1
|
Birhanu AG, Riaz T, Støen M, Tønjum T. Differential Abundance of Protein Acylation in Mycobacterium tuberculosis Under Exposure to Nitrosative Stress. Proteomics Clin Appl 2024; 18:e202300212. [PMID: 39082596 DOI: 10.1002/prca.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Human macrophages generate antimicrobial reactive nitrogen species in response to infection by Mycobacterium tuberculosis (Mtb). Exposure to these redox-reactive compounds induces stress response in Mtb, which can affect posttranslational modifications (PTM). METHODS Here, we present the global analysis of the PTM acylation of Mtb proteins in response to a sublethal dose of nitrosative stress in the form of nitric oxide (NO) using label free quantification. RESULTS A total of 6437 acylation events were identified on 1496 Mtb proteins, and O-acylation accounted for 92.2% of the events identified, while 7.8% were N-acylation events. About 22% of the sites identified were found to be acylated by more than one acyl-group. Furthermore, the abundance of each acyl-group decreased as their molecular weight increased. Quantitative PTM analysis revealed differential abundance of acylation in proteins involved in stress response, iron ion homeostasis, growth, energy metabolism, and antimicrobial resistance (AMR) induced by nitrosative stress over time. CONCLUSIONS The results reveal a potential role of Mtb protein acylation in the bacterial stress responses and AMR. To our knowledge, this is the first report on global O-acylation profile of Mtb in response to NO. This will significantly improve our understanding of the changes in Mtb acylation under nitrosative stress, highly relevant for global health.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| |
Collapse
|
2
|
Patel MN, Patel AJ, Nandpal MN, Raval MA, Patel RJ, Patel AA, Paudel KR, Hansbro PM, Singh SK, Gupta G, Dua K, Patel SG. Advancing against drug-resistant tuberculosis: an extensive review, novel strategies and patent landscape. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03466-0. [PMID: 39377922 DOI: 10.1007/s00210-024-03466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Drug-resistant tuberculosis (DR-TB) represents a pressing global health issue, leading to heightened morbidity and mortality. Despite extensive research efforts, the escalation of DR-TB cases underscores the urgent need for enhanced prevention, diagnosis, and treatment strategies. This review delves deep into the molecular and genetic origins of different types of DR-TB, highlighting recent breakthroughs in detection and diagnosis, including Rapid Diagnostic Tests like Xpert Ultra, Whole Genome Sequencing, and AI-based tools along with latest viewpoints on diagnosis and treatment of DR-TB utilizing newer and repurposed drug molecules. Special emphasis is given to the pivotal role of novel drugs and discusses updated treatment regimens endorsed by governing bodies, alongside innovative personalized drug-delivery systems such as nano-carriers, along with an analysis of relevant patents in this area. All the compiled information highlights the inherent challenges of current DR-TB treatments, discussing their complexity, potential side effects, and the socioeconomic strain they impose, particularly in under-resourced regions, emphasizing the cost-effective and accessible solutions. By offering insights, this review aims to serve as a compass for researchers, healthcare practitioners, and policymakers, emphasizing the critical need for ongoing R&D to improve treatments and broaden access to crucial TB interventions.
Collapse
Affiliation(s)
- Meghana N Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Archita J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Manish N Nandpal
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Manan A Raval
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Amit A Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Samir G Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India.
| |
Collapse
|
3
|
Zhang C, Wu Z, Huang X, Zhao Y, Sun Q, Chen Y, Guo H, Liao Q, Wu H, Chen X, Liang A, Dong W, Yu M, Chen Y, Wei W. A Profile of Drug-Resistant Mutations in Mycobacterium tuberculosis Isolates from Guangdong Province, China. Indian J Microbiol 2024; 64:1044-1056. [PMID: 39282200 PMCID: PMC11399372 DOI: 10.1007/s12088-024-01236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 09/18/2024] Open
Abstract
Guangdong Province, China's largest economy, has a high incidence of tuberculosis (TB). At present, there are few reports on the distribution, transmission and drug resistance of Mycobacterium tuberculosis (Mtb) strains in this region. In this study, we performed minimum inhibitory concentration testing for 14 anti-TB drugs and whole-genome sequencing of 713 clinical Mtb isolates from 20,662 sputum culture-positive tuberculosis patients registered at 31 tuberculosis drug resistance surveillance sites covering 20 cities in Guangdong Province from 2016 to 2018. Moreover, we evaluated genome-wide associations between mutations and drug resistance, and further investigated the differences in the MICs of mutations. The epidemiology, drug-resistant phenotypes and whole genome sequencing data of 713 clinical Mtb isolates were analyzed, revealing the lineage distribution and drug-resistant gene profiles in Guangdong Province. WGS combined with quantitative MIC measurements identified several novel loci associated with resistance, of which 16 loci were found to be related to resistance to more than one drug. This study analyzed the lineage distribution, prevalence characteristics and resistance-corresponding gene profiles of Mtb isolates in Guangdong province, and provided a theoretical basis for the formulation of tuberculosis prevention and control policy in the province. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01236-3.
Collapse
Affiliation(s)
- Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Zhuhua Wu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Xinchun Huang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Yuchuan Zhao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Qi Sun
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
- Present Address: Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanmei Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Huixin Guo
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Qinghua Liao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Huizhong Wu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Xunxun Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Anqi Liang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Wenya Dong
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443 China
| | - Meiling Yu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Yuhui Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
- College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
4
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
5
|
Dwivedi M, Jose S, Gupta M, Devi SS, Raj R, Kumar D. Copper transporter protein (MctB) as a therapeutic target to elicit antimycobacterial activity against tuberculosis. J Biomol Struct Dyn 2024; 42:5334-5348. [PMID: 37340670 DOI: 10.1080/07391102.2023.2226728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/10/2023] [Indexed: 06/22/2023]
Abstract
Tuberculosis (TB) is a prehistoric infection and major etiologic agent of TB, Mycobacterium tuberculosis, which is considered to have advanced from an early progenitor species found in Eastern Africa. By the 1800s, there were approximately 800 to 1000 fatality case reports per 100,000 people in Europe and North America. This research suggests an In-silico study to identify potential inhibitory compounds for the target Mycobacterial copper transport protein (Mctb). ADME-based virtual screening, molecular docking, and molecular dynamics simulations were conducted to find promising compounds to modulate the function of the target protein. Four chemical compounds, namely Anti-MCT1, Anti-MCT2, Anti-MCT3 and Anti-MCT4 out of 1500 small molecules from the Diverse-lib of MTiOpenScreen were observed to completely satisfy Lipinski rule of five and Veber's rule. Further, significantly steady interactions with the MctB target protein were observed. Docking experiments have presented 9 compounds with less than -9.0 kcal/mol free binding energies and further MD simulation eventually gave 4 compounds having potential interactions and affinity with target protein and favorable binding energy ranging from -9.2 to -9.3 kcal/mol. We may propose these compounds as an effective candidate to reduce the growth of M. tuberculosis and may also assist present a novel therapeutic approach for Tuberculosis. In vivo and In vitro validation would be needed to proceed further in this direction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Sandra Jose
- Technology and Advanced Studies, Vels Institute of Science, Chennai, India
| | - Megha Gupta
- Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Sreevidya S Devi
- Mar Athanasios College for Advanced Studies, Thiruvalla, Kerala, India
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Otchere ID, Asante-Poku A, Akpadja KF, Diallo AB, Sanou A, Asare P, Osei-Wusu S, Onyejepu N, Diarra B, Dagnra YA, Kehinde A, Antonio M, Yeboah-Manu D. Opinion review of drug resistant tuberculosis in West Africa: tackling the challenges for effective control. Front Public Health 2024; 12:1374703. [PMID: 38827613 PMCID: PMC11141065 DOI: 10.3389/fpubh.2024.1374703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Drug-resistant (DR) tuberculosis (TB) is a major public health concern globally, complicating TB control and management efforts. West Africa has historically faced difficulty in combating DR-TB due to limited diagnostic skills, insufficient access to excellent healthcare, and ineffective healthcare systems. This has aided in the emergence and dissemination of DR Mycobacterium tuberculosis complex (MTBC) strains in the region. In the past, DR-TB patients faced insufficient resources, fragmented efforts, and suboptimal treatment outcomes. However, current efforts to combat DR-TB in the region are promising. These efforts include strengthening diagnostic capacities, improving access to quality healthcare services, and implementing evidence-based treatment regimens for DR-TB. Additionally, many West African National TB control programs are collaborating with international partners to scale up laboratory infrastructure, enhance surveillance systems, and promote infection control measures. Moreso, novel TB drugs and regimens, such as bedaquiline and delamanid, are being introduced to improve treatment outcomes for DR-TB cases. Despite these obstacles, there is optimism for the future of DR-TB control in West Africa. Investments are being made to improve healthcare systems, expand laboratory capacity, and support TB research and innovation. West African institutions are now supporting knowledge sharing, capacity building, and resource mobilization through collaborative initiatives such as the West African Network for TB, AIDS, and Malaria (WANETAM), the West African Health Organization (WAHO), and other regional or global partners. These efforts hold promise for improved diagnostics, optimized treatment regimens, and provide better patient outcomes in the future where drug-resistant TB in WA can be effectively controlled, reducing the burden of the disease, and improving the health outcomes of affected individuals.
Collapse
Affiliation(s)
- Isaac Darko Otchere
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Adwoa Asante-Poku
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Awa Ba Diallo
- Biological Sciences Department, Faculty of Pharmacy at Cheikh Anta Diop University, Dakar, Senegal
| | - Adama Sanou
- Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Prince Asare
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nneka Onyejepu
- Microbiology Department, Center for Tuberculosis Research Laboratory, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Bassirou Diarra
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Aderemi Kehinde
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Epidemic Preparedness and Response, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Chen TY, Chen J, Ruszczycky MW, Hilovsky D, Hostetler T, Liu X, Zhou J, Chang WC. Variation in biosynthesis and metal-binding properties of isonitrile-containing peptides produced by Mycobacteria versus Streptomyces. ACS Catal 2024; 14:4975-4983. [PMID: 38895101 PMCID: PMC11185824 DOI: 10.1021/acscatal.4c00645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A number of bacteria are known to produce isonitrile-containing peptides (INPs) that facilitate metal transport and are important for cell survival; however, considerable structural variation is observed among INPs depending on the producing organism. While non-heme iron 2-oxoglutarate dependent isonitrilases catalyze isonitrile formation, how the natural variation in INP structure is controlled and its implications for INP bioactivity remain open questions. Herein, total chemical synthesis is utilized with X-Ray crystallographic analysis of mycobacterial isonitrilases to provide a structural model of substrate specificity that explains the longer alkyl chains observed in mycobacterial versus Streptomyces INPs. Moreover, proton NMR titration experiments demonstrate that INPs regardless of alkyl chain length are specific for binding copper instead of zinc. These results suggest that isonitrilases may act as gatekeepers in modulating the observed biological distribution of INP structures and this distribution may be primarily related to differing metal transport requirements among the producing strains.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mark W Ruszczycky
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Tyler Hostetler
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Jiahai Zhou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
8
|
Sharma A, Anurag, Kaur J, Kesharwani A, Parihar VK. Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance. Med Chem 2024; 20:576-596. [PMID: 38584534 DOI: 10.2174/0115734064277579240328142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The last decade has encountered an increasing demand for plant-based natural antibiotics. This demand has led to more research-based investigations for natural sources of antimicrobial agents and published reports demonstrating that plant extracts are widely applied in modern medicine, reporting potential activity that may be due to polyphenol compounds. Interestingly, the effects of polyphenols on the sensitivity of bacteria to antibiotics have not been well-studied. Hence, the current review encompasses the prospective application of plant-based phenolic extracts from plants of Indian origin. The emergence of resistance to antimicrobial agents has increased the inefficacy of many antimicrobial drugs. Several strategies have been developed in recent times to overcome this issue. A combination of antimicrobial agents is employed for the failing antibiotics, which restores the desirable effect but may have toxicity-related issues. Phytochemicals such as some polyphenols have demonstrated their potent activity as antimicrobial agents of natural origin to work against resistance issues. These agents alone or in combination with certain antibiotics have been shown to enhance the antimicrobial activity against a spectrum of microbes. However, the information regarding the mechanisms and structure-activity relationships remains elusive. The present review also focuses on the possible mechanisms of natural compounds based on their structure- activity relationships for incorporating polyphenolic compounds in the drug-development processes. Besides this work, polyphenols could reduce drug dosage and may diminish the unhidden or hidden side effects of antibiotics. Pre-clinical findings have provided strong evidence that polyphenolic compounds, individually and in combination with already approved antibiotics, work well against the development of resistance. However, more studies must focus on in vivo results, and clinical research needs to specify the importance of polyphenol-based antibacterials in clinical trials.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Jasleen Kaur
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, 226002, UP, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| |
Collapse
|
9
|
Browne K, Kuppusamy R, Walsh WR, Black DS, Willcox MDP, Kumar N, Chen R. Antimicrobial Peptidomimetics Prevent the Development of Resistance against Gentamicin and Ciprofloxacin in Staphylococcus and Pseudomonas Bacteria. Int J Mol Sci 2023; 24:14966. [PMID: 37834415 PMCID: PMC10573972 DOI: 10.3390/ijms241914966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Bacteria readily acquire resistance to traditional antibiotics, resulting in pan-resistant strains with no available treatment. Antimicrobial resistance is a global challenge and without the development of effective antimicrobials, the foundation of modern medicine is at risk. Combination therapies such as antibiotic-antibiotic and antibiotic-adjuvant combinations are strategies used to combat antibiotic resistance. Current research focuses on antimicrobial peptidomimetics as adjuvant compounds, due to their promising activity against antibiotic-resistant bacteria. Here, for the first time we demonstrate that antibiotic-peptidomimetic combinations mitigate the development of antibiotic resistance in Staphylococcus aureus and Pseudomonas aeruginosa. When ciprofloxacin and gentamicin were passaged individually at sub-inhibitory concentrations for 10 days, the minimum inhibitory concentrations (MICs) increased up to 32-fold and 128-fold for S. aureus and P. aeruginosa, respectively. In contrast, when antibiotics were passaged in combination with peptidomimetics (Melimine, Mel4, RK758), the MICs of both antibiotics and peptidomimetics remained constant, indicating these combinations were able to mitigate the development of antibiotic-resistance. Furthermore, antibiotic-peptidomimetic combinations demonstrated synergistic activity against both Gram-positive and Gram-negative bacteria, reducing the concentration needed for bactericidal activity. This has significant potential clinical applications-including preventing the spread of antibiotic-resistant strains in hospitals and communities, reviving ineffective antibiotics, and lowering the toxicity of antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Katrina Browne
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia
| | - Rajesh Kuppusamy
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - William R. Walsh
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia
| | - David StC Black
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - Renxun Chen
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| |
Collapse
|
10
|
Almuhayawi MS, Alruhaili MH, Gattan HS, Alharbi MT, Nagshabandi M, Al Jaouni S, Selim S, Alanazi A, Alruwaili Y, Faried OA, Elnosary ME. Staphylococcus aureus Induced Wound Infections Which Antimicrobial Resistance, Methicillin- and Vancomycin-Resistant: Assessment of Emergence and Cross Sectional Study. Infect Drug Resist 2023; 16:5335-5346. [PMID: 37605760 PMCID: PMC10440082 DOI: 10.2147/idr.s418681] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Background Wound infection is a prevalent concern in the medical field, being is a multi-step process involving several biological processes. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) infections often occur in areas of damaged skin, such as abrasions and open wounds. Methods This research aims to light the incidence of MRSA and VRSA in wound swabs, the antimicrobial susceptibility configuration of isolated S. aureus patterns in pus/wound samples collected from Saudi Arabian tertiary hospital. The cross section study, β- lactamase detection, VRSA genotyping, MAR index, D-test and VRSA genotyping are methods, which used for completed this research. Results Patients of several ages and genders delivered specimens from two hospitals in the Al jouf area, in the northern province of Saudi Arabia. S. aureus was found in 188 (34.7%) of the 542 wounds. The traumatized wounds provided 71 isolates (38.8%), surgical wound provided 49 isolates (26.8%) and abscess were represented 16 by isolates (8.7%). In the study, 123 (65.4%) out of 188 were MRSA, 60 (31.9%) were MSSA, and five (2.7%) were VRSA. Linezolid and rifampin were found to be the most effective antimicrobials with 100% in vitro antibacterial activity against S. aureus isolates. The Multiple antimicrobials resistance (MAR) index revealed 73 isolates (38.9%) with a MAR index greater than 0.2, and 115 (61.1%) less than 0.2. The D-test showed that of MLSb phenotypes among S. aureus, 22 (11.7%) strains were D-test positive (MLSbi phenotype), 53 (28.2%) strains were constitutive MLSc phenotypes, and 17 (9%) strains were shown to have MSb phenotypes. All VRSA isolates (n=5) were found to be positive for vanA, and no vanB positive isolates were detected in the study. Conclusion Regular monitoring and an antimicrobials stewardship program should be in place to provide critical information that can be utilized for empirical therapy and future prevention strategies.
Collapse
Affiliation(s)
- Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Hattan S Gattan
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohanned Talal Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, 23218, Saudi Arabia
| | - Mohammed Nagshabandi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, 23218, Saudi Arabia
| | - Soad Al Jaouni
- Department of Hematology/Oncology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Yasir Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Osama Ahmed Faried
- Medical Microbiology and Immunology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed E Elnosary
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Gaglani P, Dwivedi M, Upadhyay TK, Kaushal RS, Ahmad I, Saeed M. A pro-oxidant property of vitamin C to overcome the burden of latent Mycobacterium tuberculosis infection: A cross-talk review with Fenton reaction. Front Cell Infect Microbiol 2023; 13:1152269. [PMID: 37153159 PMCID: PMC10155705 DOI: 10.3389/fcimb.2023.1152269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/17/2023] [Indexed: 05/09/2023] Open
Abstract
Tuberculosis (TB), caused by the bacillus M. tuberculosis, is one of the deadliest infectious illnesses of our day, along with HIV and malaria.Chemotherapy, the cornerstone of TB control efforts, is jeopardized by the advent of M. tuberculosis strains resistant to many, if not all, of the existing medications.Isoniazid (INH), rifampicin (RIF), pyrazinamide, and ethambutol are used to treat drug-susceptible TB for two months, followed by four months of INH and RIF, but chemotherapy with potentially harmful side effects is sometimes needed to treat multidrug-resistant (MDR) TB for up to two years. Chemotherapy might be greatly shortened by drugs that kill M. tuberculosis more quickly while simultaneously limiting the emergence of drug resistance.Regardless of their intended target, bactericidal medicines commonly kill pathogenic bacteria (gram-negative and gram-positive) by producing hydroxyl radicals via the Fenton reaction.Researchers have concentrated on vitamins with bactericidal properties to address the rising cases globally and have discovered that these vitamins are effective when given along with first-line drugs. The presence of elevated iron content, reactive oxygen species (ROS) generation, and DNA damage all contributed to VC's sterilizing action on M. tb in vitro. Moreover, it has a pleiotropic effect on a variety of biological processes such as detoxification, protein folding - chaperons, cell wall processes, information pathways, regulatory, virulence, metabolism etc.In this review report, the authors extensively discussed the effects of VC on M. tb., such as the generation of free radicals and bactericidal mechanisms with existing treatments, and their further drug development based on ROS production.
Collapse
Affiliation(s)
- Pratikkumar Gaglani
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics and Structural Biology Laboratory, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics and Structural Biology Laboratory, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
12
|
Srivastava V, Navabharath M, Gupta S, Singh SV, Ahmad S. Exploration of Solanum xanthocarpum Schrad. & Wendl. against Mycobacterium avium Subspecies paratuberculosis and Assessment of Its Immunomodulatory and Anti-Inflammatory Potential. Pharmaceuticals (Basel) 2022; 15:1367. [PMID: 36355539 PMCID: PMC9693291 DOI: 10.3390/ph15111367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 09/30/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP), being a dairy-borne pathogen, resistant of pasteurization and other sterilization techniques, is a major cause for development of inflammatory bowel disorders such as Johne's disease (JD) in dairy animals and Crohn's Disease (CD) in humans, for which no therapy is available to date. In the absence of effective therapy or a vaccine, management of CD has been accomplished by removal of the affected intestines. However, usually, even after removal of 2/3 of the intestine, CD reoccurs. Hence, there exists a need to develop an alternative therapy for such infection. The potential of herbals remains unexplored against MAP and related infections. Therefore, the conducted study is a novel initiative for the evaluation of anti-mycobacterial activity of bioactive extracts of Solanum xanthocarpum Schrad. & Wendl. against MAP infection. The said plant was authenticated according to the Ayurvedic Pharmacopoeia of India. Qualitative and quantitative evaluation of the extracts were done using chromatographic and spectroscopic techniques. Preliminary in vitro pharmacological assessments revealed the immunomodulatory and anti-inflammatory potential of the extracts. REMA assay was conducted to determine their anti-MAP activity along with determination of the best active extract. The hydro-alcoholic extract showed the best inhibition of MAP, providing a potential ray of hope against this emerging major pathogen of animals, and associated with Crohn's disease and other autoimmune disorders in human beings.
Collapse
Affiliation(s)
- Varsha Srivastava
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Manthena Navabharath
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
13
|
Mycobacterium Time-Series Genome Analysis Identifies AAC2′ as a Potential Drug Target with Naloxone Showing Potential Bait Drug Synergism. Molecules 2022; 27:molecules27196150. [PMID: 36234683 PMCID: PMC9571707 DOI: 10.3390/molecules27196150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The World Health Organization has put drug resistance in tuberculosis on its list of significant threats, with a critical emphasis on resolving the genetic differences in Mycobacterium tuberculosis. This provides an opportunity for a better understanding of the evolutionary progression leading to anti-microbial resistance. Anti-microbial resistance has a great impact on the economic stability of the global healthcare sector. We performed a timeline genomic analysis from 2003 to 2021 of 578 mycobacterium genomes to understand the pattern underlying genomic variations. Potential drug targets based on functional annotation was subjected to pharmacophore-based screening of FDA-approved phyto-actives. Reaction search, MD simulations, and metadynamics studies were performed. A total of 4,76,063 mutations with a transition/transversion ratio of 0.448 was observed. The top 10 proteins with the least number of mutations were high-confidence drug targets. Aminoglycoside 2′-N-acetyltransferase protein (AAC2′), conferring resistance to aminoglycosides, was shortlisted as a potential drug target based on its function and role in bait drug synergism. Gentamicin-AAC2′ binding pose was used as a pharmacophore template to screen 10,570 phyto-actives. A total of 66 potential hits were docked to obtain naloxone as a lead—active with a docking score of −6.317. Naloxone is an FDA-approved drug that rapidly reverses opioid overdose. This is a classic case of a repurposed phyto-active. Naloxone consists of an amine group, but the addition of the acetyl group is unfavorable, with a reaction energy of 612.248 kcal/mol. With gentamicin as a positive control, molecular dynamic simulation studies were performed for 200 ns to check the stability of binding. Metadynamics-based studies were carried out to compare unbinding energy with gentamicin. The unbinding energies were found to be −68 and −74 kcal/mol for naloxone and gentamycin, respectively. This study identifies naloxone as a potential drug candidate for a bait drug synergistic approach against Mycobacterium tuberculosis.
Collapse
|
14
|
New Quinoline-Urea-Benzothiazole Hybrids as Promising Antitubercular Agents: Synthesis, In Vitro Antitubercular Activity, Cytotoxicity Studies, and In Silico ADME Profiling. Pharmaceuticals (Basel) 2022; 15:ph15050576. [PMID: 35631402 PMCID: PMC9146500 DOI: 10.3390/ph15050576] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/30/2023] Open
Abstract
A series of 25 new benzothiazole−urea−quinoline hybrid compounds were synthesized successfully via a three-step synthetic sequence involving an amidation coupling reaction as a critical step. The structures of the synthesized compounds were confirmed by routine spectroscopic tools (1H and 13C NMR and IR) and by mass spectrometry (HRMS). In vitro evaluation of these hybrid compounds for their antitubercular inhibitory activity against the Mycobacterium tuberculosis H37Rv pMSp12::GPF bioreporter strain was undertaken. Of the 25 tested compounds, 17 exhibited promising anti-TB activities of less than 62.5 µM (MIC90). Specifically, 13 compounds (6b, 6g, 6i−j, 6l, 6o−p, 6r−t, and 6x−y) showed promising activity with MIC90 values in the range of 1−10 µM, while compound 6u, being the most active, exhibited sub-micromolar activity (0.968 µM) in the CAS assay. In addition, minimal cytotoxicity against the HepG2 cell line (cell viability above 75%) in 11 of the 17 compounds, at their respective MIC90 concentrations, was observed, with 6u exhibiting 100% cell viability. The hybridization of the quinoline, urea, and benzothiazole scaffolds demonstrated a synergistic relationship because the activities of resultant hybrids were vastly improved compared to the individual entities. In silico ADME predictions showed that the majority of these compounds have drug-like properties and are less likely to potentially cause cardiotoxicity (QPlogHERG > −5). The results obtained in this study indicate that the majority of the synthesized compounds could serve as valuable starting points for future optimizations as new antimycobacterial agents.
Collapse
|
15
|
Heidary M, Shirani M, Moradi M, Goudarzi M, Pouriran R, Rezaeian T, Khoshnood S. Tuberculosis challenges: Resistance, co-infection, diagnosis, and treatment. Eur J Microbiol Immunol (Bp) 2022; 12:1-17. [PMID: 35420996 PMCID: PMC9036649 DOI: 10.1556/1886.2021.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/10/2022] [Indexed: 01/23/2023] Open
Abstract
Early diagnosis of tuberculosis (TB), followed by effective treatment, is the cornerstone of global TB control efforts. An estimated 3 million cases of TB remain undetected each year. Early detection and effective management of TB can prevent severe disease and reduce mortality and transmission. Intrinsic and acquired drug resistance of Mycobacterium tuberculosis (MTB) severely restricted the anti-TB therapeutic options, and public health policies are required to preserve the new medications to treat TB. In addition, TB and HIV frequently accelerate the progression of each other, and one disease can enhance the other effect. Overall, TB-HIV co-infections show an adverse bidirectional interaction. For HIV-infected patients, the risk of developing TB disease is approximately 22 times higher than for persons with a protective immune response. Analysis of the current TB challenges is critical to meet the goals of the end TB strategy and can go a long way in eradicating the disease. It provides opportunities for global TB control and demonstrates the efforts required to accelerate eliminating TB. This review will discuss the main challenges of the TB era, including resistance, co-infection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebe Rezaeian
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
16
|
Time for Isoniazid Pharmacogenomic-Guided Therapy of Tuberculosis Based on NAT2 Acetylation Profiles in India. Eur J Drug Metab Pharmacokinet 2022; 47:443-447. [DOI: 10.1007/s13318-022-00764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/03/2022]
|
17
|
Mycobacterium tuberculosis Acetyltransferase Suppresses Oxidative Stress by Inducing Peroxisome Formation in Macrophages. Int J Mol Sci 2022; 23:ijms23052584. [PMID: 35269727 PMCID: PMC8909987 DOI: 10.3390/ijms23052584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) inhibits host oxidative stress responses facilitating its survival in macrophages; however, the underlying molecular mechanisms are poorly understood. Here, we identified a Mtb acetyltransferase (Rv3034c) as a novel counter actor of macrophage oxidative stress responses by inducing peroxisome formation. An inducible Rv3034c deletion mutant of Mtb failed to induce peroxisome biogenesis, expression of the peroxisomal β-oxidation pathway intermediates (ACOX1, ACAA1, MFP2) in macrophages, resulting in reduced intracellular survival compared to the parental strain. This reduced virulence phenotype was rescued by repletion of Rv3034c. Peroxisome induction depended on the interaction between Rv3034c and the macrophage mannose receptor (MR). Interaction between Rv3034c and MR induced expression of the peroxisomal biogenesis proteins PEX5p, PEX13p, PEX14p, PEX11β, PEX19p, the peroxisomal membrane lipid transporter ABCD3, and catalase. Expression of PEX14p and ABCD3 was also enhanced in lungs from Mtb aerosol-infected mice. This is the first report that peroxisome-mediated control of ROS balance is essential for innate immune responses to Mtb but can be counteracted by the mycobacterial acetyltransferase Rv3034c. Thus, peroxisomes represent interesting targets for host-directed therapeutics to tuberculosis.
Collapse
|
18
|
Biosafety and Proteome Profiles of Different Heat Inactivation Methods for Mycobacterium tuberculosis. Microbiol Spectr 2021; 9:e0071621. [PMID: 34937194 PMCID: PMC8694153 DOI: 10.1128/spectrum.00716-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies involving the pathogenic organism Mycobacterium tuberculosis routinely require advanced biosafety laboratory facilities, which might not be readily available in rural areas where tuberculosis burdens are high. Attempts to adapt heat inactivation techniques have led to inconsistent conclusions, and the risk of protein denaturation due to extensive heating is impractical for subsequent mass spectrometry (MS)-based protein analyses. In this study, 240 specimens with one or two loops of M. tuberculosis strain H37Rv biomass and specific inactivated solutions were proportionally assigned to six heat inactivation methods in a thermal block at 80°C and 95°C for 20, 30, and 90 min. Twenty untreated specimens served as a positive control, and bacterial growth was followed up for 12 weeks. Our results showed that 90 min of heat inactivation was necessary for samples with two loops of biomass. Further protein extraction and a matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS assay demonstrated adequate scores for bacterial identification (≥1.7), with the highest score achieved in the 80°C/90 min and 95°C/30 min treatment groups. A proteomics study also confidently identified 648 proteins with ∼93% to 96% consistent protein abundances following heating at 95°C for 20, 30, and 90 min. Heat inactivation at 95°C for 90 min yielded the most quantifiable proteins, and a functional analysis revealed proteins located in the ribosomal subunit. In summary, we proposed a heat inactivation method for the M. tuberculosis strain H37Rv and studied the preservation of protein components for subsequent bacterial identification and protein-related assays. IMPORTANCE Inactivation of Mycobacterium tuberculosis is an important step to guarantee biosafety for subsequent M. tuberculosis identification and related research, notably in areas of endemicity with minimal resources. However, certain biomolecules might be denatured or hydrolyzed because of the harsh inactivation process, and a standardized protocol is yet to be determined. We evaluated distinct heating conditions to report the inactivation efficiency and performed downstream mass spectrometry-based M. tuberculosis identification and proteomics study. The results are important and useful for both basic and clinical M. tuberculosis studies.
Collapse
|
19
|
Chen CC, Chen YY, Yeh CC, Hsu CW, Yu SJ, Hsu CH, Wei TC, Ho SN, Tsai PC, Song YD, Yen HJ, Chen XA, Young JJ, Chuang CC, Dou HY. Alginate-Capped Silver Nanoparticles as a Potent Anti-mycobacterial Agent Against Mycobacterium tuberculosis. Front Pharmacol 2021; 12:746496. [PMID: 34899300 PMCID: PMC8660078 DOI: 10.3389/fphar.2021.746496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is a leading cause of death from a single infectious agent, Mycobacterium tuberculosis (Mtb). Although progress has been made in TB control, still about 10 million people worldwide develop TB annually and 1.5 million die of the disease. The rapid emergence of aggressive, drug-resistant strains and latent infections have caused TB to remain a global health challenge. TB treatments are lengthy and their side effects lead to poor patient compliance, which in turn has contributed to the drug resistance and exacerbated the TB epidemic. The relatively low output of newly approved antibiotics has spurred research interest toward alternative antibacterial molecules such as silver nanoparticles (AgNPs). In the present study, we use the natural biopolymer alginate to serve as a stabilizer and/or reductant to green synthesize AgNPs, which improves their biocompatibility and avoids the use of toxic chemicals. The average size of the alginate-capped AgNPs (ALG-AgNPs) was characterized as nanoscale, and the particles were round in shape. Drug susceptibility tests showed that these ALG-AgNPs are effective against both drug-resistant Mtb strains and dormant Mtb. A bacterial cell-wall permeability assay showed that the anti-mycobacterial action of ALG-AgNPs is mediated through an increase in cell-wall permeability. Notably, the anti-mycobacterial potential of ALG-AgNPs was effective in both zebrafish and mouse TB animal models in vivo. These results suggest that ALG-AgNPs could provide a new therapeutic option to overcome the difficulties of current TB treatments.
Collapse
Affiliation(s)
- Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chia-Yi, Taiwan
| | - Chang-Ching Yeh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shang-Jie Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Hao Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Ting-Chun Wei
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Sin-Ni Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Chu Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yung-Deng Song
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Ju Yen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Xin-An Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chuan-Chung Chuang
- School of Dentistry and Graduate Institute of Dental Science, National Defense Medical Center, Taipei, Taiwan.,Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
20
|
Gorzynski M, Week T, Jaramillo T, Dzalamidze E, Danelishvili L. Mycobacterium abscessus Genetic Determinants Associated with the Intrinsic Resistance to Antibiotics. Microorganisms 2021; 9:microorganisms9122527. [PMID: 34946129 PMCID: PMC8707978 DOI: 10.3390/microorganisms9122527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium abscessus
subsp. abscessus (MAB) is a fast-growing nontuberculous mycobacterium causing pulmonary infections in immunocompromised and immunocompetent individuals. The treatment of MAB infections in clinics is extremely challenging, as this organism is naturally resistant to most available antibiotics. There is limited knowledge on the mechanisms of MAB intrinsic resistance and on the genes that are involved in the tolerance to antimicrobials. To identify the MAB genetic factors, including the components of the cell surface transport systems related to the efflux pumps, major known elements contributing to antibiotic resistance, we screened the MAB transposon library of 2000 gene knockout mutants. The library was exposed at either minimal inhibitory (MIC) or bactericidal concentrations (BC) of amikacin, clarithromycin, or cefoxitin, and MAB susceptibility was determined through the optical density. The 98 susceptible and 36 resistant mutants that exhibited sensitivity below the MIC and resistance to BC, respectively, to all three drugs were sequenced, and 16 mutants were found to belong to surface transport systems, such as the efflux pumps, porins, and carrier membrane enzymes associated with different types of molecule transport. To establish the relevance of the identified transport systems to antibiotic tolerance, the gene expression levels of the export related genes were evaluated in nine MAB clinical isolates in the presence or absence of antibiotics. The selected mutants were also evaluated for their ability to form biofilms and for their intracellular survival in human macrophages. In this study, we identified numerous MAB genes that play an important role in the intrinsic mechanisms to antimicrobials and further demonstrated that, by targeting components of the drug efflux system, we can significantly increase the efficacy of the current antibiotics.
Collapse
Affiliation(s)
- Mylene Gorzynski
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Biochemistry & Molecular Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Week
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Bioengineering, College of Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Jaramillo
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Elizaveta Dzalamidze
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- BioHealth Sciences, Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Correspondence:
| |
Collapse
|
21
|
Dassanayake MK, Khoo TJ, An J. Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. Ann Clin Microbiol Antimicrob 2021; 20:79. [PMID: 34856999 PMCID: PMC8641154 DOI: 10.1186/s12941-021-00485-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background and objectives The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. Methods Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. Findings A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. Conclusion Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
22
|
Pandey S, Calvey G, Katz AM, Malla TN, Koua FHM, Martin-Garcia JM, Poudyal I, Yang JH, Vakili M, Yefanov O, Zielinski KA, Bajt S, Awel S, Doerner K, Frank M, Gelisio L, Jernigan R, Kirkwood H, Kloos M, Koliyadu J, Mariani V, Miller MD, Mills G, Nelson G, Olmos JL, Sadri A, Sato T, Tolstikova A, Xu W, Ourmazd A, Spence JCH, Schwander P, Barty A, Chapman HN, Fromme P, Mancuso AP, Phillips GN, Bean R, Pollack L, Schmidt M. Observation of substrate diffusion and ligand binding in enzyme crystals using high-repetition-rate mix-and-inject serial crystallography. IUCRJ 2021; 8:878-895. [PMID: 34804542 PMCID: PMC8562667 DOI: 10.1107/s2052252521008125] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 05/22/2023]
Abstract
Here, we illustrate what happens inside the catalytic cleft of an enzyme when substrate or ligand binds on single-millisecond timescales. The initial phase of the enzymatic cycle is observed with near-atomic resolution using the most advanced X-ray source currently available: the European XFEL (EuXFEL). The high repetition rate of the EuXFEL combined with our mix-and-inject technology enables the initial phase of ceftriaxone binding to the Mycobacterium tuberculosis β-lactamase to be followed using time-resolved crystallography in real time. It is shown how a diffusion coefficient in enzyme crystals can be derived directly from the X-ray data, enabling the determination of ligand and enzyme-ligand concentrations at any position in the crystal volume as a function of time. In addition, the structure of the irreversible inhibitor sulbactam bound to the enzyme at a 66 ms time delay after mixing is described. This demonstrates that the EuXFEL can be used as an important tool for biomedically relevant research.
Collapse
Affiliation(s)
- Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - George Calvey
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Andrea M. Katz
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Faisal H. M. Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jose M. Martin-Garcia
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
- Institute of Physical Chemistry Rocasolano, Spanish National Research Council, Calle de Serrano 119, 28006 Madrid, Spain
| | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Jay-How Yang
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Sasa Bajt
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Luca Gelisio
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Rebecca Jernigan
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Marco Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, California 94025, USA
| | - Mitchell D. Miller
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Jose L. Olmos
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alireza Sadri
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Weijun Xu
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Abbas Ourmazd
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - John C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Schwander
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Anton Barty
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - George N. Phillips
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| |
Collapse
|
23
|
Khan SS, Sudasinghe TD, Landgraf AD, Ronning DR, Sucheck SJ. Total Synthesis of Tetrahydrolipstatin, Its Derivatives, and Evaluation of Their Ability to Potentiate Multiple Antibiotic Classes against Mycobacterium Species. ACS Infect Dis 2021; 7:2876-2888. [PMID: 34478259 PMCID: PMC8630808 DOI: 10.1021/acsinfecdis.1c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydrolipstatin (THL, 1a) has been shown to inhibit both mammalian and bacterial α/β hydrolases. In the case of bacterial systems, THL is a known inhibitor of several Mycobacterium tuberculosis hydrolases involved in mycomembrane biosynthesis. Herein we report a highly efficient eight-step asymmetric synthesis of THL using a route that allows modification of the THL α-chain substituent to afford compounds 1a through 1e. The key transformation in the synthesis was use of a (TPP)CrCl/Co2(CO)8-catalyzed regioselective and stereospecific carbonylation on an advanced epoxide intermediate to yield a trans-β-lactone. These compounds are modest inhibitors of Ag85A and Ag85C, two α/β hydrolases of M. tuberculosis involved in the biosynthesis of the mycomembrane. Among these compounds, 10d showed the highest inhibitory effect on Ag85A (34 ± 22 μM) and Ag85C (66 ± 8 μM), and its X-ray structure was solved in complex with Ag85C to 2.5 Å resolution. In contrast, compound 1e exhibited the best-in-class MICs of 50 μM (25 μg/mL) and 16 μM (8.4 μg/mL) against M. smegmatis and M. tuberculosis H37Ra, respectively, using a microtiter assay plate. Combination of 1e with 13 well-established antibiotics synergistically enhanced the potency of few of these antibiotics in M. smegmatis and M. tuberculosis H37Ra. Compound 1e applied at concentrations 4-fold lower than its MIC enhanced the MIC of the synergistic antibiotic by 2-256-fold. In addition to observing synergy with first-line drugs, rifamycin and isoniazid, the MIC of vancomycin against M. tuberculosis H37Ra was 65 μg/mL; however, the MIC was lowered to 0.25 μg/mL in the presence of 2.1 μg/mL 1e demonstrating the potential of targeting mycobacterial hydrolases involved in mycomembrane and peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Saniya S Khan
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Thanuja D Sudasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Alexander D Landgraf
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Steven J Sucheck
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
24
|
Phosphoenolpyruvate depletion mediates both growth arrest and drug tolerance of Mycobacterium tuberculosis in hypoxia. Proc Natl Acad Sci U S A 2021; 118:2105800118. [PMID: 34426499 DOI: 10.1073/pnas.2105800118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection is difficult to treat because Mtb spends the majority of its life cycle in a nonreplicating (NR) state. Since NR Mtb is highly tolerant to antibiotic effects and can mutate to become drug resistant (DR), our conventional tuberculosis (TB) treatment is not effective. Thus, a novel strategy to kill NR Mtb is required. Accumulating evidence has shown that repetitive exposure to sublethal doses of antibiotics enhances the level of drug tolerance, implying that NR Mtb is formed by adaptive metabolic remodeling. As such, metabolic modulation strategies to block the metabolic remodeling needed to form NR Mtb have emerged as new therapeutic options. Here, we modeled in vitro NR Mtb using hypoxia, applied isotope metabolomics, and revealed that phosphoenolpyruvate (PEP) is nearly completely depleted in NR Mtb. This near loss of PEP reduces PEP-carbon flux toward multiple pathways essential for replication and drug sensitivity. Inversely, supplementing with PEP restored the carbon flux and the activities of the foregoing pathways, resulting in growth and heightened drug susceptibility of NR Mtb, which ultimately prevented the development of DR. Taken together, PEP depletion in NR Mtb is associated with the acquisition of drug tolerance and subsequent emergence of DR, demonstrating that PEP treatment is a possible metabolic modulation strategy to resensitize NR Mtb to conventional TB treatment and prevent the emergence of DR.
Collapse
|
25
|
Host bioenergetic parameters reveal cytotoxicity of anti-tuberculosis drugs undetected using conventional viability assays. Antimicrob Agents Chemother 2021; 65:e0093221. [PMID: 34339269 PMCID: PMC8448146 DOI: 10.1128/aac.00932-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development for cancer, metabolic, and neurological disorders and for antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte-derived macrophages (hMDMs). We found that the XF analysis reveals earlier drug-induced effects on the cells’ bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.
Collapse
|
26
|
In Vitro Profiling of Antitubercular Compounds by Rapid, Efficient, and Nondestructive Assays Using Autoluminescent Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0028221. [PMID: 34097493 PMCID: PMC8284454 DOI: 10.1128/aac.00282-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-infective drug discovery is greatly facilitated by the availability of in vitro assays that are more proficient at predicting the preclinical success of screening hits. Tuberculosis (TB) drug discovery is hindered by the relatively slow growth rate of Mycobacterium tuberculosis and the use of whole-cell-based in vitro assays that are inherently time-consuming, and for these reasons, rapid, noninvasive bioluminescence-based assays have been widely used in anti-TB drug discovery and development. In this study, in vitro assays that employ autoluminescent M. tuberculosis were optimized to determine MIC, minimum bactericidal concentration (MBC), time-kill curves, activity against macrophage internalized M. tuberculosis (90% effective concentration [EC90]), and postantibiotic effect (PAE) to provide rapid and dynamic biological information. Standardization of the luminescence-based MIC, MBC, time-kill, EC90, and PAE assays was accomplished by comparing results of established TB drugs and two ClpC1-targeting TB leads, ecumicin and rufomycin, to those obtained from conventional assays and/or to previous studies. Cumulatively, the use of the various streamlined luminescence-based in vitro assays has reduced the time for comprehensive in vitro profiling (MIC, MBC, time-kill, EC90, and PAE) by 2 months. The luminescence-based in vitro MBC and EC90 assays yield time and concentration-dependent kill information that can be used for pharmacokinetic-pharmacodynamic (PK-PD) modeling. The MBC and EC90 time-kill graphs revealed a significantly more rapid bactericidal activity for ecumicin than rufomycin. The PAEs of both ecumicin and rufomycin were comparable to that of the first-line TB drug rifampin. The optimization of several nondestructive, luminescence-based TB assays facilitates the in vitro profiling of TB drug leads in an efficient manner.
Collapse
|
27
|
Nagamani S, Sastry GN. Mycobacterium tuberculosis Cell Wall Permeability Model Generation Using Chemoinformatics and Machine Learning Approaches. ACS OMEGA 2021; 6:17472-17482. [PMID: 34278133 PMCID: PMC8280707 DOI: 10.1021/acsomega.1c01865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 05/21/2023]
Abstract
The drug-resistant strains of Mycobacterium tuberculosis (M.tb) are evolving at an alarming rate, and this indicates the urgent need for the development of novel antitubercular drugs. However, genetic mutations, complex cell wall system of M.tb, and influx-efflux transporter systems are the major permeability barriers that significantly affect the M.tb drugs activity. Thus, most of the small molecules are ineffective to arrest the M.tb cell growth, even though they are effective at the cellular level. To address the permeability issue, different machine learning models that effectively distinguish permeable and impermeable compounds were developed. The enzyme-based (IC50) and cell-based (minimal inhibitory concentration) data were considered for the classification of M.tb permeable and impermeable compounds. It was assumed that the compounds that have high activity in both enzyme-based and cell-based assays possess the required M.tb cell wall permeability. The XGBoost model was outperformed when compared to the other models generated from different algorithms such as random forest, support vector machine, and naïve Bayes. The XGBoost model was further validated using the validation data set (21 permeable and 19 impermeable compounds). The obtained machine learning models suggested that various descriptors such as molecular weight, atom type, electrotopological state, hydrogen bond donor/acceptor counts, and extended topochemical atoms of molecules are the major determining factors for both M.tb cell permeability and inhibitory activity. Furthermore, potential antimycobacterial drugs were identified using computational drug repurposing. All the approved drugs from DrugBank were collected and screened using the developed permeability model. The screened compounds were given as input in the PASS server for the identification of possible antimycobacterial compounds. The drugs that were retained after two filters were docked to the active site of 10 different potential antimycobacterial drug targets. The results obtained from this study may improve the understanding of M.tb permeability and activity that may aid in the development of novel antimycobacterial drugs.
Collapse
Affiliation(s)
- Selvaraman Nagamani
- Advanced
Computation and Data Sciences Division, CSIR − North East Institute of Science and Technology, Jorhat, Assam 785 006, India
| | - G. Narahari Sastry
- Advanced
Computation and Data Sciences Division, CSIR − North East Institute of Science and Technology, Jorhat, Assam 785 006, India
- ;
| |
Collapse
|
28
|
Kumar V, Neradi D, Sherry B, Gaurav A, Dhatt SS. Tuberculosis of the spine and drug resistance: a review article. Neurosurg Rev 2021; 45:217-229. [PMID: 34176000 DOI: 10.1007/s10143-021-01595-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Pott's spine is tuberculosis of spine caused due to hematogenous spread of mycobacterium from a primary focus. It constitutes about 50% of skeletal tuberculosis cases. Paradiscal type is the most common type of spinal tuberculosis. Untreated cases can lead to complications like a cold abscess, paraplegia, and deformity which may require surgical intervention. Rapid molecular methods have made the diagnosis of spinal tuberculosis and drug resistance faster and easier but it still remains a problem due to difficulties in sample collection and the paucibacillary nature of the Pott spine. Antitubercular drug therapy forms the mainstay of management. The emergence of MDR TB and XDR TB has posed a big challenge in the management of spinal tuberculosis. The literature regarding drug resistance in spinal tuberculosis and its management is lacking. We conducted a literature review of 29 studies and presented information on pathogenesis, diagnosis, and management of spinal tuberculosis and drug resistance. New shorter regimens for MDR and XDR TB are under trial in different parts of the world. We believe this article will provide information on spinal tuberculosis and drug resistance and help clinicians outline important research areas.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Orthopedics, PGIMER, Chandigarh, India
| | - Deepak Neradi
- Department of Orthopedics, PGIMER, Chandigarh, India
| | | | - Ankit Gaurav
- Department of Orthopedics, PGIMER, Chandigarh, India
| | | |
Collapse
|
29
|
Walkowski W, Bassett J, Bhalla M, Pfeifer BA, Ghanem ENB. Intranasal Vaccine Delivery Technology for Respiratory Tract Disease Application with a Special Emphasis on Pneumococcal Disease. Vaccines (Basel) 2021; 9:vaccines9060589. [PMID: 34199398 PMCID: PMC8230341 DOI: 10.3390/vaccines9060589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
This mini-review will cover recent trends in intranasal (IN) vaccine delivery as it relates to applications for respiratory tract diseases. The logic and rationale for IN vaccine delivery will be compared to methods and applications accompanying this particular administration route. In addition, we will focus extended discussion on the potential role of IN vaccination in the context of respiratory tract diseases, with a special emphasis on pneumococcal disease. Here, elements of this disease, including its prevalence and impact upon the elderly population, will be viewed from the standpoint of improving health outcomes through vaccine design and delivery technology and how IN administration can play a role in such efforts.
Collapse
Affiliation(s)
- William Walkowski
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Justin Bassett
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
- Correspondence:
| |
Collapse
|
30
|
Ali S, Ehtram A, Arora N, Manjunath P, Roy D, Ehtesham NZ, Hasnain SE. The M. tuberculosis Rv1523 Methyltransferase Promotes Drug Resistance Through Methylation-Mediated Cell Wall Remodeling and Modulates Macrophages Immune Responses. Front Cell Infect Microbiol 2021; 11:622487. [PMID: 33777836 PMCID: PMC7994892 DOI: 10.3389/fcimb.2021.622487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The acquisition of antibiotics resistance is a major clinical challenge limiting the effective prevention and treatment of the deadliest human infectious disease tuberculosis. The molecular mechanisms by which initially Mycobacterium tuberculosis (M.tb) develop drug resistance remain poorly understood. In this study, we report the novel role of M.tb Rv1523 MTase in the methylation of mycobacterial cell envelope lipids and possible mechanism of its contribution in the virulence and drug resistance. Initial interactome analyses predicted association of Rv1523 with proteins related to fatty acid biosynthetic pathways. This promoted us to investigate methylation activity of Rv1523 using cell wall fatty acids or lipids as a substrate. Rv1523 catalyzed the transfer of methyl group from SAM to the cell wall components of mycobacterium. To investigate further the in vivo methylating role of Rv1523, we generated a recombinant Mycobacterium smegmatis strain that expressed the Rv1523 gene. The M. smegmatis strain expressing Rv1523 exhibited altered cell wall lipid composition, leading to an increased survival under surface stress, acidic condition and resistance to antibiotics. Macrophages infected with recombinant M. smegmatis induced necrotic cell death and modulated the host immune responses. In summary, these findings reveal a hitherto unknown role of Rv1523 encoded MTase in cell wall remodeling and modulation of immune responses. Functional gain of mycolic acid Rv1523 methyltransferase induced virulence and resistance to antibiotics in M. smegmatis. Thus, mycolic acid methyltransferase may serve as an excellent target for the discovery and development of novel anti-TB agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Aquib Ehtram
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Naresh Arora
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - P Manjunath
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Deodutta Roy
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
31
|
Saiboonjan B, Roytrakul S, Sangka A, Lulitanond V, Faksri K, Namwat W. Proteomic analysis of drug-susceptible and multidrug-resistant nonreplicating Beijing strains of Mycobacterium tuberculosis cultured in vitro. Biochem Biophys Rep 2021; 26:100960. [PMID: 33748436 PMCID: PMC7960788 DOI: 10.1016/j.bbrep.2021.100960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/16/2023] Open
Abstract
The existence of latent tuberculosis infection (LTBI) is one of the main obstacles hindering eradication of tuberculosis (TB). To better understand molecular mechanisms and explore biomarkers for the pathogen during LTBI, we cultured strains of Mycobacterium tuberculosis (Mtb) under stress conditions, mimicking those in the host granuloma intracellular environment, to induce entry into the non-replicating persistence stage. The stresses included hypoxia, low pH (5.0), iron deprivation (100 μM of 2, 2’˗dipyridyl) and nutrient starvation (10% M7H9 medium). Three Mtb strains were studied: two clinical isolates (drug-susceptible Beijing (BJ) and multidrug-resistant Beijing (MDR-BJ) strains) and the reference laboratory strain, H37Rv. We investigated the proteomics profiles of these strains cultured in stressful conditions and then validated the findings by transcriptional analysis. NarJ (respiratory nitrate reductase delta chain) was significantly up-regulated at the protein level and the mRNA level in all three Mtb strains. The narJ gene is a member of the narGHJI operon encoding all nitrate reductase subunits, which play a role in nitrate metabolism during the adaptation of Mtb to stressful intracellular environments and the subsequent establishment of latent TB. The identification of up-regulated mRNAs and proteins of Mtb under stress conditions could assist development of biomarkers, drug targets and vaccine antigens. The proteomics profiles between BJ and MDR-BJ strains of M. tuberculosis (Mtb) cultured in vitro in stressful conditions. NarJ is a common protein and significantly up-regulated protein of BJ and MDR-BJ Mtb strains. The unique proteins found on BJ and MDR-BJ Mtb strain were of “Rv3764c/tcrY” and “Rv1356c and Rv1420/uvrC”, respectively.
Collapse
Affiliation(s)
- Bhanubong Saiboonjan
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Rama VI Rd., Pathumthani, Thailand
| | - Arunnee Sangka
- Department of Clinical Microbiology, Faculty of Associated Medical Science, Khon Kaen University, Thailand
| | - Viraphong Lulitanond
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kiatichai Faksri
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wises Namwat
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Corresponding author.
| |
Collapse
|
32
|
Edwards BD, Edwards J, Cooper R, Kunimoto D, Somayaji R, Fisher D. Rifampin-resistant/multidrug-resistant Tuberculosis in Alberta, Canada: Epidemiology and treatment outcomes in a low-incidence setting. PLoS One 2021; 16:e0246993. [PMID: 33592031 PMCID: PMC7886202 DOI: 10.1371/journal.pone.0246993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Treatment of rifampin-monoresistant/multidrug-resistant Tuberculosis (RR/MDR-TB) requires long treatment courses, complicated by frequent adverse events and low success rates. Incidence of RR/MDR-TB in Canada is low and treatment practices are variable due to the infrequent experience and challenges with drug access. We undertook a retrospective cohort study of all RR/MDR-TB cases in Alberta, Canada from 2007-2017 to explore the epidemiology and outcomes in our low incidence setting. We performed a descriptive analysis of the epidemiology, treatment regimens and associated outcomes, calculating differences in continuous and discrete variables using Student's t and Chi-squared tests, respectively. We identified 24 patients with RR/MDR-TB. All patients were foreign-born with the median time to presentation after immigration being 3 years. Prior treatment was reported in 46%. Treatment was individualized. All patients achieved sputum culture conversion within two months of treatment initiation. The median treatment duration after culture conversion was 18 months (IQR: 15-19). The mean number of drugs utilized during the intensive phase was 4.3 (SD: 0.8) and during the continuation phase was 3.3 (SD: 0.9) and the mean adherence to medications was 95%. Six patients completed national guideline-concordant therapy, with many patients developing adverse events (79%). Treatment success (defined as completion of prescribed therapy or cure) was achieved in 23/24 patients and no acquired drug resistance or relapse was detected over 1.8 years of median follow-up. Many cases were captured upon immigration assessment, representing important prevention of community spread. Despite high rates of adverse events and short treatment compared to international guidelines, success in our cohort was very high at 96%. This is likely due to individualization of therapy, frequent use of medications with high effectiveness, intensive treatment support, and early sputum conversion seen in our cohort. There should be ongoing exploration of treatment shortening with well-tolerated, efficacious oral agents to help patients achieve treatment completion.
Collapse
Affiliation(s)
- Brett D. Edwards
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jenny Edwards
- Pharmacy Services, Alberta Health Services, Calgary, Alberta, Canada
| | - Ryan Cooper
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Kunimoto
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Dina Fisher
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Swain SS, Sharma D, Hussain T, Pati S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2021; 9:1651-1663. [PMID: 32573374 PMCID: PMC7473167 DOI: 10.1080/22221751.2020.1785334] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nowadays, drug-resistant tuberculosis (DR-TB) and co-infected tuberculosis (CI-TB) strains are the leading cause for the enhancement of long-term morbidity and unpredicted mortality rates from this ghoulish acid fast-bacterium infection, globally. Unfortunately, the lack of/ample lethargic towards the development of compelling anti-TB regimens with a large-scale prevalence rate is a great challenge towards control of the pandemic situation. Indeed, the recent improvement in genomic studies for early diagnosis and understanding the mechanisms of drug resistance, as well as the identification of newer drug targets is quite remarkable and promising. Mainly, identification of such genetic factors, chromosomal mutations and associated pathways gives new ray of hope in current anti-TB drug discovery. This focused review provides molecular insights into the updated drug resistance mechanisms with encoded bacilli genetic factors as a novel target and potential source of development with screened-out newer anti-TB agents towards the control of MDR-TB soon.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Divakar Sharma
- CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology-Delhi (IIT-D), Delhi, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sanghamitra Pati
- Division of Public Health and Research, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
34
|
Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021; 12:612675. [PMID: 33613483 PMCID: PMC7889510 DOI: 10.3389/fmicb.2021.612675] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total (TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a threat to public health worldwide, stressing the need to develop new tuberculosis (TB) prevention and treatment strategies. It is estimated that in the next 35 years, drug-resistant TB will kill around 75 million people and cost the global economy $16.7 trillion. Indeed, the COVID-19 pandemic alone may contribute with the development of 6.3 million new TB cases due to lack of resources and enforced confinement in TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors, such as bacterial fitness, strain's genetic background and its capacity to adapt to the surrounding environment, as well as host-specific and environmental factors. Whole-genome transcriptomics and genome-wide association studies in recent years have shed some insights into the complexity of M.tb drug resistance and have provided a better understanding of its underlying molecular mechanisms. In this review, we will discuss M.tb phenotypic and genotypic changes driving resistance, including changes in cell envelope components, as well as recently described intrinsic and extrinsic factors promoting resistance emergence and transmission. We will further explore how drug-resistant M.tb adapts differently than drug-susceptible strains to the lung environment at the cellular level, modulating M.tb-host interactions and disease outcome, and novel next generation sequencing (NGS) strategies to study drug-resistant TB.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
35
|
Saxena S, Spaink HP, Forn-Cuní G. Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. BIOLOGY 2021; 10:biology10020096. [PMID: 33573039 PMCID: PMC7911849 DOI: 10.3390/biology10020096] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
The genus Mycobacteria comprises a multitude of species known to cause serious disease in humans, including Mycobacterium tuberculosis and M. leprae, the responsible agents for tuberculosis and leprosy, respectively. In addition, there is a worldwide spike in the number of infections caused by a mixed group of species such as the M. avium, M. abscessus and M. ulcerans complexes, collectively called nontuberculous mycobacteria (NTMs). The situation is forecasted to worsen because, like tuberculosis, NTMs either naturally possess or are developing high resistance against conventional antibiotics. It is, therefore, important to implement and develop models that allow us to effectively examine the fundamental questions of NTM virulence, as well as to apply them for the discovery of new and improved therapies. This literature review will focus on the known molecular mechanisms behind drug resistance in NTM and the current models that may be used to test new effective antimicrobial therapies.
Collapse
|
36
|
Narain A, Dubey RK, Verma AK, Srivastava A, Kant S. Potential Role of Proteasome Accessory Factor-C in Resistance against Second Line Drugs in Mycobacteria. J Lab Physicians 2021; 12:250-262. [PMID: 33390674 PMCID: PMC7773444 DOI: 10.1055/s-0040-1722552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Objectives Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), can survive inside the host granuloma courtesy the various extrinsic and intrinsic factors involved. Continuous use or misuse of the anti TB drugs over the years has led to the development of resistance in MTB against antibiotics. Drug-resistant TB in particular has been a menace since treating it requires exposing the patient to drugs for a prolonged period of time. Multidrug-resistant (MDR) and extensively drug resistant TB cases have increased over the years mostly due to the exposure of MTB to suboptimal levels of drug. Proteasomes provide MTB its pathogenicity and hence helps it to survive inside the host even in the presence of drugs. Materials and Methods The recombinantly expressed proteasome accessory factor-C (PafC) protein was purified via Ni-NTA affinity chromatography and overexpressed in the nonpathogenic strain of mycobacteria (Mycobacterium smegmatis) for the comparative analysis of minimum inhibitory concentrations of antimycobacterial drugs. The bacteria were subjected to various stress conditions. Secretory nature of PafC was analyzed by probing the purified protein against patient sera. Quantitative mRNA analysis of paf C, lex A, and rec A was performed to check for their level under fluoroquinolone (FQ) presence. The data were validated in clinical samples of pulmonary TB patients. Results pafC , that forms one part of paf operon, is involved in providing MTB its resistance against FQs. Through a series of experiments, we established the fact that PafC is upregulated in mycobacteria upon exposure to FQs and it leads to the increased intracellular survival of mycobacteria under the stresses generated by FQs. The study also refers to the correlation of pafC to deoxyribonucleic acid (DNA) damage repair enzymes lexA and recA at transcriptional level. The results obtained in vitro corroborated when the pulmonary TB patients' samples were subjected to the same molecular analysis. Statistical Analysis All experiments were conducted at least in triplicate. p -Value of <0.05 was considered to be statistically significant Conclusion PafC plays a significant role in providing resistance to mycobacteria against FQ class of drugs by increasing its intracellular survival through increased drug efflux and getting involved with DNA damage repair machinery.
Collapse
Affiliation(s)
- Apoorva Narain
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rikesh K Dubey
- Department of Microbiology, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, India
| | - Ajay Kumar Verma
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anand Srivastava
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Surya Kant
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
37
|
Goossens SN, Sampson SL, Van Rie A. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev 2020; 34:e00141-20. [PMID: 33055230 PMCID: PMC7566895 DOI: 10.1128/cmr.00141-20] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Successful treatment of tuberculosis (TB) can be hampered by Mycobacterium tuberculosis populations that are temporarily able to survive antibiotic pressure in the absence of drug resistance-conferring mutations, a phenomenon termed drug tolerance. We summarize findings on M. tuberculosis tolerance published in the past 20 years. Key M. tuberculosis responses to drug pressure are reduced growth rates, metabolic shifting, and the promotion of efflux pump activity. Metabolic shifts upon drug pressure mainly occur in M. tuberculosis's lipid metabolism and redox homeostasis, with reduced tricarboxylic acid cycle activity in favor of lipid anabolism. Increased lipid anabolism plays a role in cell wall thickening, which reduces sensitivity to most TB drugs. In addition to these general mechanisms, drug-specific mechanisms have been described. Upon isoniazid exposure, M. tuberculosis reprograms several pathways associated with mycolic acid biosynthesis. Upon rifampicin exposure, M. tuberculosis upregulates the expression of its drug target rpoB Upon bedaquiline exposure, ATP synthesis is stimulated, and the transcription factors Rv0324 and Rv0880 are activated. A better understanding of M. tuberculosis's responses to drug pressure will be important for the development of novel agents that prevent the development of drug tolerance following treatment initiation. Such agents could then contribute to novel TB treatment-shortening strategies.
Collapse
Affiliation(s)
- Sander N Goossens
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Samantha L Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
38
|
Abstract
Mycobacterium tuberculosis is the causative pathogen of the pulmonary disease tuberculosis. Despite the availability of effective treatment programs, there is a global pursuit of new anti-tubercular agents to respond to the developing threat of drug resistance, in addition to reducing the extensive duration of chemotherapy and any associated toxicity. The route to mycobacterial drug discovery can be considered from two directions: target-to-drug and drug-to-target. The former approach uses conventional methods including biochemical assays along with innovative computational screens, but is yet to yield any drug candidates to the clinic, with a high attrition rate owing to lack of whole cell activity. In the latter approach, compound libraries are screened for efficacy against the bacilli or model organisms, ensuring whole cell activity, but here subsequent target identification is the rate-limiting step. Advances in a variety of scientific fields have enabled the amalgamation of aspects of both approaches in the development of novel drug discovery tools, which are now primed to accelerate the discovery of novel hits and leads with known targets and whole cell activity. This review discusses these traditional and innovative techniques, which are widely used in the quest for new anti-tubercular compounds. Innovations in mycobacterial drug discovery to accelerate the identification of new drug candidates with confirmed targets and whole cell activity.![]()
Collapse
Affiliation(s)
- Katherine A Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham Edgbaston Birmingham B15 2TT UK +44 (0)121 41 45925 +44 (0)121 41 58125
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham Edgbaston Birmingham B15 2TT UK +44 (0)121 41 45925 +44 (0)121 41 58125
| |
Collapse
|
39
|
Mohammadi B, Ramazanzadeh R, Nouri B, Rouhi S. Frequency of Codon 306 Mutations in embB Gene of Mycobacterium tuberculosis Resistant to Ethambutol: A Systematic Review and Meta-Analysis. Int J Prev Med 2020; 11:112. [PMID: 33088440 PMCID: PMC7554598 DOI: 10.4103/ijpvm.ijpvm_114_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/16/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Ethambutol (EMB) resistance is a major concern in patients with tuberculosis (TB). The aim of this study was to determine the frequency rate of mutations in the embB306 gene of Mycobacterium tuberculosis (M. tuberculosis) resistant to EMB, based on a systematic review and meta-analysis. METHODS Thirty-seven original articles (1997-2015) that have been published in valid databases were considered for this research. The articles were systematically reviewed for the prevalence and rate of mutations in embB306 in EMB-resistant M. tuberculosis. Data were analyzed using meta-analysis and random effects models (CI 95%, P < 0.10). RESULTS With a 6,931 sample size in 37 original articles, the lowest rate was related to EMB resistance that was observed in 2014 with 0.05 (95% CI: 0.04-0.07) and the highest prevalence rate was 0.84 (95% CI: 0.68-1.01), observed in 1997. Lowest and highest prevalence rates of embB306 gene mutation in M. tuberculosis were 0.03 (95% CI: 0.01-0.07) in 2014 and 0.78 (95% CI: 0.71-1.84) in 2005, in the USA, respectively. CONCLUSIONS The present study revealed the prevalence and association of mutations in the embB306 gene of M. tuberculosis with resistance to EMB. Detecting EMB-resistant M. tuberculosis can help in controlling and correcting the administration of drugs for patients with TB.
Collapse
Affiliation(s)
- Bahman Mohammadi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rashid Ramazanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Microbiology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bijan Nouri
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samaneh Rouhi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
40
|
Di Natale C, De Benedictis I, De Benedictis A, Marasco D. Metal-Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060337. [PMID: 32570779 PMCID: PMC7344629 DOI: 10.3390/antibiotics9060337] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
In metal-peptide interactions, cations form stable complexes through bonds with coordinating groups as side chains of amino acids. These compounds, among other things, exert a wide variety of antimicrobial activities through structural changes of peptides upon metal binding and redox chemistry. They exhibit different mechanisms of action (MOA), including the modification of DNA/RNA, protein and cell wall synthesis, permeabilization and modulation of gradients of cellular membranes. Nowadays, the large increase in antibiotic resistance represents a crucial problem to limit progression at the pandemic level of the diseases that seemed nearly eradicated, such as tuberculosis (Tb). Mycobacterium tuberculosis (Mtb) is intrinsically resistant to many antibiotics due to chromosomal mutations which can lead to the onset of novel strains. Consequently, the maximum pharmaceutical effort should be focused on the development of new therapeutic agents and antimicrobial peptides can represent a valuable option as a copious source of potential bioactive compounds. The introduction of a metal center can improve chemical diversity and hence specificity and bioavailability while, in turn, the coordination to peptides of metal complexes can protect them and enhance their poor water solubility and air stability: the optimization of these parameters is strictly required for drug prioritization and to obtain potent inhibitors of Mtb infections with novel MOAs. Here, we present a panoramic review of the most recent findings in the field of metal complex-peptide conjugates and their delivery systems with the potential pharmaceutical application as novel antibiotics in Mtb infections.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Arianna De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Correspondence:
| |
Collapse
|
41
|
Diterpenoids isolated from the Samoan marine sponge Chelonaplysilla sp. inhibit Mycobacterium tuberculosis growth. J Antibiot (Tokyo) 2020; 73:568-573. [PMID: 32404991 DOI: 10.1038/s41429-020-0315-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/09/2022]
Abstract
Crude extracts of the marine sponge Chelonaplysilla sp. collected in Samoa, that were obtained from the NCI Open Repository (NCS 21903), inhibited Mycobacterium tuberculosis growth. Assay-guided fractionation of the extract led to the isolation and structural elucidation of the known diterpenoid macfarlandin D (1) and three new diterpenoids macfarlandins F (2), G (3), and H (4). Macfarlandin D (1) exhibited potent antimicrobial activity against M. tuberculosis with an MIC of 1.2 ± 0.4 µg mL-1. Macfarlandins F (2), G (3), and H (4) exhibited significantly weaker antitubercular activities, revealing SAR for the macfarlandin antitubercular pharmacophore. The structures of compounds 2, 3, and 4 were elucidated via detailed analysis of NMR and MS data.
Collapse
|
42
|
Revisiting the expression signature of pks15/1 unveils regulatory patterns controlling phenolphtiocerol and phenolglycolipid production in pathogenic mycobacteria. PLoS One 2020; 15:e0229700. [PMID: 32379829 PMCID: PMC7205293 DOI: 10.1371/journal.pone.0229700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
One of the most important and exclusive characteristics of mycobacteria is their cell wall. Amongst its constituent components are two related families of glycosylated lipids, diphthioceranates and phthiocerol dimycocerosate (PDIM) and its variant phenolic glycolipids (PGL). PGL have been associated with cell wall impermeability, phagocytosis, defence against nitrosative and oxidative stress and, intriguingly, biofilm formation. In bacteria from the Mycobacterium tuberculosis complex (MTBC), the biosynthetic pathway of the phenolphthiocerol moiety of PGL depends upon the expression of several genes encoding type I polyketide synthases (PKS), namely ppsA-E and pks15/1 which constitute the PDIM + PGL locus, and that are highly conserved in PDIM/PGL-producing strains. Consensus has not been achieved regarding the genetic organization of pks15/1 locus and knowledge is lacking on its transcriptional signature. Here we explore publicly available datasets of transcriptome data (RNA-seq) from more than 100 MTBC experiments in 40 growth conditions to outline the transcriptional structure and signature of pks15/1, using a differential expression approach to infer the regulatory patterns involving these and related genes. We show that pks1 expression is highly correlated with fadD22, Rv2949c, lppX, fadD29 and, also, pks6 and pks12, with the first three putatively integrating into a polycistronic structure. We evidence dynamic transcriptional heterogeneity within the genes involved in phenolphtiocerol and phenolic glycolipid production, most exhibiting up-regulation upon acidic pH and antibiotic exposure and down-regulation under hypoxia, dormancy, and low/high iron concentration. We finally propose a model based on transcriptome data in which σD positively regulates pks1, pks15 and fadD22, while σB and σE factors exert negative regulation at an upper level.
Collapse
|
43
|
Jelińska A, Zając M, Dadej A, Tomczak S, Geszke-Moritz M, Muszalska-Kolos I. Tuberculosis - Present Medication and Therapeutic Prospects. Curr Med Chem 2020; 27:630-656. [PMID: 30457045 DOI: 10.2174/0929867325666181120100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tuberculosis (TB) has been present in the history of human civilization since time immemorial and has caused more deaths than any other infectious disease. It is still considered one of the ten most common epidemiologic causes of death in the world. As a transmissible disease, it is initiated by rod-shaped (bacillus) mycobacteria. The management of tuberculosis became possible owing to several discoveries beginning in 1882 with the isolation of the TB bacillus by Robert Koch. The diagnosis of TB was enabled by finding a staining method for TB bacteria identification (1883). It was soon realized that a large-scale policy for the treatment and prevention of tuberculosis was necessary, which resulted in the foundation of International Union against Tuberculosis and Lung Diseases (1902). An antituberculosis vaccine was developed in 1921 and has been in therapeutic use since then. TB treatment regimens have changed over the decades and the latest recommendations are known as Directly Observed Treatment Short-course (DOTS, WHO 1993). METHODS A search of bibliographic databases was performed for peer-reviewed research literature. A focused review question and inclusion criteria were applied. Standard tools were used to assess the quality of retrieved papers. RESULTS A total of 112 papers were included comprising original publications and reviews. The paper overviews anti-TB drugs according to their mechanism of action. The chemical structure, metabolism and unwanted effects of such drugs have been discussed. The most recent treatment regimens and new drugs, including those in clinical trials, are also presented. CONCLUSION Despite a 22% decrease in the tuberculosis fatality rate observed between 2000 and 2015, the disease remains one of the ten prime causes of death worldwide. Increasing bacterial resistance and expensive, prolonged therapies are the main reasons for efforts to find effective drugs or antituberculosis regimens, especially to cure multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Jelińska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Marianna Zając
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Adrianna Dadej
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Szymon Tomczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Małgorzata Geszke-Moritz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Izabela Muszalska-Kolos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| |
Collapse
|
44
|
Edwards BD, Edwards J, Cooper R, Kunimoto D, Somayaji R, Fisher D. Incidence, treatment, and outcomes of isoniazid mono-resistant Mycobacterium tuberculosis infections in Alberta, Canada from 2007-2017. PLoS One 2020; 15:e0229691. [PMID: 32155169 PMCID: PMC7064215 DOI: 10.1371/journal.pone.0229691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
Abstract
Isoniazid resistant Mycobacterium tuberculosis (Hr-TB) is the most frequently encountered TB resistance phenotype in North America but limited data exist on the effectiveness of current therapeutic regimens. Ineffective treatment of Hr-TB increases patient relapse and anti-mycobacterial resistance, specifically MDR-TB. We undertook a multi-centre, retrospective review of culture-positive Hr-TB patients in Alberta, Canada (2007-2017). We assessed incidence and treatment outcomes, with a focus on fluoroquinolone (FQ)-containing regimens, to understand the risk of unsuccessful outcomes. Rates of Hr-TB were determined using the mid-year provincial population and odds of unsuccessful treatment was calculated using a Fisher's Exact test. One hundred eight patients of median age 37 years (IQR: 26-50) were identified with Hr-TB (6.3%), 98 of whom were able to be analyzed. Seven percent reported prior treatment. Rate of foreign birth was high (95%), but continent of origin did not predict Hr-TB (p = 0.47). Mean compliance was 95% with no difference between FQ and non-FQ regimens (p = 1.00). Treatment success was high (91.8%). FQ-containing regimens were frequently initiated (70%), with no difference in unsuccessful outcomes compared to non-FQ-containing regimens (5.8% vs. 13.8%, OR 0.4, 95% CI 0.1-2.3, p = 0.23). Only one patient (1%) utilizing a less common non-FQ-based regimen including two months of pyrazinamide developed secondary multidrug resistance. Unsuccessful treatment was low (<10%) relative to comparable literature (~15%) and showed similar outcomes for FQ and non-FQ-based regimens and no deficit to those using intermittent fluoroquinolones in the continuation phase of treatment. Our findings are similar to recent data, however prospective, randomized trials of adequate power are needed to determine the optimal treatment for Hr-TB.
Collapse
Affiliation(s)
- Brett D. Edwards
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jenny Edwards
- Pharmacy Services, Alberta Health Services, Calgary, Alberta, Canada
| | - Ryan Cooper
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Kunimoto
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Dina Fisher
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Umar FF, Husain DR, Hatta MM, Natzir RR, Sjahril RS, Dwiyanti RR, Junita AR, Primaguna MR. Molecular characterisation of mutations associated with resistance to first- and second-line drugs among Indonesian patients with tuberculosis. J Taibah Univ Med Sci 2020; 15:54-58. [PMID: 32110183 PMCID: PMC7033412 DOI: 10.1016/j.jtumed.2019.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES This study aimed to determine molecular characteristics of rpoB, katG, rrs, and gyrA genes in Mycobacterium tuberculosis isolated from a cohort of Indonesian patients with tuberculosis. METHODS Fifty isolates of M. tuberculosis were analysed by testing (DST) for susceptibility to first- and second-line drugs using the proportional method in a liquid medium. The genomic material was extracted to perform multiplex polymerase chain reaction (PCR) for identification and gene sequencing of rpoB, katG, rrs, and gyrA. RESULTS Approximately 80% (40/50) of the rpoB mutations that were detected outside the hot-spot region (S450L, H445D, D435V, S441L, I491F, and Q432P) conferred rifampicin-resistance on M. tuberculosis. Approximately 11.42% (4/35) of isolates with S315T mutation in katG led to rifampicin-resistance instead of isoniazid-resistance. The mutation in katG gene was found at various locations (P280P, G279R, E340Q, T271I, E340*stop codon, R373G, and S315N). Streptomycin-resistance was detected in 42% (21/50) of the strains, but only two strains had rrs gene mutations (G878A and/or S514R). Approximately 14% (7/50) of M. tuberculosis isolates were kanamycin- and capreomycin-resistant but did not harbour mutations in the rrs gene, while 80% (40/50) of the strains had mutations in the quinolone-resistance determining region (QRDR) of the gyrA gene (S95T, D94V, A90V, and S91P) including the pan-susceptible strain. CONCLUSIONS Of the 50 strains analysed, most of the mutations in the rpoB gene associated with rifampicin-resistance were also detected in the katG and gyrA genes. Molecular characterisation using DNA sequencing techniques is a highly sensitive approach for detecting mutations.
Collapse
Affiliation(s)
- Faiqah F. Umar
- Post Graduate of Medical Science, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Dirayah R. Husain
- Department of Biology, Faculty of Science, University of Hasanuddin, Makassar, Indonesia
| | - Mochammad M. Hatta
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Rosdiana R. Natzir
- Department of Biochemistry, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Rizalinda S. Sjahril
- Department of Medical Microbiology, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Ressy R. Dwiyanti
- Department of Medical Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| | - Ade R. Junita
- Post Graduate of Medical Science, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Muhammad R. Primaguna
- Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
46
|
Drug-resistant spinal tuberculosis - Current concepts, challenges, and controversies. J Clin Orthop Trauma 2020; 11:863-870. [PMID: 32904104 PMCID: PMC7452346 DOI: 10.1016/j.jcot.2020.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The alarming global increase in drug-resistant strains plagues the global fight to end tuberculosis (TB), especially in developing countries. The often reported poor treatment outcomes, sequelae, and lack of best practice guidelines in drug-resistant spinal TB poses a significant challenge in its efficient management. While multi-drug chemotherapy is still the primary modality of treatment, surgical intervention is essential in specific scenarios. With limited data on management and outcomes in drug-resistant spinal TB, there is no consensus on the appropriate therapy regarding the number and duration of drugs and therapeutic endpoints of this conundrum. In this light of limited evidence, we have performed a systematic computerized search using the Cochrane Database of Systematic Reviews, Scopus, Embase, Web of Science, and PubMed databases and studies published over the past 30 years on drug-resistance in spinal TB have been analyzed. This systematic review aims to review the current epidemiology, clinical features, updates in clinical diagnostics and chemotherapy, surgical management, and outcomes in drug-resistant spinal TB. We also consolidate potential areas of action and emphasize the need for research and large scale trials in the management of drug-resistant spinal TB.
Collapse
|
47
|
A Repurposing Approach for Uncovering the Anti-Tubercular Activity of FDA-Approved Drugs with Potential Multi-Targeting Profiles. Molecules 2019; 24:molecules24234373. [PMID: 31795400 PMCID: PMC6930672 DOI: 10.3390/molecules24234373] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is one of the top 10 causes of death worldwide. This scenario is further complicated by the insurgence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. The identification of appropriate drugs with multi-target affinity profiles is considered to be a widely accepted strategy to overcome the rapid development of resistance. The aim of this study was to discover Food and Drug Administration (FDA)-approved drugs possessing antimycobacterial activity, potentially coupled to an effective multi-target profile. An integrated screening platform was implemented based on computational procedures (high-throughput docking techniques on the target enzymes peptide deformylase and Zmp1) and in vitro phenotypic screening assays using two models to evaluate the activity of the selected drugs against Mycobacterium tuberculosis (Mtb), namely, growth of Mtb H37Rv and of two clinical isolates in axenic media, and infection of peripheral blood mononuclear cells with Mtb. Starting from over 3000 FDA-approved drugs, we selected 29 marketed drugs for submission to biological evaluation. Out of 29 drugs selected, 20 showed antimycobacterial activity. Further characterization suggested that five drugs possessed promising profiles for further studies. Following a repurposing strategy, by combining computational and biological efforts, we identified marketed drugs with relevant antimycobacterial profiles.
Collapse
|
48
|
Johnsen CH, Clausen PTLC, Aarestrup FM, Lund O. Improved Resistance Prediction in Mycobacterium tuberculosis by Better Handling of Insertions and Deletions, Premature Stop Codons, and Filtering of Non-informative Sites. Front Microbiol 2019; 10:2464. [PMID: 31736907 PMCID: PMC6834686 DOI: 10.3389/fmicb.2019.02464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/15/2019] [Indexed: 11/21/2022] Open
Abstract
Resistance in Mycobacterium tuberculosis is a major obstacle for effective treatment of tuberculosis. Multiple studies have shown promising results for predicting drug resistance in M. tuberculosis based on whole genome sequencing (WGS) data, however, these tools are often limited to this single species. We have previously developed a common platform for resistance prediction in multiple species. This platform detects acquired resistance genes (ResFinder) and species-specific chromosomal mutations (PointFinder) associated with resistance, all based on WGS data. In this study, we present a new version of PointFinder together with an updated M. tuberculosis database. PointFinder now includes predictions based on insertions and deletions, and it explicitly reports frameshift mutations and premature stop codons. We found that premature stop codons in four resistance-associated genes (katG, ethA, pncA, and gidB) were over-represented in resistant strains, and we saw an increased prediction performance when including premature stop codons in these genes as resistance markers. Different M. tuberculosis resistance prediction tools vary in performance mostly due to the mutation library used. We found that a well-established mutation library included non-predictive linage markers, and through forward feature selection we eliminated those from the mutation library. Compared to other similar web-based tools, PointFinder performs equally good. The advantages of PointFinder is that together with ResFinder it serves as a common web-based and downloadable platform for resistance detection in multiple species. It is easy to use for clinicians and already widely used in the research community.
Collapse
Affiliation(s)
- Camilla Hundahl Johnsen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Philip T L C Clausen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ole Lund
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
49
|
Carvalho Dos Santos C, Rodriguez D, Kanno Issamu A, Cezar De Cerqueira Leite L, Pereira Nascimento I. Recombinant BCG expressing the LTAK63 adjuvant induces increased early and long-term immune responses against Mycobacteria. Hum Vaccin Immunother 2019; 16:673-683. [PMID: 31665996 PMCID: PMC7227645 DOI: 10.1080/21645515.2019.1669414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of more effective vaccines against Mycobacterium tuberculosis has become a world priority. Previously, we have shown that a recombinant BCG expressing the LTAK63 adjuvant (rBCG-LTAK63) displayed higher protection than BCG against tuberculosis challenge in mice. In order to elucidate the immune effector mechanisms induced by rBCG-LTAK63, we evaluated the immune response before and after challenge. The potential to induce an innate immune response was investigated by intraperitoneal immunization with BCG or rBCG-LTAK63: both displayed increased cellular infiltration in the peritoneum with high numbers of neutrophils at 24 h and macrophages at 7 d. The rBCG-LTAK63-immunized mice displayed increased production of Nitric Oxide at 24 h and Hydrogen Peroxide at 7 d. The number of lymphocytes was higher in the rBCG-LTAK63 group when compared to BCG. Immunophenotyping of lymphocytes showed that rBCG-LTAK63 immunization increased CD4+ and CD8+ T cells. An increased long-term Th1/Th17 cytokine profile was observed 90 d after subcutaneous immunization with rBCG-LTAK63. The evaluation of immune responses at 15 d after challenge showed that rBCG-LTAK63-immunized mice displayed increased TNF-α-secreting CD4+ T cells and multifunctional IL-2+ TNF-α+ CD4+ T cells as compared to BCG-immunized mice. Our results suggest that immunization with rBCG-LTAK63 induces enhanced innate and long-term immune responses as compared to BCG. These results can be correlated with the superior protection induced against TB.
Collapse
Affiliation(s)
- Carina Carvalho Dos Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Alex Kanno Issamu
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luciana Cezar De Cerqueira Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
50
|
Hearn MJ, Towers G, Cynamon MH. Preparation and Antitubercular Activities of Palindromic Hydrazinecarbothioamides and Carbonothioic Dihydrazides. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180727120422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:With approximately one-third of the world’s population infected, tuberculosis continues to be a global public health crisis. The rise of strains that are unusually virulent or highly resistant to current drugs is a cause of special concern, prompting research into new classes of compounds, as well as the re-evaluation of known chemotherapeutic agents.Objectives:The antimycobacterial activities associated with some recently-reported thiocarbonyl compounds kindled our interest in the synthesis of substituted hydrazinecarbothioamides (3) and carbonothioic dihydrazides (4), with the aim of investigating their potential in antitubercular drug design and discovery.Methods:In the present study, the title compounds 3 and 4 were prepared by the condensation of hydrazines with isothiocyanates in reactions readily controlled by stoichiometry, temperature and solvent. The compounds were assessed against Mycobacterium bovis BCG in Kirby-Bauer disc diffusion, and minimum inhibitory concentrations were determined against the virulent strain M. tuberculosis Erdman.Results:The chemical structures of these thermally stable compounds were determined by IR, 1HNMR, 13C-NMR, high-resolution mass spectrometry and elemental analysis. In the Kirby-Bauer disc diffusion assay, some of the compounds showed substantial diameters of inhibition against BCG. In some cases, the zones of inhibition were so large that no growth at all was observed on the assay plates. Against M. tuberculosis Erdman, several of the compounds showed significant activities. Compound 3h was the most active, demonstrating a minimum inhibitory concentration of 0.5 µg/mL.Conclusion:We found that the title compounds may be prepared conveniently in excellent purity and good yields. They are readily identified on the basis of their characteristic spectra. Some members of this class showed significant activities against mycobacteria. We conclude that further work will be warranted in exploring the antitubercular properties of these compounds.
Collapse
Affiliation(s)
- Michael Joseps Hearn
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Gwendolyn Towers
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Michael Henry Cynamon
- Veterans Affairs Medical Center, 800 Irving Avenue, Syracuse, New York 13210, United States
| |
Collapse
|