1
|
Prieto D, Egger B, Cantera R. Atypical soluble guanylyl cyclases control brain size in Drosophila. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001252. [PMID: 39185012 PMCID: PMC11344882 DOI: 10.17912/micropub.biology.001252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Hypoxia-induced proliferation of neural stem cells has a crucial role in brain development. In the brain of Drosophila melanogaster , the optic lobe exhibits progressive hypoxia during larval development. Here, we investigate an alternative oxygen-sensing mechanism within this brain compartment, distinct from the canonical hypoxia signaling pathway mediated by HIF. Using genetic tools, immunostaining, and confocal microscopy, we demonstrate that the loss of the atypical soluble guanylyl cyclase (asGC) subunit Gyc88E , or the ectopic expression of Gyc89Db in neural stem cells leads to increased optic lobe volume. We propose the existence of a link between cGMP signaling and neurogenesis in the developing brain.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Rafael Cantera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
2
|
Kunin AB, Guo J, Bassler KE, Pitkow X, Josić K. Hierarchical Modular Structure of the Drosophila Connectome. J Neurosci 2023; 43:6384-6400. [PMID: 37591738 PMCID: PMC10501013 DOI: 10.1523/jneurosci.0134-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The structure of neural circuitry plays a crucial role in brain function. Previous studies of brain organization generally had to trade off between coarse descriptions at a large scale and fine descriptions on a small scale. Researchers have now reconstructed tens to hundreds of thousands of neurons at synaptic resolution, enabling investigations into the interplay between global, modular organization, and cell type-specific wiring. Analyzing data of this scale, however, presents unique challenges. To address this problem, we applied novel community detection methods to analyze the synapse-level reconstruction of an adult female Drosophila melanogaster brain containing >20,000 neurons and 10 million synapses. Using a machine-learning algorithm, we find the most densely connected communities of neurons by maximizing a generalized modularity density measure. We resolve the community structure at a range of scales, from large (on the order of thousands of neurons) to small (on the order of tens of neurons). We find that the network is organized hierarchically, and larger-scale communities are composed of smaller-scale structures. Our methods identify well-known features of the fly brain, including its sensory pathways. Moreover, focusing on specific brain regions, we are able to identify subnetworks with distinct connectivity types. For example, manual efforts have identified layered structures in the fan-shaped body. Our methods not only automatically recover this layered structure, but also resolve finer connectivity patterns to downstream and upstream areas. We also find a novel modular organization of the superior neuropil, with distinct clusters of upstream and downstream brain regions dividing the neuropil into several pathways. These methods show that the fine-scale, local network reconstruction made possible by modern experimental methods are sufficiently detailed to identify the organization of the brain across scales, and enable novel predictions about the structure and function of its parts.Significance Statement The Hemibrain is a partial connectome of an adult female Drosophila melanogaster brain containing >20,000 neurons and 10 million synapses. Analyzing the structure of a network of this size requires novel and efficient computational tools. We applied a new community detection method to automatically uncover the modular structure in the Hemibrain dataset by maximizing a generalized modularity measure. This allowed us to resolve the community structure of the fly hemibrain at a range of spatial scales revealing a hierarchical organization of the network, where larger-scale modules are composed of smaller-scale structures. The method also allowed us to identify subnetworks with distinct cell and connectivity structures, such as the layered structures in the fan-shaped body, and the modular organization of the superior neuropil. Thus, network analysis methods can be adopted to the connectomes being reconstructed using modern experimental methods to reveal the organization of the brain across scales. This supports the view that such connectomes will allow us to uncover the organizational structure of the brain, which can ultimately lead to a better understanding of its function.
Collapse
Affiliation(s)
- Alexander B Kunin
- Department of Mathematics, Creighton University, Omaha, Nebraska 68178
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Jiahao Guo
- Department of Physics, University of Houston, Houston, Texas 77204
- Texas Center for Superconductivity, University of Houston, Houston, Texas 77204
| | - Kevin E Bassler
- Department of Physics, University of Houston, Houston, Texas 77204
- Texas Center for Superconductivity, University of Houston, Houston, Texas 77204
- Department of Mathematics, University of Houston, Houston, Texas 77204
| | - Xaq Pitkow
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Department of Machine Learning, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas 77204
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| |
Collapse
|
3
|
Cobham AE, Neumann B, Mirth CK. Maintaining robust size across environmental conditions through plastic brain growth dynamics. Open Biol 2022; 12:220037. [PMID: 36102061 PMCID: PMC9471992 DOI: 10.1098/rsob.220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Organ growth is tightly regulated across environmental conditions to generate an appropriate final size. While the size of some organs is free to vary, others need to maintain constant size to function properly. This poses a unique problem: how is robust final size achieved when environmental conditions alter key processes that regulate organ size throughout the body, such as growth rate and growth duration? While we know that brain growth is ‘spared’ from the effects of the environment from humans to fruit flies, we do not understand how this process alters growth dynamics across brain compartments. Here, we explore how this robustness in brain size is achieved by examining differences in growth patterns between the larval body, the brain and a brain compartment—the mushroom bodies—in Drosophila melanogaster across both thermal and nutritional conditions. We identify key differences in patterns of growth between the whole brain and mushroom bodies that are likely to underlie robustness of final organ shape. Further, we show that these differences produce distinct brain shapes across environments.
Collapse
Affiliation(s)
- Ansa E Cobham
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Drosophila ß Heavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil. Nat Commun 2021; 12:6357. [PMID: 34737284 PMCID: PMC8569210 DOI: 10.1038/s41467-021-26462-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function.
Collapse
|
5
|
Mase A, Augsburger J, Brückner K. Macrophages and Their Organ Locations Shape Each Other in Development and Homeostasis - A Drosophila Perspective. Front Cell Dev Biol 2021; 9:630272. [PMID: 33777939 PMCID: PMC7991785 DOI: 10.3389/fcell.2021.630272] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Across the animal kingdom, macrophages are known for their functions in innate immunity, but they also play key roles in development and homeostasis. Recent insights from single cell profiling and other approaches in the invertebrate model organism Drosophila melanogaster reveal substantial diversity among Drosophila macrophages (plasmatocytes). Together with vertebrate studies that show genuine expression signatures of macrophages based on their organ microenvironments, it is expected that Drosophila macrophage functional diversity is shaped by their anatomical locations and systemic conditions. In vivo evidence for diverse macrophage functions has already been well established by Drosophila genetics: Drosophila macrophages play key roles in various aspects of development and organogenesis, including embryogenesis and development of the nervous, digestive, and reproductive systems. Macrophages further maintain homeostasis in various organ systems and promote regeneration following organ damage and injury. The interdependence and interplay of tissues and their local macrophage populations in Drosophila have implications for understanding principles of organ development and homeostasis in a wide range of species.
Collapse
Affiliation(s)
- Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Ravenscroft TA, Janssens J, Lee PT, Tepe B, Marcogliese PC, Makhzami S, Holmes TC, Aerts S, Bellen HJ. Drosophila Voltage-Gated Sodium Channels Are Only Expressed in Active Neurons and Are Localized to Distal Axonal Initial Segment-like Domains. J Neurosci 2020; 40:7999-8024. [PMID: 32928889 PMCID: PMC7574647 DOI: 10.1523/jneurosci.0142-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/15/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
In multipolar vertebrate neurons, action potentials (APs) initiate close to the soma, at the axonal initial segment. Invertebrate neurons are typically unipolar with dendrites integrating directly into the axon. Where APs are initiated in the axons of invertebrate neurons is unclear. Voltage-gated sodium (NaV) channels are a functional hallmark of the axonal initial segment in vertebrates. We used an intronic Minos-Mediated Integration Cassette to determine the endogenous gene expression and subcellular localization of the sole NaV channel in both male and female Drosophila, para Despite being the only NaV channel in the fly, we show that only 23 ± 1% of neurons in the embryonic and larval CNS express para, while in the adult CNS para is broadly expressed. We generated a single-cell transcriptomic atlas of the whole third instar larval brain to identify para expressing neurons and show that it positively correlates with markers of differentiated, actively firing neurons. Therefore, only 23 ± 1% of larval neurons may be capable of firing NaV-dependent APs. We then show that Para is enriched in an axonal segment, distal to the site of dendritic integration into the axon, which we named the distal axonal segment (DAS). The DAS is present in multiple neuron classes in both the third instar larval and adult CNS. Whole cell patch clamp electrophysiological recordings of adult CNS fly neurons are consistent with the interpretation that Nav-dependent APs originate in the DAS. Identification of the distal NaV localization in fly neurons will enable more accurate interpretation of electrophysiological recordings in invertebrates.SIGNIFICANCE STATEMENT The site of action potential (AP) initiation in invertebrates is unknown. We tagged the sole voltage-gated sodium (NaV) channel in the fly, para, and identified that Para is enriched at a distal axonal segment. The distal axonal segment is located distal to where dendrites impinge on axons and is the likely site of AP initiation. Understanding where APs are initiated improves our ability to model neuronal activity and our interpretation of electrophysiological data. Additionally, para is only expressed in 23 ± 1% of third instar larval neurons but is broadly expressed in adults. Single-cell RNA sequencing of the third instar larval brain shows that para expression correlates with the expression of active, differentiated neuronal markers. Therefore, only 23 ± 1% of third instar larval neurons may be able to actively fire NaV-dependent APs.
Collapse
Affiliation(s)
- Thomas A Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Jasper Janssens
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Burak Tepe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Samira Makhzami
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California 92697
| | - Stein Aerts
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
7
|
Baccino-Calace M, Prieto D, Cantera R, Egger B. Compartment and cell-type specific hypoxia responses in the developing Drosophila brain. Biol Open 2020; 9:9/8/bio053629. [PMID: 32816692 PMCID: PMC7449796 DOI: 10.1242/bio.053629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Environmental factors such as the availability of oxygen are instructive cues that regulate stem cell maintenance and differentiation. We used a genetically encoded biosensor to monitor the hypoxic state of neural cells in the larval brain of Drosophila. The biosensor reveals brain compartment and cell-type specific levels of hypoxia. The values correlate with differential tracheolation that is observed throughout development between the central brain and the optic lobe. Neural stem cells in both compartments show the strongest hypoxia response while intermediate progenitors, neurons and glial cells reveal weaker responses. We demonstrate that the distance between a cell and the next closest tracheole is a good predictor of the hypoxic state of that cell. Our study indicates that oxygen availability appears to be the major factor controlling the hypoxia response in the developing Drosophila brain and that cell intrinsic and cell-type specific factors contribute to modulate the response in an unexpected manner. This article has an associated First Person interview with the first author of the paper. Summary: A fluorescent biosensor reveals cell type specific hypoxia levels in the Drosophila brain in unprecedented detail. It paves the way for further functional studies addressing the role of oxygen in neural stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Martin Baccino-Calace
- Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Daniel Prieto
- Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Rafael Cantera
- Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.,Zoology Department, Stockholm University, Stockholm 106 91, Sweden
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
8
|
Yushkova E. Genetic mechanisms of formation of radiation-induced instability of the genome and its transgenerational effects in the descendants of chronically irradiated individuals of Drosophila melanogaster. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:221-236. [PMID: 32076810 DOI: 10.1007/s00411-020-00833-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The article is devoted to the study of the role of intracellular mechanisms in the formation of radiation-induced genetic instability and its transgenerational effect in cells of different tissues of the descendants of Drosophila melanogaster mutant strains whose parents were exposed to chronic radiation (0.42 and 3.5 mGy/h). The level of DNA damage (alkali-labile sites (ALS), single-strand (SSB) and double-strand (DSB) breaks) in cells of somatic (nerve ganglia, imaginal discs) and generative (testis) tissues from directly irradiated animals and their unirradiated offspring was evaluated. Confident transgenerational instability (on the level of ALSs and SSBs), observed only in somatic tissues and only at the higher dose rate, is characteristic for mus209 mutant strains defective in excision repair and, less often, for mus205 and mus210 mutant strains. The greatest manifestation of radiation-induced genetic instability was found in evaluating the DSBs. Dysfunction of the genes mus205, mus304, mei-9 and mei-41, which are responsible for postreplicative repair, excision repair, recombination and control of the cell cycle, affects transgenerational changes in the somatic tissues of the offspring of parents irradiated in both low and high dose rates. In germ cells, the key role in maintaining genetic stability under chronic irradiation is played by the non-recombination postreplication repair mus101 gene. We revealed the tissue specificity of the radiation-induced effects, transgenerational transmission and accumulation of DNA damage to descendants of chronically irradiated animals.
Collapse
Affiliation(s)
- Elena Yushkova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia.
| |
Collapse
|
9
|
Bawa S, Brooks DS, Neville KE, Tipping M, Sagar MA, Kollhoff JA, Chawla G, Geisbrecht BV, Tennessen JM, Eliceiri KW, Geisbrecht ER. Drosophila TRIM32 cooperates with glycolytic enzymes to promote cell growth. eLife 2020; 9:52358. [PMID: 32223900 PMCID: PMC7105379 DOI: 10.7554/elife.52358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cell growth and/or proliferation may require the reprogramming of metabolic pathways, whereby a switch from oxidative to glycolytic metabolism diverts glycolytic intermediates towards anabolic pathways. Herein, we identify a novel role for TRIM32 in the maintenance of glycolytic flux mediated by biochemical interactions with the glycolytic enzymes Aldolase and Phosphoglycerate mutase. Loss of Drosophila TRIM32, encoded by thin (tn), shows reduced levels of glycolytic intermediates and amino acids. This altered metabolic profile correlates with a reduction in the size of glycolytic larval muscle and brain tissue. Consistent with a role for metabolic intermediates in glycolysis-driven biomass production, dietary amino acid supplementation in tn mutants improves muscle mass. Remarkably, TRIM32 is also required for ectopic growth - loss of TRIM32 in a wing disc-associated tumor model reduces glycolytic metabolism and restricts growth. Overall, our results reveal a novel role for TRIM32 for controlling glycolysis in the context of both normal development and tumor growth.
Collapse
Affiliation(s)
- Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Kathryn E Neville
- Department of Biology, Providence College, Providence, United States
| | - Marla Tipping
- Department of Biology, Providence College, Providence, United States
| | - Md Abdul Sagar
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States
| | - Joseph A Kollhoff
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, India.,Department of Biology, Indiana University, Bloomington, United States
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, United States
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| |
Collapse
|
10
|
Hartenstein V, Omoto JJ, Lovick JK. The role of cell lineage in the development of neuronal circuitry and function. Dev Biol 2020; 475:165-180. [PMID: 32017903 DOI: 10.1016/j.ydbio.2020.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Complex nervous systems have a modular architecture, whereby reiterative groups of neurons ("modules") that share certain structural and functional properties are integrated into large neural circuits. Neurons develop from proliferating progenitor cells that, based on their location and time of appearance, are defined by certain genetic programs. Given that genes expressed by a given progenitor play a fundamental role in determining the properties of its lineage (i.e., the neurons descended from that progenitor), one efficient developmental strategy would be to have lineages give rise to the structural modules of the mature nervous system. It is clear that this strategy plays an important role in neural development of many invertebrate animals, notably insects, where the availability of genetic techniques has made it possible to analyze the precise relationship between neuronal origin and differentiation since several decades. Similar techniques, developed more recently in the vertebrate field, reveal that functional modules of the mammalian cerebral cortex are also likely products of developmentally defined lineages. We will review studies that relate cell lineage to circuitry and function from a comparative developmental perspective, aiming at enhancing our understanding of neural progenitors and their lineages, and translating findings acquired in different model systems into a common conceptual framework.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Hernandez E, MacNamee SE, Kaplan LR, Lance K, Garcia-Verdugo HD, Farhadi DS, Deer C, Lee SW, Oland LA. The astrocyte network in the ventral nerve cord neuropil of the Drosophila third-instar larva. J Comp Neurol 2020; 528:1683-1703. [PMID: 31909826 DOI: 10.1002/cne.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022]
Abstract
Understanding neuronal function at the local and circuit level requires understanding astrocyte function. We have provided a detailed analysis of astrocyte morphology and territory in the Drosophila third-instar ventral nerve cord where there already exists considerable understanding of the neuronal network. Astrocyte shape varies more than previously reported; many have bilaterally symmetrical partners, many have a high percentage of their arborization in adjacent segments, and many have branches that follow structural features. Taken together, our data are consistent with, but not fully explained by, a model of a developmental growth process dominated by competitive or repulsive interactions between astrocytes. Our data suggest that the model should also include cell-autonomous aspects, as well as the use of structural features for growth. Variation in location of arborization territory for identified astrocytes was great enough that a standardized scheme of neuropil division among the six astrocytes that populate each hemi-segment is not possible at the third instar. The arborizations of the astrocytes can extend across neuronal functional domains. The ventral astrocyte in particular, whose territory can extend well into the proprioceptive region of the neuropil, has no obvious branching pattern that correlates with domains of particular sensory modalities, suggesting that the astrocyte would respond to neuronal activity in any of the sensory modalities, perhaps integrating across them. This study sets the stage for future studies that will generate a robust, functionally oriented connectome that includes both partners in neuronal circuits-the neurons and the glial cells, providing the foundation necessary for studies to elucidate neuron-glia interactions in this neuropil.
Collapse
Key Words
- RRID:Abcam Cat# ab6953, RRID:AB_955010
- RRID:BDSC Cat# 30125, RRID:BDSC_30125
- RRID:BDSC Cat# 38760, RRID:BDSC_38760
- RRID:BDSC Cat# 4775, RRID:BDSC_4775
- RRID:BDSC Cat# 5692, RRID:BDSC_5692
- RRID:BDSC Cat# 64085, RRID:BDSC_64085
- RRID:BDSC Cat# 6938, RRID:BDSC_6938
- RRID:Bio-rad Cat # MCA1360, RRID:AB_322378
- RRID:Cell Signaling Technology Cat # 3724, RRID:AB_1549585
- RRID:DSHB Cat# 1D4, RRID:AB_528235
- RRID:DSHB Cat# nc82, RRID:AB_2314866
- RRID:Jackson ImmunoResearch Labs Cat# 115-167-003, RRID:AB_2338709
- RRID:Molecular Probes Cat# 6455, RRID:AB_2314543
- RRID:Molecular Probes Cat# A-21236, RRID:AB_141725
- RRID:Novus Cat # NBP1-06712, RRID:AB_1625981
- RRID:Thermo Fisher Scientific Cat# A-11034, RRID:AB_2576217.
- glial cells
- neuron-glia interaction
Collapse
Affiliation(s)
- Ernesto Hernandez
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,University of Illinois at Chicago School of Medicine, Rockford, Illinois
| | - Sarah E MacNamee
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Inscopix, Palo Alto, California
| | - Leah R Kaplan
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Consortium for Science, Policy & Outcomes, Arizona State University, Washington, DC, Washington
| | - Kim Lance
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | | | - Dara S Farhadi
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Christine Deer
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Research Technologies Group, Data Visualization Team, University of Arizona, University Information Technology Service, Tucson, Arizona
| | - Si W Lee
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| |
Collapse
|
12
|
Triphan T, Thum AS. Connectomics: Arrested Development. Curr Biol 2019; 29:R90-R92. [PMID: 30721681 DOI: 10.1016/j.cub.2018.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Connectomics, the reconstruction of neuronal wiring diagrams via electron microscopy, is bringing us closer to understanding how brains organize behavior. But high-resolution imaging of the brain can do more. A new study now provides insights into how neuronal circuits develop.
Collapse
Affiliation(s)
- Tilman Triphan
- University of Leipzig, Institute for Biology, Talstraße 33, 04103 Leipzig, Germany.
| | - Andreas S Thum
- University of Leipzig, Institute for Biology, Talstraße 33, 04103 Leipzig, Germany.
| |
Collapse
|
13
|
Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nat Commun 2018; 9:1104. [PMID: 29549237 PMCID: PMC5856778 DOI: 10.1038/s41467-018-03130-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023] Open
Abstract
The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.
Collapse
|
14
|
Hartenstein V, Omoto JJ, Ngo KT, Wong D, Kuert PA, Reichert H, Lovick JK, Younossi-Hartenstein A. Structure and development of the subesophageal zone of the Drosophila brain. I. Segmental architecture, compartmentalization, and lineage anatomy. J Comp Neurol 2018; 526:6-32. [PMID: 28730682 PMCID: PMC5963519 DOI: 10.1002/cne.24287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023]
Abstract
The subesophageal zone (SEZ) of the Drosophila brain houses the circuitry underlying feeding behavior and is involved in many other aspects of sensory processing and locomotor control. Formed by the merging of four neuromeres, the internal architecture of the SEZ can be best understood by identifying segmentally reiterated landmarks emerging in the embryo and larva, and following the gradual changes by which these landmarks become integrated into the mature SEZ during metamorphosis. In previous works, the system of longitudinal fibers (connectives) and transverse axons (commissures) has been used as a scaffold that provides internal landmarks for the neuromeres of the larval ventral nerve cord. We have extended the analysis of this scaffold to the SEZ and, in addition, reconstructed the tracts formed by lineages and nerves in relationship to the connectives and commissures. As a result, we establish reliable criteria that define boundaries between the four neuromeres (tritocerebrum, mandibular neuromere, maxillary neuromere, labial neuromere) of the SEZ at all stages of development. Fascicles and lineage tracts also demarcate seven columnar neuropil domains (ventromedial, ventro-lateral, centromedial, central, centrolateral, dorsomedial, dorsolateral) identifiable throughout development. These anatomical subdivisions, presented in the form of an atlas including confocal sections and 3D digital models for the larval, pupal and adult stage, allowed us to describe the morphogenetic changes shaping the adult SEZ. Finally, we mapped MARCM-labeled clones of all secondary lineages of the SEZ to the newly established neuropil subdivisions. Our work will facilitate future studies of function and comparative anatomy of the SEZ.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jaison J. Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathy T. Ngo
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Darren Wong
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | - Jennifer K. Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Lovick JK, Omoto JJ, Ngo KT, Hartenstein V. Development of the anterior visual input pathway to the Drosophila central complex. J Comp Neurol 2017; 525:3458-3475. [PMID: 28675433 DOI: 10.1002/cne.24277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
The anterior visual pathway (AVP) conducts visual information from the medulla of the optic lobe via the anterior optic tubercle (AOTU) and bulb (BU) to the ellipsoid body (EB) of the central complex. The anatomically defined neuron classes connecting the AOTU, BU, and EB represent discrete lineages, genetically and developmentally specified sets of cells derived from common progenitors (Omoto et al., Current Biology, 27, 1098-1110, 2017). In this article, we have analyzed the formation of the AVP from early larval to adult stages. The immature fiber tracts of the AVP, formed by secondary neurons of lineages DALcl1/2 and DALv2, assemble into structurally distinct primordia of the AOTU, BU, and EB within the late larval brain. During the early pupal period (P6-P48) these primordia grow in size and differentiate into the definitive subcompartments of the AOTU, BU, and EB. The primordium of the EB has a complex composition. DALv2 neurons form the anterior EB primordium, which starts out as a bilateral structure, then crosses the midline between P6 and P12, and subsequently bends to adopt the ring shape of the mature EB. Columnar neurons of the central complex, generated by the type II lineages DM1-4, form the posterior EB primordium. Starting out as an integral part of the fan-shaped body primordium, the posterior EB primordium moves forward and merges with the anterior EB primordium. We document the extension of neuropil glia around the nascent EB and BU, and analyze the relationship of primary and secondary neurons of the AVP lineages.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
16
|
Banerjee A, Roy JK. Dicer-1 regulates proliferative potential of Drosophila larval neural stem cells through bantam miRNA based down-regulation of the G1/S inhibitor Dacapo. Dev Biol 2017; 423:57-65. [DOI: 10.1016/j.ydbio.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/19/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
|
17
|
Xu J, Hao X, Yin MX, Lu Y, Jin Y, Xu J, Ge L, Wu W, Ho M, Yang Y, Zhao Y, Zhang L. Prevention of medulla neuron dedifferentiation by Nerfin-1 requires inhibition of Notch activity. Development 2017; 144:1510-1517. [PMID: 28242614 DOI: 10.1242/dev.141341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/17/2017] [Indexed: 11/20/2022]
Abstract
The Drosophila larval central nervous system comprises the central brain, ventral nerve cord and optic lobe. In these regions, neuroblasts (NBs) divide asymmetrically to self-renew and generate differentiated neurons or glia. To date, mechanisms of preventing neuron dedifferentiation are still unclear, especially in the optic lobe. Here, we show that the zinc-finger transcription factor Nerfin-1 is expressed in early-stage medulla neurons and is essential for maintaining their differentiation. Loss of Nerfin-1 activates Notch signaling, which promotes neuron-to-NB reversion. Repressing Notch signaling largely rescues dedifferentiation in nerfin-1 mutant clones. Thus, we conclude that Nerfin-1 represses Notch activity in medulla neurons and prevents them from dedifferentiation.
Collapse
Affiliation(s)
- Jiajun Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Xue Hao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Meng-Xin Yin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Yi Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Yunyun Jin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Jinjin Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Ling Ge
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Margaret Ho
- Department of Anatomy and Neurobiology, Tongji University, School of Medicine, Shanghai 200092, People's Republic of China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China .,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| |
Collapse
|
18
|
Nano M, Basto R. Consequences of Centrosome Dysfunction During Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:19-45. [PMID: 28600781 DOI: 10.1007/978-3-319-57127-0_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development requires cell proliferation, differentiation and spatial organization of daughter cells to occur in a highly controlled manner. The mode of cell division, the extent of proliferation and the spatial distribution of mitosis allow the formation of tissues of the right size and with the correct structural organization. All these aspects depend on cell cycle duration, correct chromosome segregation and spindle orientation. The centrosome, which is the main microtubule-organizing centre (MTOC) of animal cells, contributes to all these processes. As one of the most structurally complex organs in our body, the brain is particularly susceptible to centrosome dysfunction. Autosomal recessive primary microcephaly (MCPH), primordial dwarfism disease Seckel syndrome (SCKS) and microcephalic osteodysplastic primordial dwarfism type II (MOPD-II) are often connected to mutations in centrosomal genes. In this chapter, we discuss the consequences of centrosome dysfunction during development and how they can contribute to the etiology of human diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
19
|
Xie Y, Li X, Deng X, Hou Y, O'Hara K, Urso A, Peng Y, Chen L, Zhu S. The Ets protein Pointed prevents both premature differentiation and dedifferentiation of Drosophila intermediate neural progenitors. Development 2016; 143:3109-18. [PMID: 27510969 DOI: 10.1242/dev.137281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/27/2016] [Indexed: 01/01/2023]
Abstract
Intermediate neural progenitors (INPs) need to avoid both dedifferentiation and differentiation during neurogenesis, but the underlying mechanisms are not well understood. In Drosophila, the Ets protein Pointed P1 (PntP1) is required to generate INPs from type II neuroblasts. Here, we investigated how PntP1 promotes INP generation. By generating pntP1-specific mutants and using RNAi knockdown, we show that the loss of PntP1 leads to both an increase in type II neuroblast number and the elimination of INPs. The elimination of INPs results from the premature differentiation of INPs due to ectopic Prospero expression in newly generated immature INPs (imINPs), whereas the increase in type II neuroblasts results from the dedifferentiation of imINPs due to loss of Earmuff at later stages of imINP development. Furthermore, reducing Buttonhead enhances the loss of INPs in pntP1 mutants, suggesting that PntP1 and Buttonhead act cooperatively to prevent premature INP differentiation. Our results demonstrate that PntP1 prevents both the premature differentiation and the dedifferentiation of INPs by regulating the expression of distinct target genes at different stages of imINP development.
Collapse
Affiliation(s)
- Yonggang Xie
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaosu Li
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaobing Deng
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Yanjun Hou
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Krysten O'Hara
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
20
|
Hartenstein V, Cruz L, Lovick JK, Guo M. Developmental analysis of the dopamine-containing neurons of the Drosophila brain. J Comp Neurol 2016; 525:363-379. [PMID: 27350102 DOI: 10.1002/cne.24069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
The Drosophila dopaminergic (DAergic) system consists of a relatively small number of neurons clustered throughout the brain and ventral nerve cord. Previous work shows that clusters of DA neurons innervate different brain compartments, which in part accounts for functional diversity of the DA system. We analyzed the association between DA neuron clusters and specific brain lineages, developmental and structural units of the Drosophila brain that provide a framework of connections that can be followed throughout development. The hatching larval brain contains six groups of primary DA neurons (born in the embryo), which we assign to six distinct lineages. We can show that all larval DA clusters persist into the adult brain. Some clusters increase in cell number during late larval stages, whereas others do not become DA positive until early pupa. Ablating neuroblasts with hydroxyurea (HU) prior to onset of larval proliferation (generates secondary neurons) confirms that these added DA clusters are primary neurons born in the embryo, rather than secondary neurons. A single cluster that becomes DA positive in the late pupa, PAM1/lineage DALcm1/2, forms part of a secondary lineage that can be ablated by larval HU application. By supplying lineage information for each DA cluster, our analysis promotes further developmental and functional analyses of this important system of neurons. J. Comp. Neurol. 525:363-379, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Louie Cruz
- Department of Neurology, University of California Los Angeles, Los Angeles, California, 90095
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Ming Guo
- Department of Neurology, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
21
|
Yakimova AO, Pugacheva OM, Golubkova EV, Mamon LA. Cytoplasmic localization of SBR (Dm NXF1) protein and its zonal distribution in the ganglia of Drosophila melanogaster larvae. INVERTEBRATE NEUROSCIENCE 2016; 16:9. [DOI: 10.1007/s10158-016-0192-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
|
22
|
Catalán A, Glaser-Schmitt A, Argyridou E, Duchen P, Parsch J. An Indel Polymorphism in the MtnA 3' Untranslated Region Is Associated with Gene Expression Variation and Local Adaptation in Drosophila melanogaster. PLoS Genet 2016; 12:e1005987. [PMID: 27120580 PMCID: PMC4847869 DOI: 10.1371/journal.pgen.1005987] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Insertions and deletions (indels) are a major source of genetic variation within species and may result in functional changes to coding or regulatory sequences. In this study we report that an indel polymorphism in the 3’ untranslated region (UTR) of the metallothionein gene MtnA is associated with gene expression variation in natural populations of Drosophila melanogaster. A derived allele of MtnA with a 49-bp deletion in the 3' UTR segregates at high frequency in populations outside of sub-Saharan Africa. The frequency of the deletion increases with latitude across multiple continents and approaches 100% in northern Europe. Flies with the deletion have more than 4-fold higher MtnA expression than flies with the ancestral sequence. Using reporter gene constructs in transgenic flies, we show that the 3' UTR deletion significantly contributes to the observed expression difference. Population genetic analyses uncovered signatures of a selective sweep in the MtnA region within populations from northern Europe. We also find that the 3’ UTR deletion is associated with increased oxidative stress tolerance. These results suggest that the 3' UTR deletion has been a target of selection for its ability to confer increased levels of MtnA expression in northern European populations, likely due to a local adaptive advantage of increased oxidative stress tolerance. Although molecular variation is abundant in natural populations, understanding how this variation affects organismal phenotypes that are subject to natural selection remains a major challenge in the field of evolutionary genetics. Here we show that a deletion mutation in a noncoding region of the Drosophila melanogaster Metallothionein A gene leads to a significant increase in gene expression and increases survival under oxidative stress. The deletion is in high frequency in three distinct geographic regions: in northern European populations, in northern populations along the east coast of North America, and in southern populations along the east coast of Australia. In northern European populations the deletion shows population genetic signatures of recent positive selection. Thus, we provide evidence for a regulatory polymorphism that underlies local adaptation in natural populations.
Collapse
Affiliation(s)
- Ana Catalán
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (AC); (JP)
| | | | - Eliza Argyridou
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Pablo Duchen
- Department of Biology and Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - John Parsch
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
- * E-mail: (AC); (JP)
| |
Collapse
|
23
|
Koniszewski NDB, Kollmann M, Bigham M, Farnworth M, He B, Büscher M, Hütteroth W, Binzer M, Schachtner J, Bucher G. The insect central complex as model for heterochronic brain development-background, concepts, and tools. Dev Genes Evol 2016; 226:209-19. [PMID: 27056385 PMCID: PMC4896989 DOI: 10.1007/s00427-016-0542-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/17/2016] [Indexed: 11/28/2022]
Abstract
The adult insect brain is composed of neuropils present in most taxa. However, the relative size, shape, and developmental timing differ between species. This diversity of adult insect brain morphology has been extensively described while the genetic mechanisms of brain development are studied predominantly in Drosophila melanogaster. However, it has remained enigmatic what cellular and genetic mechanisms underlie the evolution of neuropil diversity or heterochronic development. In this perspective paper, we propose a novel approach to study these questions. We suggest using genome editing to mark homologous neural cells in the fly D. melanogaster, the beetle Tribolium castaneum, and the Mediterranean field cricket Gryllus bimaculatus to investigate developmental differences leading to brain diversification. One interesting aspect is the heterochrony observed in central complex development. Ancestrally, the central complex is formed during embryogenesis (as in Gryllus) but in Drosophila, it arises during late larval and metamorphic stages. In Tribolium, it forms partially during embryogenesis. Finally, we present tools for brain research in Tribolium including 3D reconstruction and immunohistochemistry data of first instar brains and the generation of transgenic brain imaging lines. Further, we characterize reporter lines labeling the mushroom bodies and reflecting the expression of the neuroblast marker gene Tc-asense, respectively.
Collapse
Affiliation(s)
- Nikolaus Dieter Bernhard Koniszewski
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany.,Institute of Medical Microbiology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Martin Kollmann
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Mahdiyeh Bigham
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Max Farnworth
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Bicheng He
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Marita Büscher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Wolf Hütteroth
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany.,Department of Biology, Neurobiology, University of Konstanz, Constance, Germany
| | - Marlene Binzer
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Joachim Schachtner
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany.
| |
Collapse
|
24
|
Garelli A, Heredia F, Casimiro AP, Macedo A, Nunes C, Garcez M, Dias ARM, Volonte YA, Uhlmann T, Caparros E, Koyama T, Gontijo AM. Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. Nat Commun 2015; 6:8732. [PMID: 26510564 PMCID: PMC4640092 DOI: 10.1038/ncomms9732] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022] Open
Abstract
How different organs in the body sense growth perturbations in distant tissues to coordinate their size during development is poorly understood. Here we mutate an invertebrate orphan relaxin receptor gene, the Drosophila Leucine-rich repeat-containing G protein-coupled receptor 3 (Lgr3), and find body asymmetries similar to those found in insulin-like peptide 8 (dilp8) mutants, which fail to coordinate growth with developmental timing. Indeed, mutation or RNA intereference (RNAi) against Lgr3 suppresses the delay in pupariation induced by imaginal disc growth perturbation or ectopic Dilp8 expression. By tagging endogenous Lgr3 and performing cell type-specific RNAi, we map this Lgr3 activity to a new subset of CNS neurons, four of which are a pair of bilateral pars intercerebralis Lgr3-positive (PIL) neurons that respond specifically to ectopic Dilp8 by increasing cAMP-dependent signalling. Our work sheds new light on the function and evolution of relaxin receptors and reveals a novel neuroendocrine circuit responsive to growth aberrations. The orphan ligand Dilp8 has been shown to coordinate growth and developmental timing in Drosophila. Here, using Gal4 drivers and CRISPR/Cas9 approaches, Garelli et al. identify a role for relaxin-like receptor Lgr3 in regulating the Dilp8 developmental delay pathway.
Collapse
Affiliation(s)
- Andres Garelli
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal.,Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), CONICET and Universidad Nacional del Sur, Camino La Carrindanga km7, Bahía Blanca B8000 FWB, Argentina
| | - Fabiana Heredia
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Andreia P Casimiro
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Andre Macedo
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Catarina Nunes
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Marcia Garcez
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Angela R Mantas Dias
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Yanel A Volonte
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), CONICET and Universidad Nacional del Sur, Camino La Carrindanga km7, Bahía Blanca B8000 FWB, Argentina
| | - Thomas Uhlmann
- Dualsystems Biotech AG, Grabenstrasse 11a, Schlieren CH-8952, Switzerland
| | - Esther Caparros
- Departamento de Medicina Clínica, Facultad de Medicina, Universidad Miguel Hernández, Ctra. Alicante-Valencia, km 87, San Juan, Alicante 03550, Spain
| | - Takashi Koyama
- Development, Evolution and the Environment Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Alisson M Gontijo
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| |
Collapse
|
25
|
Lovick JK, Kong A, Omoto JJ, Ngo KT, Younossi-Hartenstein A, Hartenstein V. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain. Dev Neurobiol 2015; 76:434-51. [PMID: 26178322 DOI: 10.1002/dneu.22325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022]
Abstract
The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal, we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In this article, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4 h) intervals and produced a detailed map in the form of confocal z-projections and digital three-dimensional models of all lineages at successive larval stages. Based on these reconstructions, we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Angel Kong
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
26
|
Hartenstein V, Younossi-Hartenstein A, Lovick JK, Kong A, Omoto JJ, Ngo KT, Viktorin G. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain. Dev Biol 2015; 406:14-39. [PMID: 26141956 DOI: 10.1016/j.ydbio.2015.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/25/2015] [Accepted: 06/27/2015] [Indexed: 11/15/2022]
Abstract
Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA.
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Angel Kong
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | | |
Collapse
|
27
|
Birkholz O, Rickert C, Nowak J, Coban IC, Technau GM. Bridging the gap between postembryonic cell lineages and identified embryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Biol Open 2015; 4:420-34. [PMID: 25819843 PMCID: PMC4400586 DOI: 10.1242/bio.201411072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The clarification of complete cell lineages, which are produced by specific stem cells, is fundamental for understanding mechanisms, controlling the generation of cell diversity and patterning in an emerging tissue. In the developing Central Nervous System (CNS) of Drosophila, neural stem cells (neuroblasts) exhibit two periods of proliferation: During embryogenesis they produce primary lineages, which form the larval CNS. After a phase of mitotic quiescence, a subpopulation of them resumes proliferation in the larva to give rise to secondary lineages that build up the CNS of the adult fly. Within the ventral nerve cord (VNC) detailed descriptions exist for both primary and secondary lineages. However, while primary lineages have been linked to identified neuroblasts, the assignment of secondary lineages has so far been hampered by technical limitations. Therefore, primary and secondary neural lineages co-existed as isolated model systems. Here we provide the missing link between the two systems for all lineages in the thoracic and abdominal neuromeres. Using the Flybow technique, embryonic neuroblasts were identified by their characteristic and unique lineages in the living embryo and their further development was traced into the late larval stage. This comprehensive analysis provides the first complete view of which embryonic neuroblasts are postembryonically reactivated along the anterior/posterior-axis of the VNC, and reveals the relationship between projection patterns of primary and secondary sublineages.
Collapse
Affiliation(s)
- Oliver Birkholz
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Christof Rickert
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Julia Nowak
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Ivo C Coban
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | | |
Collapse
|
28
|
Omoto JJ, Yogi P, Hartenstein V. Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors. Dev Biol 2015; 404:2-20. [PMID: 25779704 DOI: 10.1016/j.ydbio.2015.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
Abstract
Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model.
Collapse
Affiliation(s)
- Jaison Jiro Omoto
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Puja Yogi
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Ajjuri RR, Hall M, Reiter LT, O’Donnell JM. Drosophila. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
30
|
Sen S, Biagini S, Reichert H, VijayRaghavan K. Orthodenticle is required for the development of olfactory projection neurons and local interneurons in Drosophila. Biol Open 2014; 3:711-7. [PMID: 24996925 PMCID: PMC4133724 DOI: 10.1242/bio.20148524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accurate wiring of nervous systems involves precise control over cellular processes like cell division, cell fate specification, and targeting of neurons. The nervous system of Drosophila melanogaster is an excellent model to understand these processes. Drosophila neurons are generated by stem cell like precursors called neuroblasts that are formed and specified in a highly stereotypical manner along the neuroectoderm. This stereotypy has been attributed, in part, to the expression and function of transcription factors that act as intrinsic cell fate determinants in the neuroblasts and their progeny during embryogenesis. Here we focus on the lateral neuroblast lineage, ALl1, of the antennal lobe and show that the transcription factor-encoding cephalic gap gene orthodenticle is required in this lineage during postembryonic brain development. We use immunolabelling to demonstrate that Otd is expressed in the neuroblast of this lineage during postembryonic larval stages. Subsequently, we use MARCM clonal mutational methods to show that the majority of the postembryonic neuronal progeny in the ALl1 lineage undergoes apoptosis in the absence of orthodenticle. Moreover, we demonstrate that the neurons that survive in the orthodenticle loss-of-function condition display severe targeting defects in both the proximal (dendritic) and distal (axonal) neurites. These findings indicate that the cephalic gap gene orthodenticle acts as an important intrinsic determinant in the ALl1 neuroblast lineage and, hence, could be a member of a putative combinatorial code involved in specifying the fate and identity of cells in this lineage.
Collapse
Affiliation(s)
- Sonia Sen
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Silvia Biagini
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India Present address: FIRC Institute of Molecular Oncology, Via Adamello, 16-20139 Milan, Italy
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - K VijayRaghavan
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
31
|
Kuert PA, Hartenstein V, Bello BC, Lovick JK, Reichert H. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain. Dev Biol 2014; 390:102-15. [DOI: 10.1016/j.ydbio.2014.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/23/2014] [Accepted: 03/29/2014] [Indexed: 11/16/2022]
|
32
|
Hebbar S, Schulz WD, Sauer U, Schwudke D. Laser capture microdissection coupled with on-column extraction LC-MS(n) enables lipidomics of fluorescently labeled Drosophila neurons. Anal Chem 2014; 86:5345-52. [PMID: 24820458 DOI: 10.1021/ac500276r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have used laser capture microdissection (LCM) and fluorescence microscopy to isolate genetically labeled neurons from the Drosophila melanogaster brain. From native thin sections, regions of interest could be analyzed with a spatial resolution better than 50 μm. To exploit the specificity of LCM for lipidomics, catapulted tissue patches were directly collected on a reversed phase column and analyzed using an on-column extraction (OCE) that was directly coupled with liquid chromatography-multistage mass spectrometry (LC-MS(n)). With this approach, more than 50 membrane lipids belonging to 9 classes were quantified in tissue regions equivalent to a sample amount of 50 cells. Using this method, the limit of quantitation and the extraction efficiency could be estimated enabling a reliable evaluation of acquired lipid profiles. The lipid profiles of cell body- and synapse-enriched regions of the Drosophila brain were determined and found to be distinct. We argue that this workflow represents a tremendous improvement for tissue lipidomics by integrating genetics, fluorescence microscopy, LCM and LC-MS(n).
Collapse
Affiliation(s)
- Sarita Hebbar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| | | | | | | |
Collapse
|
33
|
Meyer S, Schmidt I, Klämbt C. Glia ECM interactions are required to shape the Drosophila nervous system. Mech Dev 2014; 133:105-16. [PMID: 24859129 DOI: 10.1016/j.mod.2014.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/10/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Organs are characterized by a specific shape that is often remodeled during development. The dynamics of organ shape is in particular evident during the formation of the Drosophila nervous system. During embryonic stages the central nervous system compacts, whereas selective growth occurs during larval stages. The nervous system is covered by a layer of surface glial cells that form the blood brain barrier and a thick extracellular matrix called neural lamella. The size of the neural lamella is dynamically adjusted to the growing nervous system and we show here that perineurial glial cells secrete proteases to remodel this matrix. Moreover, an imbalance in proteolytic activity results in an abnormal shape of the nervous system. To identify further components controlling nervous system shape we performed an RNAi based screen and identified the gene nolo, which encodes an ADAMTS-like protein. We generated loss of function alleles and demonstrate a requirement in glial cells. Mutant nolo larvae, however, do not show an abnormal nervous system shape. The only predicted off-target of the nolo(dsRNA) is Oatp30B, which encodes an organic anion transporting protein characterized by an extracellular protease inhibitor domain. Loss of function mutants were generated and double mutant analyses demonstrate a genetic interaction between nolo and Oatp30B which prevented the generation of maternal zygotic mutant larvae.
Collapse
Affiliation(s)
- Silke Meyer
- Institute of Neurobiology, University of Münster, 48149 Münster, Germany
| | - Imke Schmidt
- Institute of Neurobiology, University of Münster, 48149 Münster, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
34
|
Jiang Y, Reichert H. DrosophilaNeural Stem Cells in Brain Development and Tumor Formation. J Neurogenet 2014; 28:181-9. [DOI: 10.3109/01677063.2014.898639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Boyan G, Liu Y. Timelines in the insect brain: fates of identified neural stem cells generating the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2014; 224:37-51. [PMID: 24343526 DOI: 10.1007/s00427-013-0462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
This study employs labels for cell proliferation and cell death, as well as classical histology to examine the fates of all eight neural stem cells (neuroblasts) whose progeny generate the central complex of the grasshopper brain during embryogenesis. These neuroblasts delaminate from the neuroectoderm between 25 and 30 % of embryogenesis and form a linear array running from ventral (neuroblasts Z, Y, X, and W) to dorsal (neuroblasts 1-2, 1-3, 1-4, and 1-5) along the medial border of each protocerebral hemisphere. Their stereotypic location within the array, characteristic size, and nuclear morphologies, identify these neuroblasts up to about 70 % of embryogenesis after which cell shrinkage and shape changes render progressively more cells histologically unrecognizable. Molecular labels show all neuroblasts in the array are proliferative up to 70 % of embryogenesis, but subsequently first the more ventral cells (72-75 %), and then the dorsal ones (77-80 %), cease proliferation. By contrast, neuroblasts elsewhere in the brain and optic lobe remain proliferative. Apoptosis markers label the more ventral neuroblasts first (70-72 %), then the dorsal cells (77 %), and the absence of any labeling thereafter confirms that central complex neuroblasts have exited the cell cycle via programmed cell death. Our data reveal appearance, proliferation, and cell death proceeding as successive waves from ventral to dorsal along the array of neuroblasts. The resulting timelines offer a temporal blueprint for building the neuroarchitecture of the various modules of the central complex.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany,
| | | |
Collapse
|
36
|
Lovick JK, Ngo KT, Omoto JJ, Wong DC, Nguyen JD, Hartenstein V. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts. Dev Biol 2013; 384:228-57. [PMID: 23880429 DOI: 10.1016/j.ydbio.2013.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
Abstract
Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.).
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Bldg, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bailly X, Reichert H, Hartenstein V. The urbilaterian brain revisited: novel insights into old questions from new flatworm clades. Dev Genes Evol 2013; 223:149-57. [PMID: 23143292 PMCID: PMC3873165 DOI: 10.1007/s00427-012-0423-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/12/2012] [Indexed: 12/25/2022]
Abstract
Flatworms are classically considered to represent the simplest organizational form of all living bilaterians with a true central nervous system. Based on their simple body plans, all flatworms have been traditionally grouped together in a single phylum at the base of the bilaterians. Current molecular phylogenomic studies now split the flatworms into two widely separated clades, the acoelomorph flatworms and the platyhelminth flatworms, such that the last common ancestor of both clades corresponds to the urbilaterian ancestor of all bilaterian animals. Remarkably, recent comparative neuroanatomical analyses of acoelomorphs and platyhelminths show that both of these flatworm groups have complex anterior brains with surprisingly similar basic neuroarchitectures. Taken together, these findings imply that fundamental neuroanatomical features of the brain in the two separate flatworm groups are likely to be primitive and derived from the urbilaterian brain.
Collapse
Affiliation(s)
- Xavier Bailly
- UPMC-CNRS. FR2424. Station Biologique de Roscoff. 29680 Roscoff. France
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-Basel, Switzerland
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
38
|
Riebli N, Viktorin G, Reichert H. Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila. Neural Dev 2013; 8:6. [PMID: 23618231 PMCID: PMC3685605 DOI: 10.1186/1749-8104-8-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/18/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The central complex is a multimodal information-processing center in the insect brain composed of thousands of neurons representing more than 50 neural types arranged in a stereotyped modular neuroarchitecture. In Drosophila, the development of the central complex begins in the larval stages when immature structures termed primordia are formed. However, the identity and origin of the neurons that form these primordia and, hence, the fate of these neurons during subsequent metamorphosis and in the adult brain, are unknown. RESULTS Here, we used two pointed-Gal4 lines to identify the neural cells that form the primordium of the fan-shaped body, a major component of the Drosophila central complex. We found that these early-born primordium neurons are generated by four identified type II neuroblasts that amplify neurogenesis through intermediate progenitors, and we demonstrate that these neurons generate the fan-shaped body primordium during larval development in a highly specific manner. Moreover, we characterize the extensive growth and differentiation that these early-born primordium neurons undergo during metamorphosis in pupal stages and show that these neurons persist in the adult central complex, where they manifest layer-specific innervation of the mature fan-shaped body. CONCLUSIONS Taken together, these findings indicate that early-born neurons from type II neuroblast lineages have dual roles in the development of a complex brain neuropile. During larval stages they contribute to the formation of a specific central complex primordium; during subsequent pupal development they undergo extensive growth and differentiation and integrate into the modular circuitry of the adult brain central complex.
Collapse
Affiliation(s)
- Nadia Riebli
- Biozentrum, University of Basel, Klingelbergstrasse 50, Basel, CH-4056, Switzerland
| | | | | |
Collapse
|
39
|
Hedgehog signaling acts with the temporal cascade to promote neuroblast cell cycle exit. PLoS Biol 2013; 11:e1001494. [PMID: 23468593 PMCID: PMC3582610 DOI: 10.1371/journal.pbio.1001494] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
During the development of the Drosophila nervous system, the developmentally regulated Hedgehog pathway, together with a series of temporal transcription factors, schedules the end of neurogenesis. In Drosophila postembryonic neuroblasts, transition in gene expression programs of a cascade of transcription factors (also known as the temporal series) acts together with the asymmetric division machinery to generate diverse neurons with distinct identities and regulate the end of neuroblast proliferation. However, the underlying mechanism of how this “temporal series” acts during development remains unclear. Here, we show that Hh signaling in the postembryonic brain is temporally regulated; excess (earlier onset of) Hh signaling causes premature neuroblast cell cycle exit and under-proliferation, whereas loss of Hh signaling causes delayed cell cycle exit and excess proliferation. Moreover, the Hh pathway functions downstream of Castor but upstream of Grainyhead, two components of the temporal series, to schedule neuroblast cell cycle exit. Interestingly, hh is likely a target of Castor. Hence, Hh signaling provides a link between the temporal series and the asymmetric division machinery in scheduling the end of neurogenesis. In almost all metazoans, neurons are produced by a group of neural stem cells/progenitors in a precise temporal manner, which is important for generating a functional nervous system. In Drosophila, this “timing” mechanism is mainly governed by the sequential switching of transcription factors in neural stem cells called neuroblasts, such that neuronal fate is associated with its birth order. These temporal factors also coordinate the termination of neuroblast division towards the end of neurogenesis. In this study, we show that Hedgehog (Hh) signaling also regulates the division rate of neuroblasts during their proliferative phase at larval stage, as well as the cessation of proliferation at early pupal stage. Excessive Hh signaling causes premature neuroblast cell cycle exit and early termination of neurogenesis, while loss of Hh signaling results in prolonged proliferation of neuroblasts beyond its physiological window. We also find that Hh signaling acts in concert with the temporal transcription factors, and is itself regulated by these factors. We hypothesize that this mode of interaction (temporal transcription factors with developmentally regulated signals like Hh) during neurogenesis could be widely conserved in other organisms.
Collapse
|
40
|
Pérez-Gómez R, Slováková J, Rives-Quinto N, Krejci A, Carmena A. A Serrate-Notch-Canoe complex mediates glial-neuroepithelial cell interactions essential during Drosophila optic lobe development. J Cell Sci 2013; 126:4873-84. [DOI: 10.1242/jcs.125617] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is firmly established that neuron-glia interactions are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions generating neuroblasts. The proneural gene lethal of scute (l'sc) is transiently activated by the Epidermal Growth Factor Receptor (EGFR)/Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR/Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for glial-neuroepithelial cell interactions during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR/Ras pathway and hence of L'sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling.
Collapse
|
41
|
Boyan G, Williams L, Götz S. Postembryonic development of astrocyte-like glia of the central complex in the grasshopper Schistocerca gregaria. Cell Tissue Res 2012; 351:361-72. [PMID: 23250573 DOI: 10.1007/s00441-012-1535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/06/2012] [Indexed: 12/25/2022]
Abstract
Central complex modules in the postembryonic brain of the grasshopper Schistocerca gregaria are enveloped by Repo-positive/glutamine-synthetase-positive astrocyte-like glia. Such cells constitute Rind-Neuropil Interface glia. We have investigated the postembryonic development of these glia and their anatomical relationship to axons originating from the w, x, y, z tract system of the pars intercerebralis. Based on glutamine synthetase immunolabeling, we have identified four morphological types of cells: bipolar type 1 glia delimit the central body but only innervate its neuropil superficially; monopolar type 2 glia have a more columnar morphology and direct numerous gliopodia into the neuropil where they arborize extensively; monopolar type 3 glia are found predominantly in the region between the noduli and the central body and have a dendritic morphology and their gliopodia project deeply into the central body neuropil where they arborize extensively; multipolar type 4 glia link the central body neuropil with neighboring neuropils of the protocerebrum. These glia occupy type-specific distributions around the central body. Their gliopodia develop late in embryogenesis, elongate and generally become denser during subsequent postembryonic development. Gliopodia from putatively type 3 glia within the central body have been shown to lie closely apposed to individual axons of identified columnar fiber bundles from the w, x, y, z tract system of the central complex. This anatomical association might offer a substrate for neuron/glia interactions mediating postembryonic maturation of the central complex.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
42
|
Okray Z, Hassan BA. Genetic approaches in Drosophila for the study neurodevelopmental disorders. Neuropharmacology 2012; 68:150-6. [PMID: 23067575 DOI: 10.1016/j.neuropharm.2012.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/31/2012] [Accepted: 09/07/2012] [Indexed: 12/16/2022]
Abstract
The fruit fly Drosophila melanogaster is one of the premier genetic model organisms used in biomedical research today owing to the extraordinary power of its genetic tool-kit. Made famous by numerous seminal discoveries of basic developmental mechanisms and behavioral genetics, the power of fruit fly genetics is becoming increasingly applied to questions directly relevant to human health. In this review we discuss how Drosophila research is applied to address major questions in neurodevelopmental disorders. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Zeynep Okray
- Laboratory of Neurogenetics, VIB Center for the Biology of Disease, VIB, Herestraat 49, Leuven, Belgium
| | | |
Collapse
|
43
|
The bHLH repressor Deadpan regulates the self-renewal and specification of Drosophila larval neural stem cells independently of Notch. PLoS One 2012; 7:e46724. [PMID: 23056424 PMCID: PMC3466283 DOI: 10.1371/journal.pone.0046724] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/06/2012] [Indexed: 11/19/2022] Open
Abstract
Neural stem cells (NSCs) are able to self-renew while giving rise to neurons and glia that comprise a functional nervous system. However, how NSC self-renewal is maintained is not well understood. Using the Drosophila larval NSCs called neuroblasts (NBs) as a model, we demonstrate that the Hairy and Enhancer-of-Split (Hes) family protein Deadpan (Dpn) plays important roles in NB self-renewal and specification. The loss of Dpn leads to the premature loss of NBs and truncated NB lineages, a process likely mediated by the homeobox protein Prospero (Pros). Conversely, ectopic/over-expression of Dpn promotes ectopic self-renewing divisions and maintains NB self-renewal into adulthood. In type II NBs, which generate transit amplifying intermediate neural progenitors (INPs) like mammalian NSCs, the loss of Dpn results in ectopic expression of type I NB markers Asense (Ase) and Pros before these type II NBs are lost at early larval stages. Our results also show that knockdown of Notch leads to ectopic Ase expression in type II NBs and the premature loss of type II NBs. Significantly, dpn expression is unchanged in these transformed NBs. Furthermore, the loss of Dpn does not inhibit the over-proliferation of type II NBs and immature INPs caused by over-expression of activated Notch. Our data suggest that Dpn plays important roles in maintaining NB self-renewal and specification of type II NBs in larval brains and that Dpn and Notch function independently in regulating type II NB proliferation and specification.
Collapse
|
44
|
Kuert PA, Bello BC, Reichert H. The labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain. Biol Open 2012; 1:1006-15. [PMID: 23213378 PMCID: PMC3507175 DOI: 10.1242/bio.20121966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/20/2012] [Indexed: 01/03/2023] Open
Abstract
The developing brain of Drosophila has become a useful model for studying the molecular genetic mechanisms that give rise to the complex neuronal arrays that characterize higher brains in other animals including mammals. Brain development in Drosophila begins during embryogenesis and continues during a subsequent postembryonic phase. During embryogenesis, the Hox gene labial is expressed in the developing tritocerebrum, and labial loss-of-function has been shown to be associated with a loss of regional neuronal identity and severe patterning defects in this part of the brain. However, nothing is known about the expression and function of labial, or any other Hox gene, during the postembryonic phase of brain development, when the majority of the neurons in the adult brain are generated. Here we report the first analysis of Hox gene action during postembryonic brain development in Drosophila. We show that labial is expressed initially in six larval brain neuroblasts, of which only four give rise to the labial expressing neuroblast lineages present in the late larval brain. Although MARCM-based clonal mutation of labial in these four neuroblast lineages does not result in an obvious phenotype, a striking and unexpected effect of clonal labial loss-of-function does occur during postembryonic brain development, namely the formation of two ectopic neuroblast lineages that are not present in wildtype brains. The same two ectopic neuroblast lineages are also observed following cell death blockage and, significantly, in this case the resulting ectopic lineages are Labial-positive. These findings imply that labial is required in two specific neuroblast lineages of the wildtype brain for the appropriate termination of proliferation through programmed cell death. Our analysis of labial function reveals a novel cell autonomous role of this Hox gene in shaping the lineage architecture of the brain during postembryonic development.
Collapse
Affiliation(s)
- Philipp A Kuert
- Biozentrum, University of Basel , CH 4056 Basel , Switzerland
| | | | | |
Collapse
|
45
|
Avet-Rochex A, Kaul AK, Gatt AP, McNeill H, Bateman JM. Concerted control of gliogenesis by InR/TOR and FGF signalling in the Drosophila post-embryonic brain. Development 2012; 139:2763-72. [PMID: 22745312 PMCID: PMC3392704 DOI: 10.1242/dev.074179] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2012] [Indexed: 12/19/2022]
Abstract
Glial cells are essential for the development and function of the nervous system. In the mammalian brain, vast numbers of glia of several different functional types are generated during late embryonic and early foetal development. However, the molecular cues that instruct gliogenesis and determine glial cell type are poorly understood. During post-embryonic development, the number of glia in the Drosophila larval brain increases dramatically, potentially providing a powerful model for understanding gliogenesis. Using glial-specific clonal analysis we find that perineural glia and cortex glia proliferate extensively through symmetric cell division in the post-embryonic brain. Using pan-glial inhibition and loss-of-function clonal analysis we find that Insulin-like receptor (InR)/Target of rapamycin (TOR) signalling is required for the proliferation of perineural glia. Fibroblast growth factor (FGF) signalling is also required for perineural glia proliferation and acts synergistically with the InR/TOR pathway. Cortex glia require InR in part, but not downstream components of the TOR pathway, for proliferation. Moreover, cortex glia absolutely require FGF signalling, such that inhibition of the FGF pathway almost completely blocks the generation of cortex glia. Neuronal expression of the FGF receptor ligand Pyramus is also required for the generation of cortex glia, suggesting a mechanism whereby neuronal FGF expression coordinates neurogenesis and cortex gliogenesis. In summary, we have identified two major pathways that control perineural and cortex gliogenesis in the post-embryonic brain and have shown that the molecular circuitry required is lineage specific.
Collapse
Affiliation(s)
- Amélie Avet-Rochex
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Aamna K. Kaul
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Ariana P. Gatt
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Helen McNeill
- Samuel Lunenfeld Research Institute, Toronto, Ontario M5G 1X5, Canada
| | - Joseph M. Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
46
|
Boyan GS, Liu Y, Loser M. A cellular network of dye-coupled glia associated with the embryonic central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2012; 222:125-38. [PMID: 22460819 DOI: 10.1007/s00427-012-0394-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/11/2012] [Indexed: 12/25/2022]
Abstract
The central complex of the grasshopper (Schistocerca gregaria) brain comprises a modular set of neuropils, which develops after mid-embryogenesis and is functional on hatching. Early in embryogenesis, Repo-positive glia cells are found intermingled among the commissures of the midbrain, but then redistribute as central complex modules become established and, by the end of embryogenesis, envelop all midbrain neuropils. The predominant glia associated with the central body during embryogenesis are glutamine synthetase-/Repo-positive astrocyte-like glia, which direct extensive processes (gliopodia) into and around midbrain neuropils. We used intracellular dye injection in brain slices to ascertain whether such glia are dye-coupled into a communicating cellular network during embryogenesis. Intracellular staining of individual cells located at any one of four sites around the central body revealed a population of dye-coupled cells whose number and spatial distribution were stereotypic for each site and comparable at both 70 and 100% of embryogenesis. Subsequent immunolabeling confirmed these dye-coupled cells to be astrocyte-like glia. The addition of n-heptanol to the bathing saline prevented all dye coupling, consistent with gap junctions linking the glia surrounding the central body. Since dye coupling also occurred in the absence of direct intersomal contacts, it might additionally involve the extensive array of gliopodia, which develop after glia are arrayed around the central body. Collating the data from all injection sites suggests that the developing central body is surrounded by a network of dye-coupled glia, which we speculate may function as a positioning system for the developing neuropils of the central complex.
Collapse
Affiliation(s)
- George S Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
47
|
Weng R, Cohen SM. Drosophila miR-124 regulates neuroblast proliferation through its target anachronism. Development 2012; 139:1427-34. [PMID: 22378639 DOI: 10.1242/dev.075143] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) have been implicated as regulators of central nervous system (CNS) development and function. miR-124 is an evolutionarily ancient, CNS-specific miRNA. On the basis of the evolutionary conservation of its expression in the CNS, miR-124 is expected to have an ancient conserved function. Intriguingly, investigation of miR-124 function using antisense-mediated miRNA depletion has produced divergent and in some cases contradictory findings in a variety of model systems. Here we investigated miR-124 function using a targeted knockout mutant and present evidence for a role during central brain neurogenesis in Drosophila melanogaster. miR-124 activity in the larval neuroblast lineage is required to support normal levels of neuronal progenitor proliferation. We identify anachronism (ana), which encodes a secreted inhibitor of neuroblast proliferation, as a functionally important target of miR-124 acting in the neuroblast lineage. ana has previously been thought to be glial specific in its expression and to act from the cortex glia to control the exit of neuroblasts from quiescence into the proliferative phase that generates the neurons of the adult CNS during larval development. We provide evidence that ana is expressed in miR-124-expressing neuroblast lineages and that ana activity must be limited by the action of miR-124 during neuronal progenitor proliferation. We discuss the possibility that the apparent divergence of function of miR-124 in different model systems might reflect functional divergence through target site evolution.
Collapse
Affiliation(s)
- Ruifen Weng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore
| | | |
Collapse
|
48
|
Jiang Y, Reichert H. Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain. Neural Dev 2012; 7:3. [PMID: 22257485 PMCID: PMC3287146 DOI: 10.1186/1749-8104-7-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background The number of neurons generated by neural stem cells is dependent upon the regulation of cell proliferation and by programmed cell death. Recently, novel neural stem cells that amplify neural proliferation through intermediate neural progenitors, called type II neuroblasts, have been discovered, which are active during brain development in Drosophila. We investigated programmed cell death in the dorsomedial (DM) amplifying type II lineages that contribute neurons to the development of the central complex in Drosophila, using clonal mosaic analysis with a repressible cell marker (MARCM) and lineage-tracing techniques. Results A significant number of the adult-specific neurons generated in these DM lineages were eliminated by programmed cell death. Programmed cell death occurred during both larval and pupal stages. During larval development, approximately one-quarter of the neuronal (but not glial) cells in the lineages were eliminated by apoptosis before the formation of synaptic connectivity during pupal stages. Lineage-tracing experiments documented the extensive contribution of intermediate neural progenitor-containing DM lineages to all of the major modular substructures of the adult central complex. Moreover, blockage of apoptotic cell death specifically in these lineages led to prominent innervation defects of DM-derived neural progeny in the major neuropile substructures of the adult central complex. Conclusions Our findings indicate that significant neural overproliferation occurs normally in type II DM lineage development, and that elimination of excess neurons in these lineages through programmed cell death is required for the formation of correct neuropile innervation in the developing central complex. Thus, amplification of neuronal proliferation through intermediate progenitors and reduction of neuronal number through programmed cell death operate in concert in type II neural stem-cell lineages during brain development.
Collapse
Affiliation(s)
- Yanrui Jiang
- Biozentrum, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
49
|
Mysore K, Flister S, Müller P, Rodrigues V, Reichert H. Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster. Dev Genes Evol 2011; 221:281-96. [PMID: 21956584 DOI: 10.1007/s00427-011-0376-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/14/2011] [Indexed: 12/23/2022]
Abstract
Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector.
Collapse
Affiliation(s)
- Keshava Mysore
- Biozentrum, University of Basel, Klinglebergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Venken KJ, Simpson JH, Bellen HJ. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 2011; 72:202-30. [PMID: 22017985 PMCID: PMC3232021 DOI: 10.1016/j.neuron.2011.09.021] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 12/26/2022]
Abstract
Research in the fruit fly Drosophila melanogaster has led to insights in neural development, axon guidance, ion channel function, synaptic transmission, learning and memory, diurnal rhythmicity, and neural disease that have had broad implications for neuroscience. Drosophila is currently the eukaryotic model organism that permits the most sophisticated in vivo manipulations to address the function of neurons and neuronally expressed genes. Here, we summarize many of the techniques that help assess the role of specific neurons by labeling, removing, or altering their activity. We also survey genetic manipulations to identify and characterize neural genes by mutation, overexpression, and protein labeling. Here, we attempt to acquaint the reader with available options and contexts to apply these methods.
Collapse
Affiliation(s)
- Koen J.T. Venken
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
| | - Julie H. Simpson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
- Program in Developmental Biology, Department of Neuroscience, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|