54:1106-17. [PMID: 23322576 DOI: 10.1167/iovs.12-10791] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Glaucoma is characterized by retinal ganglion cell (RGC) death and frequently associated with elevated IOP. How RGCs degenerate before death is little understood, so we sought to investigate RGC degeneration in a mouse model of ocular hypertension. METHODS A laser-induced mouse model of chronic ocular hypertension mimicked human high-tension glaucoma. Immunohistochemistry was used to characterize overall RGC loss and an optomotor behavioral test to measure corresponding changes in visual capacity. Changes in RGC functional properties were characterized by a large-scale multielectrode array (MEA). The transgenic Thy-1-YFP mouse line, in which a small number of RGCs are labeled with yellow fluorescent protein (YFP), permitted investigation of whether subtypes of RGCs or RGCs from particular retinal areas were differentially vulnerable to elevated IOP. RESULTS Sustained IOP elevation in mice was achieved by laser photocoagulation. We confirmed RGC loss and decreased visual acuity in ocular hypertensive mice. Furthermore, these mice had fewer visually responsive cells with smaller receptive field sizes compared to controls. We demonstrated that RGC dendritic shrinkage started from the vertical axis of hypertensive eyes and that mono-laminated ON cells were more susceptible to IOP elevation than bi-laminated ON-OFF cells. Moreover, a subgroup of ON RGCs labeled by the SMI-32 antibody exhibited significant dendritic atrophy in the superior quadrant of the hypertensive eyes. CONCLUSIONS RGC degeneration depends on subtype and location in hypertensive eyes. This study introduces a valuable model to investigate how the structural and functional degeneration of RGCs leads to visual impairments.
Collapse
Affiliation(s)
- Liang Feng
- Department of Ophthalmology, Northwestern University, Evanston, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Weber AJ. Autocrine and paracrine interactions and neuroprotection in glaucoma. Cell Tissue Res 2013; 353:219-30. [DOI: 10.1007/s00441-013-1556-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/03/2013] [Indexed: 12/21/2022]
|
28
|
Kalesnykas G, Oglesby EN, Zack DJ, Cone FE, Steinhart MR, Tian J, Pease ME, Quigley HA. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci 2012; 53:3847-57. [PMID: 22589442 DOI: 10.1167/iovs.12-9712] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To study sequential changes in retinal ganglion cell (RGC) morphology in mice after optic nerve crush and after induction of experimental glaucoma. METHODS Nerve crush or experimental glaucoma was induced in mice that selectively express yellow fluorescent protein (YFP) in RGCs. Mice were euthanized 1, 4, and 9 days after crush and 1, 3, and 6 weeks after induction of glaucoma by bead injection. All YFP-RGCs were identified in retinal whole mounts. Then confocal images of randomly selected RGCs were quantified for somal fluorescence brightness, soma size, neurite outgrowth, and dendritic complexity (Sholl analysis). RESULTS By 9 days after crush, 98% of RGC axons died and YFP-RGCs decreased by 64%. After 6 weeks of glaucoma, 31% of axons died, but there was no loss of YFP-RGC bodies. All crush retinas combined had significant decreases in neurite outgrowth parameters (P ≤ 0.036, generalized estimating equation [GEE] model) and dendritic complexity was lower than controls (P = 0.017, GEE model). There was no change in RGC soma area after crush. In combined glaucoma data, the RGC soma area was larger than control (P = 0.04, GEE model). At 3 weeks, glaucoma RGCs had significantly larger values for dendritic structure and complexity than controls (P = 0.044, GEE model), but no statistical difference was found at 6 weeks. CONCLUSIONS After nerve crush, RGCs and axons died rapidly, and dendritic structure decreased moderately in remaining RGCs. Glaucoma caused an increase in RGC dendrite structure and soma size at 3 weeks.
Collapse
Affiliation(s)
- Giedrius Kalesnykas
- Department of Ophthalmology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Morgan JE. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin Exp Ophthalmol 2012; 40:364-8. [DOI: 10.1111/j.1442-9071.2012.02789.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012; 31:152-81. [DOI: 10.1016/j.preteyeres.2011.11.002] [Citation(s) in RCA: 565] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 12/14/2022]
|
31
|
Liu M, Duggan J, Salt TE, Cordeiro MF. Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp Eye Res 2011; 92:244-50. [DOI: 10.1016/j.exer.2011.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/03/2010] [Accepted: 01/31/2011] [Indexed: 12/12/2022]
|
32
|
Phillips MJ, Otteson DC, Sherry DM. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol 2010; 518:2071-89. [PMID: 20394059 DOI: 10.1002/cne.22322] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Pde6b(rd10) (rd10) mouse has a moderate rate of photoreceptor degeneration and serves as a valuable model for human autosomal recessive retinitis pigmentosa (RP). We evaluated the progression of neuronal remodeling of second- and third-order retinal cells and their synaptic terminals in retinas from Pde6b(rd10) (rd10) mice at varying stages of degeneration ranging from postnatal day 30 (P30) to postnatal month 9.5 (PNM9.5) using immunolabeling for well-known cell- and synapse-specific markers. Following photoreceptor loss, changes occurred progressively from outer to inner retina. Horizontal cells and rod and cone bipolar cells underwent morphological remodeling that included loss of dendrites, cell body migration, and the sprouting of ectopic processes. Gliosis, characterized by translocation of Müller cell bodies to the outer retina and thickening of their processes, was evident by P30 and became more pronounced as degeneration progressed. Following rod degeneration, continued expression of VGluT1 in the outer retina was associated with survival and expression of synaptic proteins by nearby second-order neurons. Rod bipolar cell terminals showed a progressive reduction in size and ectopic bipolar cell processes extended into the inner nuclear layer and ganglion cell layer by PNM3.5. Putative ectopic conventional synapses, likely arising from amacrine cells, were present in the inner nuclear layer by PNM9.5. Despite these changes, the laminar organization of bipolar and amacrine cells and the ON-OFF organization in the inner plexiform layer was largely preserved. Surviving cone and bipolar cell terminals continued to express the appropriate cell-specific presynaptic proteins needed for synaptic function up to PNM9.5.
Collapse
Affiliation(s)
- M Joseph Phillips
- University of Houston, College of Optometry, Houston, Texas 77204, USA
| | | | | |
Collapse
|
33
|
Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. Linking structure and function in glaucoma. Prog Retin Eye Res 2010; 29:249-71. [PMID: 20226873 DOI: 10.1016/j.preteyeres.2010.02.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The glaucomas are a group of relatively common optic neuropathies, in which the pathological loss of retinal ganglion cells causes a progressive loss of sight and associated alterations in the retinal nerve fiber layer and optic nerve head. The diagnosis and management of glaucoma are often dependent on methods of clinical testing that either, 1) identify and quantify patterns of functional visual abnormality, or 2) quantify structural abnormality in the retinal nerve fiber layer, both of which are caused by loss of retinal ganglion cells. Although it is evident that the abnormalities in structure and function should be correlated, propositions to link losses in structure and function in glaucoma have been formulated only recently. The present report describes an attempt to build a model of these linking propositions using data from investigations of the relationships between losses of visual sensitivity and thinning of retinal nerve fiber layer over progressive stages of glaucoma severity. A foundation for the model was laid through the pointwise relationships between visual sensitivities (behavioral perimetry in monkeys with experimental glaucoma) and histological analyses of retinal ganglion cell densities in corresponding retinal locations. The subsequent blocks of the model were constructed from clinical studies of aging in normal human subjects and of clinical glaucoma in patients to provide a direct comparison of the results from standard clinical perimetry and optical coherence tomography. The final formulation is a nonlinear structure-function model that was evaluated by the accuracy and precision of translating visual sensitivities in a region of the visual field to produce a predicted thickness of the retinal nerve fiber layer in the peripapillary sector that corresponded to the region of reduced visual sensitivity. The model was tested on two independent patient populations, with results that confirmed the predictive relationship between the retinal nerve fiber layer thickness and visual sensitivities from clinical perimetry. Thus, the proposed model for linking structure and function in glaucoma has provided information that is important in understanding the results of standard clinical testing and the neuronal losses caused by glaucoma, which may have clinical application for inter-test comparisons of the stage of disease.
Collapse
Affiliation(s)
- R S Harwerth
- College of Optometry, University of Houston, 505 J. Davis Armistead Building, Houston, TX 77204-2020, USA.
| | | | | | | |
Collapse
|
34
|
Dendritic and Synaptic Protection: Is It Enough to Save the Retinal Ganglion Cell Body and Axon? J Neuroophthalmol 2008; 28:144-54. [DOI: 10.1097/wno.0b013e318177edf0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Baye LM, Link BA. Nuclear migration during retinal development. Brain Res 2007; 1192:29-36. [PMID: 17560964 PMCID: PMC2674389 DOI: 10.1016/j.brainres.2007.05.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 05/02/2007] [Accepted: 05/12/2007] [Indexed: 11/30/2022]
Abstract
In this review we focus on the mechanisms, regulation, and cellular consequences of nuclear migration in the developing retina. In the nervous system, nuclear migration is prominent during both proliferative and post-mitotic phases of development. Interkinetic nuclear migration is the process where the nucleus oscillates from the apical to basal surfaces in proliferative neuroepithelia. Proliferative nuclear movement occurs in step with the cell cycle, with M-phase being confined to the apical surface and G1-, S-, and G2-phases occurring at more basal locations. Later, following cell cycle exit, some neuron precursors migrate by nuclear translocation. In this mode of cellular migration, nuclear movement is the driving force for motility. Following discussion of the key components and important regulators for each of these processes, we present an emerging model where interkinetic nuclear migration functions to distinguish cell fates among retinal neuroepithelia.
Collapse
Affiliation(s)
- Lisa M Baye
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|