1
|
Vašková J, Kočan L, Vaško L, Perjési P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023; 28:molecules28031447. [PMID: 36771108 PMCID: PMC9919958 DOI: 10.3390/molecules28031447] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The tripeptide glutathione is found in all eukaryotic cells, and due to the compartmentalization of biochemical processes, its synthesis takes place exclusively in the cytosol. At the same time, its functions depend on its transport to/from organelles and interorgan transport, in which the liver plays a central role. Glutathione is determined as a marker of the redox state in many diseases, aging processes, and cell death resulting from its properties and reactivity. It also uses other enzymes and proteins, which enables it to engage and regulate various cell functions. This paper approximates the role of these systems in redox and detoxification reactions such as conjugation reactions of glutathione-S-transferases, glyoxylases, reduction of peroxides through thiol peroxidases (glutathione peroxidases, peroxiredoxins) and thiol-disulfide exchange reactions catalyzed by glutaredoxins.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
- Correspondence: (J.V.); (P.P.); Tel.: +42-155-234-3232 (J.V.)
| | - Ladislav Kočan
- Clinic of Anaesthesiology and Intensive Care Medicine, East Slovak Institute of Cardiovascular Disease, 040 11 Košice, Slovakia
| | - Ladislav Vaško
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, 7600 Pécs, Hungary
- Correspondence: (J.V.); (P.P.); Tel.: +42-155-234-3232 (J.V.)
| |
Collapse
|
2
|
Gonzales JA, Takhar JS, Joye A, Acharya NR, Chen C, Hinterwirth A, Doan T. Peripheral Blood Transcriptome in Patients with Sarcoidosis-Associated Uveitis. Ocul Immunol Inflamm 2022; 30:1074-1077. [PMID: 33661066 PMCID: PMC9993430 DOI: 10.1080/09273948.2020.1861306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To identify peripheral blood transcriptome differences in uveitis patients with sarcoidosis compared to those with Vogt-Koyanagi-Harada (VKH) syndrome and controls. METHODS Ten patients with uveitis compatible with sarcoidosis (eight with pulmonary sarcoidosis, one with central nervous system sarcoidosis, and one with conjunctival sarcoidosis), nine patients with VKH, and nine healthy controls were prospectively enrolled. RESULTS Ten genes exhibited a four-fold difference in expression in sarcoidosis patients compared to controls, many being involved in regulating inflammatory processes or cellular responses to microbes. CONCLUSIONS This research suggests that the transcriptome in sarcoidosis is robust enough to be detected in the peripheral blood and that sarcoidosis can be distinguished from healthy controls. Differentially expressed genes may serve as candidates warranting further investigation with respect to disease pathophysiology and may provide additional information, such as ability to stratify patients based on associated disease severity and anatomical location of inflammation within the eye.
Collapse
Affiliation(s)
- John A Gonzales
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA.,Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Jaskirat S Takhar
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA.,John Burns Medical School, University of Hawaii, Honolulu, Hawaii, USA
| | - Ashlin Joye
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Nisha R Acharya
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA.,Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Cindi Chen
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Armin Hinterwirth
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Thuy Doan
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA.,Department of Ophthalmology, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
4
|
Elko EA, Cunniff B, Seward DJ, Chia SB, Aboushousha R, van de Wetering C, van der Velden J, Manuel A, Shukla A, Heintz NH, Anathy V, van der Vliet A, Janssen-Heininger YMW. Peroxiredoxins and Beyond; Redox Systems Regulating Lung Physiology and Disease. Antioxid Redox Signal 2019; 31:1070-1091. [PMID: 30799628 PMCID: PMC6767868 DOI: 10.1089/ars.2019.7752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: The lung is a unique organ, as it is constantly exposed to air, and thus it requires a robust antioxidant defense system to prevent the potential damage from exposure to an array of environmental insults, including oxidants. The peroxiredoxin (PRDX) family plays an important role in scavenging peroxides and is critical to the cellular antioxidant defense system. Recent Advances: Exciting discoveries have been made to highlight the key features of PRDXs that regulate the redox tone. PRDXs do not act in isolation as they require the thioredoxin/thioredoxin reductase/NADPH, sulfiredoxin (SRXN1) redox system, and in some cases glutaredoxin/glutathione, for their reduction. Furthermore, the chaperone function of PRDXs, controlled by the oxidation state, demonstrates the versatility in redox regulation and control of cellular biology exerted by this class of proteins. Critical Issues: Despite the long-known observations that redox perturbations accompany a number of pulmonary diseases, surprisingly little is known about the role of PRDXs in the etiology of these diseases. In this perspective, we review the studies that have been conducted thus far to address the roles of PRDXs in lung disease, or experimental models used to study these diseases. Intriguing findings, such as the secretion of PRDXs and the formation of autoantibodies, raise a number of questions about the pathways that regulate secretion, redox status, and immune response to PRDXs. Future Directions: Further understanding of the mechanisms by which individual PRDXs control lung inflammation, injury, repair, chronic remodeling, and cancer, and the importance of PRDX oxidation state, configuration, and client proteins that govern these processes is needed.
Collapse
Affiliation(s)
- Evan A Elko
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Shi Biao Chia
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Allison Manuel
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nicholas H Heintz
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
5
|
Charkoftaki G, Thompson DC, Golla JP, Garcia-Milian R, Lam TT, Engel J, Vasiliou V. Integrated multi-omics approach reveals a role of ALDH1A1 in lipid metabolism in human colon cancer cells. Chem Biol Interact 2019; 304:88-96. [PMID: 30851239 DOI: 10.1016/j.cbi.2019.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06250, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA; Yale MS & Proteomics Resource, WM Keck Biotechnology Resource Laboratory, New Haven, CT, 06510, USA
| | - Jasper Engel
- Biometris, Wageningen University & Research, Wagenigen, the Netherlands
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
6
|
Chen L, Huang C, Yang X, Zhang Q, Chen F. Prognostic roles of mRNA expression of peroxiredoxins in lung cancer. Onco Targets Ther 2018; 11:8381-8388. [PMID: 30568461 PMCID: PMC6267628 DOI: 10.2147/ott.s181314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The peroxiredoxin (PRDX) protein family is involved in cancer cell invasion and metastasis, but its prognostic value in lung cancer remain elusive. Methods In this report, we accessed the overall survival (OS) of each individual PRDX mRNA expression through the Kaplan–Meier plotter (KM plotter) database, in which updated gene expression data and survival information include a total of 1,926 lung cancer patients. Results Our results indicated that PRDX1 and PRDX2 mRNA expressions were associated with improved OS in all lung cancer patients especially in lung adenocarcinoma patients, whereas PRDX5 and PRDX6 mRNA expressions were associated with poor OS in all lung cancer patients. In addition, the prognostic value of PRDXs in the different clinicopathological features according to smoking status, pathological grades, clinical stages, and chemotherapeutic treatment of lung cancer patients was further assessed in the KM plotter database by the multivariate cox regression analysis. Conclusion Our finding will elucidate the prognostic role of PRDXs in lung cancer and might promote development of PRDX-targeted inhibitors for the treatment of lung cancer.
Collapse
Affiliation(s)
- Liangyuan Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, People's Republic of China, .,Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China,
| | - Chunli Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China,
| | - Xiaojun Yang
- Department of Transfusion Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China
| | - Qiuqin Zhang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, People's Republic of China,
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, People's Republic of China, .,Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China,
| |
Collapse
|
7
|
He Y, Xu W, Xiao Y, Pan L, Chen G, Tang Y, Zhou J, Wu J, Zhu W, Zhang S, Cao J. Overexpression of Peroxiredoxin 6 (PRDX6) Promotes the Aggressive Phenotypes of Esophageal Squamous Cell Carcinoma. J Cancer 2018; 9:3939-3949. [PMID: 30410598 PMCID: PMC6218759 DOI: 10.7150/jca.26041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies. Peroxiredoxin 6 (PRDX6), a member of peroxidase superfamily, has a function of eliminating the reactive oxygen species (ROS), and participates in development of multiple diseases, including tumors. The purpose of this study was to investigate the expression of PRDX6 in normal and cancerous esophageal tissues and to characterize its role in ESCC progression. We found significantly higher expression of PRDX6 in ESCC tissues than in normal esophageal tissues or tumor-adjacent tissues and that the PRDX6 expression level was positively correlated with the proliferation-related markers. In ESCC cells, PRDX6 distribution was more pronounced in the nucleus region. PRDX6 overexpression by an adenovirus significantly promoted cell proliferation, migration and invasion in TE-1 and Eca-109 cells. Conversely, lentivirus-mediated knock-down of PRDX6 expression significantly reduced cell growth, colony formation and metastasis in ESCC cells. PRDX6 modulated the phosphorylation of Akt and Erk1/2, and the expression of MMP2. We also found that PRDX6 and Erk1/2 pathway were mutually regulated in ESCC cells. In addition, PRDX6 overexpression eliminated radiation-induced ROS and decreased consequent cell apoptosis, indicative of a role in radioresistance. Finally, the role of PRDX6 in promoting tumor growth was further confirmed in nude mice with ESCC xenografts. Taken together, we demonstrated that overexpression of PRDX6 promotes the progression of ESCC through Erk1/2, which provides a potential therapeutic target for human ESCC.
Collapse
Affiliation(s)
- Yan He
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215001, China
| | - Wanglei Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuji Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Lu Pan
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Guangxia Chen
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou 221002, China
| | - Yiting Tang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou 213032, China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215001, China
| | - Jinchang Wu
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215001, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuyu Zhang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Fisher AB. The phospholipase A 2 activity of peroxiredoxin 6. J Lipid Res 2018; 59:1132-1147. [PMID: 29716959 DOI: 10.1194/jlr.r082578] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a Ca2+-independent intracellular phospholipase A2 (called aiPLA2) that is localized to cytosol, lysosomes, and lysosomal-related organelles. Activity is minimal at cytosolic pH but is increased significantly with enzyme phosphorylation, at acidic pH, and in the presence of oxidized phospholipid substrate; maximal activity with phosphorylated aiPLA2 is ∼2 µmol/min/mg protein. Prdx6 is a "moonlighting" protein that also expresses glutathione peroxidase and lysophosphatidylcholine acyl transferase activities. The catalytic site for aiPLA2 activity is an S32-H26-D140 triad; S32-H26 is also the phospholipid binding site. Activity is inhibited by a serine "protease" inhibitor (diethyl p-nitrophenyl phosphate), an analog of the PLA2 transition state [1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol (MJ33)], and by two naturally occurring proteins (surfactant protein A and p67phox), but not by bromoenol lactone. aiPLA2 activity has important physiological roles in the turnover (synthesis and degradation) of lung surfactant phospholipids, in the repair of peroxidized cell membranes, and in the activation of NADPH oxidase type 2 (NOX2). The enzyme has been implicated in acute lung injury, carcinogenesis, neurodegenerative diseases, diabetes, male infertility, and sundry other conditions, although its specific roles have not been well defined. Protein mutations and animal models are now available to further investigate the roles of Prdx6-aiPLA2 activity in normal and pathological physiology.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine of the Department of Physiology, University of Pennsylvania, Philadelphia, PA 19103
| |
Collapse
|
9
|
Fisher AB, Vasquez-Medina JP, Dodia C, Sorokina EM, Tao JQ, Feinstein SI. Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes. Redox Biol 2017; 14:41-46. [PMID: 28865296 PMCID: PMC5581854 DOI: 10.1016/j.redox.2017.08.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Although lipid peroxidation associated with oxidative stress can result in cellular death, sub-lethal lipid peroxidation can gradually resolve with return to the pre-exposure state. We have shown that resolution of lipid peroxidation is greatly delayed in lungs or cells that are null for peroxiredoxin 6 (Prdx6) and that both the phospholipase A2 and the GSH peroxidase activities of Prdx6 are required for a maximal rate of recovery. Like other peroxiredoxins, Prdx6 can reduce H2O2 and short chain hydroperoxides, but in addition can directly reduce phospholipid hydroperoxides. This study evaluated the relative role of these two different peroxidase activities of Prdx6 in the repair of peroxidized cell membranes. The His26 residue in Prdx6 is an important component of the binding site for phospholipids. Thus, we evaluated the lungs from H26A-Prdx6 expressing mice and generated H26A-Prdx6 expressing pulmonary microvascular endothelial cells (PMVEC) by lentiviral infection of Prdx6 null cells to compare with wild type in the repair of lipid peroxidation. Isolated lungs and PMVEC were exposed to tert-butyl hydroperoxide and mice were exposed to hyperoxia (> 95% O2). Assays for lipid peroxidation in wild type control and mutant lungs and cells showed ~4-fold increase at end-exposure. Control lungs and cells showed gradual resolution during a post-exposure recovery period. However, there was no recovery from lipid peroxidation by H26A-Prdx6 lungs or PMVEC. These studies confirm an important role for Prdx6 in recovery from membrane lipid peroxidation and indicate that reduction of H2O2 or short chain hydroperoxides does not play a role in the recovery process. Repair of peroxidized lipids did not occur with H26A-Prdx6 Delete semicolons;mutation. Repair reflects the phospholipid hydroperoxidase and PLA2 activities of Prdx6;Move to next with "bullet mark" "P"eroxidase activity with small hydroperoxides and H2O2 does not play a role in repair.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jose P Vasquez-Medina
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chandra Dodia
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena M Sorokina
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian-Qin Tao
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Fisher AB. Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Arch Biochem Biophys 2017; 617:68-83. [PMID: 27932289 PMCID: PMC5810417 DOI: 10.1016/j.abb.2016.12.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Peroxiredoxin 6 represents a widely distributed group of peroxiredoxins that contain a single conserved cysteine in the protein monomer (1-cys Prdx). The cys when oxidized to the sulfenic form is reduced with glutathione (GSH) catalyzed by the π isoform of GSH-S-transferase. Three enzymatic activities of the protein have been described:1) peroxidase with H2O2, short chain hydroperoxides, and phospholipid hydroperoxides as substrates; 2) phospholipase A2 (PLA2); and 3) lysophosphatidylcholine acyl transferase (LPCAT). These activities have important physiological roles in antioxidant defense, turnover of cellular phospholipids, and the generation of superoxide anion via initiation of the signaling cascade for activation of NADPH oxidase (type 2). The ability of Prdx6 to reduce peroxidized cell membrane phospholipids (peroxidase activity) and also to replace the oxidized sn-2 fatty acyl group through hydrolysis/reacylation (PLA2 and LPCAT activities) provides a complete system for the repair of peroxidized cell membranes.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine of the Department of Physiology, University of Pennsylvania, 3620 Hamilton Walk, 1 John Morgan Building, Philadelphia, PA, United States.
| |
Collapse
|
11
|
Nicolussi A, D'Inzeo S, Capalbo C, Giannini G, Coppa A. The role of peroxiredoxins in cancer. Mol Clin Oncol 2017; 6:139-153. [PMID: 28357082 PMCID: PMC5351761 DOI: 10.3892/mco.2017.1129] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs) are a ubiquitously expressed family of small (22–27 kDa) non-seleno peroxidases that catalyze the peroxide reduction of H2O2, organic hydroperoxides and peroxynitrite. They are highly involved in the control of various physiological functions, including cell growth, differentiation, apoptosis, embryonic development, lipid metabolism, the immune response, as well as cellular homeostasis. Although the protective role of PRDXs in cardiovascular and neurological diseases is well established, their role in cancer remains controversial. Increasing evidence suggests the involvement of PRDXs in carcinogenesis and in the development of drug resistance. Numerous types of cancer cells, in fact, are characterized by an increase in reactive oxygen species (ROS) production, and often exhibit an altered redox environment compared with normal cells. The present review focuses on the complex association between oxidant balance and cancer, and it provides a brief account of the involvement of PRDXs in tumorigenesis and in the development of chemoresistance.
Collapse
Affiliation(s)
- Arianna Nicolussi
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Sonia D'Inzeo
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
12
|
Gordeeva AE, Temnov AA, Charnagalov AA, Sharapov MG, Fesenko EE, Novoselov VI. Protective Effect of Peroxiredoxin 6 in Ischemia/Reperfusion-Induced Damage of Small Intestine. Dig Dis Sci 2015; 60:3610-9. [PMID: 26233545 DOI: 10.1007/s10620-015-3809-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/13/2015] [Indexed: 12/09/2022]
Abstract
BACKGROUND Strong oxidative stress starting in the epithelium upon restoration of blood cell circulation is a major cause of necrosis of the intestinal epithelium in ischemia/reperfusion-induced damage. AIM The purpose of this study was to investigate the tissue-protective effect of exogenous peroxiredoxin 6 (Prx6) in ischemia/reperfusion-induced damage of small intestine. METHODS The research was carried out using a model of acute superior mesenteric artery occlusion in Wistar male rats. Exogenous Prx6 was administrated intravenously 15 min prior to small intestine ischemia. The distribution of endogenous Prx6 in the small intestine was determined by immunohistochemical analysis. The expression level of antioxidant enzymes was evaluated by RT-PCR in real time. RESULTS Exogenous Prx6 injected to animals intravenously was detected in blood vessel lumens, and its diffuse distribution was subsequently confirmed in the intestinal epithelium. Expression analysis of genes coding for major antioxidant enzymes demonstrated a significant activation of SOD 1, SOD 3, Prx6, GPx2, GPx7 expression during I/R-induced damage of the small intestine. Injection of exogenous Prx6 prior to induced ischemia resulted in minimization of oxidative injury by reducing necrosis and apoptosis, by normalization of gene activity of antioxidant enzyme. It eventually led to a reduction of epithelium destruction in the small intestine. By contrast, administration of a purified mutant form of Prx6 (Prx6C47S) without peroxidase activity had no protective effect. CONCLUSION The application of exogenous Prx6 enables normalization of the antioxidant status of the small intestine and reduction of cell destruction upon I/R-induced organ damage.
Collapse
Affiliation(s)
- A E Gordeeva
- Institute of Cell Biophysics, Russian Academy of Sciences, 3, Institutskaya, Pushchino, Moscow Region, Russia, 142290.
| | - A A Temnov
- N.V. Sklifosovsky Research Institute for Emergency Medicine of Moscow Healthcare Department, Moscow, Russia.
| | - A A Charnagalov
- Department of Structural and Computational Biology, Max. F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| | - M G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, 3, Institutskaya, Pushchino, Moscow Region, Russia, 142290.
| | - E E Fesenko
- Institute of Cell Biophysics, Russian Academy of Sciences, 3, Institutskaya, Pushchino, Moscow Region, Russia, 142290.
| | - V I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, 3, Institutskaya, Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
13
|
Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis. Infect Immun 2015; 84:365-74. [PMID: 26553463 DOI: 10.1128/iai.01168-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023] Open
Abstract
Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague.
Collapse
|
14
|
|
15
|
Rose JJ, Voora D, Cyr DD, Lucas JE, Zaas AK, Woods CW, Newby LK, Kraus WE, Ginsburg GS. Gene Expression Profiles Link Respiratory Viral Infection, Platelet Response to Aspirin, and Acute Myocardial Infarction. PLoS One 2015; 10:e0132259. [PMID: 26193668 PMCID: PMC4507878 DOI: 10.1371/journal.pone.0132259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/12/2015] [Indexed: 01/09/2023] Open
Abstract
Background Influenza infection is associated with myocardial infarction (MI), suggesting that respiratory viral infection may induce biologic pathways that contribute to MI. We tested the hypotheses that 1) a validated blood gene expression signature of respiratory viral infection (viral GES) was associated with MI and 2) respiratory viral exposure changes levels of a validated platelet gene expression signature (platelet GES) of platelet function in response to aspirin that is associated with MI. Methods A previously defined viral GES was projected into blood RNA data from 594 patients undergoing elective cardiac catheterization and used to classify patients as having evidence of viral infection or not and tested for association with acute MI using logistic regression. A previously defined platelet GES was projected into blood RNA data from 81 healthy subjects before and after exposure to four respiratory viruses: Respiratory Syncytial Virus (RSV) (n=20), Human Rhinovirus (HRV) (n=20), Influenza A virus subtype H1N1 (H1N1) (n=24), Influenza A Virus subtype H3N2 (H3N2) (n=17). We tested for the change in platelet GES with viral exposure using linear mixed-effects regression and by symptom status. Results In the catheterization cohort, 32 patients had evidence of viral infection based upon the viral GES, of which 25% (8/32) had MI versus 12.2% (69/567) among those without evidence of viral infection (OR 2.3; CI [1.03-5.5], p=0.04). In the infection cohorts, only H1N1 exposure increased platelet GES over time (time course p-value = 1e-04). Conclusions A viral GES of non-specific, respiratory viral infection was associated with acute MI; 18% of the top 49 genes in the viral GES are involved with hemostasis and/or platelet aggregation. Separately, H1N1 exposure, but not exposure to other respiratory viruses, increased a platelet GES previously shown to be associated with MI. Together, these results highlight specific genes and pathways that link viral infection, platelet activation, and MI especially in the case of H1N1 influenza infection.
Collapse
Affiliation(s)
- Jason J. Rose
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Deepak Voora
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph E. Lucas
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Aimee K. Zaas
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher W. Woods
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - L. Kristin Newby
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - William E. Kraus
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Geoffrey S. Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Xie H, Chen Z, Wang G. [Research Progress of Biomakers Proteomics-based in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:391-6. [PMID: 26104898 PMCID: PMC5999909 DOI: 10.3779/j.issn.1009-3419.2015.06.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
蛋白组学技术可以应用于癌症研究来检测差异蛋白质表达以发现癌症生物标志物。肺癌的生物标志物在肺癌早期诊断、指导治疗和预后监测方面起着关键作用。因此,迫切需要确定新的早期诊断和预后指标以开辟新的治疗途径。本文简要介绍了基于蛋白质组学的肺癌生物标志物的最新研究报告。他包括作为诊断、预后和预测性的生物标志物,以及基于最近发表文献的基础上和我们所做的相关工作的总结。
Collapse
Affiliation(s)
- Hui Xie
- Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Zhengang Chen
- Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Guangshun Wang
- Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| |
Collapse
|
17
|
Abstract
Liver cancer is the fifth most common cancer, but the second leading cause of cancer death, in the world, with more than 700,000 fatalities annually. The major etiology of liver cancer is infection with an hepatotropic virus such as hepatitis B virus or hepatitis C virus infection. While chronic viral infection remains the main cause of liver disease and risk of hepatocellular carcinoma (HCC), rates of nonviral-associated HCC are occurring at an alarmingly increasing rate. Like many cancers, survival rates are closely associated with time of detection. If HCC is caught early, survival rates can be as high as 50%. Regrettably, most cases of HCC are caught late where survival rates can be as low as 2-7%. Thus, there has been great interest in discovering serum biomarkers that could be used to identify those with HCC. To this end, many groups have examined the N-linked glycans to identify changes that occur with HCC. As the liver secretes the vast majority of proteins into the serum, this has often been a starting point for study. In serum, alterations in core fucosylation, outer-arm fucosylation, increased sialylation, and glycan branching have been observed in patients with HCC. Similar findings have been found directly in HCC tissue suggesting that these glycan changes may play a role in tumor formation and development.
Collapse
Affiliation(s)
- Anand Mehta
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, USA
| | - Harmin Herrera
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, USA
| | - Timothy Block
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, USA
| |
Collapse
|
18
|
Kisluk J, Ciborowski M, Niemira M, Kretowski A, Niklinski J. Proteomics biomarkers for non-small cell lung cancer. J Pharm Biomed Anal 2014; 101:40-9. [DOI: 10.1016/j.jpba.2014.07.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 01/07/2023]
|
19
|
Loss of presenilin 2 is associated with increased iPLA2 activity and lung tumor development. Oncogene 2014; 33:5193-200. [PMID: 24858037 PMCID: PMC4287650 DOI: 10.1038/onc.2014.128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
Presenilins are the enzymatic components of γ-secretase complex that cleaves amyloid precursor protein, Notch and β-catenin, which has critical roles in the development of Alzheimer's disease and cancer cell growth. Therefore, in the present study, we studied the effects and mechanisms of PS2 knockout on lung cancer development and possible mechanisms as a key regulator of lung tumor development. We compared carcinogen-induced tumor growth between PS2 knockout mice and wild-type mice. PS2 knockout mice showed increased urethane (1 mg/g)-induced lung tumor incidence when compared with that of wild-type mice with decreased activity of γ-secretase in the lung tumor tissues. Consequently, iPLA2 activities in lung tumor tissues of PS2 knockout mice were much higher than in tumor tissues of wild-type mice. Furthermore, knockdown of PS2 using PS2 siRNA decreased γ-secretase activity with increased iPLA2 activity in the lung cancer cells (A549 and NCI-H460), leading to increased lung cancer cell growth. PS2 knockout mice and PS2 knockdown lung cancer cells showed increased DNA-binding activities of nuclear factor kappa-beta, signal transducer and activator of transcription 3 (STAT3) and AP-1 which are critical transcriptional factors of iPLA2 than those of PS2 wild-type mice and control lung cancer cells. Taken together, these results suggest that the loss of PS2 could have a critical role in lung tumor development through the upregulation of iPLA2 activity by reducing γ-secretase.
Collapse
|
20
|
Fisher AB. The serpentine path to a novel mechanism-based inhibitor of acute inflammatory lung injury. J Appl Physiol (1985) 2014; 116:1521-30. [PMID: 24744383 DOI: 10.1152/japplphysiol.00246.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Comroe lecture on which this review is based described my research path during the past 45 years, beginning with studies of oxidant stress (hyperoxia) and eventuating in the discovery of a synthetic inhibitor of phospholipase A2 activity (called MJ33) that prevents acute lung injury in mice exposed to lipopolysaccharide. In between were studies of lung ischemia, lung surfactant metabolism, the protein peroxiredoxin 6 and its phospholipase A2 activity, and mechanisms for NADPH oxidase activation. These seemingly unrelated research activities provided the nexus for identification of a novel target and a potentially novel therapeutic agent for prevention or treatment of acute lung injury.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine and the Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Jo M, Yun HM, Park KR, Park MH, Lee DH, Cho SH, Yoo HS, Lee YM, Jeong HS, Kim Y, Jung JK, Hwang BY, Lee MK, Kim ND, Han SB, Hong JT. Anti-cancer effect of thiacremonone through down regulation of peroxiredoxin 6. PLoS One 2014; 9:e91508. [PMID: 24618722 PMCID: PMC3950181 DOI: 10.1371/journal.pone.0091508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/13/2014] [Indexed: 02/03/2023] Open
Abstract
Thiacremonone (2, 4-dihydroxy-2, 5-dimethyl-thiophene-3-one) is an antioxidant substance as a novel sulfur compound generated from High-Temperature-High-Pressure-treated garlic. Peroxiredoxin 6 (PRDX6) is a member of peroxidases, and has glutathione peroxidase and calcium-independent phospholipase A2 (iPLA2) activities. Several studies have demonstrated that PRDX6 stimulates lung cancer cell growth via an increase of glutathione peroxidase activity. A docking model study and pull down assay showed that thiacremonone completely fits on the active site (cys-47) of glutathione peroxidase of PRDX6 and interacts with PRDX6. Thus, we investigated whether thiacremonone inhibits cell growth by blocking glutathione peroxidase of PRDX6 in the human lung cancer cells, A549 and NCI-H460. Thiacremonone (0-50 μg/ml) inhibited lung cancer cell growth in a concentration dependent manner through induction of apoptotic cell death accompanied by induction of cleaved caspase-3, -8, -9, Bax, p21 and p53, but decrease of xIAP, cIAP and Bcl2 expression. Thiacremonone further inhibited glutathione peroxidase activity in lung cancer cells. However, the cell growth inhibitory effect of thiacremonone was not observed in the lung cancer cells transfected with mutant PRDX6 (C47S) and in the presence of dithiothreitol and glutathione. In an allograft in vivo model, thiacremonone (30 mg/kg) also inhibited tumor growth accompanied with the reduction of PRDX6 expression and glutathione peroxidase activity, but increased expression of cleaved caspase-3, -8, -9, Bax, p21 and p53. These data indicate that thiacremonone inhibits tumor growth via inhibition of glutathione peroxidase activity of PRDX6 through interaction. These data suggest that thiacremonone may have potentially beneficial effects in lung cancer.
Collapse
Affiliation(s)
- Miran Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Hyung-Mun Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Kyung-Ran Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Dong Hun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Seung Hee Cho
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Hwan-Soo Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Yong-Moon Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Heon Sang Jeong
- College of Agriculture, Life and Environments Science, Chungbuk National University, Chungbuk, Korea
| | - Youngsoo Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Jae Kyung Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Bang Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Mi Kyeong Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Korea
- * E-mail:
| |
Collapse
|
22
|
Fields PA, Eurich C, Gao WL, Cela B. Changes in protein expression in the salt marsh mussel Geukensia demissa: evidence for a shift from anaerobic to aerobic metabolism during prolonged aerial exposure. ACTA ACUST UNITED AC 2014; 217:1601-12. [PMID: 24501137 DOI: 10.1242/jeb.101758] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During aerial exposure (emersion), most sessile intertidal invertebrates experience cellular stress caused by hypoxia, and the amount and types of hypoxia-induced stress will differ as exposure time increases, likely leading to altered metabolic responses. We examined proteomic responses to increasing emersion times and decreasing recovery (immersion) times in the mussel Geukensia demissa, which occurs in salt marshes along the east coast of North America. Individuals are found above mean tide level, and can be emersed for over 18 h during spring tides. We acclimated mussels to full immersion at 15°C for 4 weeks, and compared changes in gill protein expression between groups of mussels that were continually immersed (control), were emersed for 6 h and immersed during recovery for 18 h (6E/18R), were emersed for 12 h and recovered for 12 h (12E/12R), or were emersed for 18 h with a 6 h recovery (18E/6R). We found clear differences in protein expression patterns among the treatments. Proteins associated with anaerobic fermentation increased in abundance in 6E/18R but not in 12E/12R or 18E/6R. Increases in oxidative stress proteins were most apparent in 12E/12R, and in 18E/6R changes in cytoskeletal protein expression predominated. We conclude that G. demissa alters its strategy for coping with emersion stress over time, relying on anaerobic metabolism for short- to medium-duration exposure, but switching to an air-gaping strategy for long-term exposure, which reduces hypoxia stress but may cause structural damage to gill tissue.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, Franklin and Marshall College, Lancaster, PA 17603, USA
| | | | | | | |
Collapse
|
23
|
Smith TB, Baker MA, Connaughton HS, Habenicht U, Aitken RJ. Functional deletion of Txndc2 and Txndc3 increases the susceptibility of spermatozoa to age-related oxidative stress. Free Radic Biol Med 2013; 65:872-881. [PMID: 23707457 DOI: 10.1016/j.freeradbiomed.2013.05.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/26/2013] [Accepted: 05/15/2013] [Indexed: 12/31/2022]
Abstract
Oxidative stress in the male germ line is known to be a key factor in both the etiology of male infertility and the high levels of DNA damage encountered in human spermatozoa. Because the latter has been associated with a variety of adverse clinical outcomes, including miscarriage and developmental abnormalities in the offspring, the mechanisms that spermatozoa use to defend themselves against oxidative stress are of great interest. In this context, the male germ line expresses three unique forms of thioredoxin, known as thioredoxin domain-containing proteins (Txndc2, Txndc3, and Txndc8). Two of these proteins, Txndc2 and Txndc3, retain association with the spermatozoa after spermiation and potentially play an important role in regulating the redox status of the mature gamete. To address this area, we have functionally deleted the sperm-specific thioredoxins from the male germ line of mice by either exon deletion (Txndc2) or mutation of the bioactive cysteines (Txndc3). The combined inactivation of these Txndc isoforms did not have an overall impact on spermatogenesis, epididymal sperm maturation, or fertility. However, Txndc deficiency in spermatozoa did lead to age-dependent changes in these cells as reflected by accelerated motility loss, high rates of DNA damage, increases in reactive oxygen species generation, enhanced formation of lipid aldehyde-protein adducts, and impaired protamination of the sperm chromatin. These results suggest that although there is considerable redundancy in the systems employed by spermatozoa to defend themselves against oxidative stress, the sperm-specific thioredoxins, Txndc2 and Txndc3, are critically important in protecting these cells against the increases in oxidative stress associated with paternal age.
Collapse
Affiliation(s)
- T B Smith
- Reproductive Science Group, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - M A Baker
- Reproductive Science Group, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - H S Connaughton
- Reproductive Science Group, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - U Habenicht
- TRG Gynecology & Andrology and Male Health Care Research, Bayer Schering Pharma AG, Berlin, Germany
| | - R J Aitken
- Reproductive Science Group, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
24
|
Korfei M, von der Beck D, Henneke I, Markart P, Ruppert C, Mahavadi P, Ghanim B, Klepetko W, Fink L, Meiners S, Krämer OH, Seeger W, Vancheri C, Guenther A. Comparative proteome analysis of lung tissue from patients with idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP) and organ donors. J Proteomics 2013; 85:109-28. [PMID: 23659799 DOI: 10.1016/j.jprot.2013.04.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/03/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Among the idiopathic interstitial pneumonias (IIP), the two entities IPF and NSIP seem to be clinically related, but NSIP has a better outcome. The proteomic signatures which distinguish NSIP from IPF remain still elusive. We therefore performed comparative proteomic analysis of peripheral lung tissue from patients with sporadic IPF (n=14) and fibrotic NSIP (fNSIP, n=8) and organ donors (Controls, n=10), by using the 2-dimensional DIGE technique and MALDI-TOF-MS. The study revealed that the proteomic profiles of IPF and fNSIP were quite similar. Among the upregulated proteins in IPF and fNSIP were stress-induced genes involved in the ER stress-pathway, whereas downregulated proteins in IPF and fNSIP included antiapoptotic factors and antifibrotic molecules. The comparison fNSIP versus IPF indicated upregulation of subunits of the proteasome activator complex and antioxidant enzymes of the peroxiredoxin family. We conclude, that only few protein expression changes exist between IPF and fNSIP, and that epithelial ER- and oxidative stress play a major role in the pathogenesis of both diseases. In contrast to IPF, intracellular clearance of ROS and misfolded protein carbonyls seem to be enhanced in fNSIP due to enhanced expression of antioxidant acting proteins, and may explain the better outcome and survival in patients with fNSIP. BIOLOGICAL SIGNIFICANCE IPF and fibrotic NSIP (fNSIP) belong to the idiopathic interstitial pneumonias and are usually fatal, but fNSIP has a better outcome. In order to identify molecular mechanisms and differences between IPF and fNSIP, we herein present results of a comparative proteome analysis of IPF, fNSIP and control lung tissue. Our data including validation experiments suggest that ER stress and a general stress-response as well as the decline of antioxidant capacity in alveolar epithelium is key in the pathogenesis of IPF and fNSIP. In addition, we could observe a signature of an increased alveolar epithelial protection against oxidative and ER-stress in fNSIP as compared to IPF, which could help to explain the better outcome of fNSIP patients.
Collapse
Affiliation(s)
- Martina Korfei
- Universities of Giessen and Marburg Lung Center-UGMLC, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 625] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
26
|
Lee I, Dodia C, Chatterjee S, Zagorski J, Mesaros C, Blair IA, Feinstein SI, Jain M, Fisher AB. A novel nontoxic inhibitor of the activation of NADPH oxidase reduces reactive oxygen species production in mouse lung. J Pharmacol Exp Ther 2013; 345:284-96. [PMID: 23475902 DOI: 10.1124/jpet.112.201079] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1-Hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33) is a fluorinated phospholipid analog that inhibits the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Prdx6 PLA2 activity is required for activation of NADPH oxidase 2 and subsequent generation of reactive oxygen species (ROS). In vitro, MJ33 inhibited agonist-stimulated production of ROS by the isolated perfused mouse lung, lung microvascular endothelial cells, and polymorphonuclear leukocytes. MJ33 (0.02-0.5 µmol MJ33/kg body weight) in mixed unilamellar liposomes was administered to C57BL/6 mice by either intratracheal (i.t.) or i.v. routes. Lung MJ33 content, measured by liquid chromatography/mass spectroscopy, showed uptake of 67-87% of the injected dose for i.t. and 23-42% for i.v. administration at 4 hours postinjection. PLA2 activity of lung homogenates was markedly inhibited (>85%) at 4 hours postadministration. Both MJ33 content and PLA2 activity gradually returned to near control levels over the subsequent 24-72 hours. Mice treated with MJ33 at 12.5-25 µmol/kg did not show changes (compared with control) in clinical symptomatology, body weight, hematocrit, and histology of lung, liver, and kidney during a 30- to 50-day observation period. Thus, the toxic dose of MJ33 was >25 µmol/kg, whereas the PLA2 inhibitory dose was approximately 0.02 µmol/kg, indicating a high margin of safety. MJ33 administered to mice prior to lung isolation markedly reduced ROS production and tissue lipid and protein oxidation during ischemia followed by reperfusion. Thus, MJ33 could be useful as a therapeutic agent to prevent ROS-mediated tissue injury associated with lung inflammation or in harvested lungs prior to transplantation.
Collapse
Affiliation(s)
- Intae Lee
- Institute for Environmental Medicine, University of Pennsylvania, 3620 Hamilton Walk, 1 John Morgan Building, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Garofalo RP, Kolli D, Casola A. Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities. Antioxid Redox Signal 2013; 18:186-217. [PMID: 22799599 PMCID: PMC3513983 DOI: 10.1089/ars.2011.4307] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) is one of the most important causes of upper and lower respiratory tract infections in infants and young children, for which no effective treatment is currently available. Although the mechanisms of RSV-induced airway disease remain incompletely defined, the lung inflammatory response is thought to play a central pathogenetic role. In the past few years, we and others have provided increasing evidence of a role of reactive oxygen species (ROS) as important regulators of RSV-induced cellular signaling leading to the expression of key proinflammatory mediators, such as cytokines and chemokines. In addition, RSV-induced oxidative stress, which results from an imbalance between ROS production and airway antioxidant defenses, due to a widespread inhibition of antioxidant enzyme expression, is likely to play a fundamental role in the pathogenesis of RSV-associated lung inflammatory disease, as demonstrated by a significant increase in markers of oxidative injury, which correlate with the severity of clinical illness, in children with RSV infection. Modulation of ROS production and oxidative stress therefore represents a potential novel pharmacological approach to ameliorate RSV-induced lung inflammation and its long-term consequences.
Collapse
Affiliation(s)
- Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | | | | |
Collapse
|
28
|
Abstract
The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states.
Collapse
|
29
|
Zhou S, Lien YC, Shuvaeva T, DeBolt K, Feinstein SI, Fisher AB. Functional interaction of glutathione S-transferase pi and peroxiredoxin 6 in intact cells. Int J Biochem Cell Biol 2012; 45:401-7. [PMID: 23164639 DOI: 10.1016/j.biocel.2012.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/26/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
Peroxiredoxin 6 (Prdx6) is a 1-Cys member of the peroxiredoxin superfamily that plays an important role in antioxidant defense. Glutathionylation of recombinant Prdx6 mediated by π glutathione S-transferase (GST) is required for reduction of the oxidized Cys and completion of the peroxidatic catalytic cycle in vitro. This study investigated the requirement for πGST in intact cells. Transfection with a plasmid construct expressing πGST into MCF7, a cell line that lacks endogenous πGST, significantly increased phospholipid peroxidase activity as measured in cell lysates and protected intact cells against a peroxidative stress. siRNA knockdown indicated that this increased peroxidase activity was Prdx6 dependent. Interaction between πGST and Prdx6, evaluated by the Duolink Proximity Ligation Assay, was minimal under basal conditions but increased dramatically following treatment of cells with the oxidant, tert-butyl hydroperoxide. Interaction was abolished by mutation of C47, the active site for Prdx6 peroxidase activity. Depletion of cellular GSH by treatment of cells with buthionine sulfoximine had no effect on the interaction of Prdx6 and πGST. These data are consistent with the hypothesis that oxidation of the catalytic cysteine in Prdx6 is required for its interaction with πGST and that the interaction plays an important role in regenerating the peroxidase activity of Prdx6.
Collapse
Affiliation(s)
- Suiping Zhou
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6068, United States
| | | | | | | | | | | |
Collapse
|
30
|
Takayama N, Iwamoto N, Sumi D, Shinkai Y, Tanaka-Kagawa T, Jinno H, Kumagai Y. Peroxiredoxin 6 is a molecular target for 1,2-naphthoquinone, an atmospheric electrophile, in human pulmonary epithelial A549 cells. J Toxicol Sci 2012; 36:817-21. [PMID: 22129745 DOI: 10.2131/jts.36.817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1,2-Naphthoquinone (1,2-NQ) is an electrophile found in the atmosphere, which reacts readily with protein nucleophiles to form a stable protein adduct. Peroxiredoxin 6 (Prdx6) is predominantly expressed in lung tissue and functions in antioxidant defense by facilitating the repair of damaged cell membranes via reduction of peroxidized phospholipids. In the present study, human A549 pulmonary epithelial cells were exposed to 1,2-NQ to explore whether 1,2-NQ can bind covalently to Prdx6, thereby disrupting its catalytic activity. Two-dimensional SDS/PAGE followed by western blot analysis with a specific antibody against 1,2-NQ showed that Prdx6 was covalently modified by 1,2-NQ. Using purified human Prdx6, it was found that 1,2-NQ bound covalently to Prdx6 through Cys47, Lys144 and Cys91, resulting in a significant reduction in phospholipase A(2) activity. These results suggest that arylation of Prdx6 by 1,2-NQ may, at least in part, be involved in the cellular toxicity induced by 1,2-NQ.
Collapse
|
31
|
Ambruso DR, Ellison MA, Thurman GW, Leto TL. Peroxiredoxin 6 translocates to the plasma membrane during neutrophil activation and is required for optimal NADPH oxidase activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:306-15. [PMID: 22178385 DOI: 10.1016/j.bbamcr.2011.11.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 11/27/2022]
Abstract
Neutrophils provide the first line of defense against microbial invasion in part through production of reactive oxygen species (ROS) which is mediated through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generating superoxide anion (O2-). The phagocyte oxidase (phox) has multiple protein components that assemble on the plasma membrane in stimulated neutrophils. We recently described a protein in neutrophils, peroxiredoxin 6 (Prdx6), which has both peroxidase and phospholipase A2 (PLA2) activities and enhances oxidase activity in an SDS-activated, cell-free system. The function of Prdx6 in phox activity is further investigated. In reconstituted phox-competent K562 cells, siRNA-mediated suppression of Prdx6 resulted in decreased NADPH oxidase activity in response to formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA). In neutrophils stimulated with PMA, Prdx6 translocated to plasma membrane as demonstrated by Western blot and confocal microscopy. Translocation of Prdx6 in phox competent K562 cells required both p67phox and p47phox. In addition, plasma membrane from PMA-stimulated, oxidase competent K562 cells with siRNA-mediated Prdx6 suppression contained less p47phox and p67phox compared to cells in which Prdx6 was not decreased. Cell-free oxidase assays showed that recombinant Prdx6 did not alter the Km for NADPH, but increased the Vmax for O2- production in a saturable, Prdx6 concentration-dependent manner. Recombinant proteins with mutations in Prdx (C47S) and phospholipase (S32A) activity both enhanced cell-free phox activity to the same extent as wild type protein. Prdx6 supports retention of the active oxidase complex in stimulated plasma membrane, and results with mutant proteins imply that Prdx6 serves an additional biochemical or structural role in supporting optimal NADPH oxidase activity.
Collapse
|
32
|
Sharapov MG, Novoselov VI, Fesenko EE, Ravin VK. Two isoforms of peroxiredoxin 6 of Xenopus laevis. Mol Biol 2011. [DOI: 10.1134/s0026893311060100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Brigelius-Flohé R, Flohé L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 2011; 15:2335-81. [PMID: 21194351 PMCID: PMC3166203 DOI: 10.1089/ars.2010.3534] [Citation(s) in RCA: 422] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct signaling by free radicals is restricted to O(2)•- and •NO and can be excluded for fast reacting radicals such as •OH, •OR, or Cl•; (ii) oxidant signals are H(2)O(2), enzymatically generated lipid hydroperoxides, and peroxynitrite; (iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a postulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for system complementation. The impact of NF-κB and Nrf2 on hormesis, management of inflammatory diseases, and cancer prevention is critically discussed.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| | | |
Collapse
|
34
|
Fisher AB. Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A₂ activities. Antioxid Redox Signal 2011; 15:831-44. [PMID: 20919932 PMCID: PMC3125547 DOI: 10.1089/ars.2010.3412] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxiredoxin 6 (Prdx6) is the prototype and the only mammalian 1-Cys member of the Prdx family. Major differences from 2-Cys Prdxs include the use of glutathione (GSH) instead of thioredoxin as the physiological reductant, heterodimerization with πGSH S-transferase as part of the catalytic cycle, and the ability either to reduce the oxidized sn-2 fatty acyl group of phospholipids (peroxidase activity) or to hydrolyze the sn-2 ester (alkyl) bond of phospholipids (phospholipase A(2) [PLA(2)] activity). The bifunctional protein has separate active sites for peroxidase (C47, R132, H39) and PLA(2) (S32, D140, H26) activities. These activities are dependent on binding of the protein to phospholipids at acidic pH and to oxidized phospholipids at cytosolic pH. Prdx6 can be phosphorylated by MAP kinases at T177, which markedly increases its PLA(2) activity and broadens its pH-activity spectrum. Prdx6 is primarily cytosolic but also is targeted to acidic organelles (lysosomes, lamellar bodies) by a specific targeting sequence (amino acids 31-40). Oxidant stress and keratinocyte growth factor are potent regulators of Prdx6 gene expression. Prdx6 has important roles in both antioxidant defense based on its ability to reduce peroxidized membrane phospholipids and in phospholipid homeostasis based on its ability to generate lysophospholipid substrate for the remodeling pathway of phospholipid synthesis.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
35
|
Abstract
Thiol peroxidases comprise glutathione peroxidases (GPx) and peroxiredoxins (Prx). The enzymes of both families reduce hydroperoxides with thiols by enzyme-substitution mechanisms. H(2)O(2) and organic hydroperoxides are reduced by all thiol peroxidases, most efficiently by SecGPxs, whereas fast peroxynitrite reduction is more common in Prxs. Reduction of lipid hydroperoxides is the domain of monomeric GPx4-type enzymes and of some Prxs. The catalysis starts with oxidation of an active-site selenocysteine (U(P)) or cysteine (C(P)). Activation of Cys (Sec) for hydroperoxide reduction in the GPx family is achieved by a typical tetrad composed of Cys (Sec), Asn, Gln, and Trp, whereas a triad of Cys Thr (or Ser) and Arg is the signature of Prx. In many of the CysGPxs and Prxs, a second Cys (C(R)) is required. In these 2-CysGPxs and 2-CysPrxs, the C(P) oxidized to a sulfenic acid forms an intra- or intermolecular disulfide (typical 2-CysPrx) with C(R), before a stepwise regeneration of ground-state enzyme by redoxin-type proteins can proceed. In SecGPxs and sporadically in Prxs, GSH is used as the reductant. Diversity combined with structural variability predestines thiol peroxidases for redox regulation via ROOH sensing and direct or indirect transduction of oxidant signals to specific protein targets.
Collapse
Affiliation(s)
- Leopold Flohé
- Otto-von-Guericke-Universität and MOLISA GmbH, Magdeburg, Germany.
| | | | | | | |
Collapse
|
36
|
Rushefski M, Aplenc R, Meyer N, Li M, Feng R, Lanken PN, Gallop R, Bellamy S, Localio AR, Feinstein SI, Fisher AB, Albelda SM, Christie JD. Novel variants in the PRDX6 Gene and the risk of Acute Lung Injury following major trauma. BMC MEDICAL GENETICS 2011; 12:77. [PMID: 21627785 PMCID: PMC3121666 DOI: 10.1186/1471-2350-12-77] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 05/31/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Peroxiredoxin 6 (PRDX6) is involved in redox regulation of the cell and is thought to be protective against oxidant injury. Little is known about genetic variation within the PRDX6 gene and its association with acute lung injury (ALI). In this study we sequenced the PRDX6 gene to uncover common variants, and tested association with ALI following major trauma. METHODS To examine the extent of variation in the PRDX6 gene, we performed direct sequencing of the 5' UTR, exons, introns and the 3' UTR in 25 African American cases and controls and 23 European American cases and controls (selected from a cohort study of major trauma), which uncovered 80 SNPs. In silico modeling was performed using Patrocles and Transcriptional Element Search System (TESS). Thirty seven novel and tagging SNPs were tested for association with ALI compared with ICU at-risk controls who did not develop ALI in a cohort study of 259 African American and 254 European American subjects that had been admitted to the ICU with major trauma. RESULTS Resequencing of critically ill subjects demonstrated 43 novel SNPs not previously reported. Coding regions demonstrated no detectable variation, indicating conservation of the protein. Block haplotype analyses reveal that recombination rates within the gene seem low in both Caucasians and African Americans. Several novel SNPs appeared to have the potential for functional consequence using in silico modeling. Chi2 analysis of ALI incidence and genotype showed no significant association between the SNPs in this study and ALI. Haplotype analysis did not reveal any association beyond single SNP analyses. CONCLUSIONS This study revealed novel SNPs within the PRDX6 gene and its 5' and 3' flanking regions via direct sequencing. There was no association found between these SNPs and ALI, possibly due to a low sample size, which was limited to detection of relative risks of 1.93 and above. Future studies may focus on the role of PRDX6 genetic variation in other diseases, where oxidative stress is suspected.
Collapse
Affiliation(s)
- Melanie Rushefski
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, 19104, USA
- Division of Oncology, Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, 19104, USA
| | - Richard Aplenc
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, 19104, USA
- Division of Oncology, Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, 19104, USA
| | - Nuala Meyer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, 3600 Spruce Street, Philadelphia, 19104, USA
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, 19104, USA
| | - Rui Feng
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, 19104, USA
| | - Paul N Lanken
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, 3600 Spruce Street, Philadelphia, 19104, USA
| | - Robert Gallop
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, 19104, USA
| | - Scarlett Bellamy
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, 19104, USA
| | - A Russell Localio
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, 19104, USA
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, 19104, USA
| | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, 19104, USA
| | - Steven M Albelda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, 3600 Spruce Street, Philadelphia, 19104, USA
| | - Jason D Christie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, 3600 Spruce Street, Philadelphia, 19104, USA
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, 19104, USA
| |
Collapse
|
37
|
Sorokina EM, Feinstein SI, Zhou S, Fisher AB. Intracellular targeting of peroxiredoxin 6 to lysosomal organelles requires MAPK activity and binding to 14-3-3ε. Am J Physiol Cell Physiol 2011; 300:C1430-41. [PMID: 21346153 DOI: 10.1152/ajpcell.00285.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxiredoxin 6 (Prdx6), a bifunctional protein with GSH peroxidase and lysosomal-type phospholipase A(2) activities, has been localized to both cytosolic and acidic compartments (lamellar bodies and lysosomes) in lung alveolar epithelium. We postulate that Prdx6 subcellular localization affects the balance between the two activities. Immunostaining localized Prdx6 to lysosome-related organelles in the MLE12 and A549 alveolar epithelial cell lines. Inhibition of trafficking by brefeldin A indicated processing of the protein through the vesicular pathway. Trafficking of Prdx6 was decreased by inhibitors of PKC, ERK, and p38 MAPK. Immunocytochemistry, immunoprecipitation, and an in situ proximity ligation assay (Duolink) showed that binding of the lysosomal targeting sequence of Prdx6 (amino acids 31-40) to 14-3-3ε was dependent on activity of PKC, ERK, and p38 MAPK. Knockdown of 14-3-3ε with siRNA inhibited the lysosomal targeting of Prdx6. In vitro study with recombinant proteins by pull-down assay and surface plasmon resonance confirmed the interaction of Prdx6 and 14-3-3ε. These findings suggest that ERK and p38 MAPK regulate subcellular localization of Prdx6 by activation of 14-3-3ε as a chaperone protein, resulting in its translocation to acidic organelles.
Collapse
Affiliation(s)
- Elena M Sorokina
- Institute for Environmental Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
38
|
Kikuchi N, Ishii Y, Morishima Y, Yageta Y, Haraguchi N, Yamadori T, Masuko H, Sakamoto T, Yanagawa T, Warabi E, Ishii T, Hizawa N. Aggravation of bleomycin-induced pulmonary inflammation and fibrosis in mice lacking peroxiredoxin I. Am J Respir Cell Mol Biol 2011; 45:600-9. [PMID: 21239607 DOI: 10.1165/rcmb.2010-0137oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of acute lung injury and pulmonary fibrosis. Peroxiredoxin (Prx) I is a cellular antioxidant enzyme induced under stress conditions. In the present study, the protective effects of Prx I on the development of bleomycin-induced acute pulmonary inflammation and pulmonary fibrosis were investigated using Prx I-deficient mice. Survival of Prx I-deficient mice after bleomycin administration was significantly lower than that of wild-type mice, corresponding with enhanced acute pulmonary inflammation and fibrosis. The level of inflammatory cytokines and chemokines, such as TNF-α, macrophage inflammatory protein-2, and monocyte chemotactic protein-1, was significantly elevated in the bronchoalveolar lavage fluid of Prx I-deficient mice after bleomycin administration. Furthermore, the level of 8-isoprostane, an oxidative stress marker, and the concentration and alveolar macrophage expression of macrophage migration inhibitory factor were elevated in the lungs of Prx I-deficient mice after bleomycin administration. The exacerbation of bleomycin-induced pulmonary inflammation and fibrosis in Prx I-deficient mice was inhibited by treatment with N-acetyl-L-cysteine, a radical scavenger, or with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester, a tautomerase inhibitor of macrophage migration inhibitory factor. These findings suggest that mice lacking Prx I are highly susceptible to bleomycin-induced pulmonary inflammation and fibrosis because of increases in pulmonary oxidant levels and macrophage migration inhibitory factor activity in response to bleomycin.
Collapse
Affiliation(s)
- Norihiro Kikuchi
- Department of Respiratory Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Liu G, Feinstein SI, Wang Y, Dodia C, Fisher D, Yu K, Ho YS, Fisher AB. Comparison of glutathione peroxidase 1 and peroxiredoxin 6 in protection against oxidative stress in the mouse lung. Free Radic Biol Med 2010; 49:1172-81. [PMID: 20627125 PMCID: PMC2947380 DOI: 10.1016/j.freeradbiomed.2010.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/29/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
Peroxiredoxin 6 (Prdx6) and cytosolic GSH peroxidase (GPx1), both GSH-dependent peroxidases, were compared for the effects of their knockout on injury and lipid peroxidation in: (a) lungs of mice exposed to 0.85 or 1.0atm O(2), (b) isolated perfused mouse lungs exposed to 5mM tert-butylhydroperoxide (t-BOOH) or 1mM paraquat, and (c) primary mouse pulmonary microvascular endothelial cells exposed to 50muM t-BOOH. Derangements in GPx1 null were similar or slightly greater than in wild type for all parameters in the various models of oxidant stress, whereas Prdx6 null showed markedly increased effects. GSH peroxidase activity with phosphatidylcholine hydroperoxide as substrate in GPx1-null lung homogenate was decreased only slightly vs wild type, whereas activity in Prdx6-null lungs was decreased by ~95%, indicating that Prdx6 is the major enzyme for reduction of oxidized lung phospholipids. Expression levels of oxidant-related genes measured with a PCR-based gene array indicated no significant differences between the Prdx6 and the GPx1 null except for the target genes and IL-19. Thus, Prdx6-null mice are significantly more sensitive to oxidant stress compared to GPx1 null, suggesting that scavenging of phospholipid hydroperoxides by Prdx6 plays a major role in lung antioxidant defense.
Collapse
Affiliation(s)
- Geng Liu
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dammeyer P, Arnér ESJ. Human Protein Atlas of redox systems - what can be learnt? Biochim Biophys Acta Gen Subj 2010; 1810:111-38. [PMID: 20647035 DOI: 10.1016/j.bbagen.2010.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/08/2010] [Accepted: 07/11/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND High-throughput screening projects are popular approaches to yield a vast amount of information amenable for database mining and "hypothesis generation". The keys to success for these approaches depend upon the quality of primary data, choice of algorithms for data analyses, solidity in data annotations and the general usefulness of the results. A large initiative aimed at mapping the expression of all human proteins is the Human Protein Atlas (www.proteinatlas.org), encompassing immunohistochemical analyses of human tissues utilizing antibodies raised against a large number of human proteins. Here, we wished to probe what could be learnt from this atlas using a manual in-depth analysis of the results regarding the expression of key proteins in the human glutathione and thioredoxin systems. METHODS The freely available on-line data of immunohistochemical analyses for selected human redox proteins within the Human Protein Atlas were here analyzed, provided that reasonably solid data existed for the antibodies that were employed. This included tissue expression data for thioredoxin 1 (Trx1), Trx2, thioredoxin reductase 1 (TrxR1), TrxR2, glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PD), γ-glutamyl cysteinyl synthase (gGCS) and the six peroxiredoxins Prx1 to Prx6. The data were further complemented with a screen using a polyclonal peptide antibody raised against the unique glutaredoxin domain of TXNRD1_v3 ("v3"). The results from fifteen major tissues and organs are presented (lung, kidney, liver, lymph node, testis, prostate, ovary, breast, pancreas, cerebellum, hippocampus, cerebral cortex, skin, skeletal muscle and heart muscle) and discussed considering earlier findings described in the literature. RESULTS Staining patterns proved to be highly variable and often unexpected both in terms of tissues analyzed and the individual target proteins. Among the analyzed tissues, only macrophages of the lung, tubular cells of the kidney, lymphoid cells of lymph nodes, Leydig cells in the testis, glandular cells of the prostate and exocrine glandular cells of the pancreas, showed positive staining with all of the fourteen antibodies that were analyzed. Among these antibodies, those against Trx1, TrxR2 and G6PD showed the most restricted staining across different tissues, while others including the antibodies against Trx2, TrxR1, GR, Prx3, Prx4 and Prx6 gave strong staining in most tissues. Staining for v3 was strong in many cells and tissues, which was unexpected considering previous results mapping transcripts for this protein. No obvious co-variation in staining across tissues could be noted when comparing any two of the analyzed antibodies. Staining for G6PD was weak in most tissues, except for cells of the seminiferous ducts in testis and follicular cells of the ovary, where G6PD staining was strong. CONCLUSIONS Results from high-throughput screening projects such as the Human Protein Atlas must be taken with caution and need to be duly confirmed by thorough in-depth follow-up studies. The varying staining intensities comparing tissues as seen here for most of the analyzed antibodies nonetheless suggest that the overall profile of the human redox systems may vary significantly between different cell types and between different tissues. GENERAL SIGNIFICANCE The Human Protein Atlas data suggest that the individual proteins of the human thioredoxin and glutathione systems may be strikingly tissue- and cell type-specific in terms of expression levels, but we also conclude that these type of high-throughput results should be taken with significant caution and must be duly verified using subsequent focused and detailed hypothesis-guided follow-up studies. This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.
Collapse
Affiliation(s)
- Pascal Dammeyer
- Department of Medical Biochemistry and Biophyscis, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
42
|
Godoy JR, Funke M, Ackermann W, Haunhorst P, Oesteritz S, Capani F, Elsässer HP, Lillig CH. Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse. Biochim Biophys Acta Gen Subj 2010; 1810:2-92. [PMID: 20682242 DOI: 10.1016/j.bbagen.2010.05.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxidoreductases of the thioredoxin family of proteins have been thoroughly studied in numerous cellular and animal models mimicking human diseases. Despite of their well documented role in various disease conditions, no systematic information on the presence of these proteins is available. METHODS Here, we have systematically analyzed the presence of some of the major constituents of the glutaredoxin (Grx)-, peroxiredoxin (Prx)-, and thioredoxin (Trx)-systems, i.e. Grx1, Grx2, Grx3 (TXNL-2/PICOT), Grx5, nucleoredoxin (Nrx), Prx1, Prx2, Prx3, Prx4, Prx5, Prx6, Trx1, thioredoxin reductase 1 (TrxR1), Trx2, TrxR2, and γ-glutamyl cysteine synthetase (γ-GCS) in various tissues of the mouse using immunohistochemistry. RESULTS The identification of the Trx family proteins in the central nervous system, sensory organs, digestive system, lymphatic system, reproductive system, urinary system, respiratory system, endocrine system, skin, heart, and muscle revealed a number of significant differences between these proteins with respect to their distribution in these tissues. CONCLUSION Our results imply more specific functions and interactions between the proteins of this family than previously assumed. GENERAL SIGNIFICANCE Crucial functions of Trx family proteins have been demonstrated in various disease conditions. A detailed overview on their distribution in various tissues will be helpful to fully comprehend their potential role and the interactions of these proteins in the most thoroughly studied model for human diseases-the laboratory mouse. This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.
Collapse
Affiliation(s)
- José Rodrigo Godoy
- Institut für Klinische Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps Universität, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ho JN, Lee SB, Lee SS, Yoon SH, Kang GY, Hwang SG, Um HD. Phospholipase A2 activity of peroxiredoxin 6 promotes invasion and metastasis of lung cancer cells. Mol Cancer Ther 2010; 9:825-32. [PMID: 20354123 DOI: 10.1158/1535-7163.mct-09-0904] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peroxiredoxins (PRDX) are a family of thiol-dependent peroxidases. Among the six mammalian members of this family, PRDX6 is the only protein that additionally exhibits phospholipase A(2) (PLA(2)) activity. The physiologic role of this interesting PRDX6 feature is largely unknown at present. In this study, we show that PRDX6 increases the metastatic potential of lung cancer cells. Functional analyses of the enzymatic activities of PRDX6, using specific pharmacologic inhibitors and mutagenesis studies, reveal that both peroxidase and PLA(2) activities are required for metastasis. Specifically, peroxidase activity facilitates the growth of cancer cells, and PLA(2) activity promotes invasiveness. Further investigation of the latter event discloses that PLA(2) activity promotes accumulation of arachidonic acid, which, in turn, induces the invasive pathway involving p38 kinase, phosphoinositide 3-kinase, Akt, and urokinase-type plasminogen activator. This study is the first to define the functions of the enzymatic activities of PRDX6 in metastasis and to show the involvement of arachidonic acid in PRDX6 action in intact cells. These novel findings provide a significant step toward elucidating the role of PRDX6 in cancer and the mechanism of its action. Mol Cancer Ther; 9(4); 825-32. (c)2010 AACR.
Collapse
Affiliation(s)
- Jin-Nyoung Ho
- Laboratory of Radiation Tumor Physiology, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706, Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
López-Boado YS, Li JU, Clayton CL, Wright JL, Churg A. Modification of the rat airway explant transcriptome by cigarette smoke. Inhal Toxicol 2010; 22:234-44. [PMID: 19883206 DOI: 10.3109/08958370903191437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although a number of animal model studies have addressed changes in gene expression in the parenchyma and their relationship to emphysema, much less is known about the pathogenesis of cigarette smoke-induced small airway remodeling. In this study the authors exposed rat tracheal explants, a model of the airway wall, to whole smoke for 15 min, and then cultured the explants in air. The airway transcriptome was evaluated using RAE 230_2 gene chips. By 2 h after starting smoke exposure, expression levels of 502 genes were differentially expressed by more than 1.5 times (p < .01 or less) and by 24 h 1870 genes were significantly changed up or down. These included genes involved in antioxidant protection, epithelial defense and remodeling, inflammatory mediators and transcription factors, and a number of unexpected genes, including the matrix metalloproteinase (MMP)-12 inducer, tachykinin-1 (substance P). Pretreatment of the explants with 1 x 10(-7) M dexamethasone reduced the number of significantly changed genes by approximately 47% at 2 h and 68% at 24 h and in almost all instances reduced the magnitude of the smoke-induced changes. The authors conclude that even a very brief exposure to cigarette smoke can lead to rapid changes in the expression of a large number of genes in rat tracheal explants, and that these effects are directly mediated by smoke, without a need for exogenous inflammatory cells. Steroids, contrary to the usual belief, are able to ameliorate many of these changes, at least in this very acute model.
Collapse
|
45
|
Lomnytska MI, Becker S, Hellman K, Hellström AC, Souchelnytskyi S, Mints M, Hellman U, Andersson S, Auer G. Diagnostic protein marker patterns in squamous cervical cancer. Proteomics Clin Appl 2009; 4:17-31. [PMID: 21137014 DOI: 10.1002/prca.200900086] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 01/18/2023]
Abstract
PURPOSE Cervical cancer is the second most prevalent malignancy of women. Our aim was to identify additional marker protein patterns for objective diagnosis of squamous cervical cancer (SCC). EXPERIMENTAL DESIGN Collected tissue biopsies of SCC, squamous vaginal cancer (SVC), normal cervical and vaginal mucosa were subjected to 2-DE, SameSpot analysis, MALDI-TOF-MS protein identification, and analysis of the expression of selected proteins by immunohistochemistry. RESULTS In 148 protein spots selected by the difference in expression 99 proteins were identified. A differential protein pattern for SCC was, e.g. over-expressed (OE) eukaryotic translation initiation factor 3-2β, neutrophil cytosolic factor 2, annexin A6 (ANXA6), for SVC it was OE cathepsin D, γ-catenin, RAB2A, for both cancers it was OE apolipoprotein E, tropomyosin 3, HSPA8, and underexpressed cytokeratin 13, osteoglycin. In SCC nuclear expression of neutrophil cytosolic factor 2, PRDX2, HSP27 (nine of ten cases), ANXA6 (nine of ten cases) was observed while tropomyosin 4 was expressed only in two of ten cases. There was 81.1% (43/53) agreement between the expression of protein spots and the immune expression of proteins (www.proteinatlas.org). CONCLUSIONS AND CLINICAL RELEVANCE SCC is characterized by specific tissue marker protein patterns that allow objective detection of the disease. They can become a basis for objective automated cytology-based screening and improve current diagnostics of SCC.
Collapse
Affiliation(s)
- Marta I Lomnytska
- Department of Obstetrics and Gynecology, Institute for Clinical Science and Technology, Karolinska University Hospital, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kitsiouli E, Nakos G, Lekka ME. Phospholipase A2 subclasses in acute respiratory distress syndrome. Biochim Biophys Acta Mol Basis Dis 2009; 1792:941-53. [PMID: 19577642 DOI: 10.1016/j.bbadis.2009.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/25/2009] [Accepted: 06/25/2009] [Indexed: 01/12/2023]
Abstract
Phospholipases A2 (PLA2) catalyse the cleavage of fatty acids esterified at the sn-2 position of glycerophospholipids. In acute lung injury-acute respiratory distress syndrome (ALI-ARDS) several distinct isoenzymes appear in lung cells and fluid. Some are capable to trigger molecular events leading to enhanced inflammation and lung damage and others have a role in lung surfactant recycling preserving lung function: Secreted forms (groups sPLA2-IIA, -V, -X) can directly hydrolyze surfactant phospholipids. Cytosolic PLA2 (cPLA2-IVA) requiring Ca2+ has a preference for arachidonate, the precursor of eicosanoids which participate in the inflammatory response in the lung. Ca(2+)-independent intracellular PLA2s (iPLA2) take part in surfactant phospholipids turnover within alveolar cells. Acidic Ca(2+)-independent PLA2 (aiPLA2), of lysosomal origin, has additionally antioxidant properties, (peroxiredoxin VI activity), and participates in the formation of dipalmitoyl-phosphatidylcholine in lung surfactant. PAF-AH degrades PAF, a potent mediator of inflammation, and oxidatively fragmented phospholipids but also leads to toxic metabolites. Therefore, the regulation of PLA2 isoforms could be a valuable approach for ARDS treatment.
Collapse
Affiliation(s)
- Eirini Kitsiouli
- Department of Biological Applications and Technologies, School of Sciences and Technologies, University of Ioannina, Greece
| | | | | |
Collapse
|
47
|
Binding of peroxiredoxin 6 to substrate determines differential phospholipid hydroperoxide peroxidase and phospholipase A(2) activities. Arch Biochem Biophys 2009; 485:139-49. [PMID: 19236840 DOI: 10.1016/j.abb.2009.02.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/13/2009] [Accepted: 02/15/2009] [Indexed: 11/20/2022]
Abstract
Peroxiredoxin 6 (Prdx6) differs from other mammalian peroxiredoxins both in its ability to reduce phospholipid hydroperoxides at neutral pH and in having phospholipase A(2) (PLA(2)) activity that is maximal at acidic pH. We previously showed an active site C47 for peroxidase activity and a catalytic triad S32-H26-D140 necessary for binding of phospholipid and PLA(2) activity. This study evaluated binding of reduced and oxidized phospholipid hydroperoxide to Prdx6 at cytosolic pH. Incubation of recombinant Prdx6 with 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine hydroperoxide (PLPCOOH) resulted in peroxidase activity, cys47 oxidation as detected with Prdx6-SO2(3)) antibody, and a marked shift in the Prdx6 melting temperature by circular dichroism analysis indicating that PLPCOOH is a specific substrate for Prdx6. Preferential Prdx6 binding to oxidized liposomes was detected by changes in DNS-PE or bis-Pyr fluorescence and by ultrafiltration. Site-specific mutation of S32 or H26 in Prdx6 abolished binding while D140 mutation had no effect. Treatment of A549 cells with peroxides led to lipid peroxidation and translocation of Prdx6 from the cytosol to the cell membrane. Thus, the pH specificity for the two enzymatic activities of Prdx6 can be explained by the differential binding kinetics of the protein; Prdx6 binds to reduced phospholipid at acidic pH but at cytosolic pH binds only phospholipid that is oxidized compatible with a role for Prdx6 in the repair of peroxidized cell membranes.
Collapse
|
48
|
Xu NY, Zhang SP, Dong L, Nie JH, Tong J. Proteomic analysis of lung tissue of rats exposed to cigarette smoke and radon. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:752-758. [PMID: 19492239 DOI: 10.1080/15287390902841573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study examined the protein expression in lung tissues of rats exposed to radon and cigarette smoke using a proteomic approach. Male Wistar rats were exposed daily to radon at a concentration of 100,000 Bq/m(3) for 16 h, and then exposed to 20% cigarette smoke for 1 h for a period of 75 d, with the radon cumulative dose reaching 200 WLM (working level months). Proteins from rat lung tissue were separated by two-dimensional gel electrophoresis (2-DE), stained with Coomassie blue, and analyzed with ImageMaster two-dimensional (2D) platinum software. Differentially expressed proteins were analyzed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MALDI-time of flight [TOF] MS or MALDI TOF/TOF-MS). Twenty prominent proteins that were correlated with signal transduction, metabolism, heat shock and stress, and cytoskeleton construction were identified. Some of the differential expression proteins were verified by Western blot analysis and immunohistochemical staining, and the results were consistent with 2-DE analysis. The identified proteins and peptides might be potential diagnostic markers of lung impairment induced by radon and cigarette smoke exposure.
Collapse
Affiliation(s)
- Nai-Yu Xu
- Department of Pharmacy, Soochow University, Suzhou, China
| | | | | | | | | |
Collapse
|
49
|
|