1
|
Yurchak V, Leslie AW, Dively GP, Lamp WO, Hooks CRR. Degradation of transgenic Bacillus thuringiensis proteins in corn tissue in response to post-harvest management practices. Transgenic Res 2021; 30:851-865. [PMID: 34282516 DOI: 10.1007/s11248-021-00273-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/03/2021] [Indexed: 11/29/2022]
Abstract
Knowledge of the persistence of Cry proteins in transgenic corn residue after harvest is necessary to assess the ecological risk to nontarget organisms. The amount of protein remaining in crop residue declines over time by a combination of microbial decomposition and leaching, both influenced by temperature, precipitation, and the amount of residue-soil contact. Here, we investigated how long biologically active Cry proteins persist in SmartStax corn residue expressing Cry1A.105, Cry1F, Cry2Ab2, Cry3Bb1, and Cry34/35Ab1, when subjected to four post-harvest practices (chisel plow tillage, flail mowing, cover crop planting, and undisturbed residue). Protein activity in residue samples collected up to 25 weeks after harvest was measured by Ostrinia nubilalis feeding bioassays and cross validated with detection frequencies determined by ELISA. All corn residue remained above ground in the flail-mowed and undisturbed treatments, while the cover crop and chisel plow treatments left 88.3 and 39.6% of the residue remaining above ground, respectively. Cry proteins retained biological activity for as long as 24 weeks after harvest when residue was left above ground with less soil contact, typical of no-till corn systems. ELISA detections were positively correlated with results of the feeding bioassays, which revealed the presence of active proteins beyond the point of ELISA detection.
Collapse
Affiliation(s)
- V Yurchak
- Department of Entomology, University of Maryland, College Park, MD, USA.
| | - A W Leslie
- University of Maryland Extension, Bel Alton, MD, USA
| | - G P Dively
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - W O Lamp
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - C R R Hooks
- Department of Entomology, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Marques LH, Lepping M, Castro BA, Santos AC, Rossetto J, Nunes MZ, Silva OABN, Moscardini VF, de Sá VGM, Nowatzki T, Dahmer ML, Gontijo PC. Field efficacy of Bt cotton containing events DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 against lepidopteran pests and impact on the non-target arthropod community in Brazil. PLoS One 2021; 16:e0251134. [PMID: 33945577 PMCID: PMC8096009 DOI: 10.1371/journal.pone.0251134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The efficacy and non-target arthropod effects of transgenic DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 Bt cotton, expressing proteins Cry1Ac, Cry1F and Vip3Aa19, was examined through field trials in Brazil. Fifteen field efficacy experiments were conducted from 2014 through the 2020 growing season across six different states in Brazil to evaluate performance against key lepidopteran pests through artificial infestations of Chrysodeixis includens (Walker), Spodoptera frugiperda (J.E. Smith,1797), Spodoptera cosmioides (Walker, 1858) and Chloridea virescens (F., 1781), and natural infestations of Alabama argillacea (Hübner) and S. frugiperda. The impact of this Bt cotton technology on the non-target arthropod community in Brazilian cotton production systems was also assessed in a multi-site experiment. DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton significantly reduced the feeding damage caused by S. frugiperda, S. cosmioides, C. includens, C. virescens and A. argillacea, causing high levels of mortality (greater than 99%) to all target lepidopteran pests evaluated during vegetative and/or reproductive stages of crop development. Non-target arthropod community-level analyses confirmed no unintended effects on the arthropod groups monitored. These results demonstrate the value of transgenic Bt cotton containing event DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 for consideration as part of an integrated approach for managing key lepidopteran pests in Brazilian cotton production systems.
Collapse
Affiliation(s)
| | - Miles Lepping
- Corteva Agriscience, Indianapolis, Indiana, United States of America
| | - Boris A. Castro
- Corteva Agriscience, Indianapolis, Indiana, United States of America
| | | | | | | | | | | | | | | | - Mark L. Dahmer
- Corteva Agriscience, Johnston, Iowa, United States of America
| | - Pablo C. Gontijo
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, Goiás, Brazil
| |
Collapse
|
3
|
Krause SMB, Näther A, Ortiz Cortes V, Mullins E, Kessel GJT, Lotz LAP, Tebbe CC. No Tangible Effects of Field-Grown Cisgenic Potatoes on Soil Microbial Communities. Front Bioeng Biotechnol 2020; 8:603145. [PMID: 33224940 PMCID: PMC7670967 DOI: 10.3389/fbioe.2020.603145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
DNA modification techniques are increasingly applied to improve the agronomic performance of crops worldwide. Before cultivation and marketing, the environmental risks of such modified varieties must be assessed. This includes an understanding of their effects on soil microorganisms and associated ecosystem services. This study analyzed the impact of a cisgenic modification of the potato variety Desirée to enhance resistance against the late blight-causing fungus Phytophthora infestans (Oomycetes) on the abundance and diversity of rhizosphere inhabiting microbial communities. Two experimental field sites in Ireland and the Netherlands were selected, and for 2 subsequent years, the cisgenic version of Desirée was compared in the presence and absence of fungicides to its non-engineered late blight-sensitive counterpart and a conventionally bred late blight-resistant variety. At the flowering stage, total DNA was extracted from the potato rhizosphere and subjected to PCR for quantifying and sequencing bacterial 16S rRNA genes, fungal internal transcribed spacer (ITS) sequences, and nir genes encoding for bacterial nitrite reductases. Both bacterial and fungal communities responded to field conditions, potato varieties, year of cultivation, and bacteria sporadically also to fungicide treatments. At the Dutch site, without annual replication, fungicides stimulated nirK abundance for all potatoes, but with significance only for cisgenic Desirée. In all other cases, neither the abundance nor the diversity of any microbial marker differed between both Desirée versions. Overall, the study demonstrates environmental variation but also similar patterns of soil microbial diversity in potato rhizospheres and indicates that the cisgenic modification had no tangible impact on soil microbial communities.
Collapse
Affiliation(s)
- Sascha M B Krause
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany.,Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Astrid Näther
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | - Vilma Ortiz Cortes
- Teagasc Crops, Environmental and Land Use Program, Crop Science Department, Oak Park Crops Research Centre, Carlow, Ireland
| | - Ewen Mullins
- Teagasc Crops, Environmental and Land Use Program, Crop Science Department, Oak Park Crops Research Centre, Carlow, Ireland
| | - Geert J T Kessel
- Plant Research International, Wageningen University & Research, Wageningen, Netherlands
| | - Lambertus A P Lotz
- Plant Research International, Wageningen University & Research, Wageningen, Netherlands
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| |
Collapse
|
4
|
Muzhinji N, Ntuli V. Genetically modified organisms and food security in Southern Africa: conundrum and discourse. GM CROPS & FOOD 2020; 12:25-35. [PMID: 32687427 PMCID: PMC7553747 DOI: 10.1080/21645698.2020.1794489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The importance of food security and nourishment is recognized in Southern African region and in many communities, globally. However, the attainment of food security in Southern African countries is affected by many factors, including adverse environmental conditions, pests and diseases. Scientists have been insistently looking for innovative strategies to optimize crop production and combat challenges militating against attainment of food security. In agriculture, strategies of increasing crop production include but not limited to improved crop varieties, farming practices, extension services, irrigation services, mechanization, information technology, use of fertilizers and agrochemicals. Equally important is genetic modification (GM) technology, which brings new prospects in addressing food security problems. Nonetheless, since the introduction of genetically modified crops (GMOs) three decades ago, it has been a topic of public discourse across the globe, conspicuously so in Southern African region. This is regardless of the evidence that planting GMOs positively influenced farmer’s incomes, economic access to food and increased tolerance of crops to various biotic and abiotic stresses. This paper looks at the issues surrounding GMOs adoption in Southern Africa and lack thereof, the discourse, and its potential in contributing to the attainment of food security for the present as well as future generations.
Collapse
Affiliation(s)
- Norman Muzhinji
- Department of Natural and Applied Sciences, Namibia University of Science and Technology , Windhoek, Namibia
| | - Victor Ntuli
- Department of Biology, National University of Lesotho , Roma, Lesotho
| |
Collapse
|
5
|
Ling L, Jiang Y, Meng JJ, Cai LM, Cao GC. Phloem transport capacity of transgenic rice T1c-19 (Cry1C*) under several potassium fertilizer levels. PLoS One 2018; 13:e0195058. [PMID: 29596474 PMCID: PMC5875849 DOI: 10.1371/journal.pone.0195058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/15/2018] [Indexed: 11/18/2022] Open
Abstract
Genetic modification of Cry-proteins from Bacillus thuringiensis (Bt) is a common practice in economically important crops to improve insecticide resistance and reduce the use of pesticides. However, introduction of these genes can have unintended side effects, which should be closely monitored for effective breeding and crop management. To determine the potential cause of these negative effects, we explored assimilate partitioning in the transgenic Bt rice line T1c-19 (Cry1C*), which was compared with that of its wild-type counterpart Minghui 63 (MH63) under different potassium fertilization application treatment conditions. In a pot experiment, 0, 0.4, and 0.6 g K2O was applied per kg of dry soil to determine the phloem transport characteristics of the two rice lines. We used a variety of assessment indicators ranging from morphological to physiological aspects, including the number of large and small vascular bundles in the neck internode at the heading stage, the diameter and bleeding intensity of the neck internode at the filling stage, and the content and apparent ratio of transferred non-structural carbohydrates (NSC) in the culm and sheath from the heading to maturing stages. The K utilization and grain yield at the maturing stage were also concerned. Results presented that the mean setting rate and grain yield of T1c-19 (Cry1C*) decreased by 22.3% and 26.2% compared to those in MH63, respectively. Compared to MH63, the K concentration and accumulation were significantly higher in the culms and leaves, but significantly lower in grain of T1c-19 (Cry1C*). T1c-19 (Cry1C*) had less apparent NSC efflux in the culm and sheath, fewer small vascular bundles, and a smaller diameter and bleeding intensity of the neck internode than MH63. In addition, linear correlation analysis indicated that there were positive correlations among grain yield, setting rate, the apparent NSC efflux in the culm and sheath, number of small vascular bundles, and the neck internode diameter and bleeding intensity. These unintended effects may directly or indirectly be caused by insertion of exogenous Bt (Cry1C*) gene, which should be further considered in the future breeding of transgenic crops.
Collapse
Affiliation(s)
- Lin Ling
- Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Jiang
- Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| | - Jiao Jing Meng
- Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Ming Cai
- Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gui Cou Cao
- Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Marques LH, Santos AC, Castro BA, Storer NP, Babcock JM, Lepping MD, Sa V, Moscardini VF, Rule DM, Fernandes OA. Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. PLoS One 2018; 13:e0191567. [PMID: 29394266 PMCID: PMC5796694 DOI: 10.1371/journal.pone.0191567] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Field-scale studies that examine the potential for adverse effects of Bt crop technology on non-target arthropods may supplement data from laboratory studies to support an environmental risk assessment. A three year field study was conducted in Brazil to evaluate potential for adverse effects of cultivating soybean event DAS-81419-2 that produces the Cry1Ac and Cry1F proteins. To do so, we examined the diversity and abundance of non-target arthropods (NTAs) in Bt soybean in comparison with its non-Bt near isoline, with and without conventional insecticide applications, in three Brazilian soybean producing regions. Non-target arthropod abundance was surveyed using Moericke traps (yellow pan) and pitfall trapping. Total abundance (N), richness (S), Shannon-Wiener (H'), Simpson's (D) and Pielou's evenness (J) values for arthropod samples were calculated for each treatment and sampling period (soybean growth stages). A faunistic analysis was used to select the most representative NTAs which were used to describe the NTA community structure associated with soybean, and to test for effects due to the treatments effects via application of the Principal Response Curve (PRC) method. Across all years and sites, a total of 254,054 individuals from 190 taxa were collected by Moericke traps, while 29,813 individuals from 100 taxa were collected using pitfall traps. Across sites and sampling dates, the abundance and diversity measurements of representative NTAs were not significantly affected by Bt soybean as compared with non-sprayed non-Bt soybean. Similarly, community analyses and repeated measures ANOVA, when applicable, indicated that neither Bt soybean nor insecticide sprays altered the structure of the NTA communities under study. These results support the conclusion that transgenic soybean event DAS-81419-2 producing Cry1Ac and Cry1F toxins does not adversely affect the NTA community associated with soybean.
Collapse
Affiliation(s)
- Luiz H. Marques
- Dow AgroSciences Industrial Ltda, São Paulo, São Paulo, Brazil
| | | | - Boris A. Castro
- Dow AgroSciences LLC, Indianapolis, Indiana, United States of America
| | | | | | - Miles D. Lepping
- Dow AgroSciences LLC, Indianapolis, Indiana, United States of America
| | - Verissimo Sa
- Dow AgroSciences Industrial Ltda, São Paulo, São Paulo, Brazil
| | | | - Dwain M. Rule
- Dow AgroSciences LLC, Indianapolis, Indiana, United States of America
| | - Odair A. Fernandes
- Universidade Estadual Paulista (FCAV/UNESP), Faculdade de Ciências Agrárias e Veterinárias, FCAV/UNESP, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
7
|
Niu L, Mannakkara A, Qiu L, Wang X, Hua H, Lei C, Jurat-Fuentes JL, Ma W. Transgenic Bt rice lines producing Cry1Ac, Cry2Aa or Cry1Ca have no detrimental effects on Brown Planthopper and Pond Wolf Spider. Sci Rep 2017; 7:1940. [PMID: 28512299 PMCID: PMC5434062 DOI: 10.1038/s41598-017-02207-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/11/2017] [Indexed: 12/28/2022] Open
Abstract
Transgenic rice expressing cry genes from the bacterium Bacillus thuringiensis (Bt rice) is highly resistant to lepidopteran pests. The brown planthopper (BPH, Nilaparvata lugens) is the main non-target sap-sucking insect pest of Bt transgenic rice. The pond wolf spider (PWS, Pardosa pseudoannulata) is one of the most dominant predators of BPH in rice fields. Consequently, the safety evaluation of Bt rice on BPH and PWS should be conducted before commercialization. In the current study, two experiments were performed to assess the potential ecological effects of Bt rice on BPH and PWS: (1) a tritrophic experiment to evaluate the transmission of Cry1Ac, Cry2Aa and Cry1Ca protein in the food chain; and (2) binding assays of Cry1Ac, Cry2Aa and Cry1Ca to midgut brush border membrane proteins from BPH and PWS. Trace amounts of the three Cry proteins were detected in BPH feeding on Bt rice cultivars, but only Cry1Ac and Cry2Aa proteins could be transferred to PWS through feeding on BPH. In vitro binding of biotinylated Cry proteins and competition assays in midgut protein vesicles showed weak binding, and ligand blot analysis confirmed the binding specificity. Thus, we inferred that the tested Bt rice varieties have negligible effects on BPH and PWS.
Collapse
Affiliation(s)
- Lin Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Amani Mannakkara
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, 81100, Sri Lanka
| | - Lin Qiu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
|
9
|
Scott SE, Inbar Y, Rozin P. Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2016; 11:315-24. [DOI: 10.1177/1745691615621275] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Public opposition to genetic modification (GM) technology in the food domain is widespread (Frewer et al., 2013). In a survey of U.S. residents representative of the population on gender, age, and income, 64% opposed GM, and 71% of GM opponents (45% of the entire sample) were “absolutely” opposed—that is, they agreed that GM should be prohibited no matter the risks and benefits. “Absolutist” opponents were more disgust sensitive in general and more disgusted by the consumption of genetically modified food than were non-absolutist opponents or supporters. Furthermore, disgust predicted support for legal restrictions on genetically modified foods, even after controlling for explicit risk–benefit assessments. This research suggests that many opponents are evidence insensitive and will not be influenced by arguments about risks and benefits.
Collapse
Affiliation(s)
| | - Yoel Inbar
- Department of Psychology, University of Toronto
| | - Paul Rozin
- Department of Psychology, University of Pennsylvania
| |
Collapse
|
10
|
Lamichhane JR, Devos Y, Beckie HJ, Owen MDK, Tillie P, Messéan A, Kudsk P. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad. Crit Rev Biotechnol 2016; 37:459-475. [PMID: 27173634 DOI: 10.1080/07388551.2016.1180588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.
Collapse
Affiliation(s)
| | - Yann Devos
- b GMO Unit, European Food Safety Authority (EFSA) , Parma , Italy
| | - Hugh J Beckie
- c Agriculture and Agri-Food Canada , Saskatoon , Saskatchewan , Canada
| | | | - Pascal Tillie
- e European Commission-Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS) , Seville , Spain
| | - Antoine Messéan
- a Eco-Innov Research Unit, INRA , Thiverval-Grignon , France
| | - Per Kudsk
- f Department of Agroecology , Aarhus University , Slagelse , Denmark
| |
Collapse
|
11
|
|
12
|
Hartung F, Schiemann J. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:742-52. [PMID: 24330272 DOI: 10.1111/tpj.12413] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 05/04/2023]
Abstract
Several new plant breeding techniques (NPBTs) have been developed during the last decade, and make it possible to precisely perform genome modifications in plants. The major problem, other than technical aspects, is the vagueness of regulation concerning these new techniques. Since the definition of eight NPBTs by a European expert group in 2007, there has been an ongoing debate on whether the resulting plants and their products are covered by GMO legislation. Obviously, cover by GMO legislation would severely hamper the use of NPBT, because genetically modified plants must pass a costly and time-consuming GMO approval procedure in the EU. In this review, we compare some of the NPBTs defined by the EU expert group with classical breeding techniques and conventional transgenic plants. The list of NPBTs may be shortened (or extended) during the international discussion process initiated by the Organization for Economic Co-operation and Development. From the scientific point of view, it may be argued that plants developed by NPBTs are often indistinguishable from classically bred plants and are not expected to possess higher risks for health and the environment. In light of the debate on the future regulation of NPBTs and the accumulated evidence on the biosafety of genetically modified plants that have been commercialized and risk-assessed worldwide, it may be suggested that plants modified by crop genetic improvement technologies, including genetic modification, NPBTs or other future techniques, should be evaluated according to the new trait and the resulting end product rather than the technique used to create the new plant variety.
Collapse
Affiliation(s)
- Frank Hartung
- Julius Kühn Institut, Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin Baur Straße 27, D-06484, Quedlinburg, Germany
| | | |
Collapse
|
13
|
Goldstein DA. Tempest in a tea pot: How did the public conversation on genetically modified crops drift so far from the facts? J Med Toxicol 2014; 10:194-201. [PMID: 24798648 PMCID: PMC4057531 DOI: 10.1007/s13181-014-0402-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The debate over genetically modified (GM) crops has raged in Europe since 1996, but had barely risen above a whisper in the USA until recent labeling debates raised public attention. This article will explain GM crops and traits discuss safety assessment provide a view on safety from authoritative organizations discuss selected issues of current debate, and provide the author's perspective as to why the public debate has drifted so far from scientific reality. The economic and environmental benefits of GM crops are beyond scope, but references are provided. GM food and feed undergo comprehensive assessments using recognized approaches to assure they are as safe as the conventional congener. Issues of food safety and nutrition, unrelated to the GM process, may arise when GM foods display novel components or composition. Unanticipated genetic effects in GM crops appear to be limited in contrast to existing variations among conventional varieties resulting from breeding, mutation, and natural mobile genetic elements. Allergenic potential is assessed when selecting genes for introduction into GM crops and remains a theoretical risk to date. Emerging weed and insect resistance is not unique to GM technology and will require the use of integrated pest management/best practices for pest control. Gene flow from GM crops to wild relatives is limited by existing biological barriers but can at time be a relevant consideration in gene selection and planting practices. Insect-resistant GM crops have significantly reduced use of chemical insecticides and appear to have reduced the incidence of pesticide poisoning in areas where small scale farming and hand application are common. Changes in herbicide patterns are more complex and are evolving over time in response to weed resistance management needs. Recent public debate is driven by a combination of unfounded allegations about the technology and purveyors, pseudoscience, and attempts to apply a strict precautionary principle.
Collapse
Affiliation(s)
- Daniel A Goldstein
- Regulatory Affairs, Monsanto Company, Monsanto, Mail Zone C3ND, 800 N.Blvd. St. Louis, Lindbergh, MO, 63167, USA,
| |
Collapse
|
14
|
Salama H, Ragaei M, Abd El-Ghany N. Development of the predator Chrysoperla carnea(Stephens) as affected by feeding on Helicoverpa armigera(Hübner) reared on transgenic Cry2Ab tomato plants. ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION 2013; 46:2019-2022. [DOI: 10.1080/03235408.2013.782989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Do genetically modified crops affect animal reproduction? A review of the ongoing debate. Animal 2012; 5:1048-59. [PMID: 22440100 DOI: 10.1017/s1751731110002776] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the past few years, genetically modified (GM) crops aimed at producing food/feed that became part of the regular agriculture in many areas of the world. However, we are uncertain whether GM food and feed can exert potential adverse effects on humans or animals. Of importance, the reproductive toxicology of GM crops has been studied using a number of methods, and by feeding GM crops to a number species of animals to ensure the safety assessment of GM food and feed. It appears that there are no adverse effects of GM crops on many species of animals in acute and short-term feeding studies, but serious debates of effects of long-term and multigenerational feeding studies remain. The aims of this review are to focus on the latest (last 3 to 4 years) findings and debates on reproduction of male and female animals after feeding daily diets containing the GM crops, and to present the possible mechanism(s) to explain their influences.
Collapse
|
16
|
Raybould A, Higgins LS, Horak MJ, Layton RJ, Storer NP, De La Fuente JM, Herman RA. Assessing the ecological risks from the persistence and spread of feral populations of insect-resistant transgenic maize. Transgenic Res 2012; 21:655-64. [PMID: 22002083 PMCID: PMC3348485 DOI: 10.1007/s11248-011-9560-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/15/2011] [Indexed: 11/29/2022]
Abstract
One source of potential harm from the cultivation of transgenic crops is their dispersal, persistence and spread in non-agricultural land. Ecological damage may result from such spread if the abundance of valued species is reduced. The ability of a plant to spread in non-agricultural habitats is called its invasiveness potential. The risks posed by the invasiveness potential of transgenic crops are assessed by comparing in agronomic field trials the phenotypes of the crops with the phenotypes of genetically similar non-transgenic crops known to have low invasiveness potential. If the transgenic and non-transgenic crops are similar in traits believed to control invasiveness potential, it may be concluded that the transgenic crop has low invasiveness potential and poses negligible ecological risk via persistence and spread in non-agricultural habitats. If the phenotype of the transgenic crop is outside the range of the non-transgenic comparators for the traits controlling invasiveness potential, or if the comparative approach is regarded as inadequate for reasons of risk perception or risk communication, experiments that simulate the dispersal of the crop into non-agricultural habitats may be necessary. We describe such an experiment for several commercial insect-resistant transgenic maize events in conditions similar to those found in maize-growing regions of Mexico. As expected from comparative risk assessments, the transgenic maize was found to behave similarly to non-transgenic maize and to be non-invasive. The value of this experiment in assessing and communicating the negligible ecological risk posed by the low invasiveness potential of insect-resistant transgenic maize in Mexico is discussed.
Collapse
Affiliation(s)
- Alan Raybould
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Scientific Opinion on a request from the European Commission related to the emergency measure notified by France on genetically modified maize MON 810 according to Article 34 of Regulation (EC) No 1829/2003. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2705] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Raybould A, Poppy GM. Commercializing genetically modified crops under EU regulations: objectives and barriers. GM CROPS & FOOD 2012; 3:9-20. [PMID: 22430852 DOI: 10.4161/gmcr.18961] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Agriculture faces serious problems in feeding 9 billion people by 2050: production must be increased and ecosystem services maintained under conditions for growing crops that are predicted to worsen in many parts of the world. A proposed solution is sustainable intensification of agriculture, whereby yields are increased on land that is currently cultivated, so sparing land to deliver other ecosystem services. Genetically modified (GM) crops are already contributing to sustainable intensification through higher yields and lower environmental impacts, and have potential to deliver further significant improvements. Despite their widespread successful use elsewhere, the European Union (EU) has been slow to introduce GM crops: decisions on applications to import GM commodities are lengthy, and decision-making on applications to cultivate GM crops has virtually ceased. Delayed import approvals result in economic losses, particularly in the EU itself as a result of higher commodity prices. Failure to grant cultivation approvals costs EU farmers opportunities to reduce inputs, and results in loss of agricultural research and development from the EU to countries such as the United States and China. Delayed decision-making in the EU ostensibly results from scientific uncertainty about the effects of using GM crops; however, scientific uncertainty may be a means to justify a political decision to restrict cultivation of GM crops in the EU. The problems associated with delayed decision-making will not improve until there is clarity about the EU's agricultural policy objectives, and whether the use of GM crops will be permitted to contribute to achieving those objectives.
Collapse
Affiliation(s)
- Alan Raybould
- Jealott's Hill International Research Centre, Syngenta, Berkshire, UK.
| | | |
Collapse
|
19
|
Scientific Opinion on application (EFSA-GMO-UK-2008-60) for placing on the market of genetically modified herbicide tolerant maize GA21 for food and feed uses, import, processing and cultivation under Regulation (EC) No 1829/2003 from Syngenta Seeds. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
Statement supplementing the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize Bt11 for cultivation. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Environmental change challenges decision-making during post-market environmental monitoring of transgenic crops. Transgenic Res 2011; 20:1191-201. [PMID: 21607784 DOI: 10.1007/s11248-011-9524-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
The ability to decide what kind of environmental changes observed during post-market environmental monitoring of genetically modified (GM) crops represent environmental harm is an essential part of most legal frameworks regulating the commercial release of GM crops into the environment. Among others, such decisions are necessary to initiate remedial measures or to sustain claims of redress linked to environmental liability. Given that consensus on criteria to evaluate 'environmental harm' has not yet been found, there are a number of challenges for risk managers when interpreting GM crop monitoring data for environmental decision-making. In the present paper, we argue that the challenges in decision-making have four main causes. The first three causes relate to scientific data collection and analysis, which have methodological limits. The forth cause concerns scientific data evaluation, which is controversial among the different stakeholders involved in the debate on potential impacts of GM crops on the environment. This results in controversy how the effects of GM crops should be valued and what constitutes environmental harm. This controversy may influence decision-making about triggering corrective actions by regulators. We analyse all four challenges and propose potential strategies for addressing them. We conclude that environmental monitoring has its limits in reducing uncertainties remaining from the environmental risk assessment prior to market approval. We argue that remaining uncertainties related to adverse environmental effects of GM crops would probably be assessed in a more efficient and rigorous way during pre-market risk assessment. Risk managers should acknowledge the limits of environmental monitoring programmes as a tool for decision-making.
Collapse
|
22
|
von Burg S, van Veen FJF, Álvarez-Alfageme F, Romeis J. Aphid-parasitoid community structure on genetically modified wheat. Biol Lett 2011; 7:387-91. [PMID: 21247941 DOI: 10.1098/rsbl.2010.1147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.
Collapse
Affiliation(s)
- Simone von Burg
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
23
|
Chifflet R, Klein EK, Lavigne C, Le Féon V, Ricroch AE, Lecomte J, Vaissière BE. Spatial scale of insect-mediated pollen dispersal in oilseed rape in an open agricultural landscape. J Appl Ecol 2010. [DOI: 10.1111/j.1365-2664.2010.01904.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Paarlberg R. GMO foods and crops: Africa's choice. N Biotechnol 2010; 27:609-13. [DOI: 10.1016/j.nbt.2010.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
|
25
|
Collier MJ, Mullins E. The CINMa index: assessing the potential impact of GM crop management across a heterogeneous landscape. ENVIRONMENTAL BIOSAFETY RESEARCH 2010; 9:135-145. [PMID: 21975254 DOI: 10.1051/ebr/2011102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 02/19/2011] [Indexed: 05/31/2023]
Abstract
While significant progress has been made on the modification of crops for the benefit of producers, the same cannot be said in regards to eliciting the potential impact that these crops may have on the wider landscape and the diversity of life therein. Management impacts can create difficulties when making policy, regulation and licensing decisions in those countries where agriculture has a significant social and ecological position in the landscape. To begin to gauge the potential impacts of the management of a selection of GM crops on an agricultural landscape, four key biodiversity stressors (Chemicals, Introgression, Nutrients and Management: CINMa) were identified and a grading system developed using published data. Upon application to five selected GM crops in a case study area, CINMa identifies areas in the wider landscape where biodiversity is likely to be negatively or positively impacted, as well as agricultural zones which may benefit from the land use change associated with the management of GM crops and their associated post market environmental monitoring.
Collapse
Affiliation(s)
- Marcus J Collier
- Dept. Crop Science, Programme for Crops, Environment and Land Use, Teagasc Research Centre, Oak Park, Carlow, Ireland
| | | |
Collapse
|
26
|
Ricroch A, Bergé JB, Kuntz M. Is the German suspension of MON810 maize cultivation scientifically justified? Transgenic Res 2009; 19:1-12. [PMID: 19548100 PMCID: PMC2801845 DOI: 10.1007/s11248-009-9297-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/09/2009] [Indexed: 11/27/2022]
Abstract
We examined the justifications invoked by the German government in April 2009 to suspend the cultivation of the genetically modified maize varieties containing the Bt insect-resistance trait MON810. We have carried out a critical examination of the alleged new data on a potential environmental impact of these varieties, namely two scientific papers describing laboratory force-feeding trials on ladybirds and daphnia, and previous data on Lepidoptera, aquatic and soil organisms. We demonstrate that the suspension is based on an incomplete list of references, ignores the widely admitted case-by-case approach, and confuses potential hazard and proven risk in the scientific procedure of risk assessment. Furthermore, we did not find any justification for this suspension in our extensive survey of the scientific literature regarding possible effects under natural field conditions on non-target animals. The vast majority of the 41 articles published in 2008 and 2009 indicate no impact on these organisms and only two articles indicate a minor effect, which is either inconsistent during the planting season or represents an indirect effect. Publications from 1996 to 2008 (376 publications) and recent meta-analyses do not allow to conclude on consistent effects either. The lower abundance of some insects concerns mainly specialized enemies of the target pest (an expected consequence of its control by Bt maize). On the contrary, Bt maize have generally a lower impact than insecticide treatment. The present review demonstrates that the available meta-knowledge on Cry1Ab expressing maize was ignored by the German government which instead used selected individual studies.
Collapse
|
27
|
Devos Y, De Schrijver A, Reheul D. Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2009; 149:303-322. [PMID: 18253849 DOI: 10.1007/s10661-008-0204-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 01/16/2008] [Indexed: 05/25/2023]
Abstract
In order to estimate the introgressive hybridisation propensity (IHP) between genetically modified (GM) oilseed rape (Brassica napus) and certain of its cross-compatible wild/weedy relatives at the landscape level, a conceptual approach was developed. A gene flow index was established enclosing the successive steps to successfully achieve introgressive hybridisation: wild/weedy relatives and oilseed rape should co-occur, have overlapping flowering periods, be compatible, produce viable and fertile progeny, and the transgenes should persist in natural/weedy populations. Each step was described and scored, resulting in an IHP value for each cross-compatible oilseed rape wild/weedy relative. The gene flow index revealed that Brassica rapa has the highest introgressive hybridisation propensity (IHP value = 11.5), followed by Hirschfeldia incana and Raphanus raphanistrum (IHP = 6.7), Brassica juncea (IHP = 5.1), Diplotaxis tenuifolia and Sinapis arvensis (IHP = 4.5) in Flanders. Based on the IHP values, monitoring priorities can be defined within the pool of cross-compatible wild/weedy oilseed rape relatives. Moreover, the developed approach enables to select areas where case-specific monitoring of GM oilseed rape could be done in order to detect potential adverse effects on cross-compatible wild/weedy relatives resulting from vertical gene flow. The implementation of the proposed oilseed rape-wild relative gene flow index revealed that the survey design of existing botanical survey networks does not suit general surveillance needs of GM crops in Belgium. The encountered hurdles to implement the gene flow index and proposals to acquire the missing data are discussed.
Collapse
Affiliation(s)
- Yann Devos
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
28
|
Request from the European Commission related to the safeguard clause invoked by Austria on maize MON810 and T25 according to Article 23 of Directive 2001/18/EC. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Malatesta M, Perdoni F, Santin G, Battistelli S, Muller S, Biggiogera M. Hepatoma tissue culture (HTC) cells as a model for investigating the effects of low concentrations of herbicide on cell structure and function. Toxicol In Vitro 2008; 22:1853-60. [PMID: 18835430 DOI: 10.1016/j.tiv.2008.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/12/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
Previous studies on mice fed genetically modified (GM) soybean demonstrated modifications of the mitochondrial functions and of the transcription/splicing pathways in hepatocytes. The cause(s) of these alterations could not be conclusively established but, since the GM soybean used is tolerant to glyphosate and was treated with the glyphosate-containing herbicide Roundup , the possibility exists that the effects observed may be due to herbicide residues. In order to verify this hypothesis, we treated HTC cells with 1-10mM Roundup and analysed cellular features by flow cytometry, fluorescence and electron microscopy. Under these experimental conditions, the death rate and the general morphology of HTC cells were not affected, as well as most of the cytoplasmic organelles. However, in HTC-treated cells, lysosome density increased and mitochondrial membranes modified indicating a decline in the respiratory activity. Moreover, nuclei underwent morpho-functional modifications suggestive of a decreased transcriptional/splicing activity. Although we cannot exclude that other factors than the presence of the herbicide residues could be responsible for the cellular modifications described in GM-fed mice, the concordance of the effects induced by low concentrations of Roundup on HTC cells suggests that the presence of Roundup residues could be one of the factors interfering with multiple metabolic pathways.
Collapse
Affiliation(s)
- M Malatesta
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia e Istologia, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Devos Y, Cougnon M, Vergucht S, Bulcke R, Haesaert G, Steurbaut W, Reheul D. Environmental impact of herbicide regimes used with genetically modified herbicide-resistant maize. Transgenic Res 2008; 17:1059-77. [PMID: 18404410 DOI: 10.1007/s11248-008-9181-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
With the potential advent of genetically modified herbicide-resistant (GMHR) crops in the European Union, changes in patterns of herbicide use are predicted. Broad-spectrum, non-selective herbicides used with GMHR crops are expected to substitute for a set of currently used herbicides, which might alter the agro-environmental footprint from crop production. To test this hypothesis, the environmental impact of various herbicide regimes currently used with non-GMHR maize in Belgium was calculated and compared with that of possible herbicide regimes applied in GMHR maize. Impacts on human health and the environment were calculated through the pesticide occupational and environmental risk (POCER) indicator. Results showed that the environmental impact of herbicide regimes solely relying on the active ingredients glyphosate (GLY) or glufosinate-ammonium (GLU) is lower than that of herbicide regimes applied in non-GMHR maize. Due to the lower potential of GLY and GLU to contaminate ground water and their lower acute toxicity to aquatic organisms, the POCER exceedence factor values for the environment were reduced approximately by a sixth when GLY or GLU is used alone. However, the environmental impact of novel herbicide regimes tested may be underestimated due to the assumption that active ingredients used with GMHR maize would be used alone. Data retrieved from literature suggest that weed control efficacy is increased and resistance development delayed when GLY or GLU is used together with other herbicides in the GMHR system. Due to the partial instead of complete replacement of currently used herbicide regimes, the beneficial environmental impact of novel herbicide regimes might sometimes be reduced or counterbalanced. Despite the high weed control efficacy provided by the biotechnology-based weed management strategy, neither indirect harmful effects on farmland biodiversity through losses in food resources and shelter, nor shifts in weed communities have been demonstrated in GMHR maize yet. However, with the increasing adoption rate of GMHR maize and their associated novel herbicide regimes, this situation is expected to change in the short-term.
Collapse
Affiliation(s)
- Yann Devos
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|