1
|
Yu W, Cai X, Wang C, Peng X, Xu L, Gao Y, Tian T, Zhu G, Pan Y, Chu H, Liang S, Chen C, Kim NH, Yuan B, Zhang J, Jiang H. FOXM1 affects oxidative stress, mitochondrial function, and the DNA damage response by regulating p21 in aging oocytes. Theriogenology 2024; 229:66-74. [PMID: 39163804 DOI: 10.1016/j.theriogenology.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Fertilization capacity and embryo survival rate are decreased in postovulatory aging oocytes, which results in a reduced reproductive rate in female animals. However, the key regulatory genes and related regulatory mechanisms involved in the process of postovulatory aging in oocytes remain unclear. In this study, RNA-Seq revealed that 3237 genes were differentially expressed in porcine oocytes between the MII and aging stages (MII + 24 h). The expression level of FOXM1 was increased at the aging stage, and FOXM1 was also observed to be enriched in many key biological processes, such as cell senescence, response to oxidative stress, and transcription, during porcine oocyte aging. Previous studies have shown that FOXM1 is involved in the regulation of various biological processes, such as oxidative stress, DNA damage repair, mitochondrial function, and cellular senescence, which suggests that FOXM1 may play a crucial role in the process of postovulatory aging. Therefore, in this study, we investigated the effects and mechanisms of FOXM1 on oxidative stress, mitochondrial function, DNA damage, and apoptosis during oocyte aging. Our study revealed that aging oocytes exhibited significantly increased ROS levels and significantly decreased GSH, SOD, T-AOC, and CAT levels than did oocytes at the MII stage and that FOXM1 inhibition exacerbated the changes in these levels in aging oocytes. In addition, FOXM1 inhibition increased the levels of DNA damage, apoptosis, and cell senescence in aging oocytes. A p21 inhibitor alleviated the effects of FOXM1 inhibition on oxidative stress, mitochondrial function, and DNA damage and thus alleviated the degree of senescence in aging oocytes. These results indicate that FOXM1 plays a crucial role in porcine oocyte aging. This study contributes to the understanding of the function and mechanism of FOXM1 during porcine oocyte aging and provides a theoretical basis for preventing oocyte aging and optimizing conditions for the in vitro culture of oocytes.
Collapse
Affiliation(s)
- Wenjie Yu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xiaoshi Cai
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chen Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xinyue Peng
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Lingxia Xu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Tian Tian
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China; Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Guangying Zhu
- Department of Mental Health, First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Yuan Pan
- Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Hongzhong Chu
- General Animal Husbandry Center of Ili Kazakh Autonomous Prefecture, Yining, 835000, China
| | - Shuang Liang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chengzhen Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Jiabao Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
2
|
Farabet-Demarquette C, Rivet-Danon D, Ly A, Ogouma-Aworet L, Prades M, Berthaut I, Bachelot G, Kolanska K, Bardet L, Lévy R, Sermondade N, Dupont C. Medically assisted reproduction (MAR) with sperm donation: Comparison of the profiles and medical pathways of unmarried women and women in heterosexual couples. J Gynecol Obstet Hum Reprod 2024; 53:102848. [PMID: 39243887 DOI: 10.1016/j.jogoh.2024.102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
RESEARCH QUESTION The legislation allowing unmarried women to undergo medically assisted reproduction (MAR) with sperm donation was adopted in France on August 2, 2021. This major advancement, and its impact on French society, led us to a closer examination of the requests made by unmarried women and the outcomes of ART attempts. DESIGN A retrospective single center cohort study was conducted in a fertility center in Paris, France. All unmarried women and women in heterosexual couple seeking for MAR using sperm donation between September 2021 and October 2022 were included. Medical and socio-demographic data, as well as details and outcomes of MAR attempts were analyzed until October 31, 2023. RESULTS Two hundred seventy-two unmarried women and 76 women in heterosexual couple were included. Results were compared between the two groups. Unmarried women were significantly older, with a significant decrease in anti-Müllerian hormone (AMH) and antral follicle count (AFC). They also exhibited a higher prevalence of gynecological pathologies associated with infertility, such as endometriosis. Unmarried women were more likely to work in intermediate occupations, whereas women in heterosexual couple more often had employee status. Among unmarried women who had undergone at least one MAR attempt by October 31, 2023, significantly lower cumulative early and ongoing pregnancy rates were observed. CONCLUSIONS Female age appears to play a major role in the likehood of pregnancy and live birth. It is therefore crucial to inform women initiating the process of MAR with sperm donation that success is not guaranteed.
Collapse
Affiliation(s)
- C Farabet-Demarquette
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon, AP-HP. Sorbonne-Université, Paris, France; Sorbonne Université, Faculté de Santé, Paris, France
| | - D Rivet-Danon
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon, AP-HP. Sorbonne-Université, Paris, France
| | - A Ly
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon, AP-HP. Sorbonne-Université, Paris, France
| | - L Ogouma-Aworet
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon, AP-HP. Sorbonne-Université, Paris, France
| | - M Prades
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon, AP-HP. Sorbonne-Université, Paris, France
| | - I Berthaut
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon, AP-HP. Sorbonne-Université, Paris, France; Sorbonne Université, INSERM UMR 938, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - G Bachelot
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon, AP-HP. Sorbonne-Université, Paris, France; Sorbonne Université, INSERM UMR 938, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - K Kolanska
- Sorbonne Université, INSERM UMR 938, Centre de Recherche St-Antoine, CRSA, Paris, France; Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020, Paris, France
| | - L Bardet
- Sorbonne Université, INSERM UMR 938, Centre de Recherche St-Antoine, CRSA, Paris, France; Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020, Paris, France
| | - R Lévy
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon, AP-HP. Sorbonne-Université, Paris, France; Sorbonne Université, INSERM UMR 938, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - N Sermondade
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon, AP-HP. Sorbonne-Université, Paris, France; Sorbonne Université, INSERM UMR 938, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - C Dupont
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon, AP-HP. Sorbonne-Université, Paris, France; Sorbonne Université, INSERM UMR 938, Centre de Recherche St-Antoine, CRSA, Paris, France.
| |
Collapse
|
3
|
Guo Y, Xue L, Tang W, Xiong J, Chen D, Dai Y, Wu C, Wei S, Dai J, Wu M, Wang S. Ovarian microenvironment: challenges and opportunities in protecting against chemotherapy-associated ovarian damage. Hum Reprod Update 2024; 30:614-647. [PMID: 38942605 PMCID: PMC11369228 DOI: 10.1093/humupd/dmae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/27/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Chemotherapy-associated ovarian damage (CAOD) is one of the most feared short- and long-term side effects of anticancer treatment in premenopausal women. Accumulating detailed data show that different chemotherapy regimens can lead to disturbance of ovarian hormone levels, reduced or lost fertility, and an increased risk of early menopause. Previous studies have often focused on the direct effects of chemotherapeutic drugs on ovarian follicles, such as direct DNA damage-mediated apoptotic death and primordial follicle burnout. Emerging evidence has revealed an imbalance in the ovarian microenvironment during chemotherapy. The ovarian microenvironment provides nutritional support and transportation of signals that stimulate the growth and development of follicles, ovulation, and corpus luteum formation. The close interaction between the ovarian microenvironment and follicles can determine ovarian function. Therefore, designing novel and precise strategies to manipulate the ovarian microenvironment may be a new strategy to protect ovarian function during chemotherapy. OBJECTIVE AND RATIONALE This review details the changes that occur in the ovarian microenvironment during chemotherapy and emphasizes the importance of developing new therapeutics that protect ovarian function by targeting the ovarian microenvironment during chemotherapy. SEARCH METHODS A comprehensive review of the literature was performed by searching PubMed up to April 2024. Search terms included 'ovarian microenvironment' (ovarian extracellular matrix, ovarian stromal cells, ovarian interstitial, ovarian blood vessels, ovarian lymphatic vessels, ovarian macrophages, ovarian lymphocytes, ovarian immune cytokines, ovarian oxidative stress, ovarian reactive oxygen species, ovarian senescence cells, ovarian senescence-associated secretory phenotypes, ovarian oogonial stem cells, ovarian stem cells), terms related to ovarian function (reproductive health, fertility, infertility, fecundity, ovarian reserve, ovarian function, menopause, decreased ovarian reserve, premature ovarian insufficiency/failure), and terms related to chemotherapy (cyclophosphamide, lfosfamide, chlormethine, chlorambucil, busulfan, melphalan, procarbazine, cisplatin, doxorubicin, carboplatin, taxane, paclitaxel, docetaxel, 5-fluorouraci, vincristine, methotrexate, dactinomycin, bleomycin, mercaptopurine). OUTCOMES The ovarian microenvironment shows great changes during chemotherapy, inducing extracellular matrix deposition and stromal fibrosis, angiogenesis disorders, immune microenvironment disturbance, oxidative stress imbalances, ovarian stem cell exhaustion, and cell senescence, thereby lowering the quantity and quality of ovarian follicles. Several methods targeting the ovarian microenvironment have been adopted to prevent and treat CAOD, such as stem cell therapy and the use of free radical scavengers, senolytherapies, immunomodulators, and proangiogenic factors. WIDER IMPLICATIONS Ovarian function is determined by its 'seeds' (follicles) and 'soil' (ovarian microenvironment). The ovarian microenvironment has been reported to play a vital role in CAOD and targeting the ovarian microenvironment may present potential therapeutic approaches for CAOD. However, the relation between the ovarian microenvironment, its regulatory networks, and CAOD needs to be further studied. A better understanding of these issues could be helpful in explaining the pathogenesis of CAOD and creating innovative strategies for counteracting the effects exerted on ovarian function. Our aim is that this narrative review of CAOD will stimulate more research in this important field. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
4
|
Ding Z, Sun Y, Wu C, Ma C, Ruan H, Zhang Y, Xu Y, Zhou P, Cao Y, Xu Z, Xiang H. Methylmercury chloride inhibits meiotic maturation of mouse oocytes in vitro by disrupting the cytoskeleton. Food Chem Toxicol 2024; 193:115024. [PMID: 39341490 DOI: 10.1016/j.fct.2024.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Methylmercury chloride (MMC) is a persistent heavy metal contaminant that can bioaccumulate in humans via the food chain, exerting detrimental effects on health. Nevertheless, the specific influence of MMC on oocyte meiotic maturation has yet to be elucidated. This research demonstrated that MMC exposure during the in vitro cultivation of mouse oocytes did not influence germinal vesicle breakdown but markedly decreased oocyte maturation rates. Subsequent analysis indicated that MMC exposure resulted in aberrant spindle morphology and disorganized chromosome alignment, alongside continuous activation of the spindle assembly checkpoint (SAC). However, MMC exposure didn't alter the localization pattern of microtubule-organizing center-associated proteins. MMC exposure considerably diminished the acetylation level of α-tubulin, signifying reduced microtubule stability. Additionally, MMC exposure disrupted the dynamic alterations of F-actin. MMC exposure didn't affect mitochondrial localization, mitochondrial membrane potential, adenosine triphosphate content or the concentrations of reactive oxygen species. Nonetheless, MMC exposure triggered DNA damage and modified histone modification levels. Consequently, the defects in oocyte maturation induced by MMC exposure can be attributed to impaired cytoskeleton dynamics and DNA damage. This study offers the first comprehensive elucidation of the negative impacts of MMC on oocyte maturation, highlighting the potential reproductive health risks associated with MMC exposure.
Collapse
Affiliation(s)
- Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yan Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yingying Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
5
|
Yu W, Peng X, Cai X, Xu H, Wang C, Liu F, Luo D, Tang S, Wang Y, Du X, Gao Y, Tian T, Liang S, Chen C, Kim NH, Yuan B, Zhang J, Jiang H. Transcriptome analysis of porcine oocytes during postovulatory aging. Theriogenology 2024; 226:387-399. [PMID: 38821784 DOI: 10.1016/j.theriogenology.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Decreased oocyte quality is a significant contributor to the decline in female fertility that accompanies aging in mammals. Oocytes rely on mRNA stores to support their survival and integrity during the protracted period of transcriptional dormancy as they await ovulation. However, the changes in mRNA levels and interactions that occur during porcine oocyte maturation and aging remain unclear. In this study, the mRNA expression profiles of porcine oocytes during the GV, MII, and aging (24 h after the MII stage) stages were explored by transcriptome sequencing to identify the key genes and pathways that affect oocyte maturation and postovulatory aging. The results showed that 10,929 genes were coexpressed in porcine oocytes during the GV stage, MII stage, and aging stage. In addition, 3037 genes were expressed only in the GV stage, 535 genes were expressed only in the MII stage, and 120 genes were expressed only in the aging stage. The correlation index between the GV and MII stages (0.535) was markedly lower than that between the MII and aging stages (0.942). A total of 3237 genes, which included 1408 upregulated and 1829 downregulated genes, were differentially expressed during porcine oocyte postovulatory aging (aging stage vs. MII stage). Key functional genes, including ATP2A1, ATP2A3, ATP2B2, NDUFS1, NDUFA2, NDUFAF3, SREBF1, CYP11A1, CYP3A29, GPx4, CCP110, STMN1, SPC25, Sirt2, SYCP3, Fascin1/2, PFN1, Cofilin, Tmod3, FLNA, LRKK2, CHEK1/2, DDB1/2, DDIT4L, and TONSL, and key molecular pathways, such as the calcium signaling pathway, MAPK signaling pathway, TGF-β signaling pathway, PI3K/Akt signaling pathway, FoxO signaling pathway, gap junctions, and thermogenesis, were found in abundance during porcine postovulatory aging. These genes are mainly involved in the regulation of many biological processes, such as oxidative stress, calcium homeostasis, mitochondrial function, and lipid peroxidation, during porcine oocyte postovulatory aging. These results contribute to a more in-depth understanding of the biological changes, key regulatory genes and related biological pathways that are involved in oocyte aging and provide a theoretical basis for improving the efficiency of porcine embryo production in vitro and in vivo.
Collapse
Affiliation(s)
- Wenjie Yu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xinyue Peng
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xiaoshi Cai
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hong Xu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chen Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Fengjiao Liu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Dan Luo
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Shuhan Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Yue Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xiaoxue Du
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Tian Tian
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China; Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Shuang Liang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chengzhen Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Nam-Hyung Kim
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Jiabao Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
6
|
Chen Y, Zhang J, Tian Y, Xu X, Wang B, Huang Z, Lou S, Kang J, Zhang N, Weng J, Liang Y, Ma W. Iron accumulation in ovarian microenvironment damages the local redox balance and oocyte quality in aging mice. Redox Biol 2024; 73:103195. [PMID: 38781731 PMCID: PMC11145558 DOI: 10.1016/j.redox.2024.103195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Accumulating oxidative damage is a primary driver of ovarian reserve decline along with aging. However, the mechanism behind the imbalance in reactive oxygen species (ROS) is not yet fully understood. Here we investigated changes in iron metabolism and its relationship with ROS disorder in aging ovaries of mice. We found increased iron content in aging ovaries and oocytes, along with abnormal expression of iron metabolic proteins, including heme oxygenase 1 (HO-1), ferritin heavy chain (FTH), ferritin light chain (FTL), mitochondrial ferritin (FTMT), divalent metal transporter 1 (DMT1), ferroportin1(FPN1), iron regulatory proteins (IRP1 and IRP2) and transferrin receptor 1 (TFR1). Notably, aging oocytes exhibited enhanced ferritinophagy and mitophagy, and consistently, there was an increase in cytosolic Fe2+, elevated lipid peroxidation, mitochondrial dysfunction, and augmented lysosome activity. Additionally, the ovarian expression of p53, p21, p16 and microtubule-associated protein tau (Tau) were also found to be upregulated. These alterations could be phenocopied with in vitro Fe2+ administration in oocytes from 2-month-old mice but were alleviated by deferoxamine (DFO). In vivo application of DFO improved ovarian iron metabolism and redox status in 12-month-old mice, and corrected the alterations in cytosolic Fe2+, ferritinophagy and mitophagy, as well as related degenerative changes in oocytes. Thereby in the whole, DFO delayed the decline in ovarian reserve and significantly increased the number of superovulated oocytes with reduced fragmentation and aneuploidy. Together, our findings suggest that aging-related disturbance in ovarian iron homeostasis contributes to excessive ROS production and that iron chelation may improve ovarian redox status, and efficiently delay the decline in ovarian reserve and oocyte quality in aging mice. These data propose a novel intervention strategy for preserving the ovarian reserve function in elderly women.
Collapse
Affiliation(s)
- Ye Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bicheng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shuo Lou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jingyi Kang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ningning Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Lyu W, Li DF, Li SY, Hu H, Zhou JY, Wang L. Gut microbiota modulation: a narrative review on a novel strategy for prevention and alleviation of ovarian aging. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38835159 DOI: 10.1080/10408398.2024.2361306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The global rise in life expectancy corresponds with a delay in childbearing age among women. Ovaries, seen as the chronometers of female physiological aging, demonstrate features of sped up aging, evidenced by the steady decline in both the quality and quantity of ovarian follicles from birth. The multifaceted pathogenesis of ovarian aging has kindled intensive research interest from the biomedical and pharmaceutical sectors. Novel studies underscore the integral roles of gut microbiota in follicular development, lipid metabolism, and hormonal regulation, forging a nexus with ovarian aging. In this review, we outline the role of gut microbiota in ovarian function (follicular development, oocyte maturation, and ovulation), compile and present gut microbiota alterations associated with age-related ovarian aging. We also discuss potential strategies for alleviating ovarian aging from the perspective of gut microbiota, such as fecal microbiota transplantation and probiotics.
Collapse
Affiliation(s)
- Wei Lyu
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| | - De-Feng Li
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Shu-Ying Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Jian-Yun Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Ling Wang
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Willführ KP, Klüsener S. The current 'dramatically' high paternal ages at childbirth are not unprecedented. Hum Reprod 2024; 39:1161-1166. [PMID: 38569672 DOI: 10.1093/humrep/deae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
There is strong individual-level evidence that late fatherhood is related to a wide range of health disorders and conditions in offspring. Over the last decades, mean paternal ages at childbirth have risen drastically. This has alarmed researchers from a wide range of fields. However, existing studies have an important shortcoming in that they lack a long-term perspective. This article is a step change in providing such a long-term perspective. We unveil that in many countries the current mean paternal ages at childbirth and proportions of fathers of advanced age at childbirth are not unprecedented. Taking the detected U-shaped trend pattern into account, we discuss individual- and population-level implications of the recent increases in paternal ages at childbirth and highlight important knowledge gaps. At the individual level, some of the biological mechanisms that are responsible for the paternal age-related health risk might, at least to some degree, be counterbalanced by various social factors. Further, how these individual-level effects are linked to population health and human cognitive development might be influenced by various factors, including technical advances and regulations in prenatal diagnostics.
Collapse
Affiliation(s)
- Kai P Willführ
- Institute for Social Sciences, School of Educational and Social Sciences, Carl von Ossietzky University, Oldenburg, Germany
- Center for Economic Demography, Department of Economic History, Lund University, Sweden
| | - Sebastian Klüsener
- Ageing, Mortality and Population Dynamics, Federal Institute for Population Research (BiB), Wiesbaden, Germany
- Institute of Sociology and Social Psychology (ISS), University of Cologne, Cologne, Germany
- Centre for Demographic Research, Vytautas Magnus University, Kaunas, Lithuania
| |
Collapse
|
9
|
Lu H, Jing Y, Zhang C, Ma S, Zhang W, Huang D, Zhang B, Zuo Y, Qin Y, Liu GH, Yu Y, Qu J, Wang S. Aging hallmarks of the primate ovary revealed by spatiotemporal transcriptomics. Protein Cell 2024; 15:364-384. [PMID: 38126810 DOI: 10.1093/procel/pwad063] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023] Open
Abstract
The ovary is indispensable for female reproduction, and its age-dependent functional decline is the primary cause of infertility. However, the molecular basis of ovarian aging in higher vertebrates remains poorly understood. Herein, we apply spatiotemporal transcriptomics to benchmark architecture organization as well as cellular and molecular determinants in young primate ovaries and compare these to aged primate ovaries. From a global view, somatic cells within the non-follicle region undergo more pronounced transcriptional fluctuation relative to those in the follicle region, likely constituting a hostile microenvironment that facilitates ovarian aging. Further, we uncovered that inflammation, the senescent-associated secretory phenotype, senescence, and fibrosis are the likely primary contributors to ovarian aging (PCOA). Of note, we identified spatial co-localization between a PCOA-featured spot and an unappreciated MT2 (Metallothionein 2) highly expressing spot (MT2high) characterized by high levels of inflammation, potentially serving as an aging hotspot in the primate ovary. Moreover, with advanced age, a subpopulation of MT2high accumulates, likely disseminating and amplifying the senescent signal outward. Our study establishes the first primate spatiotemporal transcriptomic atlas, advancing our understanding of mechanistic determinants underpinning primate ovarian aging and unraveling potential biomarkers and therapeutic targets for aging and age-associated human ovarian disorders.
Collapse
Affiliation(s)
- Huifen Lu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chen Zhang
- The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
- Sino-Danish Center for Education and Research, Beijing 101408, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Bin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuesheng Zuo
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University, Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University, Third Hospital, Beijing 100191, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People's Hospital of Chongqing, Chongqing 400062, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
10
|
He Q, Chen C, Bai S. The association between weight-adjusted-waist index and self-reported infertility among women of reproductive age in the United States. J Obstet Gynaecol Res 2023; 49:2929-2937. [PMID: 37674342 DOI: 10.1111/jog.15782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
AIM This study aimed to determine whether the weight-adjusted-waist index (WWI) affected infertility in women of childbearing age in the United States. METHODS In this study, a database from the 2013 to 2018 National Health and Nutrition Examination Survey (NHANES) was used. We analyzed 3374 participants' data cross-sectionally. The survey used WWI and fertility status as independent and dependent variables. To determine the effect of WWI, an analysis of the independent relationship between WWI and infertility was conducted using weighted multivariable logistic regression and a generalized additive mode (GAM). A smooth curve fitting test was used to calculate whether there was a linear association between WWI and the incidence rate of infertility, as well as subgroup analyses and interaction tests. RESULTS The prevalence of infertility was 10.19% among 3374 participants. Higher WWI quartiles were associated with higher infertility rates. Based on a fully adjusted model, the effects of WWI on fertility were positive (odds ratio = 1.39, 95% confidence interval: 1.17-1.66). As a result of smooth curve fitting, the association was linear across the entire WWI. Different characteristics were associated with different risks of infertility in subgroup analysis. CONCLUSION Among women of reproductive age in the United States, WWI levels were positively associated with infertility. This relationship needs to be confirmed by further studies.
Collapse
Affiliation(s)
- Qinyuan He
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen Chen
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shufen Bai
- Department of Obstetrics and Gynecology, Nanjing Pukou District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Smits MAJ, Schomakers BV, van Weeghel M, Wever EJM, Wüst RCI, Dijk F, Janssens GE, Goddijn M, Mastenbroek S, Houtkooper RH, Hamer G. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum Reprod 2023; 38:2208-2220. [PMID: 37671592 PMCID: PMC10628503 DOI: 10.1093/humrep/dead177] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
STUDY QUESTION Are human ovarian aging and the age-related female fertility decline caused by oxidative stress and mitochondrial dysfunction in oocytes? SUMMARY ANSWER We found oxidative damage in oocytes of advanced maternal age, even at the primordial follicle stage, and confirmed mitochondrial dysfunction in such oocytes, which likely resulted in the use of alternative energy sources. WHAT IS KNOWN ALREADY Signs of reactive oxygen species-induced damage and mitochondrial dysfunction have been observed in maturing follicles, and even in early stages of embryogenesis. However, although recent evidence indicates that also primordial follicles have metabolically active mitochondria, it is still often assumed that these follicles avoid oxidative phosphorylation to prevent oxidative damage in dictyate arrested oocytes. Data on the influence of ovarian aging on oocyte metabolism and mitochondrial function are still limited. STUDY DESIGN, SIZE, DURATION A set of 39 formalin-fixed and paraffin-embedded ovarian tissue biopsies were divided into different age groups and used for immunofluorescence analysis of oxidative phosphorylation activity and oxidative damage to proteins, lipids, and DNA. Additionally, 150 immature oocytes (90 germinal vesicle oocytes and 60 metaphase I oocytes) and 15 cumulus cell samples were divided into different age groups and used for targeted metabolomics and lipidomics analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissues used for immunofluorescence microscopy were collected through PALGA, the nationwide network, and registry of histo- and cytopathology in The Netherlands. Comprehensive metabolomics and lipidomics were performed by liquid-liquid extraction and full-scan mass spectrometry, using oocytes and cumulus cells of women undergoing ICSI treatment based on male or tubal factor infertility, or fertility preservation for non-medical reasons. MAIN RESULTS AND THE ROLE OF CHANCE Immunofluorescence imaging on human ovarian tissue indicated oxidative damage by protein and lipid (per)oxidation already at the primordial follicle stage. Metabolomics and lipidomics analysis of oocytes and cumulus cells in advanced maternal-age groups demonstrated a shift in the glutathione-to-oxiglutathione ratio and depletion of phospholipids. Age-related changes in polar metabolites suggested a decrease in mitochondrial function, as demonstrated by NAD+, purine, and pyrimidine depletion, while glycolysis substrates and glutamine accumulated, with age. Oocytes from women of advanced maternal age appeared to use alternative energy sources like glycolysis and the adenosine salvage pathway, and possibly ATP which showed increased production in cumulus cells. LIMITATIONS, REASONS FOR CAUTION The immature oocytes used in this study were all subjected to ovarian stimulation with high doses of follicle-stimulating hormones, which might have concealed some age-related differences. WIDER IMPLICATIONS OF THE FINDINGS Further studies on how to improve mitochondrial function, or lower oxidative damage, in oocytes from women of advanced maternal age, for instance by supplementation of NAD+ precursors to promote mitochondrial biogenesis, are warranted. In addition, supplementing the embryo medium of advanced maternal-age embryos with such compounds could be a treatment option worth exploring. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by the Amsterdam UMC. The authors declare to have no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Myrthe A J Smits
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric J M Wever
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Frederike Dijk
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, The Netherlands
| | - Mariëtte Goddijn
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
- Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastiaan Mastenbroek
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Qu J, Hu H, Niu H, Sun X, Li Y. Melatonin restores the declining maturation quality and early embryonic development of oocytes in aged mice. Theriogenology 2023; 210:110-118. [PMID: 37490796 DOI: 10.1016/j.theriogenology.2023.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
With increase in women's age, the reproductive capability of female mammals decreases dramatically caused by age-related oxidative stress, coinciding with the decline in the ovarian reserve, and the quality and quantity of oocytes, which is the main determinant of female fertility. Melatonin, as an effective antioxidant and antiaging substance, is secreted by the pineal gland and been found in the follicular fluid as well, which has been turned out to enable to protect oocytes from oxidative stress during ovulation. However, the beneficial effects of melatonin on meiotic maturation in vitro and early embryo development of aged oocytes are still not fully understood. Thus, the aim of this study is to explore the potential mechanism of melatonin to improve the oocytes maturation and early embryonic development. The results suggested that oocyte quality decreased with age, whereas 10-6 M melatonin supplementation can significantly prompt the maturation quality of oocytes, the rate of fertilization and the formation rate of blastocyst. Mechanistic investigation indicated that melatonin supplementation not only restored the function of mitochondria by reducing reactive oxygen species (ROS) generation and early apoptosis, but also increased the level of ATP and total GSH through enhancing the mRNA expression levels of SIRT1, SIRT3, GPX4, SOD1 and SOD2. In conclusion, melatonin could alleviate the impairment of age-related oxidative stress to meiotic maturation and early embryonic development of oocytes. This study may provide a potential remediation strategy to improve the quality of oocytes from aged women and the efficiency of assisted reproductive technologies.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; The Department of Animal and Veterinary Science, University of Vermont, Burlington, VT, 05405, USA.
| | - Huiru Hu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Haoyuan Niu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
13
|
Jia ZC, Li YQ, Zhou BW, Xia QC, Wang PX, Wang XX, Sun ZG, Guo Y. Transcriptomic profiling of human granulosa cells between women with advanced maternal age with different ovarian reserve. J Assist Reprod Genet 2023; 40:2427-2437. [PMID: 37589858 PMCID: PMC10504181 DOI: 10.1007/s10815-023-02915-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Age-related diminished ovarian reserve (DOR) is not absolute. Some advanced maternal age (AMA) still have normal ovarian reserve (NOR) and often show better pregnancy outcomes. Exploring the transcriptomic profile of granulosa cells (GCs) in AMA could lead to new ideas for mitigating age-related diminished ovarian reserve. AIM This study aimed to analyze the transcriptomic profile of GCs in AMA with different ovarian reserve. RESULTS In total, 6273 statistically significant differential expression genes (DEGs) (|log2fc|> 1, q < 0.05) were screened from the two groups, among which 3436 genes were upregulated, and 2837 genes were downregulated in the DOR group. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the potential functions of dysregulated genes in AMA with DOR or NOR were predicted. The GO enrichment analysis revealed that the DEGs were mainly enriched in obsolete oxidation-reduction process, mitochondrion, metal ion binding, ATP binding, etc. The KEGG pathway enrichment analysis revealed that the above-mentioned DEGs were mainly enriched in ferroptosis, regulation of actin cytoskeleton, oxidative phosphorylation, etc. Meanwhile, verification of the mRNA expression levels of DEGs revealed the possible involvement of "ferroptosis" in age-related diminished ovarian reserve. CONCLUSIONS From a new clinical perspective, we presented the first data showing the transcriptomic profile in GCs between AMA with different ovarian reserve. At the same time, we identified the role of ferroptosis in the GCs of AMA, providing a new biological basis for studying ovarian aging and improving pregnancy outcomes of AMA.
Collapse
Affiliation(s)
- Zhi-Cheng Jia
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong-Qian Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo-Wen Zhou
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Chang Xia
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pei-Xuan Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Xuan Wang
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Gao Sun
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Guo
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
14
|
Biesiadecka M, Szymkow A, Baryla W. To Enhance, or not to Enhance: The Situational Context Shapes Women's Intentions on Amount and Diligence of Makeup Application. EVOLUTIONARY PSYCHOLOGY 2023; 21:14747049231219283. [PMID: 38128946 PMCID: PMC10748592 DOI: 10.1177/14747049231219283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Makeup is a tool that women use to shape their image and gain benefits in both inter- and intrasexual selection. As makeup enables the hiding or enhancing of facial features, it allows women to strategically shape impressions in a given context. It affects interpersonal perceptions, workplace impressions, and can attract romantic partners. However, research has primarily focused on examining everyday makeup use, although the amount and type of makeup can vary depending on the situation and the motivation to make an impression. In two studies, we investigated how the intended amount and application of makeup differ depending on various situational contexts. Specifically, in Study 1 (N = 533), we explored the everyday and party contexts, while in Study 2 (N = 400), we additionally introduced the contexts of mating and threat. The results show that: 1) women intend to put on more makeup in a more diligent way in party contexts compared to everyday contexts, 2) the intended diligence of makeup application is the highest in contexts were women expect an attractive man to be present, and the lowest when a threatening context is introduced, 3) these effects are partially or fully mediated by women's motivation to make an impression, and 4) neither sociosexual orientation nor appearance orientation significantly moderated the obtained effects. Our studies extend previous research on makeup application as an appearance-enhancing or worsening strategy by further investigating the signaling function of women's makeup and its strategic use in various situational contexts. We discuss the results from a functional evolutionary perspective.
Collapse
Affiliation(s)
- Malgorzata Biesiadecka
- Center for Research on Biological Basis of Social Behavior, SWPS University, Warsaw, Poland
| | - Aleksandra Szymkow
- Center for Research on Biological Basis of Social Behavior, SWPS University, Warsaw, Poland
| | - Wieslaw Baryla
- Center for Research on Cognition and Behavior, SWPS University, Warsaw, Poland
| |
Collapse
|
15
|
Kooli R, Sallem A, Chebil D, Boussabbeh M, Mohamed BB, Ajina T, Boughzela I, Mougou S, Mehdi M. Factors associated with anxiety and depression in men undergoing fertility investigations: a cross-sectional study. BMC Psychol 2023; 11:299. [PMID: 37777800 PMCID: PMC10543840 DOI: 10.1186/s40359-023-01330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Infertility is a real public health issue because of its medical, socio-cultural, and financial impact. It does also have heavy psychological consequences on both partners. This study aimed to assess levels of anxiety and depression among men undergoing infertility investigation and to identify their associated factors. METHODS We conducted a cross-sectional study in the Laboratory of Cytogenetics and Reproductive Biology of Fattouma Bourguiba University Teaching Hospital (Monastir, Tunisia) between August 30th, 2020, and March 16th, 2021. Anxiety and depression levels were assessed using the valid Arab version of the Hospital Anxiety and Depression scale (HAD). Semen parameters were analyzed and interpreted according to 2021 World Health Organization (WHO) guidelines. RESULTS A total of 282 men were included in the current study. The mean HAD-D (depression) and HAD-A (anxiety) scores were of 6.56 ± 3.07 (IQR [4-8]) and 7.94 ± 3.73 (IQR[5-10]) respectively. Univariate analysis showed that patients having two or more comorbidities were nearly five times more likely to be anxious than those without or with only one comorbidity (ORc = 4.71; p = 0.007). Furthermore, single patients were about four times more anxious than those in couple having primary or secondary infertility (ORc = 3.85; p = 0.027). With regards to semen parameters, patients having hypospermia were more than two times anxious compared with those with normal semen volume (ORc = 2.33; p = 0.034). As for depression, we observed that patients with an infertility history lasting for a year or more have a nine times greater risk of depression (ORc = 9.848; p = 0.007). With regards to semen parameters, patients exhibiting two or more semen abnormalities, teratozoospermia and increased MAI were more depressed (ORc = 2.478; p = 0.036; ORc = 2.549: p = 0.023; ORc = 2.762; p = 0.036). Furthermore, we found a negative correlation between HAD-A scores and patient's age. CONCLUSIONS We pointed out through the current study the associated factors with anxiety and depression in patients under fertility management to precociously identify those who need psychological counseling and hence to better manage infertility issues.
Collapse
Affiliation(s)
- Rim Kooli
- Laboratory of Cytogenetics and Reproductive Biology, Maternity and Neonatology Center, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Amira Sallem
- Laboratory of Cytogenetics and Reproductive Biology, Maternity and Neonatology Center, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia.
- Laboratory of Histology-Embryology and Cytogenetics (LR 18 ES 40), Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia.
| | - Dhekra Chebil
- Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - Manel Boussabbeh
- Laboratory of Cytogenetics and Reproductive Biology, Maternity and Neonatology Center, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
- Laboratory for Research On Biologically Compatible Substances, Faculty of Dentistry of Monastir, University of Monastir, Monastir, Tunisia
| | - Bochra Ben Mohamed
- Psychiatry Service, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Tesnim Ajina
- Laboratory of Cytogenetics and Reproductive Biology, Maternity and Neonatology Center, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Ines Boughzela
- Laboratory of Cytogenetics and Reproductive Biology, Maternity and Neonatology Center, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Soumaya Mougou
- Laboratory of Human Cytogenetics and Reproductive Biology, Farhat Hached Univesity Teaching Hospital, Sousse, Tunisia
| | - Meriem Mehdi
- Laboratory of Cytogenetics and Reproductive Biology, Maternity and Neonatology Center, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
- Laboratory of Histology-Embryology and Cytogenetics (LR 18 ES 40), Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
16
|
Chang CL. Facilitation of Ovarian Response by Mechanical Force-Latest Insight on Fertility Improvement in Women with Poor Ovarian Response or Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:14751. [PMID: 37834198 PMCID: PMC10573075 DOI: 10.3390/ijms241914751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The decline in fertility in aging women, especially those with poor ovarian response (POR) or primary ovarian insufficiency (POI), is a major concern for modern IVF centers. Fertility treatments have traditionally relied on gonadotropin- and steroid-hormone-based IVF practices, but these methods have limitations, especially for women with aging ovaries. Researchers have been motivated to explore alternative approaches. Ovarian aging is a complicated process, and the deterioration of oocytes, follicular cells, the extracellular matrix (ECM), and the stromal compartment can all contribute to declining fertility. Adjunct interventions that involve the use of hormones, steroids, and cofactors and gamete engineering are two major research areas aimed to improve fertility in aging women. Additionally, mechanical procedures including the In Vitro Activation (IVA) procedure, which combines pharmacological activators and fragmentation of ovarian strips, and the Whole Ovary Laparoscopic Incision (WOLI) procedure that solely relies on mechanical manipulation in vivo have shown promising results in improving follicle growth and fertility in women with POR and POI. Advances in the use of mechanical procedures have brought exciting opportunities to improve fertility outcomes in aging women with POR or POI. While the lack of a comprehensive understanding of the molecular mechanisms that lead to fertility decline in aging women remains a major challenge for further improvement of mechanical-manipulation-based approaches, recent progress has provided a better view of how these procedures promote folliculogenesis in the fibrotic and avascular aging ovaries. In this review, we first provide a brief overview of the potential mechanisms that contribute to ovarian aging in POI and POR patients, followed by a discussion of measures that aim to improve ovarian folliculogenesis in aging women. At last, we discuss the likely mechanisms that contribute to the outcomes of IVA and WOLI procedures and potential future directions.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Guishan, Taoyuan 33305, Taiwan
| |
Collapse
|
17
|
Liu D, Li L, Sun N, Zhang X, Yin P, Zhang W, Hu P, Yan H, Zhang Q. Effects of body mass index on IVF outcomes in different age groups. BMC Womens Health 2023; 23:416. [PMID: 37553621 PMCID: PMC10410781 DOI: 10.1186/s12905-023-02540-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Herein, we aimed to analyse the effects of body mass index (BMI) on the treatment outcomes of in vitro fertilisation (IVF) in a cohort of women undergoing their first IVF cycle. METHODS A total of 2311 cycles from 986 women undergoing their first IVF/intracytoplasmic sperm injection cycle with fresh/frozen embryo transfer between January 2018 and December 2021 at the Center of Reproductive Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, were considered in this retrospective cohort study. First, the included patients were classified into four groups based on their BMI: underweight (BMI < 18.5 kg/m2, 78 patients), normal weight (18.5 ≤ BMI < 24 kg/m2, 721patients), overweight (24 ≤ BMI < 28 kg/m2, 147 patients), and obese (BMI ≥ 28 kg/m2, 40 patients). The IVF outcomes included the Gn medication days; Gn dosage; number of retrieved oocytes, mature oocytes, fertilized oocytes, cleavages, and available embryos and high-quality embryos; implantation rate; clinical pregnancy rate and live birth rate. Next, all the obtained data were segregated into three different subgroups according to the patient age: < 30 years, 30-38 years and > 38 years; the IVF pregnancy outcomes were compared among the groups. RESULTS Compared with the other three groups, the underweight group had a higher number of fertilized oocytes, cleavage and available embryos and a smaller Gn medication days and required a lower Gn dosage. There was no difference in the number of retrieved oocytes and mature oocytes among the groups. Moreover, compared with the women aged 30-38 years in the overweight group, those in the normal weight group had a significantly higher implantation rate, clinical pregnancy rate and live birth rate (p = 0.013 OR 1.75, p = 0.033 OR 1.735, p = 0.020 OR 1.252 respectively). The clinical pregnancy rate was also significantly higher in those aged 30-38 years in the normal weight group than in the obese group (p = 0.036 OR 4.236). CONCLUSIONS Although the BMI can greatly affect the pregnancy outcomes of women aged 30-38 years, it has almost no effects on the outcomes of younger or older women.
Collapse
Affiliation(s)
- Dan Liu
- Department of Reproductive Medicine, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Department of Reproductive Medicine, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningyu Sun
- Department of Reproductive Medicine, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaole Zhang
- Department of Gynecology, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yin
- Department of Reproductive Medicine, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wuwen Zhang
- Department of Reproductive Medicine, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Panwei Hu
- Department of Gynecology, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Department of Reproductive Medicine, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qinhua Zhang
- Department of Reproductive Medicine, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Department of Gynecology, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
18
|
Prieto-Huecas L, Piera-Jordán CÁ, Serrano De La Cruz-Delgado V, Zaragoza-Martí A, García-Velert MB, Tordera-Terrades C, Sánchez-Sansegundo M, Martín-Manchado L. Assessment of Nutritional Status and Its Influence on Ovarian Reserve: A Systematic Review. Nutrients 2023; 15:nu15102280. [PMID: 37242163 DOI: 10.3390/nu15102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Nowadays, there is a growing interest in the relationship among lifestyle, reproductive health, and fertility. Recent investigations highlight the influence of environmental and lifestyle factors such as stress, diet, and nutritional status on reproductive health. The aim of this review was to determine the influence of nutritional status on ovarian reserve in order to improve the reproductive health of women of childbearing age. METHODS A systematic literature review was carried out following the PRISMA method. The quality of the studies was assessed using the Cochrane Collaboration Risk of Bias tool. Data were extracted, and the results were summarized into two blocks: according to the technique used to assess ovarian reserve and nutritional status; according to the results found in the relationship between ovarian reserve and nutritional status. RESULTS A total of 22 articles involving 5929 women were included. In 12 of the included articles (54.5%), a relationship between nutritional status and ovarian reserve was demonstrated. In seven publications (31.8%), the increased body mass index (BMI) led to a decrease in ovarian reserve, two of them (0.9%) in patients with polycystic ovary syndrome, showing a decrease only if BMI > 25. In two articles (0.9%), there was a negative relationship between ovarian reserve and waist-to-hip ratio, and in one (0.45%), a positive relationship was shown between ovarian reserve and testosterone levels, the latter being related to body mass index. In five articles (22.7%), body mass index was used as a confounder and was negatively related to ovarian reserve, and in another four (18%), no correlation was found. CONCLUSIONS Ovarian reserve appears to be influenced by nutritional status. A high body mass index has a negative impact on the ovary, decreasing antral follicle count and anti-Müllerian hormone. Oocyte quality is compromised, increasing the rate of reproductive problems and the demand for assisted reproductive techniques. Further studies are needed to understand which dietary factors have the greatest effect on ovarian reserve in order to promote reproductive health.
Collapse
Affiliation(s)
- Laura Prieto-Huecas
- Obstetrics and Gynaecology Service, Hospital Marina Salud, 03700 Denia, Spain
| | | | | | - Ana Zaragoza-Martí
- Department of Nursing, University of Alicante, 03690 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), 03010 Alicante, Spain
| | | | | | | | | |
Collapse
|
19
|
Zhang L, Sun X, Wang R, Ma F. Effect of COVID-19 vaccination on the outcome of in vitro fertilization: A systematic review and meta-analysis. Front Public Health 2023; 11:1151999. [PMID: 37077193 PMCID: PMC10106637 DOI: 10.3389/fpubh.2023.1151999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundUniversal COVID-19 vaccination programs are now recommended in several countries and represent the most effective preventive measure against COVID-19. However, some reports suggest that vaccination may cause infertility or have adverse effects on pregnancy. Conflicting reports have led to vaccine hesitancy in women planning pregnancy.PurposeTo determine whether vaccination against COVID-19 affects in vitro fertilization (IVF) outcomes, we conducted a meta-analysis.MethodA systematic search was conducted using PubMed, Embase, MEDLINE, and Web of Science databases for all published literature on COVID-19 vaccines and outcomes of IVF. International Prospective Register of Systematic Reviews registration was completed on September 13, 2022 (CRD42022359771).ResultsWe analyzed 20 studies totaling 18,877 individual cases undergoing IVF. COVID-19 vaccination had significant effect on clinical and ongoing pregnancy rate (risk ratio (RR): 0.97; 95% confidence interval (CI): 0.94–0.99; RR: 0.93; 95% CI: 0.87–0.99). These outcomes did not differ between vaccinated and unvaccinated individuals: biochemical pregnancy rate (RR: 0.95; 95% CI: 0.88–1.03), implantation rate (RR: 1.02; 95%CI: 0.97–1.07; P = 0.41), the number of oocytes (mean difference (MD): 0.12; 95% CI: −0.65–0.88) and MII/mature oocytes recovered (MD: 0.27; 95% CI: −0.36–0.90), blastocysts rate (MD: 0.01; 95% CI: −0.04, 0.06), and fertilization rate (MD: 1.08; 95% CI: −0.57, 2.73).ConclusionOur findings suggest that vaccination against COVID-19 does not adversely affect the biochemical pregnancy rates; number of oocytes and MII/mature oocytes obtained; implantation, blastocysts; and fertilization rates in women undergoing IVF treatment. Subgroup analysis showed that the mRNA vaccine had no statistical significance on all indexes (clinical, biochemical, or ongoing pregnancy rates; implantation, blastocysts, or fertilization rates; and the number of oocytes and MII/mature oocytes). The findings of this meta-analysis are anticipated to increase the willingness of women planning IVF treatment to receive COVID-19 vaccination and provide evidence-based medical guidance for the development and implementation of guidelines.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022359771.
Collapse
Affiliation(s)
- Linyu Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Center for Translational Medicine, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinrui Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Center for Translational Medicine, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruohan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Center for Translational Medicine, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Center for Translational Medicine, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Fang Ma
| |
Collapse
|
20
|
Radakovic-Cosic J, Miković Z, Rajcevic SM, Sudar-Milovanovic E, Stojisavljevic A, Nikolic G, Radojicic O, Perovic M. Does controlled ovarian stimulation during in vitro fertilization affect the level of nitric oxide a potential indicator of oocyte quality? Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Gou M, Li J, Yi L, Li H, Ye X, Wang H, Liu L, Sun B, Zhang S, Zhu Z, Liu J, Liu L. Reprogramming of ovarian aging epigenome by resveratrol. PNAS NEXUS 2023; 2:pgac310. [PMID: 36743471 PMCID: PMC9896145 DOI: 10.1093/pnasnexus/pgac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Resveratrol is an antiaging, antioxidant, and anti-inflammatory natural polyphenolic compound. Growing evidence indicates that resveratrol has potential therapeutic effects for improving aging ovarian function. However, the mechanisms underlying prolonged reproductive longevity remain elusive. We found that resveratrol ameliorates ovarian aging transcriptome, some of which are associated with specific changes in methylome. In addition to known aging transcriptome of oocytes and granulosa cells such as decline in oxidoreductase activity, metabolism and mitochondria function, and elevated DNA damage and apoptosis, actin cytoskeleton are notably downregulated with age, and these defects are mostly rescued by resveratrol. Moreover, the aging-associated hypermethylation of actin cytoskeleton is decreased by resveratrol. In contrast, deletion of Tet2, involved in DNA demethylation, abrogates resveratrol-reprogrammed ovarian aging transcriptome. Consistently, Tet2 deficiency results in additional altered pathways as shown by increased mTOR and Wnt signaling, as well as reduced DNA repair and actin cytoskeleton with mouse age. Moreover, genes associated with oxidoreductase activity and oxidation-reduction process were hypermethylated in Tet2-deficient oocytes from middle-age mice treated with resveratrol, indicating that loss of Tet2 abolishes the antioxidant effect of resveratrol. Taking together, our finding provides a comprehensive landscape of transcriptome and epigenetic changes associated with ovarian aging that can be reprogrammed by resveratrol administration, and suggests that aberrantly increased DNA methylation by Tet2 deficiency promotes additional aging epigenome that cannot be effectively restored to younger state by resveratrol.
Collapse
Affiliation(s)
- Mo Gou
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Jie Li
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Lizhi Yi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Huiyu Li
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Xiaoying Ye
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Huasong Wang
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Linlin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Baofa Sun
- Department of Zoology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Song Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- Institute of Translational Medicine, Nankai Union Medical Center, Nankai University, Tianjin 300000, China
| |
Collapse
|
22
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
23
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
24
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
25
|
Cao Y, Zhu X, Zhen P, Tian Y, Ji D, Xue K, Yan W, Chai J, Liu H, Wang W. Cystathionine β‐synthase is required for oocyte quality by ensuring proper meiotic spindle assembly. Cell Prolif 2022; 55:e13322. [DOI: 10.1111/cpr.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Yan Cao
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Xinyu Zhu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Panpan Zhen
- Department of Pathology Beijing Luhe Hospital, Capital Medical University Beijing China
| | - Ying Tian
- Department of Histology and Embryology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Ke Xue
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Huirong Liu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases Capital Medical University Beijing China
| | - Wen Wang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases Capital Medical University Beijing China
| |
Collapse
|
26
|
Ozaltin S, Celik HG, Kar E, Baran AK, Uzun K, Naki M, Bastu E. Are antral follicle count and serum anti-Mullerian hormone level, as reliable markers of ovarian reserve, affected by UV radiation? Gynecol Endocrinol 2022; 38:639-643. [PMID: 35713498 DOI: 10.1080/09513590.2022.2087217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
ObjectiveWe aimed to assess whether ovarian reserve test including serum follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), anti-Mullerian hormone (AMH) levels, and antral follicle count (AFC) which are ovarian reserve markers are affected by ultraviolet (UV) radiation or not.MethodsWomen between the ages of 25 and 40 who served as flight crew constituted the study population in this prospective case-control study. Age-matched women having no risk factor for low ovarian reserve were selected as control group. Participants were compared according to age, duration in profession, and ovarian reserve markers.ResultsA total of 134 patients were included: 66 participants in study group and 68 participants in control group. Serum AMH levels and AFC were found to be significantly lower while serum FSH and E2 levels were significantly higher in the study group. This difference was found to be more significant, especially in the advanced age group. When the participants were classified according to their working time, lower ovarian reserve was observed in women with longer working time.DiscussionWorking for a while in the air and being closer to the sun have negative effects on ovarian functions. Preventive measures may be taken earlier in flight crew than those in the normal population to prevent the decline of ovarian functions and possible conceiving problems.
Collapse
Affiliation(s)
- Selin Ozaltin
- Department of Obstetrics and Gynecology, Acibadem Fulya Hospital, Istanbul, Turkey
| | - Hale Goksever Celik
- Department of Obstetrics and Gynecology, Acibadem Fulya Hospital, Istanbul, Turkey
| | - Emre Kar
- Department of Obstetrics and Gynecology, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Alper Kaan Baran
- Department of Emergency, Uskudar General Hospital, Istanbul, Turkey
| | - Kardelen Uzun
- Department of Obstetrics and Gynecology, Acibadem Fulya Hospital, Istanbul, Turkey
| | | | - Ercan Bastu
- Nesta Clinic, Istanbul, Turkey
- Department of Obstetrics and Gynecology, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
27
|
Dong X, Yang F, Xu X, Zhu F, Liu G, Xu F, Chen G, Cao C, Teng L, Li X, Wang L, Li B. Protective effect of C-phycocyanin and apo-phycocyanin subunit on programmed necrosis of GC-1 spg cells induced by H 2 O 2. ENVIRONMENTAL TOXICOLOGY 2022; 37:1275-1287. [PMID: 35112789 DOI: 10.1002/tox.23482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
C-phycocyanin (C-PC) is an effective antioxidant and has an important value in medical research. Oxidative stress is considered to be one of the main underlying mechanisms of cell death, and reducing oxidative stress is one of the strategies to enhance germ cell viability. Herein, we investigated the protective effect and the mechanism of C-PC and apo-phycocyanin subunit on oxidative stress damage induced by H2 O2 in GC-1 spg cells. C-PC genes were cloned into the pGEX-4T-1 vectorand transformed into Escherichia coli BL21 to achieve the efficient expression of C-PC subunit. GC-1 spg cells were treated with 600 μM H2 O2 for 24 h to establish the oxidative stress damage model. Cell viability was detected by CCK-8. The degree of oxidative stress was detected by testing Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and glutathione (GSH) and Malondialdehyde (MDA) levels. Reactive oxygen species (ROS) was evaluated utilizingby 2', 7'-dichlorofluorescent-diacetate (DCFH-DA). Mitochondrial membrane potential was determined by JC-1. Cell necrosis rate was detected by Annexin V-FITC/PI. Expression of protein was detected by western blot. We found that C-PC and GST-CPC β significantly inhibited H2 O2 -induced oxidative damage of GC-1 spg cells, improved the ability of antioxidation, reduced ROS overproduction, and mitochondrial membrane potential loss, and inhibited the RIP-1/RIP-3/ p-MLKL signaling pathway to reduce the necrosis rate. The results demonstrated that C-PC played a protective role against H2 O2 -induced cell damage, especially its β subunit. This study provides a theoretical basis for C-PC as a potential protective agent of reproductive system.
Collapse
Affiliation(s)
- Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lei Teng
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Reproduction, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Lu Y, Tang H, Wang X, Xu J, Sun F. Dibutyltin dichloride exposure affects mouse oocyte quality by inducing spindle defects and mitochondria dysfunction. CHEMOSPHERE 2022; 295:133959. [PMID: 35157879 DOI: 10.1016/j.chemosphere.2022.133959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Dibutyltin dichloride (DBTCl) is a widespread environmental pollutant that is frequently employed as a light and heat sustainer for polyvinyl chloride (PVC) plastics and is a teratogen in vivo. Nevertheless, its destructiveness in mammalian oocytes remains unclear. This study highlighted the consequences of DBTCl vulnerability on mouse oocyte. Our results revealed that exposure to 5.0 mg/kg/day of DBTCl for ten days reduced the number of mature follicles and oocytes in the ovaries and inhibited the meiotic maturation of oocytes. Single-cell transcriptomic analysis indicated that DBTCl exposure interfered with the expression of more than 400 genes in oocytes, including those involved in multiple biological pathways. Specifically, DBTCl exposure impaired spindle assembly and chromosome alignment. In addition, DBTCl exposure caused mitochondrial dysfunction, which led to the accumulation of reactive oxygen species (ROS) and induced apoptosis. In summary, our study illustrates that mitochondrial dysfunction and redox perturbation are the major causes of the reduced quality of oocytes exposed to DBTCl.
Collapse
Affiliation(s)
- Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hanyu Tang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Junjie Xu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
29
|
Hense JD, Garcia DN, Isola JV, Alvarado-Rincón JA, Zanini BM, Prosczek JB, Stout MB, Mason JB, Walsh PT, Brieño-Enríquez MA, Schadock I, Barros CC, Masternak MM, Schneider A. Senolytic treatment reverses obesity-mediated senescent cell accumulation in the ovary. GeroScience 2022; 44:1747-1759. [PMID: 35460445 DOI: 10.1007/s11357-022-00573-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Senescent cells are in a cell cycle arrest state and accumulate with aging and obesity, contributing to a chronic inflammatory state. Treatment with senolytic drugs dasatinib and quercetin (D + Q) can reduce senescent cell burden in several tissues, increasing lifespan. Despite this, there are few reports about senescent cells accumulating in female reproductive tissues. Therefore, the aim of the study was to characterize the ovarian reserve and its relationship with cellular senescence in genetically obese mice (ob/ob). In experiment 1, ob/ob (n = 5) and wild-type (WT) mice (n = 5) at 12 months of age were evaluated. In experiment 2, 2-month-old female ob/ob mice were treated with senolytics (D + Q, n = 6) or placebo (n = 6) during the 4 months. Obese mice had more senescent cells in ovaries, indicated by increased p21 and p16 and lipofuscin staining and macrophage infiltration. Treatment with D + Q significantly reduced senescent cell burden in ovaries of obese mice. Neither obesity nor treatment with D + Q affected the number of ovarian follicles. In conclusion, our data indicate that obesity due to leptin deficiency increases the load of senescent cells in the ovary, which is reduced by treatment by senolytics. However, neither obesity nor D + Q treatment affected the ovarian reserve.
Collapse
Affiliation(s)
- Jéssica D Hense
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Pelotas, Brazil
| | - Driele N Garcia
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José V Isola
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Joao A Alvarado-Rincón
- Facultad de Ciencias Agropecuarias, Universidad de La Salle, Campus Utopía, Yopal, Casanare, Colombia
| | - Bianka M Zanini
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane B Prosczek
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Patrick T Walsh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Miguel A Brieño-Enríquez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ines Schadock
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Carlos C Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil.
| |
Collapse
|
30
|
Guo Z, Yang J, Yang G, Feng T, Zhang X, Chen Y, Feng R, Qian Y. Effects of nicotinamide on follicular development and the quality of oocytes. Reprod Biol Endocrinol 2022; 20:70. [PMID: 35448997 PMCID: PMC9022236 DOI: 10.1186/s12958-022-00938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nicotinamide (NAM) is an important antioxidant, which is closely related to female fertility, but its role has not been clearly elucidated. The purpose of the present study was to investigate the effects of NAM on follicular development at different stages and the quality of oocytes. METHODS The concentration of NAM in follicular fluid (FF) of 236 women undergoing in vitro fertilization (IVF) was ascertained by enzyme-linked immunosorbent assay (ELISA), and the correlation between NAM and clinical indexes was analyzed. During the in vitro maturation (IVM) of mice cumulus-oocyte complexes (COCs), different concentrations of NAM were added to check the maturation rate and fertilization rate. The reactive oxygen species (ROS) levels in the oocytes treated with different hydrogen peroxide (H2O2) and NAM were assessed. Immunofluorescence staining was performed to measure the proportion of abnormal spindles. RESULTS The level of NAM in large follicles was significantly higher than that in small follicles. In mature FF, the NAM concentration was positively correlated with the rates of oocyte maturation and fertilization. Five mM NAM treatment during IVM increased maturation rate and fertilization rate in the oxidative stress model, and significantly reduced the increase of ROS levels induced by H2O2 in mice oocytes. CONCLUSIONS Higher levels of NAM in FF are associated with larger follicle development. The supplement of 5 mM NAM during IVM may improve mice oocyte quality, reducing damage caused by oxidative stress.
Collapse
Affiliation(s)
- Ziyu Guo
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jihong Yang
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Guangping Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Feng
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xinyue Zhang
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yao Chen
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Yun Qian
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
31
|
Babayev E, Duncan FE. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod 2022; 106:351-365. [PMID: 34982142 PMCID: PMC8862720 DOI: 10.1093/biolre/ioab241] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023] Open
Abstract
The ovary is the first organ to age in humans with functional decline evident already in women in their early 30s. Reproductive aging is characterized by a decrease in oocyte quantity and quality, which is associated with an increase in infertility, spontaneous abortions, and birth defects. Reproductive aging also has implications for overall health due to decreased endocrinological output. Understanding the mechanisms underlying reproductive aging has significant societal implications as women globally are delaying childbearing and medical interventions have greatly increased the interval between menopause and total lifespan. Age-related changes inherent to the female gamete are well-characterized and include defects in chromosome and mitochondria structure, function, and regulation. More recently, it has been appreciated that the extra-follicular ovarian environment may have important direct or indirect impacts on the developing gamete, and age-dependent changes include increased fibrosis, inflammation, stiffness, and oxidative damage. The cumulus cells and follicular fluid that directly surround the oocyte during its final growth phase within the antral follicle represent additional critical local microenvironments. Here we systematically review the literature and evaluate the studies that investigated the age-related changes in cumulus cells and follicular fluid. Our findings demonstrate unique genetic, epigenetic, transcriptomic, and proteomic changes with associated metabolomic alterations, redox status imbalance, and increased apoptosis in the local oocyte microenvironment. We propose a model of how these changes interact, which may explain the rapid decline in gamete quality with age. We also review the limitations of published studies and highlight future research frontiers.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
32
|
Zhao X, Zhang X, Wu S, Tan J. Association Between the Ratio of Ovarian Stimulation Duration to Original Follicular Phase Length and In Vitro Fertilization Outcomes: A Novel Index to Optimise Clinical Trigger Time. Front Endocrinol (Lausanne) 2022; 13:862500. [PMID: 35957813 PMCID: PMC9361069 DOI: 10.3389/fendo.2022.862500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The duration of ovarian stimulation which is largely dependent on the ovarian response to hormonal stimulation may influence in vitro fertilization (IVF) outcomes. Menstrual cycle length is potentially a good indicator of ovarian reserve and can predict ovarian response. Ovarian stimulation and the follicular phase of the menstrual cycle are both processes of follicular development. There is no published research to predict the duration of ovarian stimulation based on the length of the menstrual cycle. Our retrospective cohort study included 6110 women with regular menstrual cycles who underwent their first IVF treatment between January 2015 and October 2020. Cycles were classified according to quartiles of the ratio of ovarian stimulation duration to original follicular phase length (OS/FP). Multivariate generalized linear models were applied to assess the association between OS/FP and IVF outcomes. The odds ratio (OR) or relative risk (RR) was estimated for each quartile with the lowest quartile as the comparison group. OS/FP of 0.67 to 0.77 had more retrieved and mature oocytes (adjusted RR 1.11, 95% confidence interval [CI] 1.07-1.15, p for trend = 0.001; adjusted RR 1.14, 95% CI 1.09-1.19, p for trend = 0.001). OS/FP of 0.67 to 0.77 showed the highest rate of fertilization (adjusted OR 1.11, 95% CI 1.05-1.17, p for trend = 0.001). OS/FP > 0.77 had the lowest rate of high-quality blastocyst formation (adjusted OR 0.81, 95% CI 0.71-0.93, p for trend = 0.01). No apparent association was noted between OS/FP and clinical pregnancy, live birth, or early miscarriage rate. In conclusion, OS/FP has a significant effect on the number of oocytes, fertilization rate, and high-quality blastocyst formation rate. MCL could be used to predict the duration of ovarian stimulation with an OS/FP of 0.67 to 0.77, which provides a new indicator for the individualized clinical optimization of the trigger time.
Collapse
Affiliation(s)
- Xinyang Zhao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Xu Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
- *Correspondence: Jichun Tan,
| |
Collapse
|
33
|
Wang M, Yang Q, Liu J, Hu J, Li D, Ren X, Xi Q, Zhu L, Jin L. GVBD rate is an independent predictor for pregnancy in ICSI patients with surplus immature oocytes. Front Endocrinol (Lausanne) 2022; 13:1022044. [PMID: 36699025 PMCID: PMC9868552 DOI: 10.3389/fendo.2022.1022044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION It was reported that there were still up to 30% immature retrieved oocyte at germinal vesicle (GV) or metaphase I (MI) stage. Whether the spontaneous maturity competency of immature oocytes associated to the clinical outcome of in vitro fertilization (IVF) cycles remains unclear and unexplored. This study aimed to investigate how the oocyte developmental parameters in in vitro maturation (IVM) affect clinical outcomes of intracytoplasmic sperm injection (ICSI) cycles. METHODS This retrospective cohort study included couples undergoing ICSI in a university-affiliated hospital. Surplus immature oocytes during ICSI were collected and cultured in vitro. The numbers of germinal vesicle (GV) oocytes undergoing GV breakdown (GVBD) and polar body 1 extrusion within 24 h culture were recorded. The main outcome measurements were demographic baselines and oocyte developmental parameters in IVM associated with pregnancy outcomes. RESULTS A total of 191 couples were included with an overall GVBD rate of 63.7% (327/513) and oocyte maturation rate of 46.8% (240/513). 53.4% (102/191) of them had embryos transferred freshly, which originated from metaphase II oocytes that matured spontaneously in vivo, and 60.8% (62/102) got pregnant. Among factors with a P-value < 0.2 in univariate logistic regression analyses of pregnancy correlation, GVBD rate (OR 3.220, 95% CI 1.060-9.782, P=0.039) and progesterone level on human chorionic gonadotropin (HCG) day (OR 0.231, 95% CI 0.056-0.949, P=0.042) remained significant in the multivariate model. The area under the curve (AUC) of the predictive nomogram was 0.729 (95% CI 0.632-0.826) with an acceptable calibration. Moreover, decision curve analyses illustrated the superior overall net benefit of models that included the GVBD rate in clinical decisions within a wide range of threshold probabilities. CONCLUSION In conclusion, GVBD rate and progesterone level on HCG day may be associated with pregnancy outcomes in infertile couples during the regular ICSI procedure. An elevated GVBD rate within 24 h may greatly increase the likelihood of pregnancy in infertile couples during ICSI. This preliminary study may optimize clinical pregnancy prediction, which provides support in decision-making in clinical practice.
Collapse
Affiliation(s)
- Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiyu Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Xi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lei Jin,
| |
Collapse
|
34
|
Huang C, Wu D, Khan FA, Wang Y, Xu J, Luo C, Zhang K, Sun F, Huo L. Zinc oxide nanoparticle causes toxicity to the development of mouse oocyte and early embryo. Toxicol Lett 2022; 358:48-58. [DOI: 10.1016/j.toxlet.2022.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
|
35
|
Essentiality of Trace Elements in Pregnancy, Fertility, and Gynecologic Cancers-A State-of-the-Art Review. Nutrients 2021; 14:nu14010185. [PMID: 35011060 PMCID: PMC8746721 DOI: 10.3390/nu14010185] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Gynecological neoplasms pose a serious threat to women's health. It is estimated that in 2020, there were nearly 1.3 million new cases worldwide, from which almost 50% ended in death. The most commonly diagnosed are cervical and endometrial cancers; when it comes to infertility, it affects ~48.5 million couples worldwide and the number is continually rising. Ageing of the population, environmental factors such as dietary habits, environmental pollutants and increasing prevalence of risk factors may affect the reproductive potential in women. Therefore, in order to identify potential risk factors for these issues, attention has been drawn to trace elements. Trace mineral imbalances can be caused by a variety of causes, starting with hereditary diseases, finishing with an incorrect diet or exposure to polluted air or water. In this review, we aimed to summarize the current knowledge regarding trace elements imbalances in the case of gynecologic cancers as well as female fertility and during pregnancy.
Collapse
|
36
|
Zhang Y, Yan Z, Liu H, Li L, Yuan C, Qin L, Cai L, Liu J, Hu Y, Cui Y. Sorbitol accumulation decreases oocyte quality in aged mice by altering the intracellular redox balance. Aging (Albany NY) 2021; 13:25291-25303. [PMID: 34897034 PMCID: PMC8714154 DOI: 10.18632/aging.203747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Sorbitol is a product of glucose metabolism through the polyol pathway. Many studies have demonstrated that excessive sorbitol can disrupt the intracellular redox balance. However, we still know very little about the impact of excessive intracellular sorbitol on oocyte quality, oocyte maturation, and embryo developmental potential. This study explored whether intracellular sorbitol accumulates in the oocytes of aged mice during in vitro maturation (IVM) and what roles sorbitol plays in oocyte development and maturation. Our results showed that sorbitol levels were significantly higher in in vitro-matured oocytes from aged mice than in oocytes from young mice (14.08 ± 3.78 vs. 0.23 ± 0.04 ng/oocyte). The expression of aldose reductase (AR) mRNA was significantly higher in the in vitro-cultured oocytes from 9-month-old mice than prior to culture. To decrease the excessive intracellular sorbitol in oocytes from aged mice, sorbinil, a specific inhibitor of aldose reductase, was supplemented in IVM medium, and the sorbitol level was significantly decreased (14.08 ± 3.78 vs. 0.48 ± 0.19 ng/oocyte). Our results indicated that the percentage of oocytes with first polar body extrusion (PBE) was significantly higher in the sorbinil group than in the aged group (82.4% ± 7.2% vs. 66.1% ± 6.9%), and the content of sorbitol was drastically increased in the aged group. The ROS fluorescence intensity in the sorbinil group was drastically lower than that in the aged group, while the GSH fluorescence intensity was significantly higher. Interestingly, SOD1 was upregulated in the sorbinil group. The present study suggests that excessive sorbitol accumulation is induced during IVM in aged mouse oocytes, which negatively influences oocyte quality by altering the intracellular redox balance. Inhibition of sorbitol accumulation may be a potential method to improve the nuclear maturation of aged oocytes.
Collapse
Affiliation(s)
- Yuexin Zhang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hanwen Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lingjun Li
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Chun Yuan
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yanqiu Hu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
37
|
Tian C, He J, An Y, Yang Z, Yan D, Pan H, Lv G, Li Y, Wang Y, Yang Y, Zhu G, He Z, Zhu X, Pan X. Bone marrow mesenchymal stem cells derived from juvenile macaques reversed ovarian ageing in elderly macaques. Stem Cell Res Ther 2021; 12:460. [PMID: 34407863 PMCID: PMC8371769 DOI: 10.1186/s13287-021-02486-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Female sex hormone secretion and reproductive ability decrease with ageing. Bone marrow mesenchymal stem cells (BMMSCs) have been postulated to play a key role in treating ovarian ageing. METHODS We used macaque ovarian ageing models to observe the structural and functional changes after juvenile BMMSC treatment. Moreover, RNA-seq was used to analyse the ovarian transcriptional expression profile and key pathways through which BMMSCs reverse ovarian ageing. RESULTS In the elderly macaque models, the ovaries were atrophied, the regulation ability of sex hormones was reduced, the ovarian structure was destroyed, and only local atretic follicles were observed, in contrast with young rhesus monkeys. Intravenous infusion of BMMSCs in elderly macaques increased ovarian volume, strengthened the regulation ability of sex hormones, reduced the degree of pulmonary fibrosis, inhibited apoptosis, increased density of blood vessels, and promoted follicular regeneration. In addition, the ovarian expression characteristics of ageing-related genes of the elderly treatment group reverted to that of the young control group, 1258 genes that were differentially expressed, among which 415 genes upregulated with age were downregulated, 843 genes downregulated with age were upregulated after BMMSC treatment, and the top 20 differentially expressed genes (DEGs) in the protein-protein interaction (PPI) network were significantly enriched in oocyte meiosis and progesterone-mediated oocyte maturation pathways. CONCLUSION The BMMSCs derived from juvenile macaques can reverse ovarian ageing in elderly macaques.
Collapse
Affiliation(s)
- Chuan Tian
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Guizhou Medical University, Tissue Engineering and Stem Cell Experimental Center, Guizhou Provinc, Guiyang, 550004, China
| | - Jie He
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Kunming Medical University, Guizhou Province, Kunming, 650032, China
| | - Yuanyuan An
- Kunming Medical University, Guizhou Province, Kunming, 650032, China
| | - Zailing Yang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Guizhou Medical University, Tissue Engineering and Stem Cell Experimental Center, Guizhou Provinc, Guiyang, 550004, China
| | - Donghai Yan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Hang Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Guizhou Medical University, Tissue Engineering and Stem Cell Experimental Center, Guizhou Provinc, Guiyang, 550004, China
| | - Guanke Lv
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Kunming Medical University, Guizhou Province, Kunming, 650032, China
| | - Ye Li
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Kunming Medical University, Guizhou Province, Kunming, 650032, China
| | - Yanying Wang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Yukun Yang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Gaohong Zhu
- Kunming Medical University, Guizhou Province, Kunming, 650032, China
| | - Zhixu He
- Guizhou Medical University, Tissue Engineering and Stem Cell Experimental Center, Guizhou Provinc, Guiyang, 550004, China
| | - Xiangqing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| | - Xinghua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
- Guizhou Medical University, Tissue Engineering and Stem Cell Experimental Center, Guizhou Provinc, Guiyang, 550004, China.
- Kunming Medical University, Guizhou Province, Kunming, 650032, China.
| |
Collapse
|
38
|
Singina GN, Shedova EN, Lopukhov AV, Mityashova OS, Lebedeva IY. Delaying Effects of Prolactin and Growth Hormone on Aging Processes in Bovine Oocytes Matured In Vitro. Pharmaceuticals (Basel) 2021; 14:684. [PMID: 34358110 PMCID: PMC8308928 DOI: 10.3390/ph14070684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Aging processes accelerate dramatically in oocytes that have reached the metaphase-II (M-II) stage. The present work aimed to study the patterns and intracellular pathways of actions of prolactin (PRL) and growth hormone (GH) on age-associated changes in bovine M-II oocytes aging in vitro. To this end, we analyzed spontaneous parthenogenetic activation (cytogenetic assay), apoptosis (TUNEL assay), and the developmental capacity (IVF/IVC) of in vitro-matured oocytes after prolonged culturing. Both PRL and GH reduced the activation rate of aging cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs), and their respective hormone receptors were revealed in the ova. The inhibitor of Src-family tyrosine kinases PP2 eliminated the effects of PRL and GH on meiotic arrest in DOs, whereas the MEK inhibitor U0126 only abolished the PRL effect. Furthermore, PRL was able to maintain the apoptosis resistance and developmental competence of aging CEOs. The protein kinase C inhibitor calphostin C suppressed both the actions of PRL. Thus, PRL and GH can directly support meiotic arrest in aging M-II oocytes by activating MAP kinases and/or Src-family kinases. The effect of PRL in maintaining the developmental capacity of aging oocytes is cumulus-dependent and related to the pro-survival action of the protein kinase C-mediated signal pathway.
Collapse
Affiliation(s)
| | | | | | | | - Irina Y. Lebedeva
- Department of Animal Biotechnology and Molecular Diagnostics, L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia; (G.N.S.); (E.N.S.); (A.V.L.); (O.S.M.)
| |
Collapse
|
39
|
Zhang W, Li S, Li K, Li LI, Yin P, Tong G. The role of protein arginine methyltransferase 7 in human developmentally arrested embryos cultured in vitro. Acta Biochim Biophys Sin (Shanghai) 2021; 53:925-932. [PMID: 34041522 DOI: 10.1093/abbs/gmab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Human embryos of in vitro fertilization (IVF) are often susceptible to developmental arrest, which greatly reduces the efficiency of IVF treatment. In recent years, it has been found that protein arginine methyltransferase 7 (PRMT7) plays an important role in the process of early embryonic development. However, not much is known about the relationship between PRMT7 and developmentally arrested embryos. The role of PRMT7 in developmentally arrested embryos was thus investigated in this study. Discarded human embryos from IVF were collected for experimental materials. Quantitative real-time polymerase chain reaction (qRT-PCR) and confocal analyses were used to identify PRMT7 mRNA and protein levels in early embryos at different developmental stages, as well as changes in the methylation levels of H4R3me2s. Additionally, PRMT7 was knocked down in the developmentally arrested embryos to observe the further development of these embryos. Our results demonstrated that PRMT7 mRNA and protein levels in arrested embryos were significantly increased compared with those in control embryos; meanwhile, the methylation levels of H4R3me2s in arrested embryos were also increased significantly. Knockdown of PRMT7 could rescue partially developmentally arrested embryos, and even individual developmentally arrested embryos could develop into blastocysts. In conclusion, over-expression of PRMT7 disrupts the early embryo development process, leading to early embryos developmental arrest, but these developmentally arrested defects could be partially rescued by knockdown of the PRMT7 protein.
Collapse
Affiliation(s)
- Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shifeng Li
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - L i Li
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guoqing Tong
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
40
|
The More Fertile, the More Creative: Changes in Women's Creative Potential across the Ovulatory Cycle. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105390. [PMID: 34070114 PMCID: PMC8158362 DOI: 10.3390/ijerph18105390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 11/30/2022]
Abstract
Creative thinking is a defining human feature. It provides novel solutions and as such undoubtedly has contributed to our survival. However, according to signaling theory, creativity could also have evolved through sexual selection as a potential fitness indicator. In our study, we tested one implication of this theory. Specifically, we hypothesized that if creativity can serve as a signal of women’s fitness, then we should observe an increase in creative thinking in the fertile phase of the ovulatory cycle compared to other non-fertile phases. In our study (N = 751), we tested creative potential throughout the ovulatory cycle. We found a positive correlation between the probability of conception and both creative originality and flexibility. Importantly, we also tested the mediating role of arousal in the relationship between the probability of conception and creative thinking. The results of our study are discussed in terms of signaling theory, through which women advertise their fitness with their creativity.
Collapse
|
41
|
Li F, Lu H, Zhang Q, Li X, Wang T, Liu Q, Yang Q, Qiang L. Impact of COVID-19 on female fertility: a systematic review and meta-analysis protocol. BMJ Open 2021; 11:e045524. [PMID: 33632754 PMCID: PMC7908052 DOI: 10.1136/bmjopen-2020-045524] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The increased social and economic burden caused by the novel COVID-19 outbreak is gradually becoming a worrisome issue for the health sector. The novel coronavirus invades the target cell by binding to ACE2, which is widely expressed in the ovaries, uterus, vagina and placenta. Significantly, the SARS-CoV-2 is said to interrupt female fertility through regulating ACE2. Thus, it is essential to investigate if the novel COVID-19 hampers female fertility, given that there is no systematic and comprehensive evidence on the association of COVID-19 with female fertility. METHODS AND ANALYSIS We will systematically search cohort studies, cross-sectional studies, case-control studies and self-controlled case series designs in the following databases: Web of Science, PubMed, EMBASE, Cochrane Library, Ovid, EBSCO, WHO COVID-19 Database, Chinese Biomedical Databases, China National Knowledge Internet, VIP and WanFang Database. Medical Subject Headings and free-text terms for "COVID-19" AND "female" AND "fertility" will be performed. Eligibility criteria are as follows: population (female patients aged 13-49 years); exposure (infection with SARS-CoV-2); comparison (population without SARS-CoV-2 infections or latent SARS-CoV-2 infections); and outcome (female fertility, such as ovarian reserve function, uterine receptivity, oviducts status and menstruation status). Article screening and data extraction will be undertaken independently by two reviewers, and discrepancies will be resolved through discussion. We will use the I2 statistics to assess the heterogeneity and perform a meta-analysis when sufficiently homogeneous studies are provided. Otherwise, a narrative synthesis will be performed. We will explore the potential sources of heterogeneity using subgroup analyses and meta-regression. ETHICS AND DISSEMINATION Formal ethical approval is not required, and findings will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42020189856.
Collapse
Affiliation(s)
- Fangyuan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Lu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyun Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tong Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianchen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingxia Qiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Zhang Y, Zhou X, Zhu Y, Wang H, Xu J, Su Y. Current mechanisms of primordial follicle activation and new strategies for fertility preservation. Mol Hum Reprod 2021; 27:6128515. [PMID: 33538812 DOI: 10.1093/molehr/gaab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is characterized by symptoms caused by ovarian dysfunction in patients aged <40 years. It is associated with a shortened reproductive lifespan. The only effective treatment for patients who are eager to become pregnant is IVF/Embryo Transfer (ET) using oocytes donated by young women. However, the use of the technique is constrained by the limited supply of oocytes and ethical issues. Some patients with POI still have some residual follicles in the ovarian cortex, which are not regulated by gonadotropin. These follicles are dormant. Therefore, activating dormant primordial follicles (PFs) to obtain high-quality oocytes for assisted reproductive technology may bring new hope for patients with POI. Therefore, this study aimed to explore the factors related to PF activation, such as the intercellular signaling network, the internal microenvironment of the ovary and the environment of the organism. In addition, we discussed new strategies for fertility preservation, such as in vitro activation and stem cell transplantation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Xiaomei Zhou
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Ye Zhu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Hanbin Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Yiping Su
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| |
Collapse
|