1
|
Malinowska M, Nowicka W, Kloska A, Węgrzyn G, Jakóbkiewicz-Banecka J. Efficacy of a Combination Therapy with Laronidase and Genistein in Treating Mucopolysaccharidosis Type I in a Mouse Model. Int J Mol Sci 2024; 25:2371. [PMID: 38397051 PMCID: PMC10889377 DOI: 10.3390/ijms25042371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by α-L-iduronidase deficiency. The standard treatment, enzyme replacement therapy with laronidase, has limited effectiveness in treating neurological symptoms due to poor blood-brain barrier penetration. An alternative is substrate reduction therapy using molecules, such as genistein, which crosses this barrier. This study evaluated the effectiveness of a combination of laronidase and genistein in a mouse model of MPS I. Over 12 weeks, MPS I and wild-type mice received laronidase, genistein, or both. Glycosaminoglycan (GAG) storage in visceral organs and the brain, its excretion in urine, and the serum level of the heparin cofactor II-thrombin (HCII-T) complex, along with behavior, were assessed. The combination therapy resulted in reduced GAG storage in the heart and liver, whereas genistein alone reduced the brain GAG storage. Laronidase and combination therapy decreased liver and spleen weights and significantly reduced GAG excretion in the urine. However, this therapy negated some laronidase benefits in the HCII-T levels. Importantly, the combination therapy improved the behavior of female mice with MPS I. These findings offer valuable insights for future research to optimize MPS I treatments.
Collapse
Affiliation(s)
- Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | | | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| |
Collapse
|
2
|
The Interplay of Glycosaminoglycans and Cysteine Cathepsins in Mucopolysaccharidosis. Biomedicines 2023; 11:biomedicines11030810. [PMID: 36979788 PMCID: PMC10045161 DOI: 10.3390/biomedicines11030810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Mucopolysaccharidosis (MPS) consists of a group of inherited lysosomal storage disorders that are caused by a defect of certain enzymes that participate in the metabolism of glycosaminoglycans (GAGs). The abnormal accumulation of GAGs leads to progressive dysfunctions in various tissues and organs during childhood, contributing to premature death. As the current therapies are limited and inefficient, exploring the molecular mechanisms of the pathology is thus required to address the unmet needs of MPS patients to improve their quality of life. Lysosomal cysteine cathepsins are a family of proteases that play key roles in numerous physiological processes. Dysregulation of cysteine cathepsins expression and activity can be frequently observed in many human diseases, including MPS. This review summarizes the basic knowledge on MPS disorders and their current management and focuses on GAGs and cysteine cathepsins expression in MPS, as well their interplay, which may lead to the development of MPS-associated disorders.
Collapse
|
3
|
Rintz E, Podlacha M, Cyske Z, Pierzynowska K, Węgrzyn G, Gaffke L. Activities of (Poly)phenolic Antioxidants and Other Natural Autophagy Modulators in the Treatment of Sanfilippo Disease: Remarkable Efficacy of Resveratrol in Cellular and Animal Models. Neurotherapeutics 2023; 20:254-271. [PMID: 36344724 PMCID: PMC10119361 DOI: 10.1007/s13311-022-01323-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
Sanfilippo disease, caused by mutations in the genes encoding heparan sulfate (HS) (a glycosaminoglycan; GAG) degradation enzymes, is a mucopolysaccharidosis (MPS), which is also known as MPS type III, and is characterized by subtypes A, B, C, and D, depending on identity of the dysfunctional enzyme. The lack of activity or low residual activity of an HS-degrading enzyme leads to excess HS in the cells, impairing the functions of different types of cells, including neurons. The disease usually leads to serious psychomotor dysfunction and death before adulthood. In this work, we show that the use of molecules known as dietary (poly)phenolic antioxidants and other natural compounds known as autophagy activators (genistein, capsaicin, curcumin, resveratrol, trehalose, and calcitriol) leads to accelerated degradation of accumulated HS in the fibroblasts of all subtypes of MPS III. Both the cytotoxicity tests we performed and the available literature data indicated that the use of selected autophagy inducers was safe. Since it showed the highest effectivity in cellular models, resveratrol efficacy was tested in experiments with a mouse model of MPS IIIB. Urinary GAG levels were normalized in MPS IIIB mice treated with 50 mg/kg/day resveratrol for 12 weeks or longer. Behavioral tests indicated complete correction of hyperactivity and anxiety in these animals. Biochemical analyses indicated that administration of resveratrol caused autophagy stimulation through an mTOR-independent pathway in the brains and livers of the MPS IIIB mice. These results indicate the potential use of resveratrol (and possibly other autophagy stimulators) in the treatment of Sanfilippo disease.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
4
|
Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I. Int J Mol Sci 2022; 24:ijms24010534. [PMID: 36613977 PMCID: PMC9820816 DOI: 10.3390/ijms24010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a metabolic genetic disease caused by the deficiency of a lysosomal enzyme involved in glycosaminoglycans (GAGs) degradation. MPS I cells have a constant level of GAG synthesis, but disturbed degradation means that GAGs accumulate progressively, impairing cell metabolism. GAG metabolism can be modulated by flavonoids, and these are being studied as therapeutics for MPS. We have optimised the protocol for obtaining fibroblasts and hepatocytes from the MPS I murine model and characterised the cells for their suitability as an in vitro model for testing compounds with therapeutic potential. Methods: Murine primary hepatocytes and fibroblasts were used as a cellular model to study the effect of genistein, biochanin A, and kaempferol on the modulation of the GAG synthesis process. Flavonoids were used individually as well as in two-component mixtures. There were no statistically significant differences in GAG synthesis levels from cell types obtained from either wild-type or MPS I mice. We also showed that MPS I fibroblasts and hepatocytes store GAGs, which makes them useful in vitro models for testing the effectiveness of substrate reduction therapies. Furthermore, tested flavonoids had a different impact on GAG synthesis depending on cell type and whether they were used alone or in a mixture. The tested flavonoids reduce GAG synthesis more effectively in fibroblasts than in hepatocytes, regardless of whether they are used individually or in a mixture. Flavonoids modulate the level of GAG synthesis differently depending on cell types, therefore in vitro experiments performed to assess the effectiveness of potential therapies for metabolic diseases should be carried out using more than one cell model, and only such an approach will allow for full answering scientific questions.
Collapse
|
5
|
Węsierska M, Kloska A, Medina DL, Jakóbkiewicz-Banecka J, Gabig-Cimińska M, Radzińska M, Moskot M, Malinowska M. Cellular and Gene Expression Response to the Combination of Genistein and Kaempferol in the Treatment of Mucopolysaccharidosis Type I. Int J Mol Sci 2022; 23:ijms23031058. [PMID: 35162981 PMCID: PMC8834790 DOI: 10.3390/ijms23031058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/28/2023] Open
Abstract
Flavonoids are investigated as therapeutics for mucopolysaccharidosis, a metabolic disorder with impaired glycosaminoglycan degradation. Here we determined the effects of genistein and kaempferol, used alone or in combination, on cellular response and gene expression in a mucopolysaccharidosis type I model. We assessed the cell cycle, viability, proliferation, subcellular localization of the translocation factor EB (TFEB), number and distribution of lysosomes, and glycosaminoglycan synthesis after exposure to flavonoids. Global gene expression was analysed using DNA microarray and quantitative PCR. The type and degree of flavonoid interaction were determined based on the combination and dose reduction indexes. The combination of both flavonoids synergistically inhibits glycosaminoglycan synthesis, modulates TFEB localization, lysosomal number, and distribution. Genistein and kaempferol in a 1:1 ratio regulate the expression of 52% of glycosaminoglycan metabolism genes. Flavonoids show synergy, additivity, or slight antagonism in all analysed parameters, and the type of interaction depends on the concentration and component ratios. With the simultaneous use of genistein and kaempferol in a ratio of 4:1, even a 10-fold reduction in the concentration of kaempferol is possible. Flavonoid mixtures, used as the treatment of mucopolysaccharidosis, are effective in reducing glycosaminoglycan production and storage and show a slight cytotoxic effect compared to single-flavonoid usage.
Collapse
Affiliation(s)
- Magdalena Węsierska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Diego L. Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Naples, Italy;
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Marta Radzińska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Marta Moskot
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
- Correspondence: (M.M.); (M.M.); Tel.: +48-58-5236045 (M.M.); +48-58-5236046 (M.M.); Fax: +48-58-5236025 (M.M. & M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Correspondence: (M.M.); (M.M.); Tel.: +48-58-5236045 (M.M.); +48-58-5236046 (M.M.); Fax: +48-58-5236025 (M.M. & M.M.)
| |
Collapse
|
6
|
Kingma SDK, Jonckheere AI. MPS I: Early diagnosis, bone disease and treatment, where are we now? J Inherit Metab Dis 2021; 44:1289-1310. [PMID: 34480380 DOI: 10.1002/jimd.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by α-L-iduronidase deficiency. Patients present with a broad spectrum of disease severity ranging from the most severe phenotype (Hurler) with devastating neurocognitive decline, bone disease and early death to intermediate (Hurler-Scheie) and more attenuated (Scheie) phenotypes, with a normal life expectancy. The most severely affected patients are preferably treated with hematopoietic stem cell transplantation, which halts the neurocognitive decline. Patients with more attenuated phenotypes are treated with enzyme replacement therapy. There are several challenges to be met in the treatment of MPS I patients. First, to optimize outcome, early recognition of the disease and clinical phenotype is needed to guide decisions on therapeutic strategies. Second, there is thus far no effective treatment available for MPS I bone disease. The pathophysiological mechanisms behind bone disease are largely unknown, limiting the development of effective therapeutic strategies. This article is a state of the art that comprehensively discusses three of the most urgent open issues in MPS I: early diagnosis of MPS I patients, pathophysiology of MPS I bone disease, and emerging therapeutic strategies for MPS I bone disease.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| | - An I Jonckheere
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| |
Collapse
|
7
|
Ghosh A, Rust S, Langford-Smith K, Weisberg D, Canal M, Breen C, Hepburn M, Tylee K, Vaz FM, Vail A, Wijburg F, O'Leary C, Parker H, Wraith JE, Bigger BW, Jones SA. High dose genistein in Sanfilippo syndrome: A randomised controlled trial. J Inherit Metab Dis 2021; 44:1248-1262. [PMID: 34047372 DOI: 10.1002/jimd.12407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
The aim of this study was to evaluate the efficacy of high dose genistein aglycone in Sanfilippo syndrome (mucopolysaccharidosis type III). High doses of genistein aglycone have been shown to correct neuropathology and hyperactive behaviour in mice, but efficacy in humans is uncertain. This was a single centre, double-blinded, randomised, placebo-controlled study with open-label extension phase. Randomised participants received either 160 mg/kg/day genistein aglycone or placebo for 12 months; subsequently all participants received genistein for 12 months. The primary outcome measure was the change in heparan sulfate concentration in cerebrospinal fluid (CSF), with secondary outcome measures including heparan sulfate in plasma and urine, total glycosaminoglycans in urine, cognitive and adaptive behaviour scores, quality of life measures and actigraphy. Twenty-one participants were randomised and 20 completed the placebo-controlled phase. After 12 months of treatment, the CSF heparan sulfate concentration was 5.5% lower in the genistein group (adjusted for baseline values), but this was not statistically significant (P = .26), and CSF heparan sulfate increased in both groups during the open-label extension phase. Reduction of urinary glycosaminoglycans was significantly greater in the genistein group (32.1% lower than placebo after 12 months, P = .0495). Other biochemical and clinical parameters showed no significant differences between groups. High dose genistein aglycone (160 mg/kg/day) was not associated with clinically meaningful reductions in CSF heparan sulfate and no evidence of clinical efficacy was detected. However, there was a statistically significant reduction in urine glycosaminoglycans. These data do not support the use of genistein aglycone therapy in mucopolysaccharidosis type III. High dose genistein aglycone does not lead to clinically meaningful reductions in biomarkers or improvement in neuropsychological outcomes in mucopolysaccharidosis type III.
Collapse
Affiliation(s)
- Arunabha Ghosh
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Stewart Rust
- Paediatric Psychosocial Service, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kia Langford-Smith
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Daniel Weisberg
- Paediatric Psychosocial Service, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maria Canal
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Catherine Breen
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Michelle Hepburn
- Wellcome Trust Children's Clinical Research Facility, Royal Manchester Children's Hospital, Manchester, UK
| | - Karen Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Andy Vail
- Centre for Biostatistics, School of Health Sciences, University of Manchester, UK
| | - Frits Wijburg
- Amsterdam UMC, location Academic Medical Center, Amsterdam, Netherlands
| | - Claire O'Leary
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Helen Parker
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - J Ed Wraith
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Simon A Jones
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| |
Collapse
|
8
|
Genistein Activates Transcription Factor EB and Corrects Niemann-Pick C Phenotype. Int J Mol Sci 2021; 22:ijms22084220. [PMID: 33921734 PMCID: PMC8073251 DOI: 10.3390/ijms22084220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick type C disease (NPCD) is a lysosomal storage disease (LSD) characterized by abnormal cholesterol accumulation in lysosomes, impaired autophagy flux, and lysosomal dysfunction. The activation of transcription factor EB (TFEB), a master lysosomal function regulator, reduces the accumulation of lysosomal substrates in LSDs where the degradative capacity of the cells is compromised. Genistein can pass the blood-brain barrier and activate TFEB. Hence, we investigated the effect of TFEB activation by genistein toward correcting the NPC phenotype. We show that genistein promotes TFEB translocation to the nucleus in HeLa TFEB-GFP, Huh7, and SHSY-5Y cells treated with U18666A and NPC1 patient fibroblasts. Genistein treatment improved lysosomal protein expression and autophagic flux, decreasing p62 levels and increasing those of the LC3-II in NPC1 patient fibroblasts. Genistein induced an increase in β-hexosaminidase activity in the culture media of NPC1 patient fibroblasts, suggesting an increase in lysosomal exocytosis, which correlated with a decrease in cholesterol accumulation after filipin staining, including cells treated with U18666A and NPC1 patient fibroblasts. These results support that genistein-mediated TFEB activation corrects pathological phenotypes in NPC models and substantiates the need for further studies on this isoflavonoid as a potential therapeutic agent to treat NPCD and other LSDs with neurological compromise.
Collapse
|
9
|
Carubbi F, Barbato A, Burlina AB, Francini F, Mignani R, Pegoraro E, Landini L, De Danieli G, Bruni S, Strazzullo P. Nutrition in adult patients with selected lysosomal storage diseases. Nutr Metab Cardiovasc Dis 2021; 31:733-744. [PMID: 33589321 DOI: 10.1016/j.numecd.2020.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of clinically heterogeneous disorders affecting the function of lysosomes and are characterized by an accumulation of undigested substrates within several cell types. In recent years there have been substantial advances in supportive care and drug treatment for some LSDs, leading to improved patient survival, as seen in Gaucher, Pompe and Fabry disease and some Mucopolysaccharidoses; however, many symptoms still persist. Thus it is now even more important to improve patients' quality of life and reduce symptoms and comorbidities. One potential way of achieving this goal is through adjunct nutritional therapy, which is challenging as patients may be overweight with associated consequences, or malnourished, or underweight. Furthermore, drugs used to treat LSDs can modify the metabolic status and needs of patients. There are currently not enough data to make specific dietary recommendations for individual LSDs; however, suggestions can be made for managing clinical manifestations of the diseases, as well as treatment-associated adverse events. The metabolic and nutritional status of adult patients must be regularly assessed and individualized dietary plans may be created to cater to a patient's specific needs. Damage to the autophagic process is a common feature in LSDs that is potentially sensitive to dietary manipulation and needs to be assessed in clinical studies.
Collapse
Affiliation(s)
- Francesca Carubbi
- U.O.C. Medicina metabolica AOU Modena, Metabolic Medicine Unit, Modena University Hospital, Modena, Italy.
| | - Antonio Barbato
- Department of Clinical Medicine and Surgery, "Federico II" University Hospital, Naples, Italy
| | - Alberto B Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Major Operational Unit of Hereditary Metabolic Diseases, Azienda Ospedaliera di Padova, Padua, Italy
| | - Francesco Francini
- U.O. Nutrizione Clinica, Department of Medicine, Azienda Ospedaliera di Padova, Padua, Italy
| | - Renzo Mignani
- U.O. di Nefrologia e Dialisi dell'Ospedale Infermi di Rimini, Nephrology Operational Unit of the Infermi Hospital in Rimini, Rimini, Italy
| | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Linda Landini
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria - Sestri Levante Hospital, Italy
| | | | | | - Pasquale Strazzullo
- Department of Clinical Medicine and Surgery, "Federico II" University Hospital, Naples, Italy
| |
Collapse
|
10
|
Mucolipidoses Overview: Past, Present, and Future. Int J Mol Sci 2020; 21:ijms21186812. [PMID: 32957425 PMCID: PMC7555117 DOI: 10.3390/ijms21186812] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mucolipidosis II and III (ML II/III) are caused by a deficiency of uridine-diphosphate N-acetylglucosamine: lysosomal-enzyme-N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase, EC2.7.8.17), which tags lysosomal enzymes with a mannose 6-phosphate (M6P) marker for transport to the lysosome. The process is performed by a sequential two-step process: first, GlcNAc-1-phosphotransferase catalyzes the transfer of GlcNAc-1-phosphate to the selected mannose residues on lysosomal enzymes in the cis-Golgi network. The second step removes GlcNAc from lysosomal enzymes by N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase (uncovering enzyme) and exposes the mannose 6-phosphate (M6P) residues in the trans-Golgi network, in which the enzymes are targeted to the lysosomes by M6Preceptors. A deficiency of GlcNAc-1-phosphotransferase causes the hypersecretion of lysosomal enzymes out of cells, resulting in a shortage of multiple lysosomal enzymes within lysosomes. Due to a lack of GlcNAc-1-phosphotransferase, the accumulation of cholesterol, phospholipids, glycosaminoglycans (GAGs), and other undegraded substrates occurs in the lysosomes. Clinically, ML II and ML III exhibit quite similar manifestations to mucopolysaccharidoses (MPSs), including specific skeletal deformities known as dysostosis multiplex and gingival hyperplasia. The life expectancy is less than 10 years in the severe type, and there is no definitive treatment for this disease. In this review, we have described the updated diagnosis and therapy on ML II/III.
Collapse
|
11
|
Kobayashi H. Recent trends in mucopolysaccharidosis research. J Hum Genet 2018; 64:127-137. [PMID: 30451936 DOI: 10.1038/s10038-018-0534-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis (MPS) is a group of inherited conditions involving metabolic dysfunction. Lysosomal enzyme deficiency leads to the accumulation of glycosaminoglycan (GAG) resulting in systemic symptoms, and is categorized into seven types caused by deficiency in one of eleven different enzymes. The pathophysiological mechanism of these diseases has been investigated, indicating impaired autophagy in neuronal damage initiation, association of activated microglia and astrocytes with the neuroinflammatory processes, and involvement of tauopathy. A new inherited error of metabolism resulting in a multisystem disorder with features of the MPS was also identified. Additionally, new therapeutic methods are being developed that could improve conventional therapies, such as new recombinant enzymes that can penetrate the blood brain barrier, hematopoietic stem cell transplantation with reduced intensity conditioning, gene therapy using a viral vector system or gene editing, and substrate reduction therapy. In this review, we discuss the recent developments in MPS research and provide a framework for developing strategies.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, Department of Pediatrics, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| |
Collapse
|
12
|
Neuronal-specific impairment of heparan sulfate degradation in Drosophila reveals pathogenic mechanisms for Mucopolysaccharidosis type IIIA. Exp Neurol 2018; 303:38-47. [PMID: 29408731 DOI: 10.1016/j.expneurol.2018.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2017] [Accepted: 01/31/2018] [Indexed: 01/17/2023]
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder resulting from the deficit of the N-sulfoglucosamine sulfohydrolase (SGSH) enzyme that leads to accumulation of partially-degraded heparan sulfate. MPS IIIA is characterized by severe neurological symptoms, clinically presenting as Sanfilippo syndrome, for which no effective therapy is available. The lysosomal SGSH enzyme is conserved in Drosophila and we have identified increased levels of heparan sulfate in flies with ubiquitous knockdown of SGSH/CG14291. Using neuronal specific knockdown of SGSH/CG14291 we have also observed a higher abundance of Lysotracker-positive puncta as well as increased expression of GFP tagged Ref(2)P supporting disruption to lysosomal function. We have also observed a progressive defect in climbing ability, a hallmark of neurological dysfunction. Genetic screens indicate proteins and pathways that can functionally modify the climbing phenotype, including autophagy-related proteins (Atg1 and Atg18), superoxide dismutase enzymes (Sod1 and Sod2) and heat shock protein (HSPA1). In addition, reducing heparan sulfate biosynthesis by knocking down sulfateless or slalom expression significantly worsens the phenotype; an important observation given that substrate inhibition is being evaluated clinically as a treatment for MPS IIIA. Identifying the cellular pathways that can modify MPS IIIA neuropathology is an essential step in the development of novel therapeutic approaches to prevent and/or ameliorate symptoms in children with Sanfilippo syndrome.
Collapse
|
13
|
Gaffke L, Pierzynowska K, Piotrowska E, Węgrzyn G. How close are we to therapies for Sanfilippo disease? Metab Brain Dis 2018; 33:1-10. [PMID: 28921412 PMCID: PMC5769821 DOI: 10.1007/s11011-017-0111-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/10/2017] [Indexed: 11/11/2022]
Abstract
Sanfilippo disease is one of mucopolysaccharidoses (MPS), a group of lysosomal storage diseases characterized by accumulation of partially degraded glycosaminoglycans (GAGs). It is classified as MPS type III, though it is caused by four different genetic defects, determining subtypes A, B, C and D. In each subtype of MPS III, the primary storage GAG is heparan sulfate (HS), but mutations leading to A, B, C, and D subtypes are located in genes coding for heparan N-sulfatase (the SGSH gene), α-N-acetylglucosaminidase (the NAGLU gene), acetyl-CoA:α-glucosaminide acetyltransferase (the HGSNAT gene), and N-acetylglucosamine-6-sulfatase (the GNS gene), respectively. Neurodegenerative changes in the central nervous system (CNS) are major problems in Sanfilippo disease. They cause severe cognitive disabilities and behavioral disturbances. This is the main reason of a current lack of therapeutic options for MPS III patients, while patients from some other MPS types (I, II, IVA, and VI) can be treated with enzyme replacement therapy or bone marrow or hematopoietic stem cell transplantations. Nevertheless, although no therapy is available for Sanfilippo disease now, recent years did bring important breakthroughs in this aspect, and clinical trials are being conducted with enzyme replacement therapy, gene therapy, and substrate reduction therapy. These recent achievements are summarized and discussed in this review.
Collapse
Affiliation(s)
- Lidia Gaffke
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
14
|
Odle B, Dennison N, Al-Nakkash L, Broderick TL, Plochocki JH. Genistein treatment improves fracture resistance in obese diabetic mice. BMC Endocr Disord 2017; 17:1. [PMID: 28183304 PMCID: PMC5299772 DOI: 10.1186/s12902-016-0144-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/27/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Obese, type two diabetics are at an increased risk for fracturing their limb bones in comparison to the general population. Phytoestrogens like as the soy isoflavone genistein have been shown to protect against bone loss. In this study, we tested the effects of genistein treatment on femurs of ob/ob mice, a model for obesity and type two diabetes mellitus. METHODS Twenty six-week-old female mice were divided into obese (ob/ob) control, obese genistein-treated, lean (ob/+) control, and lean genistein-treated groups (n = 5 each). Treatment with genistein consisted of 600 mg genistein/kg diet. Control mice were given standard rodent chow. At the end of a four-week treatment period, bone histomorphometric and three-point bending properties were compared among groups. RESULTS Obese mice had larger bone areas (B.Ar.; P < 0.05) and total areas (Tt.Ar.; P < 0.05), but similar bone volume (B.Ar./Tt.Ar.; P > 0.05) of the proximal femoral epiphysis in comparison to lean mice. Treatment with genistein decreased Tt.Ar. and femur length, and increased ultimate force required to fracture the femur and the maximum deformation to failure (P < 0.05). CONCLUSIONS Genistein improves resistance to fracture from bending loads.
Collapse
Affiliation(s)
- Britton Odle
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ USA
| | - Nathan Dennison
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ USA
| | - Layla Al-Nakkash
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ USA
| | - Jeffrey H. Plochocki
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| |
Collapse
|
15
|
Ghiselli G. Drug-Mediated Regulation of Glycosaminoglycan Biosynthesis. Med Res Rev 2016; 37:1051-1094. [DOI: 10.1002/med.21429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl; Parco Scientifico Silvano Fumero; Via Ribes 5 Colleretto Giacosa, (TO) Italy
| |
Collapse
|
16
|
Moskot M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J, Węsierska M, Bocheńska K, Węgrzyn G. Cell cycle is disturbed in mucopolysaccharidosis type II fibroblasts, and can be improved by genistein. Gene 2016; 585:100-103. [DOI: 10.1016/j.gene.2016.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
|