1
|
Zhang C, Kúkeľová D, Sigrist H, Hengerer B, Kratzer RF, Mracek P, Omrani A, von Heimendahl M, Pryce CR. Orphan receptor-GPR52 inverse agonist efficacy in ameliorating chronic stress-related deficits in reward motivation and phasic accumbal dopamine activity in mice. Transl Psychiatry 2024; 14:363. [PMID: 39242529 PMCID: PMC11379876 DOI: 10.1038/s41398-024-03081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Reward processing dysfunctions e.g., anhedonia, apathy, are common in stress-related neuropsychiatric disorders including depression and schizophrenia, and there are currently no established therapies. One potential therapeutic approach is restoration of reward anticipation during appetitive behavior, deficits in which co-occur with attenuated nucleus accumbens (NAc) activity, possibly due to NAc inhibition of mesolimbic dopamine (DA) signaling. Targeting NAc regulation of ventral tegmental area (VTA) DA neuron responsiveness to reward cues could involve either the direct or indirect-via ventral pallidium (VP)-pathways. One candidate is the orphan G protein-coupled receptor GPR52, expressed by DA receptor 2 NAc neurons that project to VP. In mouse brain-slice preparations, GPR52 inverse agonist (GPR52-IA) attenuated evoked inhibitory postsynaptic currents at NAc-VP neurons, which could disinhibit VTA DA neurons. A mouse model in which chronic social stress leads to reduced reward learning and effortful motivation was applied to investigate GPR52-IA behavioral effects. Control and chronically stressed mice underwent a discriminative learning test of tone-appetitive behavior-sucrose reinforcement: stress reduced appetitive responding and discriminative learning, and these anticipatory behaviors were dose-dependently reinstated by GPR52-IA. The same mice then underwent an effortful motivation test of operant behavior-tone-sucrose reinforcement: stress reduced effortful motivation and GPR52-IA dose-dependently restored it. In a new cohort, GRABDA-sensor fibre photometry was used to measure NAc DA activity during the motivation test: in stressed mice, reduced motivation co-occurred with attenuated NAc DA activity specifically to the tone that signaled reinforcement of effortful behavior, and GPR52-IA ameliorated both deficits. These findings: (1) Demonstrate preclinical efficacy of GPR52 inverse agonism for stress-related deficits in reward anticipation during appetitive behavior. (2) Suggest that GPR52-dependent disinhibition of the NAc-VP-VTA-NAc circuit, leading to increased phasic NAc DA signaling of earned incentive stimuli, could account for these clinically relevant effects.
Collapse
Affiliation(s)
- Chenfeng Zhang
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH, Zurich, Switzerland
| | - Diana Kúkeľová
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland
| | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ramona F Kratzer
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Philipp Mracek
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Azar Omrani
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Christopher R Pryce
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center, University of Zurich and ETH, Zurich, Switzerland.
| |
Collapse
|
2
|
Leve LD, Kanamori M, Humphreys KL, Jaffee SR, Nusslock R, Oro V, Hyde LW. The Promise and Challenges of Integrating Biological and Prevention Sciences: A Community-Engaged Model for the Next Generation of Translational Research. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2024:10.1007/s11121-024-01720-8. [PMID: 39225944 DOI: 10.1007/s11121-024-01720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Beginning with the successful sequencing of the human genome two decades ago, the possibility of developing personalized health interventions based on one's biology has captured the imagination of researchers, medical providers, and individuals seeking health care services. However, the application of a personalized medicine approach to emotional and behavioral health has lagged behind the development of personalized approaches for physical health conditions. There is potential value in developing improved methods for integrating biological science with prevention science to identify risk and protective mechanisms that have biological underpinnings, and then applying that knowledge to inform prevention and intervention services for emotional and behavioral health. This report represents the work of a task force appointed by the Board of the Society for Prevention Research to explore challenges and recommendations for the integration of biological and prevention sciences. We present the state of the science and barriers to progress in integrating the two approaches, followed by recommended strategies that would promote the responsible integration of biological and prevention sciences. Recommendations are grounded in Community-Based Participatory Research approaches, with the goal of centering equity in future research aimed at integrating the two disciplines to ultimately improve the well-being of those who have disproportionately experienced or are at risk for experiencing emotional and behavioral problems.
Collapse
Affiliation(s)
- Leslie D Leve
- Prevention Science Institute, University of Oregon, Eugene, USA.
- Department of Counseling Psychology and Human Services, University of Oregon, Eugene, USA.
- Cambridge Public Health, University of Cambridge, Cambridge, UK.
| | - Mariano Kanamori
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, USA
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, USA
| | - Sara R Jaffee
- Department of Psychology, University of Pennsylvania, Philadelphia, USA
| | - Robin Nusslock
- Department of Psychology & Institute for Policy Research, Northwestern University, Evanston, USA
| | - Veronica Oro
- Prevention Science Institute, University of Oregon, Eugene, USA
| | - Luke W Hyde
- Department of Psychology & Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, USA
| |
Collapse
|
3
|
Zhang C, Dulinskas R, Ineichen C, Greter A, Sigrist H, Li Y, Alanis-Lobato G, Hengerer B, Pryce CR. Chronic stress deficits in reward behaviour co-occur with low nucleus accumbens dopamine activity during reward anticipation specifically. Commun Biol 2024; 7:966. [PMID: 39123076 PMCID: PMC11316117 DOI: 10.1038/s42003-024-06658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Whilst reward pathologies are major and common in stress-related neuropsychiatric disorders, their neurobiology and treatment are poorly understood. Imaging studies in human reward pathology indicate attenuated BOLD activity in nucleus accumbens (NAc) coincident with reward anticipation but not reinforcement; potentially, this is dopamine (DA) related. In mice, chronic social stress (CSS) leads to reduced reward learning and motivation. Here, DA-sensor fibre photometry is used to investigate whether these behavioural deficits co-occur with altered NAc DA activity during reward anticipation and/or reinforcement. In CSS mice relative to controls: (1) Reduced discriminative learning of the sequence, tone-on + appetitive behaviour = tone-on + sucrose reinforcement, co-occurs with attenuated NAc DA activity throughout tone-on and sucrose reinforcement. (2) Reduced motivation during the sequence, operant behaviour = tone-on + sucrose delivery + sucrose reinforcement, co-occurs with attenuated NAc DA activity at tone-on and typical activity at sucrose reinforcement. (3) Reduced motivation during the sequence, operant behaviour = appetitive behaviour + sociosexual reinforcement, co-occurs with typical NAc DA activity at female reinforcement. Therefore, in CSS mice, low NAc DA activity co-occurs with low reward anticipation and could account for deficits in learning and motivation, with important implications for understanding human reward pathology.
Collapse
Affiliation(s)
- Chenfeng Zhang
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Redas Dulinskas
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - Christian Ineichen
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - Alexandra Greter
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Gregorio Alanis-Lobato
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Christopher R Pryce
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Jung M, Han KM. Behavioral Activation and Brain Network Changes in Depression. J Clin Neurol 2024; 20:362-377. [PMID: 38951971 PMCID: PMC11220350 DOI: 10.3988/jcn.2024.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 07/03/2024] Open
Abstract
Behavioral activation (BA) is a well-established method of evidence-based treatment for depression. There are clear links between the neural mechanisms underlying reward processing and BA treatment for depressive symptoms, including anhedonia; however, integrated interpretations of these two domains are lacking. Here we examine brain imaging studies involving BA treatments to investigate how changes in brain networks, including the reward networks, mediate the therapeutic effects of BA, and whether brain circuits are predictors of BA treatment responses. Increased activation of the prefrontal and subcortical regions associated with reward processing has been reported after BA treatment. Activation of these regions improves anhedonia. Conversely, some studies have found decreased activation of prefrontal regions after BA treatment in response to cognitive control stimuli in sad contexts, which indicates that the therapeutic mechanism of BA may involve disengagement from negative or sad contexts. Furthermore, the decrease in resting-state functional connectivity of the default-mode network after BA treatment appears to facilitate the ability to counteract depressive rumination, thereby promoting enjoyable and valuable activities. Conflicting results suggest that an intact neural response to rewards or defective reward functioning is predictive of the efficacy of BA treatments. Increasing the benefits of BA treatments requires identification of the unique individual characteristics determining which of these conflicting findings are relevant for the personalized treatment of each individual with depression.
Collapse
Affiliation(s)
- Minjee Jung
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Macías-Cortés E. Understanding Why Homeopathic Medicines are Used for Menopause: Searching for Insights into Neuroendocrine Features. HOMEOPATHY 2024; 113:54-66. [PMID: 37399836 DOI: 10.1055/s-0043-1769734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
BACKGROUND Menopause is a physiological event that marks the end of a woman's reproductive stage in life. Vasomotor symptoms and changes in mood are among its most important effects. Homeopathy has been used for many years in treating menopausal complaints, though clinical and pre-clinical research in this field is limited. Homeopathy often bases its prescription on neuropsychiatric symptoms, but it is unknown if homeopathic medicines (HMs) exert a neuroendocrine effect that causes an improvement in vasomotor symptoms and mood during menopause. OBJECTIVES The study's objectives were to address the pathophysiological changes of menopause that could help in the understanding of the possible effect of HMs at a neuroendocrine level, to review the current evidence for two of the most frequently prescribed HMs for menopause (Lachesis mutus and Sepia officinalis), and to discuss the future directions of research in this field. METHODS An extensive literature search for the pathophysiologic events of menopause and depression, as well as for the current evidence for HMs in menopause and depression, was performed. RESULTS Neuroendocrine changes are involved in the pathophysiology of vasomotor symptoms and changes in mood during menopause. Gonadal hormones modulate neurotransmitter systems. Both play a role in mood disorders and temperature regulation. It has been demonstrated that Gelsemium sempervirens, Ignatia amara and Chamomilla matricaria exert anxiolytic effects in rodent models. Lachesis mutus and Sepia officinalis are frequently prescribed for important neuropsychiatric and vasomotor symptoms. Dopamine, a neurotransmitter involved in mood, is among the constituents of the ink of the common cuttlefish, Sepia officinalis. CONCLUSION Based on all the pathophysiologic events of menopause and the improvement in menopausal complaints that certain HMs show in daily practice, these medicines might have a direct or indirect neuroendocrine effect in the body, possibly triggered via an as-yet unidentified biological mechanism. Many unanswered questions in this field require further pre-clinical and clinical research.
Collapse
Affiliation(s)
- Emma Macías-Cortés
- Outpatient Homeopathy Service, Hospital Juárez de México, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
6
|
Serretti A. Anhedonia and Depressive Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:401-409. [PMID: 37424409 PMCID: PMC10335915 DOI: 10.9758/cpn.23.1086] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 07/11/2023]
Abstract
Anhedonia is a core symptom of depression and of several psychiatric disorders. Anhedonia has however expanded from its original definition to encompass a spectrum of reward processing deficits that received much interest in the last decades. It is a relevant risk factor for possible suicidal behaviors, and that it may operate as an independent risk factor for suicidality apart from the episode severity. Anhedonia has also been linked to inflammation with a possible reciprocal deleterious effect on depression. Its neurophysiological bases mainly include alterations in striatal and prefrontal areas, with dopamine being the most involved neurotransmitter. Anhedonia is thought to have a significant genetic component and polygenic risk scores are a possible tool for predicting an individual's risk for developing anhedonia. Traditional antidepressants, such as selective serotonin reuptake inhibitors, showed a limited benefit on anhedonia, also considering their potential pro-anhedonic effect in some subjects. Other treatments may be more effective in treating anhedonia, such as agomelatine, vortioxetine, ketamine and transcranial magnetic stimulation. Psychotherapy is also widely supported, with cognitive-behavioral therapy and behavioral activation both showing benefit. In conclusion, a large body of evidence suggests that anhedonia is, at least partially, independent from depression, therefore it needs careful assessment and targeted treatment.
Collapse
Affiliation(s)
- Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Huang X, Wang B, Yang J, Lian YJ, Yu HZ, Wang YX. HMGB1 in depression: An overview of microglial HMBG1 in the pathogenesis of depression. Brain Behav Immun Health 2023; 30:100641. [PMID: 37288063 PMCID: PMC10242493 DOI: 10.1016/j.bbih.2023.100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Depression is a prevalent psychiatric disorder with elusive pathogenesis. Studies have proposed that enhancement and persistence of aseptic inflammation in the central nervous system (CNS) may be closely associated with the development of depressive disorder. High mobility group box 1 (HMGB1) has obtained significant attention as an evoking and regulating factor in various inflammation-related diseases. It is a non-histone DNA-binding protein that can be released as a pro-inflammatory cytokine by glial cells and neurons in the CNS. Microglia, as the immune cell of the brain, interacts with HMGB1 and induces neuroinflammation and neurodegeneration in the CNS. Therefore, in the current review, we aim to investigate the role of microglial HMGB1 in the pathogenetic process of depression.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Bo Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yong-Jie Lian
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Hong-Zhang Yu
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Yun-Xia Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
8
|
Alloy LB, Chat IKY, Grehl MM, Stephenson AR, Adogli ZV, Olino TM, Ellman LM, Miller GE, Nusslock R. Reward and Immune Systems in Emotion (RISE) prospective longitudinal study: Protocol overview of an integrative reward-inflammation model of first onset of major depression in adolescence. Brain Behav Immun Health 2023; 30:100643. [PMID: 37304334 PMCID: PMC10250584 DOI: 10.1016/j.bbih.2023.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Background Depression is associated with a reduced sensitivity to rewards and low reward-related brain function in cortico-striatal circuitry. A separate literature documents elevated peripheral inflammation in depression. Recently, integrated reward-inflammation models of depression have been proposed. These models draw on work indicating that peripheral inflammatory proteins access the brain, where they lower reward responsiveness. This blunted reward responsiveness is proposed to initiate unhealthy behaviors (substance use, poor diet), as well as sleep disruption and stress generation, which further heighten inflammation. Over time, dysregulation in reward responsiveness and immune signaling may synergize in a positive feedback loop, whereby dysregulation in each system exacerbates dysregulation in the other. Project RISE (Reward and Immune Systems in Emotion) provides a first systematic test of reward-immune dysregulation as a synergistic and dynamic vulnerability for first onset of major depressive disorder and increases in depressive symptoms during adolescence. Methods This NIMH-funded R01 study is a 3-year prospective, longitudinal investigation of approximately 300 community adolescents from the broader Philadelphia area, United States of America. Eligible participants must be 13-16 years old, fluent in English, and without a prior major depressive disorder. They are being selected along the entire dimension of self-reported reward responsiveness, with oversampling at the low tail of the dimension in order to increase the likelihood of major depression onsets. At Time 1 (T1), T3, and T5, each a year apart, participants complete blood draws to quantify biomarkers of low-grade inflammation, self-report and behavioral measures of reward responsiveness, and fMRI scans of reward neural activity and functional connectivity. At T1-T5 (with T2 and T4 six months between the yearly sessions), participants also complete diagnostic interviews and measures of depressive symptoms, reward-relevant life events, and behaviors that increase inflammation. Adversity history is assessed at T1 only. Discussion This study is an innovative integration of research on multi-organ systems involved in reward and inflammatory signaling in understanding first onset of major depression in adolescence. It has the potential to facilitate novel neuroimmune and behavioral interventions to treat, and ideally prevent, depression.
Collapse
Affiliation(s)
- Lauren B. Alloy
- Department of Psychology and Neuroscience, Temple University, USA
| | - Iris K.-Y. Chat
- Department of Psychology and Neuroscience, Temple University, USA
| | - Mora M. Grehl
- Department of Psychology and Neuroscience, Temple University, USA
| | | | - Zoe V. Adogli
- Department of Psychology and Neuroscience, Temple University, USA
| | - Thomas M. Olino
- Department of Psychology and Neuroscience, Temple University, USA
| | - Lauren M. Ellman
- Department of Psychology and Neuroscience, Temple University, USA
| | | | | |
Collapse
|
9
|
Walsh MJM, Gibson K, Hynd M, Eisenlohr-Moul TA, Walsh EC, Schiff L, Jarskog F, Lalush D, Dichter GS, Schiller CE. Perimenopausal Effects of Estradiol on Anhedonia and Psychosis Study (PEEPs): study protocol for a neural and molecular mechanistic clinical trial. Trials 2023; 24:150. [PMID: 36855177 PMCID: PMC9976383 DOI: 10.1186/s13063-023-07166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The perimenopausal transition is accompanied by psychiatric symptoms in over 10% of women. Symptoms commonly include depressed mood and anhedonia and less commonly include psychosis. Psychiatric symptoms have been linked to the depletion and/or variability of circulating estradiol, and estradiol treatment reduces perimenopausal anhedonia and psychosis in some women. Estrogen fluctuations may disrupt function in the mesolimbic reward system in some women, leading to psychiatric symptoms like anhedonia or psychosis. The Perimenopausal Effects of Estradiol on Anhedonia and Psychosis Study (PEEPs) is a mechanistic clinical trial that aims to (1) identify relationships between perimenopausal-onset anhedonia and psychosis and neuromolecular markers of mesolimbic reward responses and (2) determine the extent to which estradiol treatment-induced changes in mesolimbic reward responses are associated with alleviation of perimenopausal onset anhedonia or psychosis. METHODS This study will recruit 100 unmedicated women ages 44-55 in the late-stage perimenopausal transition, sampling across the range of mild-to-high anhedonia and absent-to-moderate psychosis symptoms. Patients will be randomized to receive either estradiol or placebo treatment for 3 weeks. Clinical outcome measures will include symptoms of anhedonia (measured with Snaith-Hamilton Pleasure Scale; SHAPS) and psychosis (measured with Brief Psychiatric Rating Scale; BPRS psychosis subscale) as well as neural markers of mesolimbic reward system functioning, including reward-related fMRI activation and PET-derived measure of striatal dopamine binding. Pre-treatment associations between (1) SHAPS/BPRS scores and (2) reward-related striatal dopamine binding/BOLD activation will be examined. Furthermore, longitudinal mixed models will be used to estimate (1) symptom and neuromolecular trajectories as a function of estradiol vs. placebo treatment and (2) how changes in reward-related striatal dopamine binding and BOLD activation predict variability in symptom trajectories in response to estradiol treatment. DISCUSSION This clinical trial will be the first to characterize neural and molecular mechanisms by which estradiol treatment ameliorates anhedonia and psychosis symptoms during the perimenopausal transition, thus laying the groundwork for future biomarker research to predict susceptibility and prognosis and develop targeted treatments for perimenopausal psychiatric symptoms. Furthermore, in alignment with the National Institute for Mental Health Research Domain Criteria initiative, this trial will improve our understanding of a range of disorders characterized by anhedonia, psychosis, and reward system dysfunction. TRIAL REGISTRATION ClinicalTrials.gov NCT05282277.
Collapse
Affiliation(s)
- Melissa J M Walsh
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27510, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.
| | - Kathryn Gibson
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27510, USA
| | - Megan Hynd
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | | | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Lauren Schiff
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fred Jarskog
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- North Carolina Psychiatric Research Center, Raleigh, NC, 27610, USA
| | - David Lalush
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27510, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Crystal E Schiller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| |
Collapse
|
10
|
Deng W, Cannon TD, Joormann J. Social impression formation and depression: examining cognitive flexibility and bias. Cogn Emot 2023; 37:137-146. [PMID: 36607322 DOI: 10.1080/02699931.2023.2165043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Depression is associated with a bias toward negative interpretations of social situations and resistance to integrating evidence consistent with positive interpretations. These features could contribute to social isolation by generating negative expected value for future social interactions. The present study examined potential associations between depressive symptoms and positive (i.e. trust and liking) and negative (i.e. distrust and disliking) social impression formation of individuals who previously appeared in positive or negative contexts. Participants (N = 213) completed the Interpretation Inflexibility Task and were subsequently asked to provide social impression ratings of characters from each scenario type of the task (i.e. positive and negative) as well as characters not previously encountered. In examining social impression formation, higher severity of depressive symptoms was associated with higher negative social impression ratings regardless of scenario outcome, as well as lower positive social impression ratings, but only for characters who previously appeared in positive contexts. Those higher in depression also rated novel characters as significantly more unlikeable and untrustworthy and to an equivalent degree as the characters previously encountered. These findings suggest a role of negative interpretation bias and inflexibility in contributing to negative evaluations of potential social interaction partners in depression.
Collapse
Affiliation(s)
- Wisteria Deng
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Feng C, Huang W, Xu K, Stewart JL, Camilleri JA, Yang X, Wei P, Gu R, Luo W, Eickhoff SB. Neural substrates of motivational dysfunction across neuropsychiatric conditions: Evidence from meta-analysis and lesion network mapping. Clin Psychol Rev 2022; 96:102189. [PMID: 35908312 PMCID: PMC9720091 DOI: 10.1016/j.cpr.2022.102189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023]
Abstract
Motivational dysfunction constitutes one of the fundamental dimensions of psychopathology cutting across traditional diagnostic boundaries. However, it is unclear whether there is a common neural circuit responsible for motivational dysfunction across neuropsychiatric conditions. To address this issue, the current study combined a meta-analysis on psychiatric neuroimaging studies of reward/loss anticipation and consumption (4308 foci, 438 contrasts, 129 publications) with a lesion network mapping approach (105 lesion cases). Our meta-analysis identified transdiagnostic hypoactivation in the ventral striatum (VS) for clinical/at-risk conditions compared to controls during the anticipation of both reward and loss. Moreover, the VS subserves a key node in a distributed brain network which encompasses heterogeneous lesion locations causing motivation-related symptoms. These findings do not only provide the first meta-analytic evidence of shared neural alternations linked to anticipatory motivation-related deficits, but also shed novel light on the role of VS dysfunction in motivational impairments in terms of both network integration and psychological functions. Particularly, the current findings suggest that motivational dysfunction across neuropsychiatric conditions is rooted in disruptions of a common brain network anchored in the VS, which contributes to motivational salience processing rather than encoding positive incentive values.
Collapse
Affiliation(s)
- Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. (C. Feng), (R. Gu)
| | - Wenhao Huang
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Kangli Xu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Julia A. Camilleri
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Xiaofeng Yang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China
| | - Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. (C. Feng), (R. Gu)
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
12
|
Kuleindiren N, Rifkin-Zybutz RP, Johal M, Selim H, Palmon I, Lin A, Yu Y, Alim-Marvasti A, Mahmud M. Optimizing Existing Mental Health Screening Methods in a Dementia Screening and Risk Factor App: Observational Machine Learning Study. JMIR Form Res 2022; 6:e31209. [PMID: 35315786 PMCID: PMC8984825 DOI: 10.2196/31209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/16/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022] Open
Abstract
Background Mindstep is an app that aims to improve dementia screening by assessing cognition and risk factors. It considers important clinical risk factors, including prodromal symptoms, mental health disorders, and differential diagnoses of dementia. The 9-item Patient Health Questionnaire for depression (PHQ-9) and the 7-item Generalized Anxiety Disorder Scale (GAD-7) are widely validated and commonly used scales used in screening for depression and anxiety disorders, respectively. Shortened versions of both (PHQ-2/GAD-2) have been produced. Objective We sought to develop a method that maintained the brevity of these shorter questionnaires while maintaining the better precision of the original questionnaires. Methods Single questions were designed to encompass symptoms covered in the original questionnaires. Answers to these questions were combined with PHQ-2/GAD-2, and anonymized risk factors were collected by Mindset4Dementia from 2235 users. Machine learning models were trained to use these single questions in combination with data already collected by the app: age, response to a joke, and reporting of functional impairment to predict binary and continuous outcomes as measured using PHQ-9/GAD-7. Our model was developed with a training data set by using 10-fold cross-validation and a holdout testing data set and compared to results from using the shorter questionnaires (PHQ-2/GAD-2) alone to benchmark performance. Results We were able to achieve superior performance in predicting PHQ-9/GAD-7 screening cutoffs compared to PHQ-2 (difference in area under the curve 0.04, 95% CI 0.00-0.08, P=.02) but not GAD-2 (difference in area under the curve 0.00, 95% CI –0.02 to 0.03, P=.42). Regression models were able to accurately predict total questionnaire scores in PHQ-9 (R2=0.655, mean absolute error=2.267) and GAD-7 (R2=0.837, mean absolute error=1.780). Conclusions We app-adapted PHQ-4 by adding brief summary questions about factors normally covered in the longer questionnaires. We additionally trained machine learning models that used the wide range of additional information already collected in Mindstep to make a short app-based screening tool for affective disorders, which appears to have superior or equivalent performance to well-established methods.
Collapse
Affiliation(s)
| | | | - Monika Johal
- Mindset Technologies Ltd, London, United Kingdom
- Imperial College School of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Hamzah Selim
- Mindset Technologies Ltd, London, United Kingdom
- Medical School, University College London, London, United Kingdom
| | - Itai Palmon
- Mindset Technologies Ltd, London, United Kingdom
- Medical School, University of Michigan, Ann Arbor, MI, United States
| | - Aaron Lin
- Mindset Technologies Ltd, London, United Kingdom
- Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Yizhou Yu
- Mindset Technologies Ltd, London, United Kingdom
| | - Ali Alim-Marvasti
- Mindset Technologies Ltd, London, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mohammad Mahmud
- Mindset Technologies Ltd, London, United Kingdom
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Huang R, Wang XQ, Yang BX, Liu Z, Chen WC, Jiao SF, Chen J. Self-management of depression among Chinese community individuals: A cross-sectional study using the transtheoretical model. Perspect Psychiatr Care 2022; 58:256-265. [PMID: 33792031 DOI: 10.1111/ppc.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate the self-management of depression among members of a Chinese community. DESIGN AND METHODS A cross-sectional survey was conducted in Wuhan. The Depression Prevention and Management Survey was used to identify 429 participants' stage of change, perceived benefits, process of change and self-efficacy, based on the transtheoretical model perspective. FINDINGS A majority of participants (69.0%) were at the inactive stage of depression self-management. The mean score of the process of change was 87.62 (SD = 24.83). ANOVA analysis showed gender, education, and family function were significant influencing factors in the process of change. PRACTICE IMPLICATIONS Mental health nurses need to target their approach to the level of the individual based on the transtheoretical model to assist them to enhance their awareness and motivation. More consideration should be given to gender, education, and family function in the context of depression self-management.
Collapse
Affiliation(s)
- Run Huang
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Xiao Q Wang
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Bing X Yang
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wen C Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Shu F Jiao
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Jie Chen
- University of Connecticut School of Nursing, Storrs, Connecticut, USA
| |
Collapse
|
14
|
Paulus MP, Kuplicki R, Victor TA, Yeh HW, Khalsa SS. Methylphenidate augmentation of escitalopram to enhance adherence to antidepressant treatment: a pilot randomized controlled trial. BMC Psychiatry 2021; 21:582. [PMID: 34798853 PMCID: PMC8603485 DOI: 10.1186/s12888-021-03583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Adherence to treatment, i.e. the extent to which a patient's therapeutic engagement coincides with the prescribed treatment, is among the most important problems in mental health care. The current study investigated the influence of pairing an acute positive reinforcing dopaminergic/noradrenergic effect (methylphenidate, MPH) with a standard antidepressant on the rates of adherence to medication treatment. The primary objective of this study was to determine whether MPH + escitalopram resulted in higher rates of medication adherence relative to placebo + escitalopram. METHODS Twenty participants with moderate to severe depression were 1-1 randomized to either (1) 5 mg MPH + 10 mg escitalopram or (2) placebo + 10 mg escitalopram with the possibility for a dose increase at 4 weeks. A Bayesian analysis was conducted to evaluate the outcomes. RESULTS First, neither percent Pill count nor Medication Electronic Monitoring System adherence showed that MPH was superior to placebo. In fact, placebo showed slightly higher adherence rates on the primary (7.82% better than MPH) and secondary (7.07% better than MPH) outcomes. There was a less than 25% chance of MPH augmentation showing at least as good or better adherence than placebo. Second, both groups showed a significant effect of treatment on the QIDS-SR with a median effect of an 8.6-point score reduction. Third, neither subjective measures of adherence attitudes nor socio-demographic covariates had a significant influence on the primary or secondary outcome variables. CONCLUSIONS These data do not support the use of MPH to increase adherence to antidepressant medication in individuals with moderate to severe depression. CLINICALTRIALS. GOV IDENTIFIER NCT03388164 , registered on 01/02/2018.
Collapse
Affiliation(s)
- Martin P. Paulus
- grid.417423.70000 0004 0512 8863Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136-3326 USA ,grid.267360.60000 0001 2160 264XOxley College of Health Sciences, The University of Tulsa, Tulsa, OK USA
| | - Rayus Kuplicki
- grid.417423.70000 0004 0512 8863Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136-3326 USA
| | - Teresa A. Victor
- grid.417423.70000 0004 0512 8863Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136-3326 USA
| | - Hung-Wen Yeh
- grid.417423.70000 0004 0512 8863Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136-3326 USA ,grid.239559.10000 0004 0415 5050Health Services & Outcomes Research, Children’s Mercy Hospital, Kansas City, MO USA
| | - Sahib S. Khalsa
- grid.417423.70000 0004 0512 8863Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136-3326 USA ,grid.267360.60000 0001 2160 264XOxley College of Health Sciences, The University of Tulsa, Tulsa, OK USA
| |
Collapse
|
15
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Bondy E, Norton SA, Voss M, Marks RB, Boudreaux MJ, Treadway MT, Oltmanns TF, Bogdan R. Inflammation is associated with future depressive symptoms among older adults. Brain Behav Immun Health 2021; 13:100226. [PMID: 34589741 PMCID: PMC8474183 DOI: 10.1016/j.bbih.2021.100226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/07/2022] Open
Abstract
Inflammation has been reliably associated with depression. However, the directionality of this association is poorly understood, with evidence that elevated inflammation may promote and precede the development of depression, as well as arise following its expression. Using data from older adults (N = 1,072, ages 60-73) who participated in the ongoing longitudinal St. Louis Personality and Aging Network (SPAN) study, we examined whether inflammatory markers (interleukin-6: IL-6, C-reactive protein: CRP, and tumor necrosis factor α: TNFα) and depression were prospectively predictive of one another. Fasting serum samples and self-reports of depressive symptoms (Beck Depression Inventory-II) were obtained from participants at 2 sessions approximately 2 years apart. Structural equation models as well as regressions that accounted for a host of potentially confounding covariates and depression at baseline revealed that baseline IL-6 and CRP, but not baseline TNFα were associated with elevated depressive symptoms at the follow-up session (IL-6: β = 0.080, p = 0.036; CRP: β = 0.083, p = 0.03; TNFα: β = 0.039, p = 0.314). However, there was no association between baseline depressive symptoms and follow-up inflammatory markers (βs = -0.12 to -0.006, all ps > 0.05). Collectively, these data suggest that inflammation prospectively predicts depression, but depression does not predict inflammation in older age. These data add to a growing literature suggesting that inflammatory signaling may plausibly promote the development of depression.
Collapse
Affiliation(s)
- Erin Bondy
- Department of Psychological and Brain Sciences, Washington University in St. Louis, USA
| | - Sara A Norton
- Department of Psychological and Brain Sciences, Washington University in St. Louis, USA
| | - Michaela Voss
- Department of Psychological and Brain Sciences, Washington University in St. Louis, USA
| | - Rebecca B Marks
- Department of Psychological and Brain Sciences, Washington University in St. Louis, USA
| | - Michael J Boudreaux
- Department of Psychological and Brain Sciences, Washington University in St. Louis, USA
| | | | - Thomas F Oltmanns
- Department of Psychological and Brain Sciences, Washington University in St. Louis, USA
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, USA
| |
Collapse
|
17
|
Kibitov AO, Mazo GE. [Anhedonia in depression: neurobiological and genetic aspects]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:146-154. [PMID: 33834733 DOI: 10.17116/jnevro2021121031146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anhedonia is indeed a pathogenetically important clinical phenotype and a promising endophenotype for depressive symptoms with a very high contribution of biological and genetic factors. Neurobiological mechanisms of anhedonia are impaired functioning of the reward system of the brain, which is confirmed by many neuroimaging, genetic and experimental studies. Anhedonia has a trans-diagnoctic character and should be understood as a complex phenomenon, and it is important to correctly evaluate it within the framework of a particular research paradigm. It seems optimal to form several complementary research strategies that evaluate the most important «facets» of anhedonia, regardless of the nosological form of the disease, within the framework of one study using various methods to search for adequate biomarkers of anhedonia severity (genetic, neuroimaging, biochemical). Given the high-quality organization of such comprehensive studies based on the correct methodology of evidence-based medicine, it is likely that significant biomarker systems will be available in the near future, which, if replicated in independent samples, can be used to personalize the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- A O Kibitov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia.,Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia
| | - G E Mazo
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
18
|
Cathomas F, Klaus F, Guetter K, Seifritz E, Hartmann-Riemer MN, Tobler PN, Kaiser S, Kaliuzhna M. Associations Between Negative Symptoms and Effort Discounting in Patients With Schizophrenia and Major Depressive Disorder. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab022. [PMID: 34901865 PMCID: PMC8650075 DOI: 10.1093/schizbullopen/sgab022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Deficits in goal-directed decision making and motivation are hallmark characteristics of several neuropsychiatric disorders, including schizophrenia (SZ) and major depressive disorder (MDD). Studies using effort-based decision-making tasks have shown that both patients with SZ and MDD invest less physical effort in order to obtain rewards. However, how these motivational deficits relate to clinically assessed symptom dimensions such as apathy remains controversial. Using a grip-strength-based effort discounting task we assessed effort-based decision-making behavior in healthy controls (HC) (N = 18), patients with SZ (N = 42), and MDD (N = 44). We then investigated how effort discounting relates to different symptom dimensions. There were no differences in effort discounting between HC participants and patients with SZ or MDD. In addition, we did not observe a correlation between effort discounting and negative symptoms (NS) in patients with SZ or MDD. In conclusion, the current study does not support an association between effort discounting and NS in SZ or MDD. Further studies are needed to investigate effort discounting and its relation to psychopathological dimensions across different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Federica Klaus
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Karoline Guetter
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias N Hartmann-Riemer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Philippe N Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Thônex, Switzerland
| | - Mariia Kaliuzhna
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Thônex, Switzerland
| |
Collapse
|
19
|
McIntyre RS, Loft H, Christensen MC. Efficacy of Vortioxetine on Anhedonia: Results from a Pooled Analysis of Short-Term Studies in Patients with Major Depressive Disorder. Neuropsychiatr Dis Treat 2021; 17:575-585. [PMID: 33654400 PMCID: PMC7910099 DOI: 10.2147/ndt.s296451] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Anhedonia is a core symptom of major depressive disorder (MDD), which has important functional consequences for the patient. This post hoc analysis investigated the relationship between anhedonia and functioning in patients with MDD treated with vortioxetine. PATIENTS AND METHODS We conducted a pooled analysis of all 11 short-term, double-blind, randomized, placebo-controlled studies of vortioxetine (fixed dose, 5-20 mg/day) in patients with MDD which included Montgomery-Åsberg Depression Rating Scale (MADRS) and Sheehan Disability Scale (SDS) assessments. A short-term, randomized, active-controlled trial of flexible-dose treatment with vortioxetine (10-20 mg/day) versus agomelatine (25-50 mg/day) was also analyzed. Mean changes from baseline to study endpoint in MADRS total, MADRS anhedonia subscale, SDS total, and SDS social-functioning scores were analyzed by a mixed model for repeated measures. The relationship between treatment effects on anhedonia and functioning was investigated using path analysis. RESULTS A total of 4988 patients with MDD were included in the placebo-controlled studies and 495 in the active-comparator study. Significant dose-dependent improvements in overall depressive symptoms, anhedonia, and measures of functioning were seen in vortioxetine-treated patients compared with those who received placebo or agomelatine. Results of the path analysis for the placebo-controlled studies suggested that the effect on functioning was mostly driven by the effect of treatment on MADRS anhedonia factors. CONCLUSION Vortioxetine showed significant short-term efficacy against anhedonia in this large population of patients with MDD. In the placebo-controlled studies, improvements in functioning associated with vortioxetine appeared to be mostly driven by the effect of treatment on MADRS anhedonia factors.
Collapse
Affiliation(s)
- Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Henrik Loft
- Department of Biostatistics and Programming, H. Lundbeck A/S, Valby, Denmark
| | | |
Collapse
|
20
|
Goldsmith DR, Rapaport MH. Inflammation and Negative Symptoms of Schizophrenia: Implications for Reward Processing and Motivational Deficits. Front Psychiatry 2020; 11:46. [PMID: 32153436 PMCID: PMC7044128 DOI: 10.3389/fpsyt.2020.00046] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Negative symptoms of schizophrenia are debilitating and chronic in nature, are difficult to treat, and contribute to poor functional outcomes. Motivational deficits are a core negative symptom and may involve alterations in reward processing, which involve subcortical regions such as the basal ganglia. More specifically, dopamine-rich regions like the ventral striatum, have been implicated in these reward-processing deficits. Inflammation is one mechanism that may underlie negative symptoms, and specifically motivational deficits, via the effects of inflammatory cytokines on the basal ganglia. Previous work has demonstrated that inflammatory stimuli decrease neural activity in the ventral striatum and decrease connectivity in reward-relevant neural circuitry. The immune system has been shown to be involved in the pathophysiology of schizophrenia, and inflammatory cytokines have been shown to be altered in patients with the disorder. This paper reviews the literature on associations between inflammatory markers and negative symptoms of schizophrenia as well as the role of anti-inflammatory drugs to target negative symptoms. We also review the literature on the role of inflammation and reward processing deficits in both healthy controls and individuals with depression. We use the literature on inflammation and depression as a basis for a model that explores potential mechanisms responsible for inflammation modulating certain aspects of negative symptoms in patients with schizophrenia. This approach may offer novel targets to treat these symptoms of the disorder that are significant barriers to functional recovery and do not respond well to available antipsychotic medications.
Collapse
Affiliation(s)
- David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark Hyman Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
21
|
Kasimova LN, Svyatogor MV. [Angedonia in the structure of affective disorders: therapeutic opportunities]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:116-122. [PMID: 31851182 DOI: 10.17116/jnevro2019119111116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anhedonia is one of the core features of depression. The article considers the place of anhedonia in the structure of affective disorders, its influence on the prognosis and effectiveness of therapy. The authors stress that various manifestations of anhedonia must be considered in correlation with the basic ability to feel pleasure. Therapy of anhedonia is not always effective. According to literature, agomelatin occupies a leading position among the drugs that reduce anhedonia.
Collapse
Affiliation(s)
- L N Kasimova
- Privolzhsky Research Medical University, N.Novgorod, Russia
| | - M V Svyatogor
- Privolzhsky Research Medical University, N.Novgorod, Russia
| |
Collapse
|
22
|
|
23
|
Clark BC, Woods AJ, Clark LA, Criss CR, Shadmehr R, Grooms DR. The Aging Brain & the Dorsal Basal Ganglia: Implications for Age-Related Limitations of Mobility. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2019; 1:e190008. [PMID: 31497780 PMCID: PMC6731027 DOI: 10.20900/agmr20190008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The capacity to move is essential for independence and declines with age. Limitations in mobility impact ~35% of adults over 70 and the majority of adults over 85. These limitations are highly associated with disability, dependency, and survival. More than 25-years ago the term "sarcopenia" was coined to highlight the age-related loss of muscle mass and strength with the assumption being that sarcopenia led to limitations in mobility. However, contrary to expectations, recent findings clearly indicate these variables only modestly explain limitations in mobility. One likely reason the current sarcopenia variables of muscle mass and strength do not discriminate, or predict, mobility limitations well is because they are heavily influenced by musculoskeletal mechanisms and do not incorporate measures reflective of the central neural control of mobility. Unfortunately, the precise central neural changes associated with aging that lead to decreased mobility are poorly understood. This knowledge gap has hampered the development of effective interventions for mobility limitations and the subsequent reduction of major functional disability for older adults. Here, we discuss the potential role of the motor control circuit of the dorsal basal ganglia as well as dopaminergic function in age-related reductions in mobility.
Collapse
Affiliation(s)
- Brian C. Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
- Division of Geriatric Medicine, Ohio University, Athens, OH 45701, USA
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610, USA
| | - Leatha A. Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| | - Cody R. Criss
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH 45701, USA
- Heritage Fellow, Translational Biomedical Science Program, Ohio University, Athens, OH 45701, USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA 21218, USA
| | - Dustin R. Grooms
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH 45701, USA
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
24
|
Alloy LB, Nusslock R. Future Directions for Understanding Adolescent Bipolar Spectrum Disorders: A Reward Hypersensitivity Perspective. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2019; 48:669-683. [PMID: 30908092 PMCID: PMC6588455 DOI: 10.1080/15374416.2019.1567347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The idea that bipolar spectrum disorders (BSDs) are characterized by enhanced sensitivity to rewarding stimuli is at the core of the reward hypersensitivity model, one of the most prominent and well-supported theories of BSDs. In this article, we present the reward hypersensitivity model of BSDs, review evidence supporting it, discuss its relevance to explaining why BSDs typically begin and consolidate during the period of adolescence, and consider three major unresolved issues for this model that provide important directions for future research. Finally, we present integrations of the reward hypersensitivity model with circadian rhythm and immune system models that should provide greater understanding of the mechanisms involved in BSDs, and then suggest additional directions for future research deriving from these integrated models.
Collapse
Affiliation(s)
| | - Robin Nusslock
- b Department of Psychology , Northwestern University , Evanston
| |
Collapse
|
25
|
Cao B, Zhu J, Zuckerman H, Rosenblat JD, Brietzke E, Pan Z, Subramanieapillai M, Park C, Lee Y, McIntyre RS. Pharmacological interventions targeting anhedonia in patients with major depressive disorder: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:109-117. [PMID: 30611836 DOI: 10.1016/j.pnpbp.2019.01.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 02/08/2023]
Abstract
Anhedonia is defined as a diminished ability to experience interest or pleasure, and is a critical psychopathological dimension of major depressive disorder (MDD). The purpose of the current systematic review is to evaluate the therapeutic efficacy of pharmacological treatments on measures of anhedonia in adults with MDD. Electronic databases Cochrane Library (CENTRAL), Ovid MEDLINE, PubMed, PsycINFO, and Google Scholar were searched from inception to June 1, 2018 for longitudinal studies utilizing pharmacotherapy for the treatment of anhedonia in patients with MDD. A total of 17 eligible studies were identified (i.e., evaluated the effects of pharmacotherapy on a measure of anhedonia). Among the identified studies, the efficacy of 14 different pharmacotherapies on measures of anhedonia were evaluated, including melatonergic agents (i.e. agomelatine), monoaminergic agents (i.e. moclobemide, clomipramine, bupropion, venlafaxine, fluoxetine, amitifadine and levomilnacipran, escitalopram, and sertraline), glutamatergic agents (i.e., ketamine and riluzole), stimulants (i.e., methylphenidate), and psychedelics (i.e., psilocybin). Based on the available evidence, most antidepressants demonstrated beneficial effects on measures of anhedonia as well as the other depressive symptoms. Only escitalopram/riluzole combination treatment was ineffective in treating symptoms of anhedonia in MDD. Continued research is warranted to further support the efficacy of mechanistically-distinct antidepressants in treating symptoms of anhedonia in MDD. Future research should also aim to parse out the heterogeneous effects of different pharmacotherapies on anhedonic symptoms.
Collapse
Affiliation(s)
- Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, China; Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| | - Judy Zhu
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Hannah Zuckerman
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mehala Subramanieapillai
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Caroline Park
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Roger S McIntyre
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, China; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Destoop M, Morrens M, Coppens V, Dom G. Addiction, Anhedonia, and Comorbid Mood Disorder. A Narrative Review. Front Psychiatry 2019; 10:311. [PMID: 31178763 PMCID: PMC6538808 DOI: 10.3389/fpsyt.2019.00311] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Recently, anhedonia has been recognized as an important Research Domain Criterion (RDoC) by the National Institute of Mental Health. Anhedonia is proposed to play an essential role in the pathogenies of both addictive and mood disorders, and possibly their co-occurrence with a single individual. However, up to now, comprehensive information about anhedonia concerning its underlying neurobiological circuitries, the neurocognitive correlates, and their role in addiction, mood disorder, and comorbidity remains scarce. Aim: In this literature review of human studies, we bring together the current state of knowledge with respect to anhedonia in its relationship with disorders in the use of substances (DUS) and the comorbidity with mood disorders. Method: A PubMed search was conducted using the following search terms: (Anhedonia OR Reward Deficiency) AND ((Drug Dependence OR Abuse) OR Alcohol OR Nicotine OR Addiction OR Gambling OR (Internet Gaming)). Thirty-two articles were included in the review. Results: Anhedonia is associated with substance use disorders, and their severity is especially prominent in DUS with comorbid depression. Anhedonia may be both a trait and a state dimension in its relation to DUS and tends to impact DUS treatment outcome negatively.
Collapse
Affiliation(s)
- Marianne Destoop
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Psychiatric Hospital Multiversum, Campus Alexianen, Boechout, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,University Department of Psychiatry, Campus Duffel, Duffel, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,University Department of Psychiatry, Campus Duffel, Duffel, Belgium
| | - Geert Dom
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Psychiatric Hospital Multiversum, Campus Alexianen, Boechout, Belgium
| |
Collapse
|
27
|
Shen F, Qi K, Duan Y, Li Y, Liang J, Meng X, Li M, Sui N. Differential effects of clomipramine on depression-like behaviors induced by the chronic social defeat paradigm in tree shrews. J Psychopharmacol 2018; 32:1141-1149. [PMID: 30182783 DOI: 10.1177/0269881118793560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Anhedonia is a hallmark symptom in major depression that reflects deficits in hedonic capacity and it is also linked to motivation for reward. However, studies of the features of motivation in depressed tree shrews are rather sparse. AIMS The study aimed to investigate the core feature of depression including lack of interest, motivation reduction, and social avoidance in tree shrews. Furthermore, the effects of the treatment using clomipramine on these depression-like behaviors were assessed. METHODS The paradigm of chronic social defeat in tree shrews was used to evaluate the core feature of depression through examining their sucrose preference, break-point for reward, and social interaction. RESULTS The results showed that social defeat lowered the curves of the sucrose preference and the break-point, as well as decreased social interaction. The results suggested that the subordinate animals exhibited interest loss, motivational reduction, and social avoidance. After oral treatment with clomipramine (50 mg/kg/day) for four weeks, most of the depression-like behaviors were reversed, whereas the motivational reduction was not clearly affected. Notably, the motivational reduction appeared obviously during the first week after the social defeat, and the conventional tricyclic antidepressant clomipramine did not reverse the reduced motivation. CONCLUSIONS These findings imply that motivational variation might be applied as a more sensitive behavioral index in subordinate animals and could furthermore be used to evaluate potential agents as antidepressants.
Collapse
Affiliation(s)
- Fang Shen
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Keke Qi
- 3 Department of Philosophy, Anhui University, Hefei, China
| | - Ying Duan
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Li
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Meng
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- 4 Department of Psychology, University of Nebraska-Lincoln, Lincoln, USA
| | - Nan Sui
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Diehl MM, Lempert KM, Parr AC, Ballard I, Steele VR, Smith DV. Toward an integrative perspective on the neural mechanisms underlying persistent maladaptive behaviors. Eur J Neurosci 2018; 48:1870-1883. [PMID: 30044022 PMCID: PMC6113118 DOI: 10.1111/ejn.14083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Maria M. Diehl
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, PR 00936
| | - Karolina M. Lempert
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ashley C. Parr
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario
| | - Ian Ballard
- Neurosciences Graduate Training Program, Stanford University, Stanford, CA 94305
| | - Vaughn R. Steele
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - David V. Smith
- Department of Psychology, Temple University, Philadelphia, PA 19122
| |
Collapse
|
29
|
Kúkel'ová D, Bergamini G, Sigrist H, Seifritz E, Hengerer B, Pryce CR. Chronic Social Stress Leads to Reduced Gustatory Reward Salience and Effort Valuation in Mice. Front Behav Neurosci 2018; 12:134. [PMID: 30057529 PMCID: PMC6053640 DOI: 10.3389/fnbeh.2018.00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022] Open
Abstract
Pathology of reward processing is a major clinical feature of stress-related neuropsychiatric disorders including depression. Several dimensions of reward processing can be impacted, including reward valuation/salience, learning, expectancy and effort valuation. To establish the causal relationships between stress, brain changes, and reward processing pathologies, valid animal models are essential. Here, we present mouse experiments investigating behavioral effects of chronic social stress (CSS) in association learning tests of gustatory reward salience and effort valuation. The reward salience test (RST) comprised Pavlovian pairing of a tone with gustatory reward. The effort valuation test (EVT) comprised operant responding for gustatory reinforcement on a progressive ratio schedule (PRS). All testing was conducted with mice at 100% baseline body weight (BBW). In one experiment, mice underwent 15-day CSS or control handling (CON) and testing was conducted using sucrose pellets. In the RST on days 16–17, CSS mice made fewer feeder responses and had a longer tone response latency, than CON mice. In a shallow EVT on days 19–20, CSS mice attained a lower final ratio than CON mice. In a second CSS experiment, mice underwent CSS or CON and testing was conducted with chocolate pellets and in the presence of standard diet (low effort/low reward). In the RST on days 16–18, CSS mice made fewer feeder responses and had a longer tone response latency, than CON mice. In a steep EVT on days 19–20, CSS and CON mice attained less pellets than in the RST, and CSS mice attained a lower final ratio than CON mice. At day 21, blood levels of glucose and the satiety adipokine leptin were similar in CSS and CON mice. Therefore, CSS leads to consistent reductions in reward salience and effort valuation in tests based on association learning. These reward pathology models are being applied to identify the underlying neurobiology and putative molecular targets for therapeutic pharmacology.
Collapse
Affiliation(s)
- Diana Kúkel'ová
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Košice, Slovakia
| | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Bastian Hengerer
- CNS Diseases Research Germany, Boehringer Ingelheim Pharma GmbH & Co. KG., Biberach, Germany
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Bergamini G, Mechtersheimer J, Azzinnari D, Sigrist H, Buerge M, Dallmann R, Freije R, Kouraki A, Opacka-Juffry J, Seifritz E, Ferger B, Suter T, Pryce CR. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice. Neurobiol Stress 2018; 8:42-56. [PMID: 29888303 PMCID: PMC5991330 DOI: 10.1016/j.ynstr.2018.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/19/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Psychosocial stress is a major risk factor for depression, stress leads to peripheral and central immune activation, immune activation is associated with blunted dopamine (DA) neural function, DA function underlies reward interest, and reduced reward interest is a core symptom of depression. These states might be inter-independent in a complex causal pathway. Whilst animal-model evidence exists for some specific steps in the pathway, there is currently no animal model in which it has been demonstrated that social stress leads to each of these immune, neural and behavioural states. Such a model would provide important existential evidence for the complex pathway and would enable the study of causality and mediating mechanisms at specific steps in the pathway. Therefore, in the present mouse study we investigated for effects of 15-day resident-intruder chronic social stress (CSS) on each of these states. Relative to controls, CSS mice exhibited higher spleen levels of granulocytes, inflammatory monocytes and T helper 17 cells; plasma levels of inducible nitric oxide synthase; and liver expression of genes encoding kynurenine pathway enzymes. CSS led in the ventral tegmental area to higher levels of kynurenine and the microglia markers Iba1 and Cd11b and higher binding activity of DA D1 receptor; and in the nucleus accumbens (NAcc) to higher kynurenine, lower DA turnover and lower c-fos expression. Pharmacological challenge with DA reuptake inhibitor identified attenuation of DA stimulatory effects on locomotor activity and NAcc c-fos expression in CSS mice. In behavioural tests of operant responding for sucrose reward validated as sensitive assays for NAcc DA function, CSS mice exhibited less reward-directed behaviour. Therefore, this mouse study demonstrates that a chronic social stressor leads to changes in each of the immune, neural and behavioural states proposed to mediate between stress and disruption of DA-dependent reward processing. The model can now be applied to investigate causality and, if demonstrated, underlying mechanisms in specific steps of this immune-neural-behavioural pathway, and thereby to identify potential therapeutic targets. Mouse chronic social stress (CSS) leads to spleen and liver immune activation. Mouse CSS leads to mesolimbic immune activation and blunted dopamine function. Mouse CSS leads to reduced reward-directed behaviour in operant tests. This constitutes an important model for the study of pathophysiological mechanisms.
Collapse
Affiliation(s)
- Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Jonas Mechtersheimer
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Damiano Azzinnari
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Michaela Buerge
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Robert Dallmann
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Afroditi Kouraki
- Department of Life Sciences, University of Roehampton, London, UK
| | | | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Boris Ferger
- CNS Diseases Research Germany, Boehringer Ingelheim Pharma GmbH & Co. KG., Biberach, Germany
| | - Tobias Suter
- Neuroimmunology and MS Research, Neurology, and Clinical Research Priority Program Multiple Sclerosis, University Hospital Zurich, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
31
|
Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav Brain Res 2017; 341:79-90. [PMID: 29284108 DOI: 10.1016/j.bbr.2017.12.025] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
A number of factors (biogenic amine deficiency, genetic, environmental, immunologic, endocrine factors and neurogenesis) have been identified as mechanisms which provide unitary explanations for the pathophysiology of depression. Rather than a unitary construct, the combination and linkage of these factors have been implicated in the pathogenesis of depression. That is, environmental stressors and heritable genetic factors acting through immunologic and endocrine responses initiate structural and functional changes in many brain regions, resulting in dysfunctional neurogenesis and neurotransmission which then manifest as a constellation of symptoms which present as depression.
Collapse
Affiliation(s)
- Emmanuel Jesulola
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia.
| | - Peter Micalos
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia
| | - Ian J Baguley
- Brain Injury Rehabilitation Service, Westmead Hospital, Hawkesbury Rd, Wentworthville, NSW Australia
| |
Collapse
|
32
|
Zhang MQ, Li R, Wang YQ, Huang ZL. Neural Plasticity Is Involved in Physiological Sleep, Depressive Sleep Disturbances, and Antidepressant Treatments. Neural Plast 2017; 2017:5870735. [PMID: 29181202 PMCID: PMC5664320 DOI: 10.1155/2017/5870735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 12/28/2022] Open
Abstract
Depression, which is characterized by a pervasive and persistent low mood and anhedonia, greatly impacts patients, their families, and society. The associated and recurring sleep disturbances further reduce patient's quality of life. However, therapeutic sleep deprivation has been regarded as a rapid and robust antidepressant treatment for several decades, which suggests a complicated role of sleep in development of depression. Changes in neural plasticity are observed during physiological sleep, therapeutic sleep deprivation, and depression. This correlation might help us to understand better the mechanism underlying development of depression and the role of sleep. In this review, we first introduce the structure of sleep and the facilitated neural plasticity caused by physiological sleep. Then, we introduce sleep disturbances and changes in plasticity in patients with depression. Finally, the effects and mechanisms of antidepressants and therapeutic sleep deprivation on neural plasticity are discussed.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Rui Li
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yi-Qun Wang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Li Huang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Nusslock R, Alloy LB. Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective. J Affect Disord 2017; 216:3-16. [PMID: 28237133 PMCID: PMC6661152 DOI: 10.1016/j.jad.2017.02.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Two objectives of the NIMH Research Domain Criteria (RDoC) initiative are to identify (a) mechanisms that are common to multiple psychiatric disorders, and (b) mechanisms that are unique to specific psychiatric symptoms, and that reflect markers of differential risk for these symptoms. With respect to these objectives, a brain-behavior dimension that has received considerable attention and that is directly relevant to the Positive Valence Systems domain of the RDoC initiative involves reward processing. METHODS The present review paper first examines the relationship between reward processing and mood-related symptoms from an RDoC perspective. We then place this work in a larger context by examining the relationship between reward processing abnormalities and psychiatric symptoms defined broadly, including mood-related symptoms, schizophrenia, and addiction. RESULTS Our review suggests that reward hyposensitivity relates to a subtype of anhedonia characterized by motivational deficits in unipolar depression, and reward hypersensitivity relates to a cluster of hypo/manic symptoms characterized by excessive approach motivation in the context of bipolar disorder. Integrating this perspective with research on reward processing abnormalities in schizophrenia and addiction, we further argue that the principles of equifinality and multifinality may be preferable to a transdiagnostic perspective for conceptualizing the relationship between reward processing and psychiatric symptoms defined broadly. CONCLUSION We propose that vulnerability to either motivational anhedonia or approach-related hypo/manic symptoms involve extreme and opposite profiles of reward processing. We further propose that an equifinality and multifinality perspective may serve as a useful framework for future research on reward processing abnormalities and psychiatric symptoms.
Collapse
|
34
|
Abstract
In the DSM5, negative symptoms are 1 of the 5 core dimensions of psychopathology evaluated for schizophrenia. However, negative symptoms are not pathognomonic-they are also part of the diagnostic criteria for other schizophrenia-spectrum disorders, disorders that sometimes have comorbid psychosis, diagnoses not in the schizophrenia-spectrum, and the general "nonclinical" population. Although etiological models of negative symptoms have been developed for chronic schizophrenia, there has been little attention given to whether these models have transdiagnostic applicability. In the current review, we examine areas of commonality and divergence in the clinical presentation and etiology of negative symptoms across diagnostic categories. It was concluded that negative symptoms are relatively frequent across diagnostic categories, but individual disorders may differ in whether their negative symptoms are persistent/transient or primary/secondary. Evidence for separate dimensions of volitional and expressive symptoms exists, and there may be multiple mechanistic pathways to the same symptom phenomenon among DSM-5 disorders within and outside the schizophrenia-spectrum (ie, equifinality). Evidence for a novel transdiagnostic etiological model is presented based on the Research Domain Criteria (RDoC) constructs, which proposes the existence of 2 such pathways-a hedonic pathway and a cognitive pathway-that can both lead to expressive or volitional symptoms. To facilitate treatment breakthroughs, future transdiagnostic studies on negative symptoms are warranted that explore mechanisms underlying volitional and expressive pathology.
Collapse
Affiliation(s)
- Gregory P Strauss
- Department of Psychology, University of Georgia, 125 Baldwin Street, Athens, GA 30602
| | - Alex S Cohen
- Department of Psychology, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
35
|
Vassena E, Deraeve J, Alexander WH. Predicting Motivation: Computational Models of PFC Can Explain Neural Coding of Motivation and Effort-based Decision-making in Health and Disease. J Cogn Neurosci 2017; 29:1633-1645. [PMID: 28654358 DOI: 10.1162/jocn_a_01160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human behavior is strongly driven by the pursuit of rewards. In daily life, however, benefits mostly come at a cost, often requiring that effort be exerted to obtain potential benefits. Medial PFC (MPFC) and dorsolateral PFC (DLPFC) are frequently implicated in the expectation of effortful control, showing increased activity as a function of predicted task difficulty. Such activity partially overlaps with expectation of reward and has been observed both during decision-making and during task preparation. Recently, novel computational frameworks have been developed to explain activity in these regions during cognitive control, based on the principle of prediction and prediction error (predicted response-outcome [PRO] model [Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338-1344, 2011], hierarchical error representation [HER] model [Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354-2410, 2015]). Despite the broad explanatory power of these models, it is not clear whether they can also accommodate effects related to the expectation of effort observed in MPFC and DLPFC. Here, we propose a translation of these computational frameworks to the domain of effort-based behavior. First, we discuss how the PRO model, based on prediction error, can explain effort-related activity in MPFC, by reframing effort-based behavior in a predictive context. We propose that MPFC activity reflects monitoring of motivationally relevant variables (such as effort and reward), by coding expectations and discrepancies from such expectations. Moreover, we derive behavioral and neural model-based predictions for healthy controls and clinical populations with impairments of motivation. Second, we illustrate the possible translation to effort-based behavior of the HER model, an extended version of PRO model based on hierarchical error prediction, developed to explain MPFC-DLPFC interactions. We derive behavioral predictions that describe how effort and reward information is coded in PFC and how changing the configuration of such environmental information might affect decision-making and task performance involving motivation.
Collapse
|
36
|
Reconsidering depression as a risk factor for substance use disorder: Insights from rodent models. Neurosci Biobehav Rev 2017; 77:303-316. [DOI: 10.1016/j.neubiorev.2017.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/25/2017] [Accepted: 04/01/2017] [Indexed: 12/21/2022]
|
37
|
Bakic J, Pourtois G, Jepma M, Duprat R, De Raedt R, Baeken C. Spared internal but impaired external reward prediction error signals in major depressive disorder during reinforcement learning. Depress Anxiety 2017; 34:89-96. [PMID: 27781362 DOI: 10.1002/da.22576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/13/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) creates debilitating effects on a wide range of cognitive functions, including reinforcement learning (RL). In this study, we sought to assess whether reward processing as such, or alternatively the complex interplay between motivation and reward might potentially account for the abnormal reward-based learning in MDD. METHODS A total of 35 treatment resistant MDD patients and 44 age matched healthy controls (HCs) performed a standard probabilistic learning task. RL was titrated using behavioral, computational modeling and event-related brain potentials (ERPs) data. RESULTS MDD patients showed comparable learning rate compared to HCs. However, they showed decreased lose-shift responses as well as blunted subjective evaluations of the reinforcers used during the task, relative to HCs. Moreover, MDD patients showed normal internal (at the level of error-related negativity, ERN) but abnormal external (at the level of feedback-related negativity, FRN) reward prediction error (RPE) signals during RL, selectively when additional efforts had to be made to establish learning. CONCLUSIONS Collectively, these results lend support to the assumption that MDD does not impair reward processing per se during RL. Instead, it seems to alter the processing of the emotional value of (external) reinforcers during RL, when additional intrinsic motivational processes have to be engaged.
Collapse
Affiliation(s)
- Jasmina Bakic
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Gilles Pourtois
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Marieke Jepma
- Institute of Psychology, Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Romain Duprat
- Department of Psychiatry and Medical Psychology, Ghent University, Universitair Ziekenhuis Gent, Ghent, Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent University, Universitair Ziekenhuis Gent, Ghent, Belgium
| |
Collapse
|
38
|
Grandjean J, Azzinnari D, Seuwen A, Sigrist H, Seifritz E, Pryce CR, Rudin M. Chronic psychosocial stress in mice leads to changes in brain functional connectivity and metabolite levels comparable to human depression. Neuroimage 2016; 142:544-552. [DOI: 10.1016/j.neuroimage.2016.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/08/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022] Open
|
39
|
Mapping inflammation onto mood: Inflammatory mediators of anhedonia. Neurosci Biobehav Rev 2016; 64:148-66. [PMID: 26915929 DOI: 10.1016/j.neubiorev.2016.02.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/30/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Evidence supports inflammatory involvement in mood and cognitive symptoms across psychiatric, neurological and medical disorders; however, inflammation is not a sensitive or specific characteristic of these diagnoses. The National Institute of Mental Health Research Domain Criteria (RDoC) ask for a shift away from symptom-based diagnoses toward a transdiagnostic neurobiological focus in the study of brain illnesses. The RDoC matrix may provide a useful framework for integrating the effects of inflammation on brain function. Based on preclinical and clinical findings, relevant relationships span negative and positive valence systems, cognitive systems, systems for social processes and arousal/regulatory systems. As an exemplar, we consider the psychopathological domain of anhedonia, conceptualizing the relevance of inflammation (e.g., cellular immunity) and downstream processes (e.g., indoleamine 2,3-dioxygenase activation and oxidative inactivation of tetrahydrobiopterin) across RDoC units of analysis (e.g., catecholamine neurotransmitter molecules, nucleus accumbens medium spiny neuronal cells, dopaminergic mesolimbic and mesocortical reward circuits, animal paradigms, etc.). We discuss implications across illnesses affecting the brain, including infection, major depressive disorder, stroke, Alzheimer's disease and type 2 diabetes.
Collapse
|