1
|
Alzahabi M, Haddad J, Bishai SK. Streptococcus lutetiensis prosthetic shoulder infection assisting in the diagnosis of invasive adenocarcinoma of the colon. JSES REVIEWS, REPORTS, AND TECHNIQUES 2024; 4:559-562. [PMID: 39157225 PMCID: PMC11329031 DOI: 10.1016/j.xrrt.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Affiliation(s)
- Majed Alzahabi
- Department of Orthopedic Surgery, Mclaren Macomb, Mount Clemens, MI, USA
| | - Jamil Haddad
- Department of Orthopedic Surgery, Mclaren Macomb, Mount Clemens, MI, USA
| | - Shariff K. Bishai
- Department of Orthopedic Surgery, Henry Ford Macomb, Shelby Township, MI, USA
- Detroit Orthopaedic Institute, Troy, MI, USA
| |
Collapse
|
2
|
Ratan Y, Rajput A, Pareek A, Pareek A, Kaur R, Sonia S, Kumar R, Singh G. Recent Advances in Biomolecular Patho-Mechanistic Pathways behind the Development and Progression of Diabetic Neuropathy. Biomedicines 2024; 12:1390. [PMID: 39061964 PMCID: PMC11273858 DOI: 10.3390/biomedicines12071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic neuropathy (DN) is a neurodegenerative disorder that is primarily characterized by distal sensory loss, reduced mobility, and foot ulcers that may potentially lead to amputation. The multifaceted etiology of DN is linked to a range of inflammatory, vascular, metabolic, and other neurodegenerative factors. Chronic inflammation, endothelial dysfunction, and oxidative stress are the three basic biological changes that contribute to the development of DN. Although our understanding of the intricacies of DN has advanced significantly over the past decade, the distinctive mechanisms underlying the condition are still poorly understood, which may be the reason behind the lack of an effective treatment and cure for DN. The present study delivers a comprehensive understanding and highlights the potential role of the several pathways and molecular mechanisms underlying the etiopathogenesis of DN. Moreover, Schwann cells and satellite glial cells, as integral factors in the pathogenesis of DN, have been enlightened. This work will motivate allied research disciplines to gain a better understanding and analysis of the current state of the biomolecular mechanisms behind the pathogenesis of DN, which will be essential to effectively address every facet of DN, from prevention to treatment.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Rahul Kumar
- Baba Ragav Das Government Medical College, Gorakhpur 273013, Uttar Pradesh, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
3
|
Ridnour LA, Cheng RY, Kedei N, Somasundaram V, Bhattacharyya DD, Basudhar D, Wink AL, Walke AJ, Kim C, Heinz WF, Edmondson EF, Butcher DO, Warner AC, Dorsey TH, Pore M, Kinders RJ, Lipkowitz S, Bryant RJ, Rittscher J, Wong ST, Hewitt SM, Chang JC, Shalaby A, Callagy GM, Glynn SA, Ambs S, Anderson SK, McVicar DW, Lockett SJ, Wink DA. Adjuvant COX inhibition augments STING signaling and cytolytic T cell infiltration in irradiated 4T1 tumors. JCI Insight 2024; 9:e165356. [PMID: 38912586 PMCID: PMC11383366 DOI: 10.1172/jci.insight.165356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.
Collapse
Affiliation(s)
- Lisa A Ridnour
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Robert Ys Cheng
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource (CPTR) Nanoscale Protein Analysis, OSTR, CCR, NCI, NIH, Bethesda, Maryland, USA
| | | | | | | | - Adelaide L Wink
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Abigail J Walke
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Caleb Kim
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Elijah F Edmondson
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Donna O Butcher
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Andrew C Warner
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Milind Pore
- Imaging Mass Cytometry Frederick National Laboratory for Cancer Research, and
| | - Robert J Kinders
- Office of the Director, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA
| | | | - Richard J Bryant
- Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Jens Rittscher
- Institute of Biomedical Engineering, Big Data Institute, Ludwig Oxford Branch, University of Oxford, Oxford, United Kingdom
| | - Stephen Tc Wong
- Houston Methodist Neal Cancer Center, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas, USA
| | | | - Jenny C Chang
- Houston Methodist Neal Cancer Center, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas, USA
| | - Aliaa Shalaby
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Grace M Callagy
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Stephen K Anderson
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - David A Wink
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| |
Collapse
|
4
|
Shugar AL, Konger RL, Rohan CA, Travers JB, Kim YL. Mapping cutaneous field carcinogenesis of nonmelanoma skin cancer using mesoscopic imaging of pro-inflammation cues. Exp Dermatol 2024; 33:e15076. [PMID: 38610095 PMCID: PMC11034840 DOI: 10.1111/exd.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Nonmelanoma skin cancers remain the most widely diagnosed types of cancers globally. Thus, for optimal patient management, it has become imperative that we focus our efforts on the detection and monitoring of cutaneous field carcinogenesis. The concept of field cancerization (or field carcinogenesis), introduced by Slaughter in 1953 in the context of oral cancer, suggests that invasive cancer may emerge from a molecularly and genetically altered field affecting a substantial area of underlying tissue including the skin. A carcinogenic field alteration, present in precancerous tissue over a relatively large area, is not easily detected by routine visualization. Conventional dermoscopy and microscopy imaging are often limited in assessing the entire carcinogenic landscape. Recent efforts have suggested the use of noninvasive mesoscopic (between microscopic and macroscopic) optical imaging methods that can detect chronic inflammatory features to identify pre-cancerous and cancerous angiogenic changes in tissue microenvironments. This concise review covers major types of mesoscopic optical imaging modalities capable of assessing pro-inflammatory cues by quantifying blood haemoglobin parameters and hemodynamics. Importantly, these imaging modalities demonstrate the ability to detect angiogenesis and inflammation associated with actinically damaged skin. Representative experimental preclinical and human clinical studies using these imaging methods provide biological and clinical relevance to cutaneous field carcinogenesis in altered tissue microenvironments in the apparently normal epidermis and dermis. Overall, mesoscopic optical imaging modalities assessing chronic inflammatory hyperemia can enhance the understanding of cutaneous field carcinogenesis, offer a window of intervention and monitoring for actinic keratoses and nonmelanoma skin cancers and maximise currently available treatment options.
Collapse
Affiliation(s)
- Andrea L. Shugar
- Department of Pharmacology & Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Raymond L. Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pathology, Richard L. Roudebush Veterans Administration Hospital, Indianapolis, Indiana, USA
| | - Craig A. Rohan
- Department of Pharmacology & Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Medicine, Dayton Veterans Affairs Medical Center, Dayton, Ohio, USA
| | - Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Medicine, Dayton Veterans Affairs Medical Center, Dayton, Ohio, USA
| | - Young L. Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Gerunova LK, Gerunov TV, P'yanova LG, Lavrenov AV, Sedanova AV, Delyagina MS, Fedorov YN, Kornienko NV, Kryuchek YO, Tarasenko AA. Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review. J Vet Sci 2024; 25:e23. [PMID: 38568825 PMCID: PMC10990906 DOI: 10.4142/jvs.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.
Collapse
Affiliation(s)
- Lyudmila K Gerunova
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Taras V Gerunov
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Lydia G P'yanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Alexander V Lavrenov
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Anna V Sedanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Maria S Delyagina
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation.
| | - Yuri N Fedorov
- Laboratory of Immunology, All-Russian Research and Technological Institute of Biological Industry, pos. Biokombinata, Shchelkovskii Region, Moscow Province 141142, Russian Federation
| | - Natalia V Kornienko
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Yana O Kryuchek
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Anna A Tarasenko
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| |
Collapse
|
6
|
Aziz N, Dash B, Wal P, Kumari P, Joshi P, Wal A. New Horizons in Diabetic Neuropathies: An Updated Review on their Pathology, Diagnosis, Mechanism, Screening Techniques, Pharmacological, and Future Approaches. Curr Diabetes Rev 2024; 20:e201023222416. [PMID: 37867268 DOI: 10.2174/0115733998242299231011181615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND One of the largest problems for global public health is diabetes mellitus (DM) and its micro and macrovascular consequences. Although prevention, diagnosis, and treatment have generally improved, its incidence is predicted to keep rising over the coming years. Due to the intricacy of the molecular mechanisms, which include inflammation, oxidative stress, and angiogenesis, among others, discovering treatments to stop or slow the course of diabetic complications is still a current unmet need. METHODS The pathogenesis and development of diabetic neuropathies may be explained by a wide variety of molecular pathways, hexosamine pathways, such as MAPK pathway, PARP pathway, oxidative stress pathway polyol (sorbitol) pathway, cyclooxygenase pathway, and lipoxygenase pathway. Although diabetic neuropathies can be treated symptomatically, there are limited options for treating the underlying cause. RESULT Various pathways and screening models involved in diabetic neuropathies are discussed, along with their possible outcomes. Moreover, both medicinal and non-medical approaches to therapy are also explored. CONCLUSION This study highlights the probable involvement of several processes and pathways in the establishment of diabetic neuropathies and presents in-depth knowledge of new therapeutic approaches intended to stop, delay, or reverse different types of diabetic complications.
Collapse
Affiliation(s)
- Namra Aziz
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| | - Biswajit Dash
- Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, Kolkata 700 126, West Bengal, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| | - Prachi Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| | - Poonam Joshi
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Ankita Wal
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| |
Collapse
|
7
|
Kwao-Zigah G, Bediako-Bowan A, Boateng PA, Aryee GK, Abbang SM, Atampugbire G, Quaye O, Tagoe EA. Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review. Cancer Control 2024; 31:10732748241263650. [PMID: 38889965 PMCID: PMC11186396 DOI: 10.1177/10732748241263650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Background: Colorectal cancer is the second cause of cancer mortality and the third most commonly diagnosed cancer worldwide. Current data available implicate epigenetic modulations in colorectal cancer development. The health of the large bowel is impacted by gut microbiome dysbiosis, which may lead to colon and rectum cancers. The release of microbial metabolites and toxins by these microbiotas has been shown to activate epigenetic processes leading to colorectal cancer development. Increased consumption of a 'Westernized diet' and certain lifestyle factors such as excessive consumption of alcohol have been associated with colorectal cancer.Purpose: In this review, we seek to examine current knowledge on the involvement of gut microbiota, dietary factors, and alcohol consumption in colorectal cancer development through epigenetic modulations.Methods: A review of several published articles focusing on the mechanism of how changes in the gut microbiome, diet, and excessive alcohol consumption contribute to colorectal cancer development and the potential of using these factors as biomarkers for colorectal cancer diagnosis.Conclusions: This review presents scientific findings that provide a hopeful future for manipulating gut microbiome, diet, and alcohol consumption in colorectal cancer patients' management and care.
Collapse
Affiliation(s)
- Genevieve Kwao-Zigah
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Antionette Bediako-Bowan
- Department of Surgery, University of Ghana Medical School, Accra, Ghana
- Department of Surgery, Korle Bu Teaching Hospital, Accra, Ghana
| | - Pius Agyenim Boateng
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gloria Kezia Aryee
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Stacy Magdalene Abbang
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gabriel Atampugbire
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Emmanuel A. Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
8
|
Kornicka A, Balewski Ł, Lahutta M, Kokoszka J. Umbelliferone and Its Synthetic Derivatives as Suitable Molecules for the Development of Agents with Biological Activities: A Review of Their Pharmacological and Therapeutic Potential. Pharmaceuticals (Basel) 2023; 16:1732. [PMID: 38139858 PMCID: PMC10747342 DOI: 10.3390/ph16121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Umbelliferone (UMB), known as 7-hydroxycoumarin, hydrangine, or skimmetine, is a naturally occurring coumarin in the plant kingdom, mainly from the Umbelliferae family that possesses a wide variety of pharmacological properties. In addition, the use of nanoparticles containing umbelliferone may improve anti-inflammatory or anticancer therapy. Also, its derivatives are endowed with great potential for therapeutic applications due to their broad spectrum of biological activities such as anti-inflammatory, antioxidant, neuroprotective, antipsychotic, antiepileptic, antidiabetic, antimicrobial, antiviral, and antiproliferative effects. Moreover, 7-hydroxycoumarin ligands have been implemented to develop 7-hydroxycoumarin-based metal complexes with improved pharmacological activity. Besides therapeutic applications, umbelliferone analogues have been designed as fluorescent probes for the detection of biologically important species, such as enzymes, lysosomes, and endosomes, or for monitoring cell processes and protein functions as well various diseases caused by an excess of hydrogen peroxide. Furthermore, 7-hydroxy-based chemosensors may serve as a highly selective tool for Al3+ and Hg2+ detection in biological systems. This review is devoted to a summary of the research on umbelliferone and its synthetic derivatives in terms of biological and pharmaceutical properties, especially those reported in the literature during the period of 2017-2023. Future potential applications of umbelliferone and its synthetic derivatives are presented.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland; (Ł.B.); (M.L.); (J.K.)
| | | | | | | |
Collapse
|
9
|
Infante R, Infante M, Pastore D, Pacifici F, Chiereghin F, Malatesta G, Donadel G, Tesauro M, Della-Morte D. An Appraisal of the Oleocanthal-Rich Extra Virgin Olive Oil (EVOO) and Its Potential Anticancer and Neuroprotective Properties. Int J Mol Sci 2023; 24:17323. [PMID: 38139152 PMCID: PMC10744258 DOI: 10.3390/ijms242417323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Dietary consumption of olive oil represents a key pillar of the Mediterranean diet, which has been shown to exert beneficial effects on human health, such as the prevention of chronic non-communicable diseases like cancers and neurodegenerative diseases, among others. These health benefits are partly mediated by the high-quality extra virgin olive oil (EVOO), which is produced mostly in Mediterranean countries and is directly made from olives, the fruit of the olive tree (Olea europaea L.). Preclinical evidence supports the existence of antioxidant and anti-inflammatory properties exerted by the polyphenol oleocanthal, which belongs to the EVOO minor polar compound subclass of secoiridoids (like oleuropein). This narrative review aims to describe the antioxidant and anti-inflammatory properties of oleocanthal, as well as the potential anticancer and neuroprotective actions of this polyphenol. Based on recent evidence, we also discuss the reasons underlying the need to include the concentrations of oleocanthal and other polyphenols in the EVOO's nutrition facts label. Finally, we report our personal experience in the production of a certified organic EVOO with a "Protected Designation of Origin" (PDO), which was obtained from olives of three different cultivars (Rotondella, Frantoio, and Leccino) harvested in geographical areas located a short distance from one another (villages' names: Gorga and Camella) within the Southern Italy "Cilento, Vallo di Diano and Alburni National Park" of the Campania Region (Province of Salerno, Italy).
Collapse
Affiliation(s)
- Raffaele Infante
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
| | - Marco Infante
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Donatella Pastore
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
| | - Francesca Chiereghin
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
| | - Gina Malatesta
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
| | - Giulia Donadel
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Singh S, Maurya AK. Junction of the redox dynamic, orchestra of signaling, and altered metabolism in regulation of T- cell lymphoma. Front Oncol 2023; 13:1108729. [PMID: 37274286 PMCID: PMC10235457 DOI: 10.3389/fonc.2023.1108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/21/2023] [Indexed: 06/06/2023] Open
Abstract
T-cell lymphoma is a hematologic neoplasm derived from the lymphoid lineage. It belongs to a diverse group of malignant disorders, mostly affecting the young population worldwide, that vary with respect to molecular features as well as genetic and clinical complexities. Cancer cells rewire the cellular metabolism, persuading it to meet new demands of growth and proliferation. Furthermore, the metabolic alterations and heterogeneity are aberrantly driven in cancer by a combination of genetic and non-genetic factors, including the tumor microenvironment. New insight into cancer metabolism highlights the importance of nutrient supply to tumor development and therapeutic responses. Importantly, oxidative stress due to an imbalance in the redox status of reactive species via exogenous and/or endogenous factors is closely related to multiple aspects of cancer. This alters the signaling pathways governed through the multiple intracellular signal transduction and transcription factors, leading to tumor progression. These oncogenic signaling molecules are regulated through different redox sensors, including nuclear factor-erythroid 2 related factor 2 (Nrf2), phase-II antioxidant enzyme, and NQO1 (NADPH quinone oxidoreductase (1). The existing understanding of the molecular mechanisms of T-cell lymphoma regulation through the cross-talk of redox sensors under the influence of metabolic vulnerability is not well explored. This review highlights the role of the redox dynamics, orchestra of signaling, and genetic regulation involved in T-cell lymphoma progression in addition to the challenges to their etiology, treatment, and clinical response in light of recent updates.
Collapse
|
11
|
Kennedy BM, Harris RE. Cyclooxygenase and Lipoxygenase Gene Expression in the Inflammogenesis of Colorectal Cancer: Correlated Expression of EGFR, JAK STAT and Src Genes, and a Natural Antisense Transcript, RP11-C67.2.2. Cancers (Basel) 2023; 15:cancers15082380. [PMID: 37190308 DOI: 10.3390/cancers15082380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
We examined the expression of major inflammatory genes, cyclooxygenase-1, 2 (COX1, COX2), arachidonate-5-lipoxygenase (ALOX5), and arachidonate-5-lipoxygenase activating protein (ALOX5AP) among 469 tumor specimens of colorectal cancer in The Cancer Genome Atlas (TCGA). Among 411 specimens without mutations in mismatch repair (MMR) genes, the mean expression of each of the inflammatory genes ranked above the 80th percentile, and the overall mean cyclooxygenase expression (COX1+COX2) ranked in the upper 99th percentile of all genes. Similar levels were observed for 58 cases with MMR mutations. Pearson correlation coefficients exceeding r = 0.70 were observed between COX and LOX mRNA levels with genes of major cell-signaling pathways involved in tumorigenesis (Src, JAK STAT, MAPK, PI3K). We observed a novel association (r = 0.78) between ALOX5 expression and a natural antisense transcript (NAT), RP11-67C2.2, a long non-coding mRNA gene, 462 base pairs in length that is located within the terminal intron of the ALOX5 gene on chromosome 10q11.21. Tumor-promoting genes highly correlated with the expression of COX1, COX2, ALOX5 and ALOX5AP are known to increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the inflammogenesis of colorectal cancer. These genes and the novel NAT, RP1167C2.2 are potential molecular targets for chemoprevention and therapy of colorectal cancer.
Collapse
Affiliation(s)
- Brian M Kennedy
- Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210-1351, USA
| | - Randall E Harris
- Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210-1351, USA
| |
Collapse
|
12
|
Alsaeedi A, Welham S, Rose P, Zhu YZ. The Impact of Drugs on Hydrogen Sulfide Homeostasis in Mammals. Antioxidants (Basel) 2023; 12:antiox12040908. [PMID: 37107283 PMCID: PMC10135325 DOI: 10.3390/antiox12040908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Mammalian cells and tissues have the capacity to generate hydrogen sulfide gas (H2S) via catabolic routes involving cysteine metabolism. H2S acts on cell signaling cascades that are necessary in many biochemical and physiological roles important in the heart, brain, liver, kidney, urogenital tract, and cardiovascular and immune systems of mammals. Diminished levels of this molecule are observed in several pathophysiological conditions including heart disease, diabetes, obesity, and immune function. Interestingly, in the last two decades, it has become apparent that some commonly prescribed pharmacological drugs can impact the expression and activities of enzymes responsible for hydrogen sulfide production in cells and tissues. Therefore, the current review provides an overview of the studies that catalogue key drugs and their impact on hydrogen sulfide production in mammals.
Collapse
Affiliation(s)
- Asrar Alsaeedi
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Simon Welham
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
13
|
Uddin MJ, Niitsu H, Coffey RJ, Marnett LJ. Development of Pluoronic nanoparticles of fluorocoxib A for endoscopic fluorescence imaging of colonic adenomas. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:040501. [PMID: 37091910 PMCID: PMC10118138 DOI: 10.1117/1.jbo.28.4.040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Significance Current white light colonoscopy suffers from many limitations that allow 22% to 32% of preneoplastic lesions to remain undetected. This high number of false negatives contributes to the appearance of interval malignancies, defined as neoplasms diagnosed between screening colonoscopies at a rate of 2% to 6%. Aim The shortcomings of today's white light-based colorectal cancer screening are addressed by colonoscopic fluorescence imaging of preneoplastic lesions using targeted fluorescent agents to enhance contrast between the lesion and the surrounding normal colonic epithelium. Approach We describe the development of Pluronic® nanoparticles of fluorocoxib A (FA), a fluorescent cyclooxygenase-2 (COX-2) inhibitor that enables targeted imaging of inflammation and cancer in numerous animal models, for endoscopic florescence imaging of colonic adenomas. Results We formulated FA, a fluorescent COX-2 inhibitor, or fluorocoxib negative control (FNC), a nontargeted fluorophore and a negative control for FA, in micellar nanoparticles of FDA approved Pluronic tri-block co-polymer using a bulk solvent evaporation method. This afforded FA-loaded micellar nanoparticles (FA-NPs) or FNC-loaded micellar nanoparticles (FNC-NPs) with the hydrodynamic diameters (D h ) of 45.7 ± 2.5 nm and 44.9 ± 3.8 nm and the zeta potentials ( ζ ) of - 1.47 ± 0.3 mV and - 1.64 ± 0.5 mV , respectively. We intravenously injected B6;129 mice bearing colonic adenomas induced by azoxymethane and dextran-sodium sulfate with FA-loaded Pluronic nanoparticles (FA-NPs). The diffusion-mediated local FA release and its binding to COX-2 enzyme allowed for clear detection of adenomas with high signal-to-noise ratios. The COX-2 targeted delivery and tumor retention were validated by negligible tumor fluorescence detected upon colonoscopic imaging of adenoma-bearing mice injected with Pluronic nanoparticles of FNC or of animals predosed with the COX-2 inhibitor, celecoxib, followed by intravenous dosing of FA-NPs. Conclusions These results demonstrate that the formulation of FA in Pluronic nanoparticles overcomes a significant hurdle to its clinical development for early detection of colorectal neoplasms by fluorescence endoscopy.
Collapse
Affiliation(s)
- Md. Jashim Uddin
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, Tennessee, United States
| | - Hiroaki Niitsu
- Vanderbilt University Medical Center, Department of Medicine, Nashville, Tennessee, United States
| | - Robert J. Coffey
- Vanderbilt University Medical Center, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Nashville, Tennessee, United States
| | - Lawrence J. Marnett
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, Tennessee, United States
- Vanderbilt University, Department of Chemistry, Nashville, Tennessee, United States
- Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, Tennessee, United States
| |
Collapse
|
14
|
Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, Wang L, Xu H, Ji G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front Pharmacol 2022; 13:944088. [PMID: 35873545 PMCID: PMC9301043 DOI: 10.3389/fphar.2022.944088] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
NSAIDs Induce Proline Dehydrogenase/Proline Oxidase-Dependent and Independent Apoptosis in MCF7 Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23073813. [PMID: 35409177 PMCID: PMC8998922 DOI: 10.3390/ijms23073813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are considered in cancer therapy for their inhibitory effect on cyclooxygenase-2 (COX-2), which is overexpressed in most cancers. However, we found that NSAIDs as ligands of peroxisome proliferator-activated receptor-γ (PPARγ)-induced apoptosis independent of the COX-2 inhibition, and the process was mediated through activation of proline dehydrogenase/proline oxidase (PRODH/POX)-dependent generation of reactive oxygen species (ROS). This mitochondrial enzyme converts proline to ∆1-pyrroline-5-carboxylate (P5C) during which ATP or ROS is generated. To confirm the role of PRODH/POX in the mechanism of NSAID-induced apoptosis we obtained an MCF7 CRISPR/Cas9 PRODH/POX knockout breast cancer cell model (MCF7POK-KO). Interestingly, the studied NSAIDs (indomethacin and diclofenac) in MCF7POK-KO cells contributed to a more pronounced pro-apoptotic phenotype of the cells than in PRODH/POX-expressing MCF7 cells. The observed effect was independent of ROS generation, but it was related to the energetic disturbances in the cells as shown by an increase in the expression of AMPKα (sensor of cell energy status), GLUD1/2 (proline producing enzyme from glutamate), prolidase (proline releasing enzyme), PPARδ (growth supporting transcription factor) and a decrease in the expression of proline cycle enzymes (PYCR1, PYCRL), mammalian target of rapamycin (mTOR), and collagen biosynthesis (the main proline utilizing process). The data provide evidence that the studied NSAIDs induce PRODH/POX-dependent and independent apoptosis in MCF7 breast cancer cells.
Collapse
|
16
|
Kovács BZ, Puskás LG, Nagy LI, Papp A, Gyöngyi Z, Fórizs I, Czuppon G, Somlyai I, Somlyai G. Blocking the Increase of Intracellular Deuterium Concentration Prevents the Expression of Cancer-Related Genes, Tumor Development, and Tumor Recurrence in Cancer Patients. Cancer Control 2022; 29:10732748211068963. [PMID: 35043700 PMCID: PMC8777325 DOI: 10.1177/10732748211068963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The possible role of the naturally occurring deuterium in the regulation of cell
division was first described in the 1990s. To investigate the mechanism of
influence of deuterium (D) on cell growth, expression of 236 cancer-related and
536 kinase genes were tested in deuterium-depleted (40 and 80 ppm) and
deuterium-enriched (300 ppm) media compared to natural D level (150 ppm). Among
genes with expression changes exceeding 30% and copy numbers over 30 (124 and
135 genes, respectively) 97.3% of them was upregulated at 300 ppm
D-concentration. In mice exposed to chemical carcinogen, one-year survival data
showed that deuterium-depleted water (DDW) with 30 ppm D as drinking water
prevented tumor development. One quarter of the treated male mice survived
344 days, the females 334 days, while one quarter of the control mice survived
only 188 and 156 days, respectively. In our human retrospective study 204
previously treated cancer patients with disease in remission, who consumed DDW,
were followed. Cumulative follow-up time was 1024 years, and average follow-up
time per patient, 5 years (median: 3.6 years). One hundred and fifty-six
patients out of 204 (77.9%) did not relapse during their 803 years cumulative
follow-up time. Median survival time (MST) was not calculable due to the
extremely low death rate (11 cancer-related deaths, 5.4% of the study
population). Importantly, 8 out of 11 deaths occurred several years after
stopping DDW consumption, confirming that regular consumption of DDW can prevent
recurrence of cancer. These findings point to the likely mechanism in which
consumption of DDW keeps D-concentration below natural levels, preventing the
D/H ratio from increasing to the threshold required for cell division. This in
turn can serve as a key to reduce the relapse rate of cancer patients and/or to
reduce cancer incidence in healthy populations.
Collapse
Affiliation(s)
- Beáta Zs. Kovács
- HYD LLC for Cancer Research and Drug Development, Budapest, Hungary
| | | | | | - András Papp
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Gyöngyi
- Department of Public Health, Medical School, University of Pécs, Pécs, Hungary
| | - István Fórizs
- Institute for Geological and Geochemical Research (IGGR), Research Centre for Astronomy and Earth Sciences, Eötvös Loránt Research Network, Budapest, Hungary
| | - György Czuppon
- Institute for Geological and Geochemical Research (IGGR), Research Centre for Astronomy and Earth Sciences, Eötvös Loránt Research Network, Budapest, Hungary
| | - Ildikó Somlyai
- HYD LLC for Cancer Research and Drug Development, Budapest, Hungary
| | - Gábor Somlyai
- HYD LLC for Cancer Research and Drug Development, Budapest, Hungary
| |
Collapse
|
17
|
Yosefi S, Pakdel A, Sameni HR, Semnani V, Bandegi AR. Chrysin-Enhanced Cytotoxicity of 5-Fluorouracil-Based Chemotherapy for Colorectal Cancer in Mice: Investigating its Effects on Cyclooxygenase-2 Expression. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-979020202e19381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sedighe Yosefi
- Semnan University of Medical Sciences, Iran; Semnan University of Medical Sciences, Iran
| | | | | | | | | |
Collapse
|
18
|
Vageli DP, Doukas SG, Doukas PG, Judson BL. Bile reflux and hypopharyngeal cancer (Review). Oncol Rep 2021; 46:244. [PMID: 34558652 PMCID: PMC8485019 DOI: 10.3892/or.2021.8195] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Laryngopharyngeal reflux, a variant of gastroesophageal reflux disease, has been considered a risk factor in the development of hypopharyngeal cancer. Bile acids are frequently present in the gastroesophageal refluxate and their effect has been associated with inflammatory and neoplastic changes in the upper aerodigestive tract. Recent in vitro and in vivo studies have provided direct evidence of the role of acidic bile refluxate in hypopharyngeal carcinogenesis and documented the crucial role of NF-κB as a key mediator of early oncogenic molecular events in this process and also suggested a contribution of STAT3. Acidic bile can cause premalignant changes and invasive squamous cell cancer in the affected hypopharynx accompanied by DNA damage, elevated p53 expression and oncogenic mRNA and microRNA alterations, previously linked to head and neck cancer. Weakly acidic bile can also increase the risk for hypopharyngeal carcinogenesis by inducing DNA damage, exerting anti-apoptotic effects and causing precancerous lesions. The most important findings that strongly support bile reflux as an independent risk factor for hypopharyngeal cancer are presented in the current review and the underlying mechanisms are provided.
Collapse
Affiliation(s)
- Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Panagiotis G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Benjamin L Judson
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
19
|
Sun L. Low-dose cyclooxygenase-2 (COX-2) inhibitor celecoxib plays a protective role in the rat model of neonatal necrotizing enterocolitis. Bioengineered 2021; 12:7234-7245. [PMID: 34546832 PMCID: PMC8806921 DOI: 10.1080/21655979.2021.1980646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This study aims to investigate the effects of the cyclooxygenase-2 (COX-2) inhibitor celecoxib on neonatal necrotizing enterocolitis (NEC) in rats. After treatment with a low dose of celecoxib (0.5, 1, or 1.5 mg/kg), pathological changes in the ileum and the levels of oxidative stress and inflammatory factors in NEC rats were compared. Enzyme-linked immunosorbent assay (ELISA) was employed to detect inflammatory factors, terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) staining was employed to assess apoptotic epithelial cells in the ileum, and real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting were used to quantify gene and protein expression, respectively. The incidences of NEC rats in the 0.5, 1 and 1.5 mg/kg celecoxib groups were lower than in the model group (100%). Celecoxib improved the histopathology of the ileum in NEC rats. Moreover, low doses of celecoxib relieved oxidative stress and inflammation in NEC rats, as evidenced by decreased tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), total oxidation state (TOS), malondialdehyde (MDA) and oxidative stress index (OSI), as well as increased interleukin-10 (IL-10), total antioxidant status (TAS), superoxide dismutase (SOD) and glutathione peroxidase (GPx). With increasing celecoxib doses (0.5, 1, or 1.5 mg/kg), the amount of apoptotic epithelial cells in the ileum of NEC rats gradually declined and Caspase-3 expression was reduced. The low dose of the COX-2 inhibitor celecoxib ameliorated the histopathologic conditions of the ileum, alleviated oxidative stress and inflammation, and reduced apoptotic epithelial cells in NEC rats, thereby making it a potential therapy for NEC.
Collapse
Affiliation(s)
- Ling Sun
- Neonatal Intensive Care Unit, Yantaishan Hospital, Yantai, China
| |
Collapse
|
20
|
Mehran S, Taravati A, Baljani E, Rasmi Y, Gholinejad Z. Fever and breast cancer: A critical review of the literature and possible underlying mechanisms. Breast Dis 2021; 40:117-131. [PMID: 33749632 DOI: 10.3233/bd-201001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fever is a common feature in various pathological conditions that manifests a series of molecular events in the internal milieu. Much less attention has been paid to the clinical importance and the management of fever in breast cancer patients. However, several studies have reported an association between postoperative fever and poor treatment outcomes in breast cancer patients. The fever is a side effect of chemotherapy and a manifestation of cancer recurrence. The postmenopausal breast cancer patients experience another body temperature disturbance that is known as a hot flashes. Here, we reviewed the literature regarding postoperative fever and the possible underlying molecular and cellular mechanisms. Then the efficacy of non-steroidal anti-inflammatory drugs was discussed as a therapeutic option to control postoperative fever. Finally, we reviewed the chemotherapy-induced neutropenic fever and cancer vaccination-induced fever.
Collapse
Affiliation(s)
- Shiva Mehran
- Department of Biology, Higher Education Institute of Rabe-Rashidi, Tabriz, Iran
| | - Afshin Taravati
- Department of Veterinary Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Esfandiar Baljani
- Department of Nursing, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| | - Zafar Gholinejad
- Department of Medical Laboratory Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
21
|
Vitamin D stimulates miR-26b-5p to inhibit placental COX-2 expression in preeclampsia. Sci Rep 2021; 11:11168. [PMID: 34045549 PMCID: PMC8160000 DOI: 10.1038/s41598-021-90605-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/13/2021] [Indexed: 11/15/2022] Open
Abstract
Vitamin D insufficiency or deficiency during pregnancy has been associated with an increased risk of preeclampsia. Increased placental cyclooxygenase-2 (COX-2) activity was proposed to contribute to the inflammatory response in preeclampsia. This study was to investigate if vitamin D can benefit preeclampsia by inhibiting placental COX-2 expression. Placenta tissues were obtained from 40 pregnant women (23 normotensive and 17 preeclampsia). miR-26b-5p expression was assessed by quantitative PCR. Vitamin D receptor (VDR) expression and COX-2 expression were determined by immunostaining and Western blot. HTR-8/SVneo trophoblastic cells were cultured in vitro to test anti-inflammatory effects of vitamin D in placental trophoblasts treated with oxidative stress inducer CoCl2. 1,25(OH)2D3 was used as bioactive vitamin D. Our results showed that reduced VDR and miR-26b-5p expression, but increased COX-2 expression, was observed in the placentas from women with preeclampsia compared to those from normotensive pregnant women. Transient overexpression of miR-26b-5p attenuated the upregulation of COX-2 expression and prostaglandin E2 (PGE2) production induced by CoCl2 in placental trophoblasts. 1,25(OH)2D3 treatment inhibited CoCl2-induced upregulation of COX-2 in placental trophoblasts. Moreover, miR-26b-5p expression were significantly upregulated in cells treated with 1,25(OH)2D3, but not in cells transfected with VDR siRNA. Conclusively, downregulation of VDR and miR-26b-5p expression was associated with upregulation of COX-2 expression in the placentas from women with preeclampsia. 1,25(OH)2D3 could promote miR-26b-5p expression which in turn inhibited COX-2 expression and PGE2 formation in placental trophoblasts. The finding of anti-inflammatory property by vitamin D through promotion of VDR/miR-26b-5p expression provides significant evidence that downregulation of vitamin D/VDR signaling could contribute to increased inflammatory response in preeclampsia.
Collapse
|
22
|
Malerba P, Crews BC, Ghebreselasie K, Daniel CK, Jashim E, Aleem AM, Salam RA, Marnett LJ, Uddin MJ. Targeted Detection of Cyclooxygenase-1 in Ovarian Cancer. ACS Med Chem Lett 2020; 11:1837-1842. [PMID: 33062161 DOI: 10.1021/acsmedchemlett.9b00280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Overexpression of cyclooxygenase-1 (COX-1) is associated with the initiation and progression of ovarian cancer, and targeted imaging of COX-1 is a promising strategy for early detection of this disease. We report the discovery of N-[(5-carboxy-X-rhodaminyl)but-4-yl]-3-(1-(4-methoxyphenyl)-5-(p-tolyl)-1H-pyrazol-3-yl)propenamide (CMP) as the first COX-1-targeted optical agent for imaging of ovarian cancer. CMP exhibits light emission at 604 nm (λmax), thereby minimizing tissue autofluorescence interference. In both purified enzyme and COX-1-expressing human ovarian adenocarcinoma (OVCAR-3) cells, CMP inhibits COX-1 at low nanomolar potencies (IC50 = 94 and 44 nM, respectively). CMP's selective binding to COX-1 in OVCAR-3 cells was visualized microscopically as intense intracellular fluorescence. In vivo optical imaging of xenografts in athymic nude mice revealed COX-1-dependent accumulation of CMP in COX-1-expressing mouse ovarian surface epithelial carcinoma (ID8-NGL) and OVCAR-3 cells. These results establish proof-of-principle for the feasibility of targeting COX-1 in the development of new imaging and therapeutic strategies for ovarian cancer.
Collapse
Affiliation(s)
- Paola Malerba
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 United States
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Brenda C. Crews
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 United States
| | - Kebreab Ghebreselasie
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 United States
| | - Cristina K. Daniel
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 United States
| | - Elma Jashim
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 United States
| | - Ansari M. Aleem
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 United States
| | - Redoan A. Salam
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 United States
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| | - Lawrence J. Marnett
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 United States
| | - Md. Jashim Uddin
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 United States
| |
Collapse
|
23
|
Lemos H, Ou R, McCardle C, Lin Y, Calver J, Minett J, Chadli A, Huang L, Mellor AL. Overcoming resistance to STING agonist therapy to incite durable protective antitumor immunity. J Immunother Cancer 2020; 8:e001182. [PMID: 32847988 PMCID: PMC7451475 DOI: 10.1136/jitc-2020-001182] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Activating the Stimulator of Interferon Genes (STING) adaptor incites antitumor immunity against immunogenic tumors in mice, prompting clinical trials to test STING activators. However, STING signaling in the tumor microenvironment (TME) during development of Lewis lung carcinoma (LLC) suppresses antitumor immunity to promote tumor growth. We hypothesized that local immune balance favoring suppression of antitumor immunity also attenuates antitumor responses following STING activation. The purpose of this study was to evaluate how STING activation impacts antitumor responses in mice bearing LLC tumors. METHODS Mice bearing established LLC tumors were treated with synthetic cyclic diadenyl monophosphate (CDA) to activate STING. Mice were monitored to assess LLC tumor growth, survival and protective antitumor immunity. Transcriptional and metabolic analyses were used to identify pathways responsive to CDA, and mice were co-treated with CDA and drugs that disrupt these pathways. RESULTS CDA slowed LLC tumor growth but most CDA-treated mice (77%) succumbed to tumor growth. No evidence of tumor relapse was found in surviving CDA-treated mice at experimental end points but mice were not immune to LLC challenge. CDA induced rapid increase in immune regulatory pathways involving programmed death-1 (PD-1), indoleamine 2,3 dioxygenase (IDO) and cyclooxygenase-2 (COX2) in the TME. PD-1 blockade enhanced antitumor responses to CDA and increased mouse survival but mice did not eliminate primary tumor burdens. Two IDO inhibitor drugs had little or no beneficial effects on antitumor responses to CDA. A third IDO inhibitor drug synergized with CDA to enhance tumor control and survival but mice did not eliminate primary tumor burdens. In contrast, co-treatments with CDA and the COX2-selective inhibitor celecoxib controlled tumor growth, leading to uniform survival without relapse, and mice acquired resistance to LLC re-challenge and growth of distal tumors not exposed directly to CDA. Thus, mice co-treated with CDA and celecoxib acquired stable and systemic antitumor immunity. CONCLUSIONS STING activation incites potent antitumor responses and boosts local immune regulation to attenuate antitumor responses. Blocking STING-responsive regulatory pathways synergizes with CDA to enhance antitumor responses, particularly COX2 inhibition. Thus, therapy-induced resistance to STING may necessitate co-treatments to disrupt regulatory pathways responsive to STING in patients with cancer.
Collapse
Affiliation(s)
- Henrique Lemos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Rong Ou
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Caroline McCardle
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Yijun Lin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Jessica Calver
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Jack Minett
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Ahmed Chadli
- Georgia Cancer Center, Augusta University Medical College of Georgia, Augusta, Georgia, USA
| | - Lei Huang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Andrew L Mellor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
24
|
Strapcova S, Takacova M, Csaderova L, Martinelli P, Lukacikova L, Gal V, Kopacek J, Svastova E. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel) 2020; 12:E2005. [PMID: 32707920 PMCID: PMC7464147 DOI: 10.3390/cancers12082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a common phenomenon that occurs in most solid tumors. Regardless of tumor origin, the evolution of a hypoxia-adapted phenotype is critical for invasive cancer development. Pancreatic ductal adenocarcinoma is also characterized by hypoxia, desmoplasia, and the presence of necrosis, predicting poor outcome. Carbonic anhydrase IX (CAIX) is one of the most strict hypoxia regulated genes which plays a key role in the adaptation of cancer cells to hypoxia and acidosis. Here, we summarize clinical data showing that CAIX expression is associated with tumor necrosis, vascularization, expression of Frizzled-1, mucins, or proteins involved in glycolysis, and inevitably, poor prognosis of pancreatic cancer patients. We also describe the transcriptional regulation of CAIX in relation to signaling pathways activated in pancreatic cancers. A large part deals with the preclinical evidence supporting the relevance of CAIX in processes leading to the aggressive behavior of pancreatic tumors. Furthermore, we focus on CAIX occurrence in pre-cancerous lesions, and for the first time, we describe CAIX expression within intraductal papillary mucinous neoplasia. Our review concludes with a detailed account of clinical trials implicating that treatment consisting of conventionally used therapies combined with CAIX targeting could result in an improved anti-cancer response in pancreatic cancer patients.
Collapse
Affiliation(s)
- Sabina Strapcova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Martina Takacova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Lucia Csaderova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Paola Martinelli
- Institute of Cancer Research, Clinic of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Cancer Cell Signaling, Boehringer-Ingelheim RCV Vienna, A-1121 Vienna, Austria
| | - Lubomira Lukacikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Viliam Gal
- Alpha Medical Pathology, Ruzinovska 6, 82606 Bratislava, Slovakia;
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| |
Collapse
|
25
|
Kuhlman KR, Horn SR, Chiang JJ, Bower JE. Early life adversity exposure and circulating markers of inflammation in children and adolescents: A systematic review and meta-analysis. Brain Behav Immun 2020; 86:30-42. [PMID: 30999015 PMCID: PMC8211400 DOI: 10.1016/j.bbi.2019.04.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
This study provides a comprehensive review of the published research on the association between early life adversity and markers of inflammation in children and adolescents. We conducted a systematic review of the published literature on the association between early life adversity and markers of inflammation in pediatric populations. To date, 27 studies have been published in this area representing a wide range of global populations and diverse methods of which nearly half were prospective, longitudinal studies. Of these 27, only 12 studies shared an inflammatory outcome with 4 or more other studies; 9 for CRP, and 6 for IL-6. The association between early life adversity and both CRP, z = .07 [.04, .10], and IL-6, z = .17 [-.07, .42], were small and only significant for CRP although comparable in magnitude to the effects observed in adult samples. Descriptively, the association between early life adversity and CRP appeared to be stronger in studies conducted in infants and adolescents compared with middle childhood. There was minimal evidence of publication bias for studies measuring CRP, but evidence of publication bias for studies using IL-6. Eight studies have looked at the association between early life adversity and stimulated inflammatory cytokines in vitro, and both the methods and results of these studies were mixed; the majority observed exaggerated production of inflammatory cytokines despite mixed methodological approaches that make comparisons across studies difficult. In summary, the evidence supporting an association between early life adversity and inflammation in pediatric samples is limited so far by the number of studies and their heterogeneous methodological approaches. More research that is grounded in a developmental framework and informed by the complexity of the innate immune system is needed in this area.
Collapse
Affiliation(s)
- Kate R Kuhlman
- Department of Psychology & Social Behavior, University of California Irvine, Irvine, CA 92697, United States; Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Sarah R Horn
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Jessica J Chiang
- Department of Psychology, Northwestern University, Evanston, IL 60201, United States
| | - Julienne E Bower
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, United States; Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
26
|
Izzotti A, Balansky R, Micale RT, Pulliero A, La Maestra S, De Flora S. Modulation of smoke-induced DNA and microRNA alterations in mouse lung by licofelone, a triple COX-1, COX-2 and 5-LOX inhibitor. Carcinogenesis 2020; 41:91-99. [PMID: 31562745 PMCID: PMC7456342 DOI: 10.1093/carcin/bgz158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/29/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation plays a crucial role in the carcinogenesis process and, in particular, in smoking-related carcinogenesis. Therefore, anti-inflammatory agents provide an interesting perspective in the prevention of smoking-associated cancers. Among nonsteroidal anti-inflammatory drugs (NSAIDs), licofelone is a triple inhibitor of both cyclooxygenases (COX-1 and COX-2) and of 5-lipooxygenase (5-LOX) that has shown some encouraging results in cancer prevention models. We previously showed that the dietary administration of licofelone, starting after weanling, to Swiss H mice exposed for 4 months to mainstream cigarette smoke since birth attenuated preneoplastic lesions of inflammatory nature in both lung and urinary tract, and had some effects on the yield of lung tumors at 7.5 months of age. The present study aimed at evaluating the early modulation by licofelone of pulmonary DNA and RNA alterations either in smoke-free or smoke-exposed H mice after 10 weeks of exposure. Licofelone protected the mice from the smoke-induced loss of body weight and significantly attenuated smoke-induced nucleotide alterations by decreasing the levels of bulky DNA adducts and 8-hydroxy-2'-deoxyguanosine in mouse lung. Moreover, the drug counteracted dysregulation by smoke of several pulmonary microRNAs involved in stress response, inflammation, apoptosis, and oncogene suppression. However, even in smoke-free mice administration of the drug had significant effects on a broad panel of microRNAs and, as assessed in a subset of mice used in a parallel cancer chemoprevention study, licofelone even enhanced the smoke-induced systemic genotoxic damage after 4 months of exposure. Therefore, caution should be paid when administering licofelone to smokers for long periods.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, Italy
- IRCCS Policlinico San Martino, Genoa, Italy
| | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
27
|
Thompson JC, Goldman AH, Tande AJ, Osmon DR, Sierra RJ. Streptococcus bovis Hip and Knee Periprosthetic Joint Infections: A Series of 9 Cases. J Bone Jt Infect 2020; 5:1-6. [PMID: 32117683 PMCID: PMC7045526 DOI: 10.7150/jbji.36923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/15/2019] [Indexed: 01/27/2023] Open
Abstract
Introduction: Prosthetic joint infection (PJI) due to Streptococcus bovis group (SBG), specifically S. bovis biotype I (S. gallolyticus), is rare and associated with colorectal carcinoma. Little has been published regarding SBG PJI. We analyzed nine cases of SBG PJI at our institution, the largest series to date. Methods: The medical records of patients diagnosed with SBG PJI between 2000-2017 were reviewed. Patients were followed until death, failure, or loss to follow-up. Mean follow-up was 37 months (range 0.5-74 months). Results: Nine PJI in 8 patients with mean prosthesis age at diagnosis of 8 years (range 4 weeks-17 years) were identified. The median duration between symptom onset and treatment was 38 weeks (range 0.3 weeks-175 weeks). 8/9 had their PJI eradicated with treatment based on acuity of symptoms. Acute PJI (2) was treated with DAIR, and chronic PJI (7) was treated with 2-stage revision arthroplasty. 1 PJI with chronic PJI developed recurrent infection after initial treatment. All patients received post-operative IV antibiotics. 7/8 patients received Ceftriaxone. Three patients received lifelong oral antibiotics. 7/8 patients underwent colonoscopy. 5/7 patients were found to have polyps following PJI diagnosis with one carcinoma and two dysplastic polyps. The two patients without polyps had identifiable gastrointestinal (GI) mucosal abnormality: tooth extraction prior to symptom onset and diverticulosis on chronic anticoagulation. Conclusion: SBG PJI is typically due to hematologic seeding. Colonoscopy should be pursued for patients with SBG PJI. Surgical treatment dictated by infection acuity and 6-week course of Ceftriaxone seems sufficient to control infection.
Collapse
Affiliation(s)
| | | | - Aaron J Tande
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Douglas R Osmon
- Department of Orthopedic Surgery.,Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
28
|
Sayed KS, Mohammed FN, Abdel Hay RM, Amr KS, AlOrbani AM. Cyclooxygenase-2 Gene Polymorphisms -765G>C and -1195A>G and Mycosis Fungoides Risk. Dermatology 2019; 237:17-21. [PMID: 31846957 DOI: 10.1159/000504840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) is an inducible modulator of inflammation that acts through increasing prostaglandin levels and has been described as a major mediator linking inflammation to cancer. Previous studies supported that COX-2-765G>C and -1195A>G polymorphisms were associated with increased risk of several solid tissue cancers as well as some hematological malignancies. OBJECTIVE The aim of the study was to elucidate the association between functional COX-2 genotypes (-765G>C and -1195A>G) polymorphisms and the risk of developing mycosis fungoides (MF). METHODS This was a hospital-based, case-control study of 70 MF patients and 100 MF-free controls. We genotyped COX-2 -1195A>G, -765G>C, and -8473T>C polymorphisms by using the PCR-restriction fragment length polymorphism method. RESULTS The AA genotype in the COX-2 -1195A>G gene polymorphism and the GC genotype in the COX-2 -765G>C gene were significantly more frequent among MF patients compared to controls (p< 0.001 and p = 0.002, respectively). CONCLUSION The -results indicate a possible role of COX-2 genes in the pathogenesis of MF. These novel findings may allow for notable future advances, as it will enable the identification of the -individuals most susceptible to MF.
Collapse
Affiliation(s)
- Khadiga Sayed Sayed
- Department of Dermatology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | | | - Khalda Sayed Amr
- Medical Molecular Genetics Department, National Research Centre, Giza, Egypt
| | - Aya M AlOrbani
- Department of Dermatology, Faculty of Medicine, Cairo University, Giza, Egypt,
| |
Collapse
|
29
|
Cozma A, Fodor A, Vulturar R, Sitar-Tăut AV, Orăşan OH, Mureşan F, Login C, Suharoschi R. DNA Methylation and Micro-RNAs: The Most Recent and Relevant Biomarkers in the Early Diagnosis of Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2019; 55:medicina55090607. [PMID: 31546948 PMCID: PMC6780418 DOI: 10.3390/medicina55090607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a frequently encountered cancer type, and its alarming incidence is explained by genetic and epigenetic alterations. Epigenetic changes may represent diagnostic and prognostic biomarkers of HCC. In this review we discussed deoxyribonucleic acid (DNA) hypomethylation, DNA hypermethylation, and aberrant expression of small non-coding ribonucleic acid (RNA), which could be useful new biomarkers in the early diagnosis of HCC. We selected the articles on human subjects published in English over the past two years involving diagnostic markers detected in body fluids, cancer diagnosis made on histopathological exam, and a control group of those with benign liver disease or without liver disease. These biomarkers need further investigation in clinical trials to develop clinical applications for early diagnosis and management of HCC.
Collapse
Affiliation(s)
- Angela Cozma
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
| | - Adriana Fodor
- Department of Diabetes and Metabolic Diseases, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
| | - Romana Vulturar
- Department of Cell Biology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
| | - Adela-Viviana Sitar-Tăut
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
| | - Olga Hilda Orăşan
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
| | - Flaviu Mureşan
- Department of Surgery, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
| | - Cezar Login
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
| | - Ramona Suharoschi
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
30
|
Al-Maghrabi B, Gomaa W, Abdelwahed M, Al-Maghrabi J. Increased COX-2 Immunostaining in Urothelial Carcinoma of the Urinary Bladder Is Associated with Invasiveness and Poor Prognosis. Anal Cell Pathol (Amst) 2019; 2019:5026939. [PMID: 31179232 PMCID: PMC6501277 DOI: 10.1155/2019/5026939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 03/31/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Urothelial carcinoma of the urinary bladder (UCB) is the commonest bladder tumor. Cyclooxygenase-2 (COX-2) mediates angiogenesis, cell survival/proliferation, and apoptosis. This study investigates the relation of COX-2 immunostaining in UCB to clinicopathological parameters in Saudi Arabia. METHODS The study population includes 123 UCB and 25 urothelial mucosae adjacent to UCB. UCB samples were collected before any local or systemic therapy. Tissue microarrays were designed and constructed, and TMA blocks were sliced for further immunohistochemical staining. Immunohistochemical staining was done using a mouse anti-human COX-2 monoclonal antibody. A cutoff point of 10% was chosen as the threshold to determine low and high COX-2 immunostaining. RESULTS COX-2 immunostaining is higher in UCB than in the adjacent urothelium (p = 0.033). High COX-2 immunostaining is associated with high-grade UCB (p = 0.013), distant metastasis (p = 0.031), lymphovascular invasion (p = 0.008), positive muscle invasion (p = 0.017), pT2 and above (p = 0.003), and high anatomical stages (stage II and above). High COX-2 immunostaining is an independent predictor of higher tumor grade (p < 0.001), muscle invasion (p = 0.015), advanced pathological T (p = 0.014), lymphovascular invasion (p = 0.011), and distant metastasis (p = 0.039). High COX-2 immunostaining is associated with lower overall survival rate (p = 0.019). CONCLUSION COX-2 immunostaining is associated with the invasiveness of UCB which may be used as an independent prognostic marker. COX-2 may be a significant molecule in the initiation and progression of UCB. Molecular and clinical investigations are required to explore the molecular downstream of COX-2 in UCB and effectiveness of COX-2 inhibitors as adjuvant therapy along with traditional chemotherapy.
Collapse
Affiliation(s)
- Basim Al-Maghrabi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wafaey Gomaa
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Minia University, Al-Minia, Egypt
| | - Mohammed Abdelwahed
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Pathology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Luo MX, Long BB, Li F, Zhang C, Pan MT, Huang YQ, Chen B. Roles of Cyclooxygenase-2 gene -765G > C (rs20417) and -1195G > A (rs689466) polymorphisms in gastric cancer: A systematic review and meta-analysis. Gene 2018; 685:125-135. [PMID: 30391440 DOI: 10.1016/j.gene.2018.10.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The roles of cyclooxygenase-2 (COX2) -765G > C (rs20417) and -1195G > A (rs689466) polymorphisms in gastric cancer were intensively analyzed, but the results of these studies were inconsistent. We conducted a meta-analysis and trial sequential analysis to elucidate the associations between these two COX2 polymorphisms and gastric cancer risk. METHODS Eligible studies were searched in PubMed, Embase, Cochrane library databases, China National Knowledge Infrastructure, Vip, and Wanfang databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the genetic correlation between COX2 polymorphisms and gastric cancer susceptibility in five genetic models. Trial sequential analysis (TSA) was conducted to estimate whether the evidence of the results is sufficient. Furthermore, their interactions with Helicobacter pylori (H. pylori) or smoking in gastric cancer were also assessed using a case-only method. RESULTS The COX2 gene -765G > C polymorphism showed no significant association with gastric cancer susceptibility under all the five genetic models (take the allelic model for example: OR = 1.41, 95% CI: 0.95-2.09) in total analysis, and the stratification analysis by ethnicity indicated a similar association in Caucasian group under four genetic models (allelic model, dominant model, homozygous model, and heterozygous model). But in the subgroup of the Asian population, the -765G > C polymorphism was significantly associated with gastric cancer risk under the same contrast. The COX2 -1195G > A polymorphism showed significant correlation with gastric cancer susceptibility in total analysis, and stratification analysis by ethnicity also revealed a similar association in both Asian and Caucasian groups under the same contrast. Moreover, TSA confirmed such associations. Both H. pylori infection and cigarette smoking interacted with -765 C allele in gastric cancer (OR = 3.79, 95% CI: 1.15-12.43 and OR = 2.48, 95% CI: 1.38-4.48, respectively), but not in -1195 A allele (OR = 1.96, 95% CI: 0.62-6.21, and OR = 1.24, 95% CI: 0.93-1.64, respectively). CONCLUSIONS COX2 -765G > C polymorphism may serve as a genetic biomarker of gastric cancer in Asians, but not in Caucasians. COX2 -1195G > A polymorphism may serve as a genetic biomarker of gastric cancer in both Asians and Caucasians. The -765G > C, rather than -1195G > A polymorphism interacted with H. pylori infection or cigarette smoking to increase gastric cancer risk.
Collapse
Affiliation(s)
- Ming-Xu Luo
- Department of Gastrointestinal Surgery, Xiamen Humanity Hospital, Xiamen, China; Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Bin-Bin Long
- The Third Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fei Li
- Endoscopy Center, The Third Hospital of Zhangzhou, Zhangzhou, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Meng-Ting Pan
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yu-Qiang Huang
- Teaching and Research Section of Surgery, The First Clinical College of Fujian Medical University, Fuzhou, China
| | - Bo Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China; Teaching and Research Section of Surgery, The First Clinical College of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
32
|
Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals (Basel) 2018; 11:ph11040101. [PMID: 30314310 PMCID: PMC6316056 DOI: 10.3390/ph11040101] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins and thromboxane are lipid signaling molecules deriving from arachidonic acid by the action of the cyclooxygenase isoenzymes COX-1 and COX-2. The role of cyclooxygenases (particularly COX-2) and prostaglandins (particularly PGE₂) in cancer-related inflammation has been extensively investigated. In contrast, COX-1 has received less attention, although its expression increases in several human cancers and a pathogenetic role emerges from experimental models. COX-1 and COX-2 isoforms seem to operate in a coordinate manner in cancer pathophysiology, especially in the tumorigenesis process. However, in some cases, exemplified by the serous ovarian carcinoma, COX-1 plays a pivotal role, suggesting that other histopathological and molecular subtypes of cancer disease could share this feature. Importantly, the analysis of functional implications of COX-1-signaling, as well as of pharmacological action of COX-1-selective inhibitors, should not be restricted to the COX pathway and to the effects of prostaglandins already known for their ability of affecting the tumor phenotype. A knowledge-based choice of the most appropriate tumor cell models, and a major effort in investigating the COX-1 issue in the more general context of arachidonic acid metabolic network by using the systems biology approaches, should be strongly encouraged.
Collapse
|
33
|
Izzotti A, La Maestra S, Micale RT, Pulliero A, Geretto M, Balansky R, De Flora S. Modulation of genomic and epigenetic end-points by celecoxib. Oncotarget 2018; 9:33656-33681. [PMID: 30263093 PMCID: PMC6154745 DOI: 10.18632/oncotarget.26062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/16/2018] [Indexed: 01/20/2023] Open
Abstract
Celecoxib, a nonsteroidal anti-inflammatory drug that selectively targets cyclooxygenase-2, is a promising cancer chemopreventive agent. However, safety concerns have been raised in clinical trials evaluating its ability to prevent colorectal adenomas. The rationale for the herein reported studies was to analyze genomic and epigenetic end-points aimed at investigating both the chemopreventive properties of celecoxib towards cigarette smoke-associated molecular alterations and its possible adverse effects. We carried out three consecutive studies in mice treated with either smoke and/or celecoxib. Study 1 investigated early DNA alterations (DNA adducts, oxidative DNA damage, and systemic genotoxic damage) and epigenetic alterations (expression of 1,135 microRNAs) in lung and blood of Swiss H mice; Study 2 evaluated the formation of DNA adducts in lung, liver, and heart; and Study 3 evaluated the expression of microRNAs in 10 organs and 3 body fluids of ICR (CD-1) mice. Surprisingly, the oral administration of celecoxib to smoke-free mice resulted in the formation of DNA adducts in both lung and heart and in dysregulation of microRNAs in mouse organs and body fluids. On the other hand, celecoxib attenuated smoke-related DNA damage and dysregulation of microRNA expression. In conclusion, celecoxib showed pleiotropic properties and multiple mechanisms by counteracting the molecular damage produced by smoke in a variety of organs and body fluids. However, administration of celecoxib to non-smoking mice resulted in evident molecular alterations, also including DNA and RNA alterations in the heart, which may bear relevance in the pathogenesis of the cardiovascular adverse effects of this drug.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Marta Geretto
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Roumen Balansky
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.,National Center of Oncology, 1756 Sofia, Bulgaria
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
34
|
Jiang W, Wang L, Zhang J, Shen H, Dong W, Zhang T, Li X, Wang K, Du J. Effects of postoperative non-steroidal anti-inflammatory drugs on long-term survival and recurrence of patients with non-small cell lung cancer. Medicine (Baltimore) 2018; 97:e12442. [PMID: 30278522 PMCID: PMC6181525 DOI: 10.1097/md.0000000000012442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve postoperative fever, surgery pain, and inflammation. In addition, NSAIDs have anticancer activity and may reduce the risk and mortality of several cancers. However, the association between postoperative NSAIDs and the clinical outcome of non-small cell lung cancer (NSCLC) patients with fever after surgery is not fully understood. We performed a retrospective study of NSCLC patients who underwent surgery between July 2011 and June 2012, aiming to evaluate the effect of postoperative NSAIDs on overall survival (OS) and progression-free survival (PFS). Differences in clinical data between the postoperative NSAIDs group and non-NSAIDs groups were analyzed by Chi-square tests. Kaplan-Meier curves method and Cox regression analysis were conducted for survival analysis. The primary and secondary endpoints were OS and PFS, respectively. This retrospective study included 347 NSCLC patients. There were no significant differences in the clinical characteristics between the NSAIDs group and non-NSAIDs group except for age (P = .024) and differential degree (P = .040). Administration of postoperative NSAIDs was related to longer OS (hazards ratio [HR] 0.528, 95% confidence interval [CI] 0.278-0.884, P = .006) and longer PFS (HR 0.557, 95% CI 0.317-0.841, P = .002) in the multivariate Cox regression model. Subgroup analysis showed statistically significant differences in elderly individuals, male subjects, low smoking index, poor differentiation, and non-adenocarcinoma subgroups, respectively. In conclusion, the administration of postoperative NSAIDs was related to longer OS and PFS in NSCLC patients with postoperative fever.
Collapse
Affiliation(s)
- Wensheng Jiang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
- Department of Cardiothoracic Surgery, Yantaishan Hospital, Yantai
| | - Liguang Wang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Jiangang Zhang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Hongchang Shen
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | | | - Tiehong Zhang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | | | - Kai Wang
- Department of Healthcare Respiratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
- Department of Thoracic Surgery
| |
Collapse
|
35
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
36
|
The Novel Nutraceutical KJS018A Prevents Hepatocarcinogenesis Promoted by Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3909434. [PMID: 30154906 PMCID: PMC6093067 DOI: 10.1155/2018/3909434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023]
Abstract
Inflammation is tightly associated with carcinogenesis at both the initiation and development of tumor. Many reports indicated that Cox-2 substantially contributes to inflammation and tumorigenesis. The novel nutraceutical KJS018A (BRM270 Function Enhanced Products) is the extract mixture from 8 herbal plants, which have been used to inhibit cancers and inflammation. The aim of the present study is to examine the inhibitory effects of KJS018A mixture to hepatocarcinogenesis and inflammation. The results showed that KJS018A significantly inhibited the proliferation of hepatic malignant cells and downregulated levels of IL-6 and Cox-2. Furthermore, KJS018A diminished the effect of PMA, an inflammatory inducer via IL-6/STAT3/Cox-2 pathway. Furthermore, KJS018A suppressed metastatic traits of hepatic malignant cells via downregulating Twist, N-cadherin, and MMP-9 while restoring E-cadherin expression. KJS018A also restrained tumor growth and levels of IL-6 and Cox-2 in immunohistochemistry staining. Taken together, these data suggest potential application of KJS018A in prevention of hepatocarcinogenesis promoted by inflammation.
Collapse
|
37
|
Kennedy BM, Harris RE. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer. Inflammopharmacology 2018; 26:10.1007/s10787-018-0489-6. [PMID: 29736687 DOI: 10.1007/s10787-018-0489-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023]
Abstract
We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Brian M Kennedy
- Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue (306 Cunz Hall), Columbus, OH, 43210-1351, USA
| | - Randall E Harris
- Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue (306 Cunz Hall), Columbus, OH, 43210-1351, USA.
| |
Collapse
|
38
|
Huang Y, Cao S, Zhang Q, Zhang H, Fan Y, Qiu F, Kang N. Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Arch Biochem Biophys 2018; 646:31-37. [PMID: 29596797 DOI: 10.1016/j.abb.2018.03.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/17/2018] [Accepted: 03/24/2018] [Indexed: 11/19/2022]
Abstract
Curcumin, one of the most precious pharmacologically relevant natural products, has gained considerable attention among scientists for decades because of its multi-pharmacological activities in the clinical. However, critical studies on its pharmacological and toxicological activities are needed to understand how this compound can have these biological functions considering its poor oral bioavailability and the low plasma concentration. Moreover, curcumin undergoes extensive and rapid metabolism in vivo, indicating that the pharmacological activity of consuming curcumin might be mediated partly by its metabolites. And as one of the major curcumin metabolites, hexahydrocurcumin (HHC), exhibits similar or more potent bioactivity than curcumin by in vitro and in vivo studies, such as antioxidant, anti-inflammatory, antitumor and cardiovascular protective properties, which may provide important information for us to have a profound comprehension of the effectiveness of curcumin. This review mainly summarizes the current knowledge and underlying molecular mechanisms of the biological activities of HHC and its potential effects on the development of various human diseases.
Collapse
Affiliation(s)
- Yiyuan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Qiang Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Hongyang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Yuqi Fan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| |
Collapse
|
39
|
Lu CY, Chen SY, Peng HL, Kan PY, Chang WC, Yen CJ. Cell-free methylation markers with diagnostic and prognostic potential in hepatocellular carcinoma. Oncotarget 2018; 8:6406-6418. [PMID: 28031532 PMCID: PMC5351641 DOI: 10.18632/oncotarget.14115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with poor prognosis and high mortality. There is a dearth of effective early diagnostic tools, so liver resection surgery and liver transplantation are the only effective medical treatments. The most commonly used marker for HCC detection is serum alpha fetoprotein (AFP), which has low sensitivity and specificity. Because aberrant DNA methylation of genes and miRNAs occurs early in most cancers, we explored whether circulating methylation markers could be promising clinical tools for HCC diagnosis. Using a whole-genome approach, we identified many hyper-methylated miRNAs in HCC. Furthermore, three abnormally methylated genes and one miRNA were combined to establish a methylation predictive model and tested for its diagnostic and prognostic potential in HCC. Using plasma samples, the predictive model exhibited high sensitivity and specificity (> 80%) for HBV-related HCC. Most importantly, nearly 75% of patients who could not be diagnosed with AFP at 20 ng/mL were detected by this model. Further, the predictive model exhibited an exceedingly high ability to predict 5-year overall survival in HCC patients. These data demonstrate the high diagnostic and prognostic potential of methylation markers in the plasma of HCC patients.
Collapse
Affiliation(s)
- Chang-Yi Lu
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shih-Ya Chen
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hui-Ling Peng
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Pu-Yeh Kan
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wan-Chi Chang
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
40
|
Ibuprofen is deleterious for the development of first trimester human fetal ovary ex vivo. Hum Reprod 2018; 33:482-493. [DOI: 10.1093/humrep/dex383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022] Open
|
41
|
Jiao Y, Wang Y, Guo S, Wang G. Glutathione peroxidases as oncotargets. Oncotarget 2017; 8:80093-80102. [PMID: 29108391 PMCID: PMC5668124 DOI: 10.18632/oncotarget.20278] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a disturbance in the equilibrium among free radicals, reactive oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress is a result of imbalance between the production of reactive oxygen and the biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Mounting evidence has implicated oxidative stress in various physiological and pathological processes, including DNA damage, proliferation, cell adhesion, and survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme family with peroxidase activity whose main biological roles are to protect organisms from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen peroxide. Currently, 8 sub-members of GPxs have been identified in humans, all capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of publications has demonstrated that GPxs have significant roles in different stages of carcinogenesis. In this review, we will update recent progress in the study of the roles of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute to the development and advancement of improved cancer treatment models.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, P.R. China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
42
|
The ErbB family and androgen receptor signaling are targets of Celecoxib in prostate cancer. Cancer Lett 2017; 400:9-17. [PMID: 28450158 DOI: 10.1016/j.canlet.2017.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/06/2017] [Accepted: 04/14/2017] [Indexed: 01/23/2023]
|
43
|
Chen J, Stark LA. Aspirin Prevention of Colorectal Cancer: Focus on NF-κB Signalling and the Nucleolus. Biomedicines 2017; 5:biomedicines5030043. [PMID: 28718829 PMCID: PMC5618301 DOI: 10.3390/biomedicines5030043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
Overwhelming evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have anti-tumour activity and the potential to prevent cancer, particularly colorectal cancer. However, the mechanisms underlying this effect remain hypothetical. Dysregulation of the nuclear factor-kappaB (NF-κB) transcription factor is a common event in many cancer types which contributes to tumour initiation and progression by driving expression of pro-proliferative/anti-apoptotic genes. In this review, we will focus on the current knowledge regarding NSAID effects on the NF-κB signalling pathway in pre-cancerous and cancerous lesions, and the evidence that these effects contribute to the anti-tumour activity of the agents. The nuclear organelle, the nucleolus, is emerging as a central regulator of transcription factor activity and cell growth and death. Nucleolar function is dysregulated in the majority of cancers which promotes cancer growth through direct and indirect mechanisms. Hence, this organelle is emerging as a promising target for novel therapeutic agents. Here, we will also discuss evidence for crosstalk between the NF-κB pathway and nucleoli, the role that this cross-talk has in the anti-tumour effects of NSAIDs and ways forward to exploit this crosstalk for therapeutic purpose.
Collapse
Affiliation(s)
- Jingyu Chen
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd., Edinburgh, Scotland EH4 2XU, UK.
| | - Lesley A Stark
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd., Edinburgh, Scotland EH4 2XU, UK.
| |
Collapse
|
44
|
Feng D, Zhao T, Yan K, Liang H, Liang J, Zhou Y, Zhao W, Ling B. Gonadotropins promote human ovarian cancer cell migration and invasion via a cyclooxygenase 2-dependent pathway. Oncol Rep 2017; 38:1091-1098. [PMID: 28677781 DOI: 10.3892/or.2017.5784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/22/2017] [Indexed: 11/06/2022] Open
Abstract
It is generally accepted that ovarian cancer is associated with local elevation of gonadotropins (FSH and LH), with repeated ovulation and accompanying expression of inducible cyclooxygenase 2 (COX2). However, the roles of gonadotropins and the concomitant elevation of COX2 in the development of ovarian cancer have not been fully characterized. Herein, we report that excessive FSH/LH exposure did not induce proliferation in ovarian cancer cell lines but significantly promoted cell migration and invasion. Moreover, FSH/LH treatment rapidly upregulated COX2 expression within 24 h, whereas COX1 expression remained unchanged. Further results showed that enhancement of epithelial-mesenchymal transition (EMT) and upregulation of matrix metalloproteinase (MMP)2 and MMP9 contributed to the stimulatory effect of gonadotropins on cell migration and invasion; these effects were sufficiently blocked by a selective COX2 inhibitor. In conclusion, the present study suggests that gonadotropin-induced migration and invasion in ovarian cancer may be caused by EMT and MMP upregulation via a COX2-dependent pathway.
Collapse
Affiliation(s)
- Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Tingting Zhao
- Department of Obstetrics, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Keqin Yan
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Weidong Zhao
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
45
|
Garland J. Unravelling the complexity of signalling networks in cancer: A review of the increasing role for computational modelling. Crit Rev Oncol Hematol 2017; 117:73-113. [PMID: 28807238 DOI: 10.1016/j.critrevonc.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer induction is a highly complex process involving hundreds of different inducers but whose eventual outcome is the same. Clearly, it is essential to understand how signalling pathways and networks generated by these inducers interact to regulate cell behaviour and create the cancer phenotype. While enormous strides have been made in identifying key networking profiles, the amount of data generated far exceeds our ability to understand how it all "fits together". The number of potential interactions is astronomically large and requires novel approaches and extreme computation methods to dissect them out. However, such methodologies have high intrinsic mathematical and conceptual content which is difficult to follow. This review explains how computation modelling is progressively finding solutions and also revealing unexpected and unpredictable nano-scale molecular behaviours extremely relevant to how signalling and networking are coherently integrated. It is divided into linked sections illustrated by numerous figures from the literature describing different approaches and offering visual portrayals of networking and major conceptual advances in the field. First, the problem of signalling complexity and data collection is illustrated for only a small selection of known oncogenes. Next, new concepts from biophysics, molecular behaviours, kinetics, organisation at the nano level and predictive models are presented. These areas include: visual representations of networking, Energy Landscapes and energy transfer/dissemination (entropy); diffusion, percolation; molecular crowding; protein allostery; quinary structure and fractal distributions; energy management, metabolism and re-examination of the Warburg effect. The importance of unravelling complex network interactions is then illustrated for some widely-used drugs in cancer therapy whose interactions are very extensive. Finally, use of computational modelling to develop micro- and nano- functional models ("bottom-up" research) is highlighted. The review concludes that computational modelling is an essential part of cancer research and is vital to understanding network formation and molecular behaviours that are associated with it. Its role is increasingly essential because it is unravelling the huge complexity of cancer induction otherwise unattainable by any other approach.
Collapse
Affiliation(s)
- John Garland
- Manchester Interdisciplinary Biocentre, Manchester University, Manchester, UK.
| |
Collapse
|
46
|
Bittoni MA, Carbone DP, Harris RE. Ibuprofen and fatal lung cancer: A brief report of the prospective results from the Third National Health and Nutrition Examination Survey (NHANES III). Mol Clin Oncol 2017; 6:917-920. [PMID: 28588790 DOI: 10.3892/mco.2017.1239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/04/2017] [Indexed: 01/09/2023] Open
Abstract
Chronic inflammation appears to increase the risk of lung cancer and, reciprocally, agents that reduce inflammation have been found to reduce this risk. However, few prospective studies have assessed whether there exists an association between lung cancer and the use of non-steroidal anti-inflammatory drugs (NSAIDs). In the present study, the association between fatal lung cancer and NSAIDs was investigated using cohort data from the Third National Health and Nutrition Examination Study (NHANES III). Baseline data were collected on smoking, NSAID use and other lifestyle factors for 10,735 participants during 1988-1994, with cause-specific mortality status ascertained through probabilistic record matching based on the National Death Index until 2006. Cox proportional hazards regression models were conducted to estimate hazard ratios (HRs) and confidence intervals (CIs) for NSAID use and death from lung cancer, controlling for current smoking and other covariates. During the 18 years of follow-up, 269 participants succumbed to lung cancer, of whom 252 (93.6%) reported a history of cigarette smoking. Since all but 17 of the 269 fatal lung cancer cases occurred among current or former smokers, estimates of NSAID effects were ascertained from a sub-cohort of 5,882 individuals who reported a history of past or current cigarette smoking. Multivariate regression models revealed that regular use of ibuprofen resulted in a 48% reduced risk of lung cancer mortality (HR=0.52, 95% CI: 0.33-0.82, P<0.01). The main effects of other compounds tested, such as aspirin or acetaminophen, were not statistically significant. Our results suggest that high-risk subgroups of smokers may benefit from the regular use of specific NSAIDs, which may prove to be a useful strategy for lung cancer prevention.
Collapse
Affiliation(s)
- Marisa A Bittoni
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.,Division of Thoracic Oncology, College of Medicine, Columbus, OH 43210, USA
| | - David P Carbone
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.,Division of Thoracic Oncology, College of Medicine, Columbus, OH 43210, USA
| | - Randall E Harris
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.,Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
47
|
Aspirin and risk of multiple myeloma in adults: A systematic review and meta-analysis. Leuk Res Rep 2017; 7:23-28. [PMID: 28331798 PMCID: PMC5348598 DOI: 10.1016/j.lrr.2017.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 02/09/2017] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma is a relatively uncommon plasma cell malignancy. Preclinical and clinical studies have suggested that aspirin might modify the risk of multiple myeloma. We performed a systematic review and meta-analysis of studies to examine the association between regular aspirin use and risk of multiple myeloma. Five observational studies including 332,660 adults were evaluated. The pooled estimate had a hazard ratio of 0.90 (95% confidence interval =0.58−1.39; P=0.638). Odds ratios from the two case-control studies were similar. The findings demonstrated that there was no significant association between aspirin use and the risk of multiple myeloma. This is a systematic review of aspirin use on the incidence risk of multiple myeloma. There is no evidence that aspirin modifies the risk of multiple myeloma. More studies are needed to assess the impact of aspirin on the risk of multiple myeloma.
Collapse
|
48
|
Cheng N, Li H, Luo J. Trop2 promotes proliferation, invasion and EMT of nasopharyngeal carcinoma cells through the NF-κB pathway. RSC Adv 2017. [DOI: 10.1039/c7ra09915k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human trophoblast cell surface antigen 2 (Trop2), a cell surface transmembrane glycoprotein receptor, has been demonstrated to be closely associated with increasing tumor aggressiveness, metastasis and unfavorable prognosis.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Otolaryngological
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Haixia Li
- Department of Otolaryngological
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Junpeng Luo
- Department of Oncology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| |
Collapse
|
49
|
Ren H, Shi X, Li Y. Reduction of p38 mitogen-activated protein kinase and cyclooxygenase-2 signaling by isoflurane inhibits proliferation and apoptosis evasion in human papillomavirus-infected laryngeal papillomas. Exp Ther Med 2016; 12:3425-3432. [PMID: 27882174 DOI: 10.3892/etm.2016.3776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Human laryngeal papilloma (LP) is a human papillomavirus-induced hyperplastic tumor of the respiratory tract, which is characterized by rapid growth and apoptosis resistance. Isoflurane (ISO) inhibits proliferation and elicits apoptosis in cancer cells. The results of the present study found that the mRNA and protein levels of cyclooxygenase-2 (COX2) were higher in LP tissues than in normal laryngeal samples, and prostaglandin E2 (PGE2) production was increased in LP cells, as determined by quantitative polymerase chain reaction, western blot and radioimmunoassay analyses. Notably, the increase in COX2 and PGE2 levels was significantly abrogated in the ISO-treated LP cells. The inhibitory effects of ISO on COX2 expression and activity depended on the inactivation of p38 mitogen-activated protein kinase (MAPK) in LP cells. By inhibiting the COX2 activity of LP cells, ISO treatment markedly suppressed cell viability and proliferation, as determined using Cell Counting Kit-8, flow cytometry and 5-ethynyl-20-deoxyuridine incorporation assays. Furthermore, ISO treatment promoted cell apoptosis, as demonstrated by flow cytometry, nucleosomal fragmentation and caspase-3 activity assays. Collectively, the present results suggest that COX2 is critical in the progression of LP, and ISO is a potential agent for LP therapy by impeding p38 MAPK/COX2 signaling.
Collapse
Affiliation(s)
- Hongbo Ren
- Department of Otolaryngology, Children's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| | - Xiaojuan Shi
- Department of Pediatrics, Women and Infants Hospital of Zhengzhou, Zhengzhou, Henan 450012, P.R. China
| | - Ying Li
- Department of Otolaryngology, Children's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
50
|
Lou Y, Wang Q, Zheng J, Hu H, Liu L, Hong D, Zeng S. Possible Pathways of Capecitabine-Induced Hand–Foot Syndrome. Chem Res Toxicol 2016; 29:1591-1601. [PMID: 27631426 DOI: 10.1021/acs.chemrestox.6b00215] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yan Lou
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Qian Wang
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Jinqi Zheng
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, People’s Republic of China
| | - Haihong Hu
- Laboratory
of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province
Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Lin Liu
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Dongsheng Hong
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Su Zeng
- Laboratory
of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province
Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| |
Collapse
|