1
|
Deng Z, Liu L, Xie G, Zheng Z, Li J, Tan W, Deng Y, Zhang J, Liang M, Wu Y, Zhou Z, Li Y, Chen Y, Huang Y, Su H, Wu G, Shi X, Cen S, Liao Y, Liu Y, Zou F, Chen X. Hsp90α promotes lipogenesis by stabilizing FASN and promoting FASN transcription via LXRα in hepatocellular carcinoma. J Lipid Res 2024:100721. [PMID: 39645039 DOI: 10.1016/j.jlr.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Excessive lipid accumulation promotes the occurrence and progression of hepatocellular carcinoma (HCC), accompanied by high levels of fatty acid synthetase (FASN) and more active lipogenesis. Heat shock protein 90 (Hsp90) acts as a chaperone to maintain the stability and activity of the client proteins. Studies have revealed that Hsp90 regulates the lipid metabolism of HCC, but the effect of Hsp90 on FASN still remains unknown. This study aims to discover the mechanism of Hsp90 inhibition on lipid accumulation and investigate the different effects of Hsp90 N-terminal domain inhibitor STA9090 and C-terminal domain inhibitor novobiocin (NB) on FASN protein stability and transcription pathway in HCC. We found that HCC cells tended to store lipids, which could be disrupted by Hsp90 inhibitors in vivo and in vitro. High levels of Hsp90α and FASN in tumor tissue had correlation with poor prognosis of HCC patients and Hsp90α interacted with FASN to maintain its protein stability. Furthermore, N-terminal domain of Hsp90α was essential for process of sterol regulatory element binding protein 1 (SREBP1) to activate FASN transcription and Hsp90α prevented proteasomal degradation of liver X receptor α (LXRα) to upregulate FASN transcription via LXRα/SREBP1 axis. Our data reveals that Hsp90α promotes lipid accumulation by increasing the protein stability and FASN mRNA transcription, and can be alleviated by Hsp90 inhibitors, which provides a theoretical basis for Hsp90-targeted therapy on lipid metabolism in HCC.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lixia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guantai Xie
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenming Zheng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jieyou Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Wenchong Tan
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yaotang Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jinxin Zhang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Manfeng Liang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yingxia Wu
- Department of Hygiene Inspection and Quarantine Science, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou 510515, China
| | - Zhifeng Zhou
- Department of Hygiene Inspection and Quarantine Science, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou 510515, China
| | - Yan Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yukui Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yaling Huang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hairou Su
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guibing Wu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiongjie Shi
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shengpei Cen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yandan Liao
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yilin Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xuemei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Mitra P, Deshmukh AS. Proteostasis is a key driver of the pathogenesis in Apicomplexa. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119824. [PMID: 39168412 DOI: 10.1016/j.bbamcr.2024.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Proteostasis, including protein folding mediated by molecular chaperones, protein degradation, and stress response pathways in organelles like ER (unfolded protein response: UPR), are responsible for cellular protein quality control. This is essential for cell survival as it regulates and reprograms cellular processes. Here, we underscore the role of the proteostasis pathway in Apicomplexan parasites with respect to their well-characterized roles as well as potential roles in many parasite functions, including survival, multiplication, persistence, and emerging drug resistance. In addition to the diverse physiological importance of proteostasis in Apicomplexa, we assess the potential of the pathway's components as chemotherapeutic targets.
Collapse
Affiliation(s)
- Pallabi Mitra
- BRIC-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | | |
Collapse
|
3
|
Matlhodi T, Makatsela LP, Dongola TH, Simelane MBC, Shonhai A, Gumede NJ, Mokoena F. Auto QSAR-based active learning docking for hit identification of potential inhibitors of Plasmodium falciparum Hsp90 as antimalarial agents. PLoS One 2024; 19:e0308969. [PMID: 39585817 PMCID: PMC11588265 DOI: 10.1371/journal.pone.0308969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/02/2024] [Indexed: 11/27/2024] Open
Abstract
Malaria which is mainly caused by Plasmodium falciparum parasite remains a devastating public health concern, necessitating the need to develop new antimalarial agents. P. falciparum heat shock protein 90 (Hsp90), is indispensable for parasite survival and a promising drug target. Inhibitors targeting the ATP-binding pocket of the N-terminal domain have anti-Plasmodium effects. We proposed a de novo active learning (AL) driven method in tandem with docking to predict inhibitors with unique scaffolds and preferential selectivity towards PfHsp90. Reference compounds, predicted to bind PfHsp90 at the ATP-binding pocket and possessing anti-Plasmodium activities, were used to generate 10,000 unique derivatives and to build the Auto-quantitative structures activity relationships (QSAR) models. Glide docking was performed to predict the docking scores of the derivatives and > 15,000 compounds obtained from the ChEMBL database. Re-iterative training and testing of the models was performed until the optimum Kennel-based Partial Least Square (KPLS) regression model with a regression coefficient R2 = 0.75 for the training set and squared correlation prediction Q2 = 0.62 for the test set reached convergence. Rescoring using induced fit docking and molecular dynamics simulations enabled us to prioritize 15 ATP/ADP-like design ideas for purchase. The compounds exerted moderate activity towards P. falciparum NF54 strain with IC50 values of ≤ 6μM and displayed moderate to weak affinity towards PfHsp90 (KD range: 13.5-19.9μM) comparable to the reported affinity of ADP. The most potent compound was FTN-T5 (PfN54 IC50:1.44μM; HepG2/CHO cells SI≥ 29) which bound to PfHsp90 with moderate affinity (KD:7.7μM), providing a starting point for optimization efforts. Our work demonstrates the great utility of AL for the rapid identification of novel molecules for drug discovery (i.e., hit identification). The potency of FTN-T5 will be critical for designing species-selective inhibitors towards developing more efficient agents against malaria.
Collapse
Affiliation(s)
- Thato Matlhodi
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
| | - Lisema Patrick Makatsela
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
| | | | | | - Addmore Shonhai
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| | - Njabulo Joyfull Gumede
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University (WSU), Umthatha, Eastern Cape, South Africa
| | - Fortunate Mokoena
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
| |
Collapse
|
4
|
Keshavarzipour F, Abbasi M, Khorsandi Z, Ardestani M, Sadeghi-Aliabadi H. Design, synthesis and biological studies of new isoxazole compounds as potent Hsp90 inhibitors. Sci Rep 2024; 14:28017. [PMID: 39543364 PMCID: PMC11564562 DOI: 10.1038/s41598-024-79051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Heat shock protein 90 (Hsp90), a molecular chaperone, contributes to the preservation of folding, structure, stability, and function proteins. In this study, novel compounds comprising isoxazole structure were designed, synthesized and their potential ability as Hsp90 inhibitors was validated through docking studies. The active site-based compounds were prepared through a multi-step synthesis process and their chemical structures were characterized employing FT-IR, NMR, and mass spectrometry analysis. Cytotoxic and Hsp90 inhibition activities of synthesized compounds were assessed by MTT assay and ELISA kit, respectively. Based on the obtained results, compound 5 exhibited the highest cytotoxicity (IC50; 14 µM) against cancer cells and reduced Hsp90 expression from 5.54 ng/mL in untreated (normal cells) to 1.56 ng/mL in cancer cells. Moreover, molecular dynamics (MD) simulation results indicated its high affinity to target protein and approved its excellent stability which is essential for exerting an inhibitory effect on cancer cell proliferation.
Collapse
Affiliation(s)
- Fariba Keshavarzipour
- Pharmaceutical Sciences Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-7346, Isfahan, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, 791969-1982, Bandar Abbas, Iran
| | - Zahra Khorsandi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746- 7346, Isfahan, Iran
| | - Mina Ardestani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746- 7346, Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746- 7346, Isfahan, Iran.
| |
Collapse
|
5
|
Mishra T, Dubey N, Basu S. Small molecules for impairing endoplasmic reticulum in cancer. Org Biomol Chem 2024; 22:8689-8699. [PMID: 39373910 DOI: 10.1039/d4ob01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endoplasmic reticulum plays an important role in maintaining the protein homeostasis of cells as well as regulating Ca2+ storage. An increased load of unfolded proteins in the endoplasmic reticulum due to alterations in the cell's metabolic pathway leads to the activation of the unfolded protein response, also known as ER stress. ER stress plays a major role in maintaining the growth and survival of various cancer cells, but persistent ER stress can also lead to cell death and hence can be a therapeutic pathway in the treatment of cancer. In this review, we focus on different types of small molecules that impair different ER stress sensors, the protein degradation machinery, and chaperone proteins. We also review the metal complexes and other miscellaneous compounds inducing ER stress through multiple mechanisms. Finally, we discuss the challenges in this emerging area of research and the potential direction of research to overcome them towards next-generation ER-targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Navneet Dubey
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
6
|
Stewart M, Schisler JC. Targeting chaperone modifications: Innovative approaches to cancer treatment. J Biol Chem 2024; 300:107907. [PMID: 39433125 PMCID: PMC11599458 DOI: 10.1016/j.jbc.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer and other chronic diseases are marked by alterations in the protein quality control system, affecting the posttranslational destiny of various proteins that regulate, structure, and catalyze cellular processes. Cellular chaperones, also known as heat shock proteins (HSPs), are pivotal in this system, performing protein triage that often determines the fate of proteins they bind to. Grasping the regulatory mechanisms of HSPs and their associated cofactors is crucial for understanding protein quality control in both healthy and diseased states. Recent research has shed light on the interactions within the protein quality control system and how post-translational modification govern protein interactions, function, and localization, which can drive or inhibit cell proliferation. This body of work encompasses critical elements of the heat shock response, including heat shock protein 70, heat shock protein 90, carboxyl-terminus of HSC70 interacting protein, and heat shock protein organizing protein. This review aims to synthesize these advancements, offering a holistic understanding of the system and its response when commandeered by diseases like cancer. We focus on the mechanistic shift in co-chaperone engagement-transitioning from heat shock protein organizing protein to carboxyl-terminus of HSC70 interacting protein in association with heat shock protein 70 and heat shock protein 90-which could influence cellular growth and survival pathways. A comprehensive examination of posttranslational modification-driven regulation within the protein quality control network is presented, highlighting the roles of activation factors, chaperones, and co-chaperones. Our insights aim to inform new strategies for therapeutically targeting diseases by considering the entire heat shock response system.
Collapse
Affiliation(s)
- Mariah Stewart
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; The Department of Pathology and Lab Medicine and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
7
|
Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. Effect of Benzyl Alcohol on Main Defense System Components of Galleria mellonella (Lepidoptera). Int J Mol Sci 2024; 25:11209. [PMID: 39456990 PMCID: PMC11508370 DOI: 10.3390/ijms252011209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Benzyl alcohol (E1519) is an aromatic alcohol used in the pharmaceutical and food industry. It is used to protect food products against microorganisms during storage, as a flavoring in the production of chocolate and confectionery products, as an important ingredient in fragrance, and as a preservative in medical products. However, little is known of its effect on insects. The main aim of this study was to determine the influence of benzyl alcohol on the defense systems of the wax moth Galleria mellonella, i.e., its cuticular lipid composition and critical elements of its immune system. A gas chromatography/mass spectrometry (GC/MS) analysis found benzyl alcohol treatment to elicit significant quantitative and qualitative differences in cuticular free fatty acid (FFA) profiles. Our findings indicate that benzyl alcohol treatment increased the levels of HSP70 and HSP90 and decreased those of HSF1, histamine, and cysteinyl leukotriene. Benzyl alcohol application also increased dismutase level in the hemolymph and lowered those of catalase and 8-OHdG. The treatment also had negative effects on G. mellonella hemocytes and a Sf9 cell line in vitro: 48-h treatment resulted in morphological changes, with the remaining cells being clearly spindle-shaped with numerous granules. The high insecticidal activity of compound and its lack of toxicity towards vertebrates suggest it could be an effective insecticide.
Collapse
Affiliation(s)
- Michalina Kazek
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, ul. Poleczki 19, 02-822 Warszawa, Poland;
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
| | - Anna K. Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
| | - Mieczysława I. Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
- BIOMIBO, ul. Strzygłowska 15, 04-872 Warszawa, Poland
| |
Collapse
|
8
|
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur J Med Chem 2024; 275:116562. [PMID: 38865742 DOI: 10.1016/j.ejmech.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
As a molecular chaperone, heat shock protein 90 (HSP90) plays important roles in the folding, stabilization, activation, and degradation of over 500 client proteins, and is extensively involved in cell signaling, proliferation, and survival. Thus, it has emerged as an important target in a variety of diseases, including cancer, neurodegenerative diseases, and viral infections. Therefore, targeted inhibition of HSP90 provides a valuable and promising therapeutic strategy for the treatment of HSP90-related diseases. This review aims to systematically summarize the progress of research on HSP90 inhibitors in the last five years, focusing on their structural features, design strategies, and biological activities. It will refer to the natural products and their derivatives (including novobiocin derivatives, deguelin derivatives, quinone derivatives, and terpenoid derivatives), and to synthetic small molecules (including resorcinol derivatives, pyrazoles derivatives, triazole derivatives, pyrimidine derivatives, benzamide derivatives, benzothiazole derivatives, and benzofuran derivatives). In addition, the major HSP90 small-molecule inhibitors that have moved into clinical trials to date are also presented here.
Collapse
Affiliation(s)
- Yulong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
9
|
Logan IE, Nguyen KT, Chatterjee T, Manivannan B, Paul NP, Kim SR, Sixta EM, Bastian LP, Marean-Reardon C, Karajannis MA, Fernández-Valle C, Estevez AG, Franco MC. Selective nitration of Hsp90 acts as a metabolic switch promoting tumor cell proliferation. Redox Biol 2024; 75:103249. [PMID: 38945076 PMCID: PMC11261529 DOI: 10.1016/j.redox.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Tumors develop in an oxidative environment characterized by peroxynitrite production and downstream protein tyrosine (Y) nitration. We showed that tyrosine nitration supports schwannoma cell proliferation and regulates cell metabolism in the inheritable tumor disorder NF2-related Schwannomatosis (NF2-SWN). Here, we identified the chaperone Heat shock protein 90 (Hsp90) as the first nitrated protein that acts as a metabolic switch to promote schwannoma cell proliferation. Doubling the endogenous levels of nitrated Hsp90 in schwannoma cells or supplementing nitrated Hsp90 into normal Schwann cells increased their proliferation. Metabolically, nitration on either Y33 or Y56 conferred Hsp90 distinct functions; nitration at Y33 (Hsp90NY33) down-regulated mitochondrial oxidative phosphorylation, while nitration at Y56 (Hsp90NY56) increased glycolysis by activating the purinergic receptor P2X7 in both schwannoma and normal Schwann cells. Hsp90NY33 and Hsp90NY56 showed differential subcellular and spatial distribution corresponding with their metabolic and proliferative functions in schwannoma three-dimensional cell culture models. Collectively, these results underscore the role of tyrosine nitration as a post-translational modification regulating critical cellular processes. Nitrated proteins, particularly nitrated Hsp90, emerge as a novel category of tumor-directed therapeutic targets.
Collapse
Affiliation(s)
- Isabelle E Logan
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Center for Translational Science, Florida International University, Florida, 34987, USA
| | - Kyle T Nguyen
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Tilottama Chatterjee
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Ngozi P Paul
- Center for Translational Science, Florida International University, Florida, 34987, USA
| | - Sharon R Kim
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Evelyn M Sixta
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Lydia P Bastian
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Carrie Marean-Reardon
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Alvaro G Estevez
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Florida, 33199, USA
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Center for Translational Science, Florida International University, Florida, 34987, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Florida, 33199, USA.
| |
Collapse
|
10
|
Feidantsis K, Panteli N, Bousdras T, Gai F, Gasco L, Antonopoulou E. Dietary Tenebrio molitor larvae meal effects on cellular stress responses, antioxidant status and intermediate metabolism of Oncorhynchus mykiss. J Anim Physiol Anim Nutr (Berl) 2024; 108:1270-1285. [PMID: 38657021 DOI: 10.1111/jpn.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
In the context of evaluating the impact of environmentally friendly and sustainably produced alternative protein sources in fish feed, the present study's aim was to examine the overall physiological stress response in one of the main fish species of European freshwater aquaculture, Oncorhynchus mykiss (rainbow trout), following the partial substitution of fish meal (FM) with a Tenebrio molitor (TM) (yellow mealworm) full-fat meal. In total, 222 rainbow trout individuals (115.2 ± 14.2 g) were allocated randomly into six tanks, three per dietary treatment, and were fed a formulated diet containing 60% yellow mealworm (TM60) compared to a control diet without insect meal (TM0). Both diets contained equal amounts of crude protein, dry matter and, lipid content, while the FM in TM60 was 100 g kg-1 corresponding to the one seventh of the TM0. Heat shock response (HSR), MAPK signalling, cell death pathways (apoptosis and autophagy), antioxidant defence mechanisms, and intermediate metabolism were evaluated. In general, HSR and MAPK signalling were activated in response to the inclusion of T. molitor. Moreover, triggering of apoptotic and autophagic processes and the onset of antioxidant defence mechanisms underlined the existence of physiological stress. Despite the apparent dietary-induced stress, rainbow trout in the present study exhibited no mortality and no significant effects regarding growth performance parameters. Specifically, TM60 dietary inclusion resulted in no changes in final body weight, weight gain, and specific growth rate. However, feed intake depicted a statistically significant decrease in TM60 fish compared to TM0 individuals. Nevertheless, nutrient stress should be considered a limiting factor regarding the utilization of T. molitor in O. mykiss diet due to the associated risks for health and welfare.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Fisheries & Aquaculture, University of Patras, Mesolonghi, Greece
| | - Nikolas Panteli
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Bousdras
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Francesco Gai
- Institute of Sciences of Food Production, National Research Council, Grugliasco, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
11
|
Deng ZH, Chen YX, Xue-Gao, Yang JY, Wei XY, Zhang GX, Qian JX. Mesenchymal stem cell-derived exosomes ameliorate hypoxic pulmonary hypertension by inhibiting the Hsp90aa1/ERK/pERK pathway. Biochem Pharmacol 2024; 226:116382. [PMID: 38909785 DOI: 10.1016/j.bcp.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is a serious and life-threatening chronic cardiopulmonary disease characterized by progressive elevation of pulmonary artery pressure and pulmonary vascular remodeling. Mesenchymal stem cell- derived exosomes (MSC-Exos) can relieve HPH by reversing pulmonary vascular remodeling. The HPH model was established in healthy male Sprague-Dawley (SD) rats aged 6 to 8 weeks. The rats were placed in a room with oxygen concentration of (10 ± 1) % for 8 hours a day over 28 days, were then injected intravenously with MSC-Exos (100 ug protein/kg) or equal-volume phosphate buffer saline (PBS) once a day over 1 week. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling were observed after anesthesia. In addition, platelet-derived growth factor BB (PDGF-BB) was used to stimulate rat pulmonary artery smooth muscle cells (PASMCs) to construct HPH pathological cell models. The results showed that MSC-Exos could not only reduce the elevation of RVSP, right ventricular hypertrophy and the degree of pulmonary vascular remodeling in HPH rats, but also reduce the proliferation, migration and apoptosis resistance of PASMCs. Finally, GSE53408 and GSE113439 datasets were analyzed and showed that the expression of Hsp90aa1 and pERK/ERK were significantly increased in HPH, also could be inhibited by MSC-Exos. Meanwhile, inhibition of Hsp90aa1 also reduced PASMCs migration and pERK/ERK protein level. In conclusion, MSC-Exos alleviated HPH by suppressing PASMCs proliferation, migration and apoptosis resistance through inhibiting the Hsp90aa1/ERK/pERK pathway.
Collapse
Affiliation(s)
- Zhi-Hua Deng
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Yao-Xin Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xue-Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing-Yu Yang
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xia-Ying Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Guo-Xing Zhang
- Department of Physiology and Neurosciences, Medical College of Soochow University, Suzhou 215000, China
| | - Jin-Xian Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
12
|
Kishore A, Varughese AM, Roth B, Zeilinger C. Fabrication of a low-cost benchtop optical imager for quantum dot microarray-based stress biomarker detection. BIOMEDICAL OPTICS EXPRESS 2024; 15:4147-4161. [PMID: 39022547 PMCID: PMC11249684 DOI: 10.1364/boe.527338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 07/20/2024]
Abstract
We report on a simplified optical imager to detect the presence of a stress biomarker protein, namely the Heat shock protein 90 (Hsp90). The imager consists of two elements the optical unit and the sensor, which is a custom-made biochip. Measurement is based on the masking of the streptavidin conjugated quantum dot's (Sav-QDs) fluorescence when Hsp90 attaches to it via biotinylated antibodies (Ab). The masking effect was directly proportional to the Hsp90 concentration. The cost-efficient benchtop imager developed comprises a CMOS sensor, standard optical lenses, and a narrow bandpass filter for optically eliminating background fluorescence. This approach is promising for the realization of cheap, robust, and reliable point-of-care detection systems for various biomarker analyses.
Collapse
Affiliation(s)
- Anusha Kishore
- Leibniz University Hannover
, Centre of Biomolecular Drug Research, Schneiderberg 38, 30167 Hannover, Germany
| | - Arun Mathew Varughese
- Leibniz University Hannover, Hannover Centre for Optical Technologies, Nienburger Str. 17, 30167 Hannover, Germany
| | - Bernhard Roth
- Leibniz University Hannover, Hannover Centre for Optical Technologies, Nienburger Str. 17, 30167 Hannover, Germany
- Leibniz University Hannover, Cluster of Excellence PhoenixD, Welfenplatz 1, 30167 Hannover, Germany
| | - Carsten Zeilinger
- Leibniz University Hannover
, Centre of Biomolecular Drug Research, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
13
|
Ro DH, Cho GH, Kim JY, Min SK, Yang HR, Park HJ, Wang SY, Kim YJ, Lee MC, Bae HC, Han H. Selective targeting of dipeptidyl-peptidase 4 (DPP-4) positive senescent chondrocyte ameliorates osteoarthritis progression. Aging Cell 2024; 23:e14161. [PMID: 38556837 PMCID: PMC11258469 DOI: 10.1111/acel.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Senescent cells increase in many tissues with age and induce age-related pathologies, including osteoarthritis (OA). Senescent chondrocytes (SnCs) are found in OA cartilage, and the clearance of those chondrocytes prevents OA progression. However, targeting SnCs is challenging due to the absence of a senescent chondrocyte-specific marker. Therefore, we used flow cytometry to screen and select senescent chondrocyte surface markers and cross-validated with published transcriptomic data. Chondrocytes expressing dipeptidyl peptidase-4 (DPP-4), the selected senescent chondrocyte-specific marker, had multiple senescence phenotypes, such as increased senescence-associated-galactosidase, p16, p21, and senescence-associated secretory phenotype expression, and showed OA chondrocyte phenotypes. To examine the effects of DPP-4 inhibition on DPP-4+ SnCs, sitagliptin, a DPP-4 inhibitor, was treated in vitro. As a result, DPP-4 inhibition selectively eliminates DPP-4+ SnCs without affecting DPP-4- chondrocytes. To assess in vivo therapeutic efficacy of targeting DPP-4+ SnCs, three known senolytics (ABT263, 17DMAG, and metformin) and sitagliptin were comparatively verified in a DMM-induced rat OA model. Sitagliptin treatment specifically and effectively eliminated DPP-4+ SnCs, compared to the other three senolytics. Furthermore, Intra-articular sitagliptin injection to the rat OA model increased collagen type II and proteoglycan expression and physical functions and decreased cartilage destruction, subchondral bone plate thickness and MMP13 expression, leading to the amelioration of OA phenotypes. Collectively, OARSI score was lowest in the sitagliptin treatment group. Taken together, we verified DPP-4 as a surface marker for SnCs and suggested that the selective targeting of DPP-4+ chondrocytes could be a promising strategy to prevent OA progression.
Collapse
Affiliation(s)
- Du Hyun Ro
- Department of Orthopedic SurgerySeoul National University College of MedicineSeoulKorea
| | - Gun Hee Cho
- Department of Orthopedic SurgerySeoul National University College of MedicineSeoulKorea
| | - Ji Yoon Kim
- Department of Orthopedic SurgerySeoul National University College of MedicineSeoulKorea
| | - Seong Ki Min
- Laboratory for Cellular Response to Oxidative StressCell2in, Inc.SeoulKorea
| | - Ha Ru Yang
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - Hee Jung Park
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - Sun Young Wang
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - You Jung Kim
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - Myung Chul Lee
- Department of Orthopedic SurgerySeoul National University College of MedicineSeoulKorea
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - Hyun Cheol Bae
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - Hyuk‐Soo Han
- Department of Orthopedic SurgerySeoul National University College of MedicineSeoulKorea
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| |
Collapse
|
14
|
Fan X, Sun L, Qin Y, Liu Y, Wu S, Du L. The Role of HSP90 Molecular Chaperones in Depression: Potential Mechanisms. Mol Neurobiol 2024:10.1007/s12035-024-04284-4. [PMID: 38896156 DOI: 10.1007/s12035-024-04284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Major depressive disorder (MDD) is characterized by high rates of disability and death and has become a public health problem that threatens human life and health worldwide. HPA axis disorder and neuroinflammation are two common biological abnormalities in MDD patients. Hsp90 is an important molecular chaperone that is widely distributed in the organism. Hsp90 binds to the co-chaperone and goes through a molecular chaperone cycle to complete its regulation of the client protein. Numerous studies have demonstrated that Hsp90 regulates how the HPA axis reacts to stress and how GR, the HPA axis' responsive substrate, matures. In addition, Hsp90 exhibits pro-inflammatory effects that are closely related to neuroinflammation in MDD. Currently, Hsp90 inhibitors have made some progress in the treatment of a variety of human diseases, but they still need to be improved. Further insight into the role of Hsp90 in MDD provides new ideas for the development of new antidepressant drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xuyuan Fan
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Lei Sun
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Ye Qin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Shusheng Wu
- Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| |
Collapse
|
15
|
Tawfeeq MT, Voordeckers K, van den Berg P, Govers SK, Michiels J, Verstrepen KJ. Mutational robustness and the role of buffer genes in evolvability. EMBO J 2024; 43:2294-2307. [PMID: 38719995 PMCID: PMC11183146 DOI: 10.1038/s44318-024-00109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
Organisms rely on mutations to fuel adaptive evolution. However, many mutations impose a negative effect on fitness. Cells may have therefore evolved mechanisms that affect the phenotypic effects of mutations, thus conferring mutational robustness. Specifically, so-called buffer genes are hypothesized to interact directly or indirectly with genetic variation and reduce its effect on fitness. Environmental or genetic perturbations can change the interaction between buffer genes and genetic variation, thereby unmasking the genetic variation's phenotypic effects and thus providing a source of variation for natural selection to act on. This review provides an overview of our understanding of mutational robustness and buffer genes, with the chaperone gene HSP90 as a key example. It discusses whether buffer genes merely affect standing variation or also interact with de novo mutations, how mutational robustness could influence evolution, and whether mutational robustness might be an evolved trait or rather a mere side-effect of complex genetic interactions.
Collapse
Affiliation(s)
- Mohammed T Tawfeeq
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Karin Voordeckers
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Pieter van den Berg
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Jan Michiels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Liu B, Qian D. Hsp90α and cell death in cancers: a review. Discov Oncol 2024; 15:151. [PMID: 38727789 PMCID: PMC11087423 DOI: 10.1007/s12672-024-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Heat shock protein 90α (Hsp90α), an important molecular chaperone, plays a crucial role in regulating the activity of various intracellular signaling pathways and maintaining the stability of various signaling transduction proteins. In cancer, the expression level of Hsp90α is often significantly upregulated and is recognized as one of the key factors in cancer cell survival and proliferation. Cell death can help achieve numerous purposes, such as preventing aging, removing damaged or infected cells, facilitating embryonic development and tissue repair, and modulating immune response. The expression of Hsp90α is closely associated with specific modes of cell death including apoptosis, necrotic apoptosis, and autophagy-dependent cell death, etc. This review discusses the new results on the relationship between expression of Hsp90α and cell death in cancer. Hsp90α is frequently overexpressed in cancer and promotes cancer cell growth, survival, and resistance to treatment by regulating cell death, rendering it a promising target for cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China
| | - Daohai Qian
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China.
| |
Collapse
|
17
|
Stouffer M, Wandling E, Dickson L, Lin S, Duan H, Powe E, Jean‐Louis D, Tiwari AK, Amos S. Gedunin modulates cellular growth and apoptosis in glioblastoma cell lines. Cancer Rep (Hoboken) 2024; 7:e2051. [PMID: 38702989 PMCID: PMC11069102 DOI: 10.1002/cnr2.2051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Glioblastomas are characterized by aggressive behavior. Surgery, radiotherapy, and alkylating agents, including temozolomide are the most common treatment options for glioblastoma. Often, conventional therapies fail to treat these tumors since they develop drug resistance. There is a need for newer agents to combat this deadly tumor. Natural products such as gedunin have shown efficacy in several human diseases. A comprehensive study of gedunin, an heat shock protein (HSP)90 inhibitor, has not been thoroughly investigated in glioblastoma cell lines with different genetic modifications. AIMS A key objective of this study was to determine how gedunin affects the biological and signaling mechanisms in glioblastoma cells, and to determine how those mechanisms affect the proliferation and apoptosis of glioblastoma cells. METHODS The viability potentials of gedunin were tested using MTT, cell counts, and wound healing assays. Gedunin's effects on glioma cells were further validated using LDH and colony formation assays. In addition, we investigated the survival and apoptotic molecular signaling targets perturbed by gedunin using Western blot analysis and flow cytometry. RESULTS Our results show that there was a reduction in cell viability and inhibition of wound healing in the cells tested. Western blot analysis of the gene expression data revealed genes such as EGFR and mTOR/Akt/NF kappa B to be associated with gedunin sensitivity. Gedunin treatment induced apoptosis by cleaving poly ADP-ribose polymerase, activating caspases, and downregulating BCL-xL. Based on these results, gedunin suppressed cell growth and HSP client proteins, resulting in apoptosis in glioblastoma cell lines. CONCLUSION Our data provide in vitro support for the anticancer activity of gedunin in glioma cells by downregulating cancer survival proteins.
Collapse
Affiliation(s)
- Michael Stouffer
- Department of Pharmaceutical SciencesCedarville University School of Pharmacy, Cedarville UniversityCedarvilleOhioUSA
| | - Elizabeth Wandling
- Department of Pharmaceutical SciencesCedarville University School of Pharmacy, Cedarville UniversityCedarvilleOhioUSA
| | - Lindsay Dickson
- Department of Pharmaceutical SciencesCedarville University School of Pharmacy, Cedarville UniversityCedarvilleOhioUSA
| | - Stacy Lin
- Department of Pharmaceutical SciencesCedarville University School of Pharmacy, Cedarville UniversityCedarvilleOhioUSA
| | - Huanyun Duan
- Department of Pharmaceutical SciencesCedarville University School of Pharmacy, Cedarville UniversityCedarvilleOhioUSA
| | - Erika Powe
- Department of Pharmaceutical SciencesCedarville University School of Pharmacy, Cedarville UniversityCedarvilleOhioUSA
| | - Denise Jean‐Louis
- Department of Pharmaceutical SciencesCedarville University School of Pharmacy, Cedarville UniversityCedarvilleOhioUSA
| | - Amit K. Tiwari
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Samson Amos
- Department of Pharmaceutical SciencesCedarville University School of Pharmacy, Cedarville UniversityCedarvilleOhioUSA
| |
Collapse
|
18
|
Forte G, Battagliola ET, Malvasi M, Ruberti N, Daniele P, Mantovani A, Bocca B, Pacella E. Trace Element Concentration in the Blood and Aqueous Humor of Subjects with Eye Cataract. Biol Trace Elem Res 2024:10.1007/s12011-024-04207-3. [PMID: 38687421 DOI: 10.1007/s12011-024-04207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Cataract, characterized by the opacification of the lens, is the leading cause of reversible blindness and visual impairment globally. The study aims to investigate the role of trace elements such as Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn in the development and severity of cataract. Elements were quantified by inductively coupled plasma mass spectrometry in blood and aqueous humor of 32 cataract cases and 27 controls living in the Latium region, Italy. The association between element concentration in blood and aqueous humor and cataract severity, gender, and age of subjects were also assessed. Results showed Cr levels significantly elevated in both blood and aqueous humor of cataract cases, with concentrations that increased with cataract severity. In addition, blood Pb levels were significantly higher in older cases and positively correlated with the age of cataract cases, while blood Co and Cu levels negatively correlated with cataract severity, suggesting changes in the levels of these elements. In conclusion, this study provides evidence of the involvement of specific elements in cataract development and severity, and the findings highlighted important avenues for future research. Understanding the biological mechanism underlying element-induced cataract may contribute to preventing cataractogenesis and providing targeted interventions.
Collapse
Affiliation(s)
- Giovanni Forte
- Department of Environment and Health, Italian National Institute of Health, 00161, Rome, Italy
| | | | - Mariaelena Malvasi
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | - Niccolò Ruberti
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | - Pierluigi Daniele
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | | | - Beatrice Bocca
- Department of Environment and Health, Italian National Institute of Health, 00161, Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy.
| |
Collapse
|
19
|
Praveen Kumar PK, Sundar H, Balakrishnan K, Subramaniam S, Ramachandran H, Kevin M, Michael Gromiha M. The Role of HSP90 and TRAP1 Targets on Treatment in Hepatocellular Carcinoma. Mol Biotechnol 2024:10.1007/s12033-024-01151-4. [PMID: 38684604 DOI: 10.1007/s12033-024-01151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Hepatocellular Carcinoma (HCC) is the predominant form of liver cancer and arises due to dysregulation of the cell cycle control machinery. Heat Shock Protein 90 (HSP90) and mitochondrial HSP90, also referred to as TRAP1 are important critical chaperone target receptors for early diagnosis and targeting HCC. Both HSP90 and TRAP1 expression was found to be higher in HCC patients. Hence, the importance of HSP90 and TRAP1 inhibitors mechanism and mitochondrial targeted delivery of those inhibitors function is widely studied. This review also focuses on importance of protein-protein interactions of HSP90 and TRAP1 targets and association of its interacting proteins in various pathways of HCC. To further elucidate the mechanism, systems biology approaches and computational biology approach studies are well explored in the association of inhibition of herbal plant molecules with HSP90 and its mitochondrial type in HCC.
Collapse
Affiliation(s)
- P K Praveen Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harini Sundar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Kamalavarshini Balakrishnan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Sakthivel Subramaniam
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Hemalatha Ramachandran
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - M Kevin
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
20
|
Gouda A, Tolba S, Mahrose K, Felemban SG, Khafaga AF, Khalifa NE, Jaremko M, Moustafa M, Alshaharni MO, Algopish U, Abd El-Hack ME. Heat shock proteins as a key defense mechanism in poultry production under heat stress conditions. Poult Sci 2024; 103:103537. [PMID: 38428202 PMCID: PMC10912679 DOI: 10.1016/j.psj.2024.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024] Open
Abstract
Over the past years, the poultry industry has been assigned to greater production performance but has become highly sensitive to environmental changes. The average world temperature has recently risen and is predicted to continue rising. In open-sided houses, poultry species confront high outside temperatures, which cause heat stress (HS) problems. Cellular responses are vital in poultry, as they may lead to identifying confirmed HS biomarkers. Heat shock proteins (HSP) are highly preserved protein families that play a significant role in cell function and cytoprotection against various stressors, including HS. The optimal response in which the cell survives the HS elevates HSP levels that prevent cellular proteins from damage caused by HS. The HSP have chaperonic action to ensure that stress-denatured proteins are folded, unfolded, and refolded. The HSP70 and HSP90 are the primary HSP in poultry with a defensive function during HS. HSP70 was the optimal biological marker for assessing HS among the HSP studied. The current review attempts to ascertain the value of HSP as a heat stress defense mechanism in poultry.
Collapse
Affiliation(s)
- Ahmed Gouda
- Animal Production Department, Agricultural and Biological Research Division, National Research Center, Dokki, Cairo, Egypt
| | - Samar Tolba
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig 44511, Egypt
| | - Shatha G Felemban
- Medical Laboratory Science Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Uthman Algopish
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
21
|
Yogesh Bhatia N, Mahesh Doshi G. Terazosin produces an antidepressant-like effect in mice exposed to chronic unpredictable mild stress behavioral alteration. Neurosci Lett 2024; 822:137653. [PMID: 38266974 DOI: 10.1016/j.neulet.2024.137653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/19/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Terazosin is an α1-adrenergic receptor antagonist that can relax smooth muscle and is prescribed to treat benign prostatic hyperplasia and, rarely, hypertension. The present study investigated the antidepressant-like actions of terazosin (TZ) in mice. They were first subjected to chronic unpredictable mild stress (CUMS) and then the effects of TZ were assessed using the forced swimming test (FST) and tail suspension test (TST), sucrose preference test (SPT), actophotometer test (APT). The changes in the PGK1 levels, neurotransmitters, and proinflammatory cytokines levels after chronic stress and TZ treatment were examined. It was found that TZ exhibited an antidepressant-like effect in the FST, TST, SPT, and APT. It was effective in the CUMS model of depression. It was also found that TZ treatment reduced the levels of proinflammatory cytokines and elevated the neurotransmitter levels in mice. Results of this study suggest that TZ has antidepressant-like actions in mice models of CUMS induced depression.
Collapse
Affiliation(s)
- Nirav Yogesh Bhatia
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Mahesh Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
22
|
Li Y, Xu P, Sun T, Peng S, Wang F, Wang L, Xing Y, Wang W, Zhao J, Dong Z. Environmental and molecular regulation of diapause formation in a scyphozoan jellyfish. Mol Ecol 2024; 33:e17249. [PMID: 38133544 DOI: 10.1111/mec.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.
Collapse
Affiliation(s)
- Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengzhen Xu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Sun
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Saijun Peng
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanghan Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Yixuan Xing
- Yantai University, School of Life Sciences, Yantai, Shandong, China
| | - Wenhui Wang
- Yantai University, School of Life Sciences, Yantai, Shandong, China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Mansour HM, Mohamed AF, Khattab MM, El-Khatib AS. Heat Shock Protein 90 in Parkinson's Disease: Profile of a Serial Killer. Neuroscience 2024; 537:32-46. [PMID: 38040085 DOI: 10.1016/j.neuroscience.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by abnormal α-synuclein misfolding and aggregation, mitochondrial dysfunction, oxidative stress, as well as progressive death of dopaminergic neurons in the substantia nigra. Molecular chaperones play a role in stabilizing proteins and helping them achieve their proper structure. Previous studies have shown that overexpression of heat shock protein 90 (HSP90) can lead to the death of dopaminergic neurons associated with PD. Inhibiting HSP90 is considered a potential treatment approach for neurodegenerative disorders, as it may reduce protein aggregation and related toxicity, as well as suppress various forms of regulated cell death (RCD). This review provides an overview of HSP90 and its role in PD, focusing on its modulation of proteostasis and quality control of LRRK2. The review also explores the effects of HSP90 on different types of RCD, such as apoptosis, chaperone-mediated autophagy (CMA), necroptosis, and ferroptosis. Additionally, it discusses HSP90 inhibitors that have been tested in PD models. We will highlight the under-investigated neuroprotective effects of HSP90 inhibition, including modulation of oxidative stress, mitochondrial dysfunction, PINK/PARKIN, heat shock factor 1 (HSF1), histone deacetylase 6 (HDAC6), and the PHD2-HSP90 complex-mediated mitochondrial stress pathway. By examining previous literature, this review uncovers overlooked neuroprotective mechanisms and emphasizes the need for further research on HSP90 inhibitors as potential therapeutic strategies for PD. Finally, the review discusses the potential limitations and possibilities of using HSP90 inhibitors in PD therapy.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biological, Innovative Products, and Clinical Studies (BIO-INN), Egyptian Drug Authority, EDA, Giza, Egypt.
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Premji TP, Dash BS, Das S, Chen JP. Functionalized Nanomaterials for Inhibiting ATP-Dependent Heat Shock Proteins in Cancer Photothermal/Photodynamic Therapy and Combination Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:112. [PMID: 38202567 PMCID: PMC10780407 DOI: 10.3390/nano14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Phototherapies induced by photoactive nanomaterials have inspired and accentuated the importance of nanomedicine in cancer therapy in recent years. During these light-activated cancer therapies, a nanoagent can produce heat and cytotoxic reactive oxygen species by absorption of light energy for photothermal therapy (PTT) and photodynamic therapy (PDT). However, PTT is limited by the self-protective nature of cells, with upregulated production of heat shock proteins (HSP) under mild hyperthermia, which also influences PDT. To reduce HSP production in cancer cells and to enhance PTT/PDT, small HSP inhibitors that can competitively bind at the ATP-binding site of an HSP could be employed. Alternatively, reducing intracellular glucose concentration can also decrease ATP production from the metabolic pathways and downregulate HSP production from glucose deprivation. Other than reversing the thermal resistance of cancer cells for mild-temperature PTT, an HSP inhibitor can also be integrated into functionalized nanomaterials to alleviate tumor hypoxia and enhance the efficacy of PDT. Furthermore, the co-delivery of a small-molecule drug for direct HSP inhibition and a chemotherapeutic drug can integrate enhanced PTT/PDT with chemotherapy (CT). On the other hand, delivering a glucose-deprivation agent like glucose oxidase (GOx) can indirectly inhibit HSP and boost the efficacy of PTT/PDT while combining these therapies with cancer starvation therapy (ST). In this review, we intend to discuss different nanomaterial-based approaches that can inhibit HSP production via ATP regulation and their uses in PTT/PDT and cancer combination therapy such as CT and ST.
Collapse
Affiliation(s)
- Thejas P. Premji
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
25
|
Lu Y, Li D, Ai H, Xie X, Jiang X, Afrasiyab, Zhang H, Xu J, Huang S. Glucose-regulated protein 94 facilitates the proliferation of the Bombyx mori nucleopolyhedrovirus via inhibiting apoptosis. Int J Biol Macromol 2023; 253:127158. [PMID: 37802442 DOI: 10.1016/j.ijbiomac.2023.127158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Glucose regulatory protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family, that plays an important role in secreted protein folding. Bombyx mori nuclear polyhedrosis virus (BmNPV) is one of the main pathogens in sericulture, causing serious economic losses every year. Previous studies showed that HSP90 members promote BmNPV replication in silkworm, but the function of BmGRP94 in BmNPV infection and proliferation is still not understood. In this study, we investigated the interplay between BmGRP94 and BmNPV infection in silkworm. We first identified a single gene of BmGRP94 in the Bombyx mori genome, which encodes a polypeptide with 810 amino acids in length. Spatio-temporal expression profiles showed that BmGRP94 was highly expressed in hemocytes and midgut, and was significantly induced by BmNPV infection. Furthermore, overexpression of BmGRP94 facilitates viral proliferation, while BmGRP94 inhibition evidently decreased BmNPV proliferation in BmN cells and in silkworm midgut. Mechanistically, BmGRP94 inhibition triggers ER stress, as judged by increased expression of PERK/ATF4/ERO1, H2O2 production, and ER calcium efflux, which promotes cell apoptosis to restrict BmNPV replication in silkworm. These results suggest that BmGRP94 plays an important role in facilitating BmNPV proliferation, and provides a potential molecular target for BmNPV prevention.
Collapse
Affiliation(s)
- Yiting Lu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Danting Li
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Heng Ai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiuzhi Xie
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Jiang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Afrasiyab
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Hualing Zhang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China
| | - Jiaping Xu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shoujun Huang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
26
|
Mohamed ME, El-Shafae AM, Fikry E, Elbaramawi SS, Elbatreek MH, Tawfeek N. Casuarina glauca branchlets' extract as a potential treatment for ulcerative colitis: chemical composition, in silico and in vivo studies. Front Pharmacol 2023; 14:1322181. [PMID: 38196993 PMCID: PMC10774231 DOI: 10.3389/fphar.2023.1322181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that is often resistant to current treatment options, leading to a need for alternative therapies. Herbal products have shown promise in managing various conditions, including UC. However, the potential of Casuarina glauca branchlets ethanolic extract (CGBRE) in treating UC has not been explored. This study aimed to analyze the chemical composition of CGBRE and evaluate its efficacy in UC treatment through in silico and in vivo experiments. LC-ESI-MS/MS was used to identify 86 compounds in CGBRE, with 21 potential bioactive compounds determined through pharmacokinetic analysis. Network pharmacology analysis revealed 171 potential UC targets for the bioactive compounds, including EGFR, LRRK2, and HSP90 as top targets, which were found to bind to key CGBRE compounds through molecular docking. Molecular docking findings suggested that CGBRE may be effective in the prevention or treatment of ulcerative colitis mediated by these proteins, where key CGBRE compounds exhibited good binding affinities through formation of numerous interactions. In vivo studies in rats with acetic acid-induced UC demonstrated that oral administration of 300 mg/kg CGBRE for 6 days reduced UC symptoms and colonic expression of EGFR, LRRK2, and HSP90. These findings supported the therapeutic potential of CGBRE in UC and suggested the need for further preclinical and clinical investigation.
Collapse
Affiliation(s)
- Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Azza M. El-Shafae
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar S. Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mahmoud H. Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
27
|
Zheng L, Xu Y, Wang C, Yang F, Dong Y, Guo L. Susceptibility to caspofungin is regulated by temperature and is dependent on calcineurin in Candida albicans. Microbiol Spectr 2023; 11:e0179023. [PMID: 37966204 PMCID: PMC10715083 DOI: 10.1128/spectrum.01790-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Echinocandins are the newest antifungal drugs and are first-line treatment option for life-threatening systemic infections. Due to lack of consensus regarding what temperature should be used when evaluating susceptibility of yeasts to echinocandins, typically either 30°C, 35°C, or 37°C is used. However, the impact of temperature on antifungal efficacy of echinocandins is unexplored. In the current study, we demonstrated that Candida albicans laboratory strain SC5314 was more susceptible to caspofungin at 37°C than at 30°C. We also found that calcineurin was required for temperature-modulated caspofungin susceptibility. Surprisingly, the altered caspofungin susceptibility was not due to differential expression of some canonical genes such as FKS, CHS, or CHT genes. The molecular mechanism of temperature-modulated caspofungin susceptibility is undetermined and deserves further investigations.
Collapse
Affiliation(s)
- Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Xu
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Chen Wang
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Feng Yang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yubo Dong
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Kumar PV, Rasal KD, Acharya A, Dey D, Sonwane AA, Reang D, Rajeshkannan R, Pawar SS, Kurade NP, Bhendarkar MP, Krishnani KK, Nagpure NS, Brahmane MP. Muscle Transcriptome Sequencing Revealed Thermal Stress-Responsive Regulatory Genes in Farmed Rohu, Labeo rohita (Hamilton, 1822). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1057-1075. [PMID: 37878212 DOI: 10.1007/s10126-023-10259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Rohu, Labeo rohita, is one of the most important aquaculture species in the Indian subcontinent. Understanding the molecular-level physiological responses to thermal stress or climate change is essential. In the present work, transcriptome sequencing was carried out in the muscle tissue of the rohu in response to heat stress (35 °C) in comparison with the control (28 °C). A total of 125 Gb of sequence data was generated, and the raw-reads were filtered and trimmed, which resulted in 484 million quality reads. Reference-based assembly of reads was performed using L. rohita genome, and a total of 90.17% of reads were successfully mapped. A total of 37,462 contigs were assembled with an N50 value of 1854. The differential expression analysis revealed a total of 107 differentially expressed genes (DEGs) (15 up-, 37 down-, and 55 neutrally regulated) as compared to the control group (Log2FC > 2, P < 0.05). Gene enrichment analysis of DEGs indicates that transcripts were associated with molecular, biological, and cellular activities. The randomly selected differentially expressed transcripts were validated by RT-qPCR and found consistent expression patterns in line with the RNA-seq data. Several transcripts such as SERPINE1(HSP47), HSP70, HSP90alpha, Rano class II histocompatibility A beta, PGC-1 and ERR-induced regulator, proto-oncogene c-Fos, myozenin2, alpha-crystallin B chain-like protein, angiopoietin-like protein 8, and acetyl-CoA carboxylases have been identified in muscle tissue of rohu that are associated with stress/immunity. This study identified the key biomarker SERPINE1 (HSP47), which showed significant upregulation (~ 2- to threefold) in muscle tissue of rohu exposed to high temperature. This study can pave a path for the identification of stress-responsive biomarkers linked with thermal adaptations in the farmed carps.
Collapse
Affiliation(s)
- Pokanti Vinay Kumar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Diganta Dey
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Arvind A Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Dhalongsaih Reang
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - R Rajeshkannan
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Sachin S Pawar
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Nitin P Kurade
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Mukesh P Bhendarkar
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Kishore K Krishnani
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Naresh S Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Manoj P Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India.
| |
Collapse
|
29
|
Polat OA, Karabulut D, Akkul Z, Unsal M, Sayan M, Horozoglu F, Evereklioglu C, Sener H. Evaluation of histologic, antiapoptotic and antioxidant effects of melatonin against the acute ocular toxicity of Cisplatin. Tissue Cell 2023; 85:102226. [PMID: 37793209 DOI: 10.1016/j.tice.2023.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
This study aimed to investigate the protective effect of melatonin against the acute toxicity of cisplatin in ocular tissues. The eyes of 40 rats were divided into 4 groups: Control group (10 rats), Melatonin (Mel) group (10 rats), Cisplatin (Cis) group (10 rats), Melatonin (Mel) + Cisplatin (Cis) group (10 rats). Retina, cornea, and ciliary body tissues were examined after hematoxylin-eosin staining of sections obtained from the eyes and were scored for disorganization and degeneration. Apoptotic cells were counted for the retina, cornea, and ciliary body with the TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) method. The total antioxidant status (TAS) / total oxidant status (TOS) of homogenized eye tissues were measured. While apoptotic cells were found to increase in the cornea of the Cisplatin (Cis) group, no difference was found regarding the retina and ciliary body cell count. An increased number of apoptotic cells in the cornea of the Cis group was found while there was a decrease in the group where Cisplatin and Melatonin were administered together (Mel+Cis group). There was no statistically significant difference amongst groups for TOS or TAS. Melatonin had a partial protective effect against histological damage.
Collapse
Affiliation(s)
- Osman Ahmet Polat
- Department of Ophthalmology, Erciyes University Medicine Faculty, Kayseri, Turkey.
| | - Derya Karabulut
- Department of Histology and Embryology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Zeynep Akkul
- Department of Ophthalmology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Murat Unsal
- Department of Histology and Embryology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Meryem Sayan
- Department of Histology and Embryology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Fatih Horozoglu
- Department of Ophthalmology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Cem Evereklioglu
- Department of Ophthalmology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Hidayet Sener
- Department of Ophthalmology, Erciyes University Medicine Faculty, Kayseri, Turkey
| |
Collapse
|
30
|
Ranasinghe N, Chen WZ, Hu YC, Gamage L, Lee TH, Ho CW. Regulation of PGC-1α of the Mitochondrial Energy Metabolism Pathway in the Gills of Indian Medaka ( Oryzias dancena) under Hypothermal Stress. Int J Mol Sci 2023; 24:16187. [PMID: 38003377 PMCID: PMC10671116 DOI: 10.3390/ijms242216187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Ectothermic fish exposure to hypothermal stress requires adjusting their metabolic molecular machinery, which was investigated using Indian medaka (Oryzias dancena; 10 weeks old, 2.5 ± 0.5 cm) cultured in fresh water (FW) and seawater (SW; 35‱) at room temperature (28 ± 1 °C). The fish were fed twice a day, once in the morning and once in the evening, and the photoperiod was 12 h:12 h light: dark. In this study, we applied two hypothermal treatments to reveal the mechanisms of energy metabolism via pgc-1α regulation in the gills of Indian medaka; cold-stress (18 °C) and cold-tolerance (extreme cold; 15 °C). The branchial ATP content was significantly higher in the cold-stress group, but not in the cold-tolerance group. In FW- and SW-acclimated medaka, the expression of genes related to mitochondrial energy metabolism, including pgc-1α, prc, Nrf2, tfam, and nd5, was analyzed to illustrate differential responses of mitochondrial energy metabolism to cold-stress and cold-tolerance environments. When exposed to cold-stress, the relative mRNA expression of pgc-1α, prc, and Nrf2 increased from 2 h, whereas that of tfam and nd5 increased significantly from 168 h. When exposed to a cold-tolerant environment, prc was significantly upregulated at 2 h post-cooling in the FW and SW groups, and pgc-1α was significantly upregulated at 2 and 12 h post-cooling in the FW group, while tfam and nd5 were downregulated in both FW and SW fish. Hierarchical clustering revealed gene interactions in the cold-stress group, which promoted diverse mitochondrial energy adaptations, causing an increase in ATP production. However, the cold-tolerant group demonstrated limitations in enhancing ATP levels through mitochondrial regulation via the PGC-1α energy metabolism pathway. These findings suggest that ectothermic fish may develop varying degrees of thermal tolerance over time in response to climate change. This study provides insights into the complex ways in which fish adjust their metabolism when exposed to cold stress, contributing to our knowledge of how they adapt.
Collapse
Affiliation(s)
- Naveen Ranasinghe
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Zhu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yau-Chung Hu
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Lahiru Gamage
- International Master’s Program of Biomedical Sciences, College of Medicine, China Medical University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chuan-Wen Ho
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
| |
Collapse
|
31
|
Davletshin AI, Matveeva AA, Poletaeva II, Evgen'ev MB, Garbuz DG. The role of molecular chaperones in the mechanisms of epileptogenesis. Cell Stress Chaperones 2023; 28:599-619. [PMID: 37755620 PMCID: PMC10746656 DOI: 10.1007/s12192-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Epilepsy is a group of neurological diseases which requires significant economic costs for the treatment and care of patients. The central point of epileptogenesis stems from the failure of synaptic signal transmission mechanisms, leading to excessive synchronous excitation of neurons and characteristic epileptic electroencephalogram activity, in typical cases being manifested as seizures and loss of consciousness. The causes of epilepsy are extremely diverse, which is one of the reasons for the complexity of selecting a treatment regimen for each individual case and the high frequency of pharmacoresistant cases. Therefore, the search for new drugs and methods of epilepsy treatment requires an advanced study of the molecular mechanisms of epileptogenesis. In this regard, the investigation of molecular chaperones as potential mediators of epileptogenesis seems promising because the chaperones are involved in the processing and regulation of the activity of many key proteins directly responsible for the generation of abnormal neuronal excitation in epilepsy. In this review, we try to systematize current data on the role of molecular chaperones in epileptogenesis and discuss the prospects for the use of chemical modulators of various chaperone groups' activity as promising antiepileptic drugs.
Collapse
Affiliation(s)
| | - Anna A Matveeva
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region, Russia
| | - Inga I Poletaeva
- Biology Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
| |
Collapse
|
32
|
Zhao G, Liu Z, Quan J, Sun J, Li L, Lu J. Potential role of miR-8159-x in heat stress response in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2023; 268:110877. [PMID: 37356566 DOI: 10.1016/j.cbpb.2023.110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is a representative species of cold-water fish. Elevated temperatures during summer often result in significant high mortality rates. MicroRNAs (miRNAs) are class of small non-coding RNAs that play a crucial role as post-transcriptional regulators in various biological processes. Emerging evidence suggests that miRNAs are important regulators role during heat stress. Analyzing previously obtained miRNA-sequencing data, we observed substantial down regulation of miR-8159-x in the liver tissue of heat stressed rainbow trout. In this study, we conducted a dual luciferase reporter assay to validate that miR-8159-x target, a key gene involved in heat stress in rainbow trout. By examining the expression patterns of miR-8159-x and hsp90a1 in the liver tissue at 18 °C (CG) and 24 °C (HS) groups, we propose that miR-8159-x may negatively regulate hsp90a1. Furthermore, in vitro hepatocyte assay, transfection with miR-8159-x mimics significantly reduced the expression level of hsp90a1, whereas transfection with a miR-8159-x inhibitor yielded the opposite effect. Additionally, overexpression of miR-8159-x inhibited cell proliferation and induced apoptosis in normal rainbow trout hepatocytes. We further investigated the effects of miR-8159-x overexpression or inhibition on the mRNA and protein levels of the target gene hsp90a1 under heat stress conditions. In conclusion, our findings suggest that miR-8159-x participates in the biological response to heat stress by targeting hsp90a1. These results contribute to a better understanding of the molecular mechanisms underlying heat stress in rainbow trout and provide valuable insights for future research.
Collapse
Affiliation(s)
- Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
33
|
Hellemann E, Durrant JD. Worth the Weight: Sub-Pocket EXplorer (SubPEx), a Weighted Ensemble Method to Enhance Binding-Pocket Conformational Sampling. J Chem Theory Comput 2023; 19:5677-5689. [PMID: 37585617 PMCID: PMC10500992 DOI: 10.1021/acs.jctc.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 08/18/2023]
Abstract
Structure-based virtual screening (VS) is an effective method for identifying potential small-molecule ligands, but traditional VS approaches consider only a single binding-pocket conformation. Consequently, they struggle to identify ligands that bind to alternate conformations. Ensemble docking helps address this issue by incorporating multiple conformations into the docking process, but it depends on methods that can thoroughly explore pocket flexibility. We here introduce Sub-Pocket EXplorer (SubPEx), an approach that uses weighted ensemble (WE) path sampling to accelerate binding-pocket sampling. As proof of principle, we apply SubPEx to three proteins relevant to drug discovery: heat shock protein 90, influenza neuraminidase, and yeast hexokinase 2. SubPEx is available free of charge without registration under the terms of the open-source MIT license: http://durrantlab.com/subpex/.
Collapse
Affiliation(s)
- Erich Hellemann
- Department of Biological
Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jacob D. Durrant
- Department of Biological
Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
34
|
Mazurakova A, Solarova Z, Koklesova L, Caprnda M, Prosecky R, Khakymov A, Baranenko D, Kubatka P, Mirossay L, Kruzliak P, Solar P. Heat shock proteins in cancer - Known but always being rediscovered: Their perspectives in cancer immunotherapy. Adv Med Sci 2023; 68:464-473. [PMID: 37926002 DOI: 10.1016/j.advms.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Heat shock proteins (HSPs) represent cellular chaperones that are classified into several families, including HSP27, HSP40, HSP60, HSP70, and HSP90. The role of HSPs in the cell includes the facilitation of protein folding and maintaining protein structure. Both processes play crucial roles during stress conditions in the cell such as heat shock, degradation, and hypoxia. Moreover, HSPs are important modulators of cellular proliferation and differentiation, and are strongly associated with the molecular orchestration of carcinogenesis. The expression and/or activity of HSPs in cancer cells is generally abnormally high and is associated with increased metastatic potential and activity of cancer stem cells, more pronounced angiogenesis, downregulated apoptosis, and the resistance to anticancer therapy in many patients. Based on the mentioned reasons, HSPs have strong potential as valid diagnostic, prognostic, and therapeutic biomarkers in clinical oncology. In addition, numerous papers describe the role of HSPs as chaperones in the regulation of immune responses inside and outside the cell. Importantly, highly expressed/activated HSPs may be inhibited via immunotherapeutic targets in various types of cancers. The aim of this work is to provide a comprehensive overview of the relationship between HSPs and the tumor cell with the intention of highlighting the potential use of HSPs in personalized cancer management.
Collapse
Affiliation(s)
- Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Solarova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Artur Khakymov
- International Research Centre "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russian Federation
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russian Federation
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
| | - Peter Solar
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.
| |
Collapse
|
35
|
Ye F, Wang X, Liu H, Dong X, Cheng J, Chen M, Dan G, Sai Y, Zou Z. HSP90/CDC37 inactivation promotes degradation of LKB1 protein to suppress AMPK signaling in bronchial epithelial cells exposed to sulfur mustard analog, 2-chloroethyl ethyl sulfide. Chem Biol Interact 2023; 382:110643. [PMID: 37481222 DOI: 10.1016/j.cbi.2023.110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
To investigate the role of the liver kinase (LK) B1 protein, an activator of AMP-activated protein kinase (AMPK), in AMPK signaling suppression when exposed to vesicant, a kind of chemical warfare agent. Cultured human bronchial epithelial cells were inflicted with sulfur mustard (SM) analog, 2-chloroethyl ethyl sulfide (CEES) of 0.2-1.0 mM concentration, and cell proliferation, apoptosis, autophagy, and cellular ATP level were analyzed up to 24 h after the exposure. Focusing on LKB1, heat shock protein (HSP) 90, and cell division cycle (CDC) 37 proteins, the protein expression, phosphorylation, and interaction were examined with western blot, immunofluorescence staining, and/or immunoprecipitation. AMPK signaling was found to be inhibited 24 h after being exposed to either sub-cytotoxic (0.5 mM) or cytotoxic (1.0 mM) concentration of CEES based on MTS assay. Consistently, the degradation of the LKB1 protein and its less interaction with the HSP90/CDC37 complex was confirmed. It was found that 1.0, not 0.5 mM CEES also decreased the CDC37 protein, proteasome activity, and cellular ATP content that modulates HSP90 protein conformation. Inhibiting proteasome activity could alternatively activate autophagy. Finally, either 0.5 or 1.0 mM CEES activated HSP70 and autophagy, and the application of an HSP70 inhibitor blocked autophagy and autophagic degradation of the LKB1 protein. In conclusion, we reported here that AMPK signaling inactivation by CEES was a result of LKB1 protein loss via less protein complex formation and enhanced degradation.
Collapse
Affiliation(s)
- Feng Ye
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaogang Wang
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Haoyin Liu
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xunhu Dong
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jin Cheng
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
36
|
Lazo JS, Colunga-Biancatelli RML, Solopov PA, Catravas JD. An acute respiratory distress syndrome drug development collaboration stimulated by the Virginia Drug Discovery Consortium. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:249-254. [PMID: 36796645 PMCID: PMC9930264 DOI: 10.1016/j.slasd.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, Old Dominion University, and a university spinout company, KeViRx, Inc., partnered under a NIH Small Business Innovation Research grant, to produce potential therapeutics for acute respiratory distress syndrome resulting from the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| | | | - Pavel A Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
37
|
Hui Y, Wenguang Y, Wei S, Haoran W, Shanglei N, Ju L. circSLC4A7 accelerates stemness and progression of gastric cancer by interacting with HSP90 to activate NOTCH1 signaling pathway. Cell Death Dis 2023; 14:452. [PMID: 37474578 PMCID: PMC10359325 DOI: 10.1038/s41419-023-05976-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Gastric cancer stem cells (GCSCs) play critical roles in gastric cancer (GC) initiation and development. Circular RNAs (circRNAs) participate in diverse cancer biological processes and function as tumor suppressors or oncogenes. This study aims to discover the expression profile and functional roles of circRNAs in GCSCs. A spheroid formation assay was conducted to enrich GCSCs. Genome-wide sequencing of circRNAs showed that a novel circRNA, circSLC4A7, was one of the most upregulated circRNAs in GCSCs. CircSLC4A7 was localized to the nucleus, and its level was elevated in GC cells and tissues. Furthermore, circSLC4A7 increased CSC-like properties and drove cell proliferation, migration, and invasion, which were determined by gain- and loss-of-function experiments. Specific circRNA pull-down assays followed by mass spectrometry analysis, RNA immunoprecipitation, and dual RNA-fluorescence in situ hybridization and immunofluorescence assay were conducted and HSP90 was detected to interact with circSLC4A7 and mediate the oncogenic function of circSLC4A7 by activating the Notch1 signaling pathway in GC. This study highlights a novel oncogenic function of circSLC4A7 mediated by its binding with HSP90 and thus activating the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Yang Hui
- Center for post-doctoral studies, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250012, China
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Key Laboratory of Metabolism and Gastrointestinal Tumor, the First Affiliated Hospital of Shandong First Medical University, Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Shandong Medicine and Health Key Laboratory of General Surgery, Jinan, Shandong, 250000, China
| | - Yuan Wenguang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Key Laboratory of Metabolism and Gastrointestinal Tumor, the First Affiliated Hospital of Shandong First Medical University, Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Shandong Medicine and Health Key Laboratory of General Surgery, Jinan, Shandong, 250000, China
| | - Shang Wei
- Department of proctology, Jinan People's Hospital, Jinan, Shandong, 271100, China
| | - Wang Haoran
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Weifang Medical College, Weifang, Shandong, 261000, China
| | - Ning Shanglei
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250000, China.
| | - Liu Ju
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China.
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250000, China.
| |
Collapse
|
38
|
Kao TW, Bai GH, Wang TL, Shih IM, Chuang CM, Lo CL, Tsai MC, Chiu LY, Lin CC, Shen YA. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res 2023; 42:171. [PMID: 37460927 DOI: 10.1186/s13046-023-02724-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy are established cancer treatment modalities that are widely used due to their demonstrated efficacy against tumors and favorable safety profiles or tolerability. Nevertheless, treatment resistance continues to be one of the most pressing unsolved conundrums in cancer treatment. Hypoxia-inducible factors (HIFs) are a family of transcription factors that regulate cellular responses to hypoxia by activating genes involved in various adaptations, including erythropoiesis, glucose metabolism, angiogenesis, cell proliferation, and apoptosis. Despite this critical function, overexpression of HIFs has been observed in numerous cancers, leading to resistance to therapy and disease progression. In recent years, much effort has been poured into developing innovative cancer treatments that target the HIF pathway. Combining HIF inhibitors with current cancer therapies to increase anti-tumor activity and diminish treatment resistance is one strategy for combating therapeutic resistance. This review focuses on how HIF inhibitors could be applied in conjunction with current cancer treatments, including those now being evaluated in clinical trials, to usher in a new era of cancer therapy.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, 100225, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, 112303, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| | - Li-Yun Chiu
- Department of General Medicine, Mackay Memorial Hospital, Taipei, 104217, Taiwan
| | - Chu-Chien Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
39
|
Wurnig S, Vogt M, Hogenkamp J, Dienstbier N, Borkhardt A, Bhatia S, Hansen FK. Development of the first geldanamycin-based HSP90 degraders. Front Chem 2023; 11:1219883. [PMID: 37448856 PMCID: PMC10336212 DOI: 10.3389/fchem.2023.1219883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the early clinical promise, adverse events such as acquired resistance and dose-limiting toxicities have barred the widespread use of HSP90 inhibitors as anticancer drugs. A new approach involving proteolysis-targeting chimeras (PROTACs) to degrade the protein instead of inhibiting it may overcome these problems. In this work, we describe the design, synthesis, and evaluation of cereblon-recruiting geldanamycin-based HSP90 degraders based on the PROTAC technology. Our best degrader, 3a, effectively decreased HSP90α and HSP90β levels in cells utilizing the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Silas Wurnig
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Hogenkamp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Dienstbier
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
40
|
Liu J, Li D, Zhu P, Qiu S, Yao K, Zhuang Y, Chen C, Liu G, Wen M, Guo R, Yao W, Deng Y, Shen X, Li T. The Landscapes of Gluten Regulatory Network in Elite Wheat Cultivars Contrasting in Gluten Strength. Int J Mol Sci 2023; 24:9447. [PMID: 37298403 PMCID: PMC10253585 DOI: 10.3390/ijms24119447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Yangmai-13 (YM13) is a wheat cultivar with weak gluten fractions. In contrast, Zhenmai-168 (ZM168) is an elite wheat cultivar known for its strong gluten fractions and has been widely used in a number of breeding programs. However, the genetic mechanisms underlying the gluten signatures of ZM168 remain largely unclear. To address this, we combined RNA-seq and PacBio full-length sequencing technology to unveil the potential mechanisms of ZM168 grain quality. A total of 44,709 transcripts were identified in Y13N (YM13 treated with nitrogen) and 51,942 transcripts in Z168N (ZM168 treated with nitrogen), including 28,016 and 28,626 novel isoforms in Y13N and Z168N, respectively. Five hundred and eighty-four differential alternative splicing (AS) events and 491 long noncoding RNAs (lncRNAs) were discovered. Incorporating the sodium-dodecyl-sulfate (SDS) sedimentation volume (SSV) trait, both weighted gene coexpression network analysis (WGCNA) and multiscale embedded gene coexpression network analysis (MEGENA) were employed for network construction and prediction of key drivers. Fifteen new candidates have emerged in association with SSV, including 4 transcription factors (TFs) and 11 transcripts that partake in the post-translational modification pathway. The transcriptome atlas provides new perspectives on wheat grain quality and would be beneficial for developing promising strategies for breeding programs.
Collapse
Affiliation(s)
- Jiajun Liu
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Dongsheng Li
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Peng Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (P.Z.); (G.L.)
| | - Shi Qiu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Kebing Yao
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Yiqing Zhuang
- Testing Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, China;
| | - Chen Chen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Guanqing Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (P.Z.); (G.L.)
| | - Mingxing Wen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Rui Guo
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Weicheng Yao
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Yao Deng
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Xueyi Shen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Tao Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (P.Z.); (G.L.)
| |
Collapse
|
41
|
Hellemann E, Durrant JD. Worth the weight: Sub-Pocket EXplorer (SubPEx), a weighted-ensemble method to enhance binding-pocket conformational sampling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539330. [PMID: 37251500 PMCID: PMC10214482 DOI: 10.1101/2023.05.03.539330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Structure-based virtual screening (VS) is an effective method for identifying potential small-molecule ligands, but traditional VS approaches consider only a single binding-pocket conformation. Consequently, they struggle to identify ligands that bind to alternate conformations. Ensemble docking helps address this issue by incorporating multiple conformations into the docking process, but it depends on methods that can thoroughly explore pocket flexibility. We here introduce Sub-Pocket EXplorer (SubPEx), an approach that uses weighted ensemble (WE) path sampling to accelerate binding-pocket sampling. As proof of principle, we apply SubPEx to three proteins relevant to drug discovery: heat shock protein 90, influenza neuraminidase, and yeast hexokinase 2. SubPEx is available free of charge without registration under the terms of the open-source MIT license: http://durrantlab.com/subpex/.
Collapse
Affiliation(s)
- Erich Hellemann
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|
42
|
Abstract
The chaperone system (CS) of an organism is composed of molecular chaperones, chaperone co-factors, co-chaperones, and chaperone receptors and interactors. It is present throughout the body but with distinctive features for each cell and tissue type. Previous studies pertaining to the CS of the salivary glands have determined the quantitative and distribution patterns for several members, the chaperones, in normal and diseased glands, focusing on tumors. Chaperones are cytoprotective, but can also be etiopathogenic agents causing diseases, the chaperonopathies. Some chaperones such as Hsp90 potentiate tumor growth, proliferation, and metastasization. Quantitative data available on this chaperone in salivary gland tissue with inflammation, and benign and malignant tumors suggest that assessing tissue Hsp90 levels and distribution patterns is useful for differential diagnosis-prognostication, and patient follow up. This, in turn, will reveal clues for developing specific treatment centered on the chaperone, for instance by inhibiting its pro-carcinogenic functions (negative chaperonotherapy). Here, we review data on the carcinogenic mechanisms of Hsp90 and their inhibitors. Hsp90 is the master regulator of the PI3K-Akt-NF-kB axis that promotes tumor cell proliferation and metastasization. We discuss pathways and interactions involving these molecular complexes in tumorigenesis and review Hsp90 inhibitors that have been tested in search of an efficacious anti-cancer agent. This targeted therapy deserves extensive investigation in view of its theoretical potential and some positive practical results and considering the need of novel treatments for tumors of the salivary glands as well as other tissues.
Collapse
|
43
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
44
|
Hu L, Liu M, Tang B, Li Q, Pan BS, Xu C, Lin HK. Posttranslational regulation of liver kinase B1 (LKB1) in human cancer. J Biol Chem 2023; 299:104570. [PMID: 36870679 PMCID: PMC10068580 DOI: 10.1016/j.jbc.2023.104570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Liver kinase B1 (LKB1) is a serine-threonine kinase that participates in multiple cellular and biological processes, including energy metabolism, cell polarity, cell proliferation, cell migration, and many others. LKB1 is initially identified as a germline-mutated causative gene in Peutz-Jeghers syndrome (PJS) and is commonly regarded as a tumor suppressor due to frequent inactivation in a variety of cancers. LKB1 directly binds and activates its downstream kinases including the AMP-activated protein kinase (AMPK) and AMPK-related kinases by phosphorylation, which has been intensively investigated for the past decades. An increasing number of studies has uncovered the posttranslational modifications (PTMs) of LKB1 and consequent changes in its localization, activity, and interaction with substrates. The alteration in LKB1 function as a consequence of genetic mutations and aberrant upstream signaling regulation leads to tumor development and progression. Here, we review current knowledge about the mechanism of LKB1 in cancer and the contributions of PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, prenylation, and others, to the regulation of LKB1 function, offering new insights into the therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Tang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
45
|
Rahimpour P, Nasehi M, Zarrindast MR, Khalifeh S. Dose-dependent manner of luteolin in the modulation of spatial memory with respect to the hippocampal level of HSP70 and HSP90 in sleep-deprived rats. Gene 2023; 852:147046. [PMID: 36379383 DOI: 10.1016/j.gene.2022.147046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Sleep deprivation (SD) induces a variety of deleterious effects on different cognitive functions such as memory. Elevated neuroinflammation, oxidative stress, and apoptosis, and decreased synaptic plasticity and antioxidant capacity are involved in the deleterious effects of SD on memory. On the other hand, luteolin (a flavonoid compound) has antioxidant, neuroprotective, and anti-inflammatory properties. Also, Heat shock protein 70 (HSP70) and Heat shock protein 90 (HSP90) can be involved in modulating memory. In this study, we aimed to assess the effects of SD and luteolin on spatial learning and memory using Morris Water Maze apparatus in rats, with respect to the level of HSP70 and HSP90 in the hippocampus. Luteolin was injected intracerebroventricular (i.c.v.) at the doses of 0.5, 1, and 2 µg/rat. The results showed that SD impaired spatial memory, while luteolin dose-dependently restored SD-induced spatial memory impairment. SD increased the expression level of HSP90 in the hippocampus, whereas luteolin dose-dependently reversed the effect of SD. Furthermore, SD decreased the expression level of HSP70 protein in the hippocampus, while luteolin dose-dependently reversed the effect of SD. In conclusion, HSP70 and HSP90 may be involved in the deleterious effect of SD on memory, and in the improvement effect of luteolin on memory. This is a novel study reporting novel data and we suggest further detailed studies to better understand the interactions between SD, luteolin, and Heat shock proteins.
Collapse
Affiliation(s)
- Parisa Rahimpour
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Shahid Beheshti University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran
| |
Collapse
|
46
|
Lipoprotein Metabolism, Protein Aggregation, and Alzheimer's Disease: A Literature Review. Int J Mol Sci 2023; 24:ijms24032944. [PMID: 36769268 PMCID: PMC9918279 DOI: 10.3390/ijms24032944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The physiopathology of AD is well described by the presence of two neuropathological features: amyloid plaques and tau neurofibrillary tangles. In the last decade, neuroinflammation and cellular stress have gained importance as key factors in the development and pathology of AD. Chronic cellular stress occurs in degenerating neurons. Stress Granules (SGs) are nonmembranous organelles formed as a response to stress, with a protective role; however, SGs have been noted to turn into pathological and neurotoxic features when stress is chronic, and they are related to an increased tau aggregation. On the other hand, correct lipid metabolism is essential to good function of the brain; apolipoproteins are highly associated with risk of AD, and impaired cholesterol efflux and lipid transport are associated with an increased risk of AD. In this review, we provide an insight into the relationship between cellular stress, SGs, protein aggregation, and lipid metabolism in AD.
Collapse
|
47
|
Tran V, Carpo N, Cepeda C, Espinosa-Jeffrey A. Oligodendrocyte Progenitors Display Enhanced Proliferation and Autophagy after Space Flight. Biomolecules 2023; 13:201. [PMID: 36830573 PMCID: PMC9953055 DOI: 10.3390/biom13020201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Intracranial hypertension (ICP) and visual impairment intracranial pressure (VIIP) are some of the consequences of long-term space missions. Here we examined the behavior of oligodendrocyte progenitors (OLPs) after space flight using time-lapse microscopy. We show that most OLPs divided more than ground control (GC) counterparts did. Nonetheless, a subpopulation of OLPs flown to space presented a significant increase in autophagic cell death. Examination of the proteomic profile of the secretome of space flown OLPs (SPC-OLPs) revealed that the stress protein heat shock protein-90 beta "HSP-90β" was the 5th most enriched (6.8 times) and the secreted protein acidic and rich in cysteine "SPARC" was the 7th most enriched (5.2 times), with respect to ground control cells. SPARC induces endoplasmic reticulum stress, which leads to autophagy. Given the roles and importance of these two proteins in mammalian cells' metabolism, their upregulation may hold the key to modulating cell proliferation and autophagy, in order to mitigate ICP and VIIP during and after space missions.
Collapse
Affiliation(s)
| | | | | | - Araceli Espinosa-Jeffrey
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Chen Y, Wu X, Liu X, Lai J, Liu Y, Song M, Li F, Gong Q. Biochemical, transcriptomic and metabolomic responses to total dissolved gas supersaturation and their underlying molecular mechanisms in Yangtze sturgeon (Acipenser dabryanus). ENVIRONMENTAL RESEARCH 2023; 216:114457. [PMID: 36183788 DOI: 10.1016/j.envres.2022.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of hydropower facility construction, the total dissolved gas (TDG) generated by dam discharge is seriously threatening the survival of fish and has become an ecological environmental issue of global concern. However, how TDG affects fish physiology and the underlying molecular mechanism remain poorly known. In this study, Acipenser dabryanus, an ancient living fossil that is a flagship species of the Yangtze River, was exposed to water supersaturated with TDG at a level of 116% for 48 h. A comprehensive analysis was performed to study the effect of TDG supersaturation stress on A. dabryanus, including histopathological, biochemical, transcriptomic and metabolomic analyses. The histopathological results showed that mucosal-associated lymphoid tissues were seriously damaged after TDG supersaturation stress. Plasma catalase levels increased significantly under TDG supersaturation stress, while superoxide dismutase levels decreased significantly. Transcriptomic analysis revealed 289 upregulated genes and 162 downregulated genes in gill tissue and 535 upregulated and 104 downregulated genes in liver tissue. Metabolomic analysis revealed 63 and 164 differentially abundant metabolites between the control group and TDG group in gill and liver, respectively. The majority of heat shock proteins and genes related to ubiquitin and various immune-related pathways were significantly upregulated by TDG supersaturation stress. Integrated transcriptomic and metabolomic analyses revealed the upregulation of amino acid metabolism and glycometabolism pathways under TDG supersaturation stress. Glycerophospholipid metabolism was increased which might be associated with maintaining cell membrane integrity. This is the first study revealing the underlying molecular mechanisms of effects of TDG supersaturation on fish. Our results suggested that acute TDG supersaturation stress could enhance immune and antioxidative functions and activate energy metabolic pathways as an adaptive mechanism in A. dabryanus.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Xiaoqing Liu
- Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, 610039, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
| |
Collapse
|
49
|
Wang S, Chen YZ, Fu S, Zhao Y. In silico approaches uncovering the systematic function of N-phosphorylated proteins in human cells. Comput Biol Med 2022; 151:106280. [PMID: 36375414 DOI: 10.1016/j.compbiomed.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Phosphorylation plays a key role in the regulation of protein function. In addition to the extensively studied O-phosphorylation of serine, threonine, and tyrosine, emerging evidence suggests that the non-canonical phosphorylation of histidine, lysine, and arginine termed N-phosphorylation, exists widely in eukaryotes. At present, the study of N-phosphorylation is still in its infancy, and its regulatory role and specific biological functions in mammalian cells are still unknown. Here, we report the in silico analysis of the systematic biological significance of N-phosphorylated proteins in human cells. The protein structural and functional domain enrichment analysis revealed that N-phosphorylated proteins are rich in RNA recognition motif, nucleotide-binding and alpha-beta plait domains. The most commonly enriched biological pathway is the metabolism of RNA. Besides, arginine phosphorylated (pArg) proteins are highly related to DNA repair, while histidine phosphorylated (pHis) proteins may play a role in the regulation of the cell cycle, and lysine phosphorylated (pLys) proteins are linked to cellular stress response, intracellular signal transduction, and intracellular transport, which are of great significance for maintaining cell homeostasis. Protein-protein interaction (PPI) network analysis revealed important hub proteins (i.e., SRSF1, HNRNPA1, HNRNPC, SRSF7, HNRNPH1, SRSF2, SRSF11, HNRNPD, SRRM2 and YBX1) which are closely related to neoplasms, nervous system diseases, and virus infection and have potential as therapeutic targets. Those proteins with clinical significance are worthy of attention, and the rational considerations of N-phosphorylation in occurrence and progression of diseases might be beneficial for further translational applications.
Collapse
Affiliation(s)
- Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Yu Zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Songsen Fu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China; Key Lab of Bioorganic Phosphorus Chemistry&Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
50
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|