1
|
Mahanty M, Dutta B, Ou W, Zhu X, Bromberg JS, He X, Rahaman SO. Macrophage microRNA-146a is a central regulator of the foreign body response to biomaterial implants. Biomaterials 2025; 314:122855. [PMID: 39362025 PMCID: PMC11560625 DOI: 10.1016/j.biomaterials.2024.122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Host recognition and immune-mediated foreign body response (FBR) to biomaterials can adversely affect the functionality of implanted materials. FBR presents a complex bioengineering and medical challenge due to the lack of current treatments, making the detailed exploration of its molecular mechanisms crucial for developing new and effective therapies. To identify key molecular targets underlying the generation of FBR, here we perform analysis of microRNAs (miR) and mRNAs responses to implanted biomaterials. We found that (a) miR-146a levels inversely affect macrophage accumulation, foreign body giant cell (FBGC) formation, and fibrosis in a murine implant model; (b) macrophage-derived miR-146a is a crucial regulator of the FBR and FBGC formation, as confirmed by global and cell-specific knockout of miR-146a; (c) miR-146a modulates genes related to inflammation, fibrosis, and mechanosensing; (d) miR-146a modulates tissue stiffness near the implant during FBR as assessed by atomic force microscopy; and (e) miR-146a is linked to F-actin production and cellular traction force induction as determined by traction force microscopy, which are vital for FBGC formation. These novel findings suggest that targeting macrophage miR-146a could be a selective strategy to inhibit FBR, potentially improving the biocompatibility of biomaterials.
Collapse
Affiliation(s)
- Manisha Mahanty
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA
| | - Bidisha Dutta
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA
| | - Wenquan Ou
- University of Maryland, Fischell Department of Bioengineering, College Park, MD, 20742, USA
| | - Xiaoping Zhu
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | | | - Xiaoming He
- University of Maryland, Fischell Department of Bioengineering, College Park, MD, 20742, USA
| | - Shaik O Rahaman
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA.
| |
Collapse
|
2
|
Shirk BD, Heichel DL, Eccles LE, Rodgers LI, Lateef AH, Burke KA, Stoppel WL. Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:5915-5938. [PMID: 39259773 DOI: 10.1021/acsbiomaterials.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.
Collapse
Affiliation(s)
- Bryce D Shirk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Danielle L Heichel
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Liam I Rodgers
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ali H Lateef
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kelly A Burke
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Whitney L Stoppel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Mohajeri M, Eskandari M, Ghazali ZS, Ghazali HS. Cell encapsulation in alginate-based microgels using droplet microfluidics; a review on gelation methods and applications. Biomed Phys Eng Express 2022; 8. [PMID: 35073537 DOI: 10.1088/2057-1976/ac4e2d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Cell encapsulation within the microspheres using a semi-permeable polymer allows the two-way transfer of molecules such as oxygen, nutrients, and growth factors. The main advantages of cell encapsulation technology include controlling the problems involved in transplanting rejection in tissue engineering applications and reducing the long-term need for immunosuppressive drugs following organ transplantation to eliminate the side effects. Cell-laden microgels can also be used in 3D cell cultures, wound healing, and cancerous clusters for drug testing. Since cell encapsulation is used for different purposes, several techniques have been developed to encapsulate cells. Droplet-based microfluidics is one of the most valuable techniques in cell encapsulating. This study aimed to review the geometries and the mechanisms proposed in microfluidic systems to precisely control cell-laden microgels production with different biopolymers. We also focused on alginate gelation techniques due to their essential role in cell encapsulation applications. Finally, some applications of these microgels and researches will be explored.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Biomedical Engineering Department, Amirkabir University of Technology, Department of Biomedical Engineering No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Mahnaz Eskandari
- Biomedical Engineering Department, Amirkabir University of Technology, Department of Biomedical Engineering No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Zahra Sadat Ghazali
- Biomedical Engineering Department, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Hanieh Sadat Ghazali
- Department of Nanobiotechnology, Tarbiat Modares University, Jalal Aleahmad-Tehran-Iran, Tehran, 14115-111, Iran (the Islamic Republic of)
| |
Collapse
|
4
|
El makawy AI, Mabrouk DM, Mohammed SE, Abdel-Aziem SH, EL-Kader HAA, Sharaf HA, Youssef DA, Ibrahim FM. The suppressive role of nanoencapsulated chia oil against DMBA-induced breast cancer through oxidative stress repression and tumor genes expression modulation in rats. Mol Biol Rep 2022; 49:10217-10228. [PMID: 36063350 PMCID: PMC9618492 DOI: 10.1007/s11033-022-07885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chia oil is high in omega-3 fatty acids, which have been linked to a lower risk of many diseases, including cancer. Oil encapsulation is a method that holds promise for maintaining oil content while enhancing solubility and stability. The purpose of this study is to prepare nanoencapsulated Chia oil and investigate its suppressive effects on rat chemically induced breast cancer. METHODS The oil was extracted from commercial Chia seeds and their fatty acids were analyzed using Gas Chromatography-mass spectrometry (GC/MS). Sodium alginate was used as a loading agent to create the Chia oil nanocapsules. The DPPH assay was used to assess the oil nanocapsules' capacity to scavenge free radicals. Breast cancer induction was done by single dose subcutaneously administration of 80 mg/kg dimethylbenz (a) anthracene (DMBA). Models of breast cancer were given Chia oil nanocapsules orally for one month at doses of 100 and 200 mg/kg. Through measuring intracellular reactive oxygen species (ROS) and protein carbonyl, assessing the gene expression of tumor suppressor genes (BRCA 1 & 2, TP53), and conducting histopathological analysis, the suppressive effect of Chia oil nanocapsules was examined. RESULTS The increase in ROS and PC levels brought on by DMBA was significantly decreased by the administration of Chia oil nanocapsules. In tumor tissue from rats given Chia oil nanocapsules, the mRNA expression levels of BRCA1, BRCA2, and TP53 were controlled Histopathological analysis clarified that the tissue architecture of breast tumors was improved by nanocapsules management. CONCLUSIONS These findings demonstrate the ability of Chia oil nanocapsules to inhibit cancer cells in the rat breast.
Collapse
Affiliation(s)
- Aida I. El makawy
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Dalia M. Mabrouk
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Shaimaa E. Mohammed
- Nutrition and Food Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Sekena H. Abdel-Aziem
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Heba A. Abd EL-Kader
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Hafiza A. Sharaf
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Dalia A. Youssef
- Pests and Plant Protection Department, Agricultural and Biology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| |
Collapse
|
5
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Kuthubutheen J, Brown D, Mikov M, Al-Salami H. Artificial Cell Encapsulation for Biomaterials and Tissue Bio-Nanoengineering: History, Achievements, Limitations, and Future Work for Potential Clinical Applications and Transplantation. J Funct Biomater 2021; 12:68. [PMID: 34940547 PMCID: PMC8704355 DOI: 10.3390/jfb12040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell loss and failure with subsequent deficiency of insulin production is the hallmark of type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D). Despite the availability of parental insulin, serious complications of both types are profound and endemic. One approach to therapy and a potential cure is the immunoisolation of β cells via artificial cell microencapsulation (ACM), with ongoing promising results in human and animal studies that do not depend on immunosuppressive regimens. However, significant challenges remain in the formulation and delivery platforms and potential immunogenicity issues. Additionally, the level of impact on key metabolic and disease biomarkers and long-term benefits from human and animal studies stemming from the encapsulation and delivery of these cells is a subject of continuing debate. The purpose of this review is to summarise key advances in this field of islet transplantation using ACM and to explore future strategies, limitations, and hurdles as well as upcoming developments utilising bioengineering and current clinical trials.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | | | - Daniel Brown
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia;
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
7
|
Celikkin N, Presutti D, Maiullari F, Fornetti E, Agarwal T, Paradiso A, Volpi M, Święszkowski W, Bearzi C, Barbetta A, Zhang YS, Gargioli C, Rizzi R, Costantini M. Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Front Bioeng Biotechnol 2021; 9:732130. [PMID: 34604190 PMCID: PMC8481890 DOI: 10.3389/fbioe.2021.732130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An in-depth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress. In this review, we discuss the contribution of two state-of-the-art technologies-namely biofabrication and organ-on-a-chip-in a selection of biomedical research areas. We start by providing an overview of these technologies and their capacities in fabricating advanced in vitro tissue/organ models. We then analyze their impact on addressing a range of current biomedical challenges. Ultimately, we speculate about their future developments by integrating these technologies with other cutting-edge research fields such as artificial intelligence and big data analysis.
Collapse
Affiliation(s)
- Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
| | | | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, MA, United States
| | - Cesare Gargioli
- Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Joshi DJ, Chitre NM, Bansal A, Murnane KS, D’Souza MJ. Formulation and Characterization of Microcapsules Encapsulating PC12 Cells as a Prospective Treatment Approach for Parkinson's Disease. AAPS PharmSciTech 2021; 22:149. [PMID: 33961149 DOI: 10.1208/s12249-021-02007-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurological disorder, associated with decreased dopamine levels in the brain. The goal of this study was to assess the potential of a regenerative medicine-based cell therapy approach to increase dopamine levels. In this study, we used rat adrenal pheochromocytoma (PC12) cells that can produce, store, and secrete dopamine. These cells were microencapsulated in the selectively permeable polymer membrane to protect them from immune responses. For fabrication of the microcapsules, we used a modified Buchi spray dryer B-190 that allows for fast manufacturing of microcapsules and is industrially scalable. Size optimization of the microcapsules was performed by systematically varying key parameters of the spraying device. The short- and long-term stabilities of the microcapsules were assessed. In the in vitro study, the cells were found viable for a period of 30 days. Selective permeability of the microcapsules was confirmed via dopamine release assay and micro BCA protein assay. We found that the microcapsules were permeable to the small molecules including dopamine and were impermeable to the large molecules like BSA. Thus, they can provide the protection to the encapsulated cells from the immune cells. Griess's assay confirmed the non-immunogenicity of the microcapsules. These results demonstrate the effective fabrication of microcapsules encapsulating cells using an industrially scalable device. The microcapsules were stable, and the cells were viable inside the microcapsules and were found to release dopamine. Thus, these microcapsules have the potential to serve as the alternative or complementary treatment approach for PD.
Collapse
|
9
|
Abstract
An implants' effectiveness depends upon the form of biomaterial used in its manufacture. A suitable material for implants should be biocompatible, sterile, mechanically stable and simple to shape. 3D printing technologies have been breaking new ground in the medical and medical industries in order to build patient-specific devices embedded in bioactive drugs, cells and proteins. Widespread use in medical 3D printing is a broad range of biomaterials including metals, ceramics, polymers and composites. Continuous work and developments in biomaterials used in 3D printing have contributed to significant growth of 3D printing applications in the production of personalised joints, prostheses, medication delivery system and 3D tissue engineering and regenerative medicine scaffolds. The present analysis focuses on the biomaterials used for therapeutic applications in different 3D printing technologies. Many specific forms of medical 3D printing technology are explored in depth, including fused deposition modelling, extrusion-based bioprinting, inkjet and poly-jet printing processes, their therapeutic uses, various types of biomaterial used today and the major shortcoming , are being studied in depth.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Mechanical Engineering, DIT University, Dehradun, India
| | - Vivek Srivastava
- Department of Mechanical Engineering, DIT University, Dehradun, India
| |
Collapse
|
10
|
Pereira MS, Cardoso LMDF, da Silva TB, Teixeira AJ, Mizrahi SE, Ferreira GSM, Dantas FML, Cotta-de-Almeida V, Alves LA. A Low-Cost Open Source Device for Cell Microencapsulation. MATERIALS 2020; 13:ma13225090. [PMID: 33187294 PMCID: PMC7696579 DOI: 10.3390/ma13225090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Microencapsulation is a widely studied cell therapy and tissue bioengineering technique, since it is capable of creating an immune-privileged site, protecting encapsulated cells from the host immune system. Several polymers have been tested, but sodium alginate is in widespread use for cell encapsulation applications, due to its low toxicity and easy manipulation. Different cell encapsulation methods have been described in the literature using pressure differences or electrostatic changes with high cost commercial devices (about 30,000 US dollars). Herein, a low-cost device (about 100 US dollars) that can be created by commercial syringes or 3D printer devices has been developed. The capsules, whose diameter is around 500 µm and can decrease or increase according to the pressure applied to the system, is able to maintain cells viable and functional. The hydrogel porosity of the capsule indicates that the immune system is not capable of destroying host cells, demonstrating that new studies can be developed for cell therapy at low cost with microencapsulation production. This device may aid pre-clinical and clinical projects in low- and middle-income countries and is lined up with open source equipment devices.
Collapse
Affiliation(s)
- Miriam Salles Pereira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
- Volta Redonda University Center—UniFOA, Av. Paulo Erlei Alves Abrantes, 1325-Três Poços, Volta Redonda 27240-560, Brazil
| | - Liana Monteiro da Fonseca Cardoso
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Tatiane Barreto da Silva
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Ayla Josma Teixeira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Saul Eliahú Mizrahi
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Gabriel Schonwandt Mendes Ferreira
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Fabio Moyses Lins Dantas
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
- Correspondence: ; Tel.: +55-21-2562-1841; Fax: +55-21-2562-1816
| |
Collapse
|
11
|
Jacques E, Hosoyama K, Biniam B, Eren Cimenci C, Sedlakova V, Steeves AJ, Variola F, Davis DR, Stewart DJ, Suuronen EJ, Alarcon EI. Collagen-Based Microcapsules As Therapeutic Materials for Stem Cell Therapies in Infarcted Myocardium. ACS Biomater Sci Eng 2020; 6:4614-4622. [PMID: 33455166 DOI: 10.1021/acsbiomaterials.0c00245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As cell therapies emerged, it was quickly realized that pro-regenerative cells directly injected into injured tissue struggled within the inflammatory microenvironment. By using microencapsulation, i.e., encapsulating cells within polymeric biomaterials, they are henceforth protected from the harmful extracellular cues, while still being able to receive oxygen and nutrients and release secreted factors. Previous work showed that stem cells encapsulated within a biologically inert material (agarose) were able to significantly improve the function of the infarcted mouse heart. With the aim of using more bioresponsive microcapsules, we sought to develop an enzymatically degradable, type I collagen-based microcapsule for the intramyocardial delivery of bone marrow-derived mesenchymal stromal cells in a murine model of myocardial infarction.
Collapse
Affiliation(s)
- Erik Jacques
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y4W7, Canada
| | - Katsuhiro Hosoyama
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y4W7, Canada
| | - Brook Biniam
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y4W7, Canada
| | - Cagla Eren Cimenci
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y4W7, Canada.,Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H8M5, Canada
| | - Veronika Sedlakova
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y4W7, Canada
| | - Alexander J Steeves
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N6N5, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N6N5, Canada
| | - Darryl R Davis
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H8M5, Canada.,University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, 40 Ruskin Street, Ottawa, Ontario K1Y4W7, Canada
| | - Duncan J Stewart
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H8M5, Canada.,University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, 40 Ruskin Street, Ottawa, Ontario K1Y4W7, Canada.,Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, 501 Smyth Road, Ottawa, Ontario K1H8L6, Canada
| | - Erik J Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y4W7, Canada.,Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H8M5, Canada
| | - Emilio I Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y4W7, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H8M5, Canada
| |
Collapse
|
12
|
Hajifathaliha F, Mahboubi A, Nematollahi L, Mohit E, Bolourchian N. Comparison of different cationic polymers efficacy in fabrication of alginate multilayer microcapsules. Asian J Pharm Sci 2020; 15:95-103. [PMID: 32175021 PMCID: PMC7066046 DOI: 10.1016/j.ajps.2018.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022] Open
Abstract
In past decades, alginate-based multilayer microcapsules have been given important attention in various pharmaceutical investigations. Alginate-poly l lysine-alginate (APA) is studied the most. Due to the similarity between the structure of polyethyleneimine (PEI) and poly-L-lysine (PLL) and also lower price of PEI than PLL, this study was conducted to compare the efficacy of linear (LPEI) and branch (BPEI) forms of PEI with PLL as covering layers in fabrication of microcapsules. The microcapsules were fabricated using electrostatic bead generator and their shape/size, surface roughness, mechanical strength, and interlayer interactions were also investigated using optical microscopy, AFM, explosion test and FTIR, respectively. Furthermore, cytotoxicity was evaluated by comparing the two anionic final covering layers alginate (Alg) and sodium cellulose sulphate (NCS) using MTT test. BPEI was excluded from the rest of the study due to its less capacity to strengthen the microcapsules and also the aggregation of the resultant alginate-BPEI-alginate microcapsules, while LPEI showed properties similar to PLL. MTT test also showed that NCS has no superiority over Alg as final covering layer. Therefore, it is concluded that, LPEI could be considered as a more cost effective alternative to PLL and a promising subject for future studies.
Collapse
Affiliation(s)
- Fariba Hajifathaliha
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - Arash Mahboubi
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - Noushin Bolourchian
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
13
|
Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev 2019; 139:139-156. [PMID: 31077781 DOI: 10.1016/j.addr.2019.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Human allogeneic islet transplantation (ITx) is emerging as a promising treatment option for qualified patients with type 1 diabetes. However, widespread clinical application of allogeneic ITx is hindered by two critical barriers: the need for systemic immunosuppression and the limited supply of human islet tissue. Biocompatible, retrievable immunoisolation devices containing glucose-responsive insulin-secreting tissue may address both critical barriers by enabling the more effective and efficient use of allogeneic islets without immunosuppression in the near-term, and ultimately the use of a cell source with a virtually unlimited supply, such as human stem cell-derived β-cells or xenogeneic (porcine) islets with minimal or no immunosuppression. However, even though encapsulation methods have been developed and immunoprotection has been successfully tested in small and large animal models and to a limited extent in proof-of-concept clinical studies, the effective use of encapsulation approaches to convincingly and consistently treat diabetes in humans has yet to be demonstrated. There is increasing consensus that inadequate oxygen supply is a major factor limiting their clinical translation and routine implementation. Poor oxygenation negatively affects cell viability and β-cell function, and the problem is exacerbated with the high-density seeding required for reasonably-sized clinical encapsulation devices. Approaches for enhanced oxygen delivery to encapsulated tissues in implantable devices are therefore being actively developed and tested. This review summarizes fundamental aspects of islet microarchitecture and β-cell physiology as well as encapsulation approaches highlighting the need for adequate oxygenation; it also evaluates existing and emerging approaches for enhanced oxygen delivery to encapsulation devices, particularly with the advent of β-cell sources from stem cells that may enable the large-scale application of this approach.
Collapse
|
14
|
Smith KE, Johnson RC, Papas KK. Update on cellular encapsulation. Xenotransplantation 2018; 25:e12399. [DOI: 10.1111/xen.12399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Kate E. Smith
- Department of Physiological Sciences; University of Arizona; Tucson AZ USA
- Department of Surgery; University of Arizona; Tucson AZ USA
| | | | | |
Collapse
|
15
|
Abstract
The principle of immunoisolation of cells is based on encapsulation of cells in immunoprotective but semipermeable membranes that protect cells from hazardous effects of the host immune system but allows ingress of nutrients and outgress of therapeutic molecules. The technology was introduced in 1933 but has only received its deserved attention for its therapeutic application for three decades now.In the past decade important advances have been made in creating capsules that provoke minimal or no inflammatory responses. There are however new emerging challenges. These challenges relate to optimal nutrition and oxygen supply as well as standardization and documentation of capsule properties.It is concluded that the proof of principle of applicability of encapsulated grafts for treatment of human disease has been demonstrated and merits optimism about its clinical potential. Further innovation requires a much more systematic approach in identifying crucial properties of capsules and cellular grafts to allow sound interpretations of the results.
Collapse
Affiliation(s)
- Paul de Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Diel D, Lagranha VL, Schuh RS, Bruxel F, Matte U, Teixeira HF. Optimization of alginate microcapsules containing cells overexpressing α-l-iduronidase using Box-Behnken design. Eur J Pharm Sci 2017; 111:29-37. [PMID: 28882767 DOI: 10.1016/j.ejps.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disease caused by deficiency of α-l-iduronidase (IDUA), which results in the lysosomal accumulation of glycosaminoglycans (GAG) leading to widespread clinical manifestations. The microencapsulation of IDUA overexpressing recombinant cells has been considered as a promising strategy for the treatment of MPS I. This study aimed at the optimization of alginate microcapsules containing recombinant BHK (Baby Hamster Kidney) cells (rBHK) overexpressing IDUA produced by electrostatic extrusion technique. The alginate microcapsule (MC-A) optimization study was carried out by means of an experimental Box-Behnken Design that allowed the simultaneous evaluation of the influence of voltage (kV), alginate/cell suspension flow (mL/h), and alginate concentration (%) on size and IDUA activity. The optimal conditions of voltage (10kV), flow (25mL/h), and alginate concentration (1.3%) made possible to obtain the smallest microcapsules showing the highest IDUA activity. After optimization, the microcapsules were sequentially coated with PLL and alginate (MC-APA) to increase their stability. MC-A and MC-APA presented monodisperse populations (span<1.22) with an average diameter of less than 350μm. The coating increased the mechanical stability of MC-APA by about 6-fold and modulated the permeability to the enzyme. Surface analyzes of MC-APA showed the presence of PLL bands, suggesting that the last alginate layer appears to have only partially coated the PLL. After 30days of subcutaneous implantation of the MC-APA microcapsules containing rBHK cells in a MPS I murine model, a significant increase in IDUA activity was observed in the skin near the implant. Histological analysis revealed an inflammatory infiltrate at the application site, which did not prevent the release of the enzyme under the conditions evaluated. Taken together, the overall results demonstrate the feasibility of MC-APA as a potential alternative for local treatment of MPS I.
Collapse
Affiliation(s)
- Dirnete Diel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Valeska Lizzi Lagranha
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Fernanda Bruxel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Pampa (UNIPAMPA), BR 472, km 592, 97508-000, Uruguaiana, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Lizzi Lagranha V, Zambiasi Martinelli B, Baldo G, Ávila Testa G, Giacomet de Carvalho T, Giugliani R, Matte U. Subcutaneous implantation of microencapsulated cells overexpressing α-L-iduronidase for mucopolysaccharidosis type I treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:43. [PMID: 28150116 DOI: 10.1007/s10856-017-5844-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of α-L-iduronidase (IDUA), resulting in accumulation of glycosaminoglycans (GAG) in lysosomes. Microencapsulation of recombinant cells is a promising gene/cell therapy approach that could overcome the limitations of the current available treatments. In the present study we produced alginate-poly-L-lysine-alginate (APA) microcapsules containing recombinant cells overexpressing IDUA, which were implanted in the subcutaneous space of MPS I mice in order to evaluate their potential effect as a treatment for this disease. APA microcapsules enclosing genetically modified Baby Hamster Kidney cells overexpressing IDUA were produced and implanted in the subcutaneous space of 4-month-old MPS I mice (Idua -/-). Treatment was performed using two cell concentrations: 8.3 × 107 and 8.3 × 106 cells/mL. Untreated MPS I and normal mice were used as controls. Microcapsules were retrieved and analyzed after treatment. Increased IDUA in the liver, kidney and heart was detected 24 h postimplantation. After 120 days, higher IDUA activity was detected in the liver, kidney and heart, in both groups, whereas GAG accumulation was reduced only in the high cell concentration group. Microcapsules analysis showed blood vessels around them, as well as inflammatory cells and a fibrotic layer. Microencapsulated cells were able to ameliorate some aspects of the disease, indicating their potential as a treatment. To achieve better performance of the microcapsules, improvements such as the modulation of inflammatory response are suggested.
Collapse
Affiliation(s)
- Valeska Lizzi Lagranha
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Barbara Zambiasi Martinelli
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Talita Giacomet de Carvalho
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
18
|
Kim JE, Kim SH, Jung Y. Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng Regen Med 2016; 13:636-646. [PMID: 30603445 PMCID: PMC6170864 DOI: 10.1007/s13770-016-0125-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022] Open
Abstract
Recently, three-dimensional (3D) printing technologies have become an attractive manufacturing process, which is called additive manufacturing or rapid prototyping. A 3D printing system can design and fabricate 3D shapes and geometries resulting in custom 3D scaffolds in tissue engineering. In tissue regeneration and replacement, 3D printing systems have been frequently used with various biomaterials such as natural and synthetic polymers. In tissue engineering, soft tissue regeneration is very difficult because soft tissue has the properties of high elasticity, flexibility and viscosity which act as an obstacle when creating a 3D structure by stacking layer after layer of biomaterials compared to hard tissue regeneration. To overcome these limitations, many studies are trying to fabricate constructs with a very similar native micro-environmental property for a complex biofunctional scaffold with suitable biological and mechanical parameters by optimizing the biomaterials, for example, control the concentration and diversification of materials. In this review, we describe the characteristics of printing biomaterials such as hydrogel, synthetic polymer and composite type as well as recent advances in soft tissue regeneration. It is expected that 3D printed constructs will be able to replace as well as regenerate defective tissues or injured functional tissues and organs.
Collapse
Affiliation(s)
- Ji Eun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Korea
| |
Collapse
|
19
|
Majewski RL, Zhang W, Ma X, Cui Z, Ren W, Markel DC. Bioencapsulation technologies in tissue engineering. J Appl Biomater Funct Mater 2016; 14:e395-e403. [PMID: 27716872 PMCID: PMC5623183 DOI: 10.5301/jabfm.5000299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 12/30/2022] Open
Abstract
Bioencapsulation technologies have played an important role in the developing successes of tissue engineering. Besides offering immunoisolation, they also show promise for cell/tissue banking and the directed differentiation of stem cells, by providing a unique microenvironment. This review describes bioencapsulation technologies and summarizes their recent progress in research into tissue engineering. The review concludes with a brief outlook regarding future research directions in this field.
Collapse
Affiliation(s)
- Rebecca L. Majewski
- BioMolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin - USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin - USA
| | - Wujie Zhang
- BioMolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin - USA
| | - Xiaojun Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning Province - PR China
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, Oxford - UK
| | - Weiping Ren
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan - USA
- Department of Orthopedic Surgery, Providence Hospital and Medical Centers, Southfield, Michigan - USA
| | - David C. Markel
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan - USA
- Department of Orthopedic Surgery, Providence Hospital and Medical Centers, Southfield, Michigan - USA
| |
Collapse
|
20
|
Yang Y, Opara EC, Liu Y, Atala A, Zhao W. Microencapsulation of porcine thyroid cell organoids within a polymer microcapsule construct. Exp Biol Med (Maywood) 2016; 242:286-296. [PMID: 27708182 DOI: 10.1177/1535370216673746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hypothyroidism is a common condition of hormone deficiency, and oral administration of thyroid hormones is currently the only available treatment option. However, there are some disadvantages with this treatment modality including compliance challenges to patients. Therefore, a physiologically based alternative therapy for hypothyroidism with little or no side-effects is needed. In this study, we have developed a method for microencapsulating porcine thyroid cells as a thyroid hormone replacement approach. The hybrid wall of the polymer microcapsules permits thyroid hormone release while preventing immunoglobulin antibodies from entry. This strategy could potentially enable implantation of the microcapsule organoids containing allogeneic or xenogeneic thyroid cells to secret hormones over time without the need for immunosuppression of recipients. Porcine thyroid cells were isolated and encapsulated in alginate-poly-L-ornithine-alginate microcapsules using a microfluidic device. The porcine thyroid cells formed three-dimensional follicular spheres in the microcapsules with decent cell viability and proliferation. Thyroxine release from the encapsulated cells was higher than from unencapsulated cells ( P < 0.05) and was maintained during the entire duration of experiment (>28 days). These results suggest that the microencapsulated thyroid cell organoids may have the potential to be used for therapy and/or drug screening.
Collapse
Affiliation(s)
- Yipeng Yang
- 1 General Surgery Department and Laboratory of General Surgery, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Emmanuel C Opara
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Yingbin Liu
- 1 General Surgery Department and Laboratory of General Surgery, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Anthony Atala
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Weixin Zhao
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.,3 Co-Innovation Center of Neuro-regeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
21
|
Henke S, Leijten J, Kemna E, Neubauer M, Fery A, van den Berg A, van Apeldoorn A, Karperien M. Enzymatic Crosslinking of Polymer Conjugates is Superior over Ionic or UV Crosslinking for the On-Chip Production of Cell-Laden Microgels. Macromol Biosci 2016; 16:1524-1532. [PMID: 27440382 DOI: 10.1002/mabi.201600174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/25/2016] [Indexed: 01/07/2023]
Abstract
Cell-laden micrometer-sized hydrogels (microgels) hold great promise for improving high throughput ex-vivo drug screening and engineering biomimetic tissues. Microfluidics is a powerful tool to produce microgels. However, only a limited amount of biomaterials have been reported to be compatible with on-chip microgel formation. Moreover, these biomaterials are often associated with mechanical instability, cytotoxicity, and cellular senescence. To resolve this challenge, dextran-tyramine has been explored as a novel biomaterial for on-chip microgel formation. In particular, dextran-tyramine is compared with two commonly used biomaterials, namely, polyethylene-glycol diacrylate (PEGDA) and alginate, which crosslink through enzymatic reaction, UV polymerization, and ionic interaction, respectively. Human mesenchymal stem cells (hMSCs) encapsulated in dextran-tyramine microgels demonstrate significantly higher (95%) survival as compared to alginate (81%) and PEGDA (69%). Long-term cell cultures demonstrate that hMSCs in PEGDA microgels become senescent after 7 d. Alginate microgels dissolve within 7 d due to Ca2+ loss. In contrast, dextran-tyramine based microgels remain stable, sustain hMSCs metabolic activity, and permit for single-cell level analysis for at least 28 d of culture. In conclusion, enzymatically crosslinking dextran-tyramine conjugates represent a novel biomaterial class for the on-chip production of cell-laden microgels, which possesses unique advantages as compared to the commonly used UV and ionic crosslinking biomaterials.
Collapse
Affiliation(s)
- Sieger Henke
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Evelien Kemna
- BIOS Lab on a Chip group, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Martin Neubauer
- Department of Physical Chemistry II, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e.V. (Leibniz Institute of Polymer Research Dresden), Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 1079, Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technische Universität Dresden, 1079, Dresden, Germany
| | - Albert van den Berg
- BIOS Lab on a Chip group, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Aart van Apeldoorn
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands.
| |
Collapse
|
22
|
David A, Day J, Shikanov A. Immunoisolation to prevent tissue graft rejection: Current knowledge and future use. Exp Biol Med (Maywood) 2016; 241:955-61. [PMID: 27188513 DOI: 10.1177/1535370216647129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This review focuses on the concept of immunoisolation and how this method has evolved over the last few decades. The concept of immunoisolation came out of the need to protect allogeneic transplant tissue from the host immune system and avoid systemic side effects of immunosuppression. The latter remains a significant hurdle in clinical translation of using tissue transplants for restoring endocrine function in diabetes, growth hormone deficiency, and other conditions. Herein, we review the most significant works studying the use of hydrogels, specifically alginate and poly (ethylene glycol), and membranes for immunoisolation and discuss how this approach can be applied in reproductive biology.
Collapse
Affiliation(s)
- Anu David
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Day
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
de Vos P, Smink AM, Paredes G, Lakey JRT, Kuipers J, Giepmans BNG, de Haan BJ, Faas MM. Enzymes for Pancreatic Islet Isolation Impact Chemokine-Production and Polarization of Insulin-Producing β-Cells with Reduced Functional Survival of Immunoisolated Rat Islet-Allografts as a Consequence. PLoS One 2016; 11:e0147992. [PMID: 26824526 PMCID: PMC4732769 DOI: 10.1371/journal.pone.0147992] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
The primary aim of this study was to determine whether normal variations in enzyme-activities of collagenases applied for rat-islet isolation impact longevity of encapsulated islet grafts. Also we studied the functional and immunological properties of rat islets isolated with different enzyme preparations to determine whether this impacts these parameters. Rat-islets were isolated from the pancreas with two different collagenases with commonly accepted collagenase, neutral protease, and clostripain activities. Islets had a similar and acceptable glucose-induced insulin-release profile but a profound statistical significant difference in production of the chemokines IP-10 and Gro-α. The islets were studied with nanotomy which is an EM-based technology for unbiased study of ultrastructural features of islets such as cell-cell contacts, endocrine-cell condition, ER stress, mitochondrial conditions, and cell polarization. The islet-batch with higher chemokine-production had a lower amount of polarized insulin-producing β-cells. All islets had more intercellular spaces and less interconnected areas with tight cell-cell junctions when compared to islets in the pancreas. Islet-graft function was studied by implanting encapsulated and free islet grafts in rat recipients. Alginate-based encapsulated grafts isolated with the enzyme-lot inducing higher chemokine production and lower polarization survived for a two-fold shorter period of time. The lower survival-time of the encapsulated grafts was correlated with a higher influx of inflammatory cells at 7 days after implantation. Islets from the same two batches transplanted as free unencapsulated-graft, did not show any difference in survival or function in vivo. Lack of insight in factors contributing to the current lab-to-lab variation in longevity of encapsulated islet-grafts is considered to be a threat for clinical application. Our data suggest that seemingly minor variations in activity of enzymes applied for islet-isolation might contribute to longevity-variations of immunoisolated islet-grafts.
Collapse
Affiliation(s)
- Paul de Vos
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- * E-mail:
| | - Alexandra M. Smink
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Genaro Paredes
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Jonathan R. T. Lakey
- Department of Surgery and Biomedical Engineering, University of California Irvine, Orange, CA, 92868, United States of America
| | - Jeroen Kuipers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, P. O. Box 196, 9700 AD, Groningen, The Netherlands
| | - Ben N. G. Giepmans
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, P. O. Box 196, 9700 AD, Groningen, The Netherlands
| | - Bart J. de Haan
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Marijke M. Faas
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
24
|
Demont A, Cole H, Marison IW. An understanding of potential and limitations of alginate/PLL microcapsules as a cell retention system for perfusion cultures. J Microencapsul 2016; 33:80-8. [PMID: 26754597 DOI: 10.3109/02652048.2015.1134686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microcapsules for high cell density culture of mammalian cells have found an increasing interest, however, the poor stability of the microcapsules and the lack of characterisation methods led to few quantitative results. Alginate-poly-L-lysine (PLL) microcapsules have been studied in detail in order to form a basis for comparison of capsules made from different polymers. Since the microcapsules can be easily retained in the bioreactor without the need for a cell separation device, high cell densities were achieved with a maximum of 4 × 10(7) cell/ml(microcapsules), corresponding to a colonisation of 5% of the internal capsule volume. Measurement of microcapsule integrity and mechanical resistance showed that alginate-PLL microcapsules are not suitable for perfusion cultures since they are very sensitive to media composition, mainly the presence of non-gelling ions that have a higher affinity for alginate than PLL and Ca(2+), leading to the leakage of PLL and Ca(2+), and to microcapsule rupture.
Collapse
Affiliation(s)
- Aurelie Demont
- a Laboratory of Integrated Bioprocessing, School of Biotechnology , Dublin City University , Dublin , Ireland
| | - Harriet Cole
- a Laboratory of Integrated Bioprocessing, School of Biotechnology , Dublin City University , Dublin , Ireland
| | - Ian W Marison
- a Laboratory of Integrated Bioprocessing, School of Biotechnology , Dublin City University , Dublin , Ireland
| |
Collapse
|
25
|
Zhou J, Hu W, Tang L. Non-invasive Characterization of Immune Responses to Biomedical Implants. Ann Biomed Eng 2015; 44:693-704. [DOI: 10.1007/s10439-015-1470-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
|
26
|
Skardal A, Atala A. Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng 2014; 43:730-46. [PMID: 25476164 DOI: 10.1007/s10439-014-1207-1] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/27/2014] [Indexed: 01/10/2023]
Abstract
Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA,
| | | |
Collapse
|
27
|
Delbari A, Fadaei F, Salehi M, Farahani RM, Piryaei A, Heidari MH, Nourozian M, Mansouri V. A simple method for generating small calcium-alginate beads by syringe. J Histotechnol 2014. [DOI: 10.1179/2046023614y.0000000048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
28
|
de Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 2014; 67-68:15-34. [PMID: 24270009 DOI: 10.1016/j.addr.2013.11.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/26/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), polypropylene, sodium polystyrene sulfate, and polyacrylate poly(acrylonitrile-sodium methallylsulfonate). The biocompatibility of these polymers is discussed in terms of tissue responses in both the host and matrix to accommodate the functional survival of the cells. Cells should grow and function in the polymer network as adequately as in their natural environment. This is critical when therapeutic cells from scarce cadaveric donors are considered, such as pancreatic islets. Additionally, the cell mass in capsules is discussed from the perspective of emerging new insights into the release of so-called danger-associated molecular pattern molecules by clumps of necrotic therapeutic cells. We conclude that despite two decades of intensive research, drawing conclusions about which polymer is most adequate for clinical application is still difficult. This is because of the lack of documentation on critical information, such as the composition of the polymer, the presence or absence of confounding factors that induce immune responses, toxicity to enveloped cells, and the permeability of the polymer network. Only alginate has been studied extensively and currently qualifies for application. This review also discusses critical issues that are not directly related to polymers and are not discussed in the other reviews in this issue, such as the functional performance of encapsulated cells in vivo. Physiological endocrine responses may indeed not be expected because of the many barriers that the metabolites encounter when traveling from the blood stream to the enveloped cells and back to circulation. However, despite these diffusion barriers, many studies have shown optimal regulation, allowing us to conclude that encapsulated grafts do not always follow nature's course but are still a possible solution for many endocrine disorders for which the minute-to-minute regulation of metabolites is mandatory.
Collapse
|
29
|
Vaghjiani V, Vaithilingam V, Saraswati I, Sali A, Murthi P, Kalionis B, Tuch BE, Manuelpillai U. Hepatocyte-like cells derived from human amniotic epithelial cells can be encapsulated without loss of viability or function in vitro. Stem Cells Dev 2014; 23:866-76. [PMID: 24295364 DOI: 10.1089/scd.2013.0485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Placenta derived human amniotic epithelial cells (hAEC) are an attractive source of stem cells for the generation of hepatocyte-like cells (HLC) for therapeutic applications to treat liver diseases. During hAEC differentiation into HLC, they become increasingly immunogenic, which may result in immune cell-mediated rejection upon transplantation into allogeneic recipients. Placing cells within devices such as alginate microcapsules can prevent immune cell-mediated rejection. The aim of this study was to investigate the characteristics of HLC generated from hAEC and to examine the effects of encapsulation on HLC viability, gene expression, and function. hAEC were differentiated for 4 weeks and evaluated for hepatocyte-specific gene expression and function. Differentiated cells were encapsulated in barium alginate microcapsules and cultured for 7 days and the effect of encapsulation on cell viability, function, and hepatocyte related gene expression was determined. Differentiated cells performed key functions of hepatocytes including urea synthesis, drug-metabolizing cytochrome P450 (CYP)3A4 activity, indocyanine green (ICG) uptake, low-density lipoprotein (LDL) uptake, and exhibited glutathione antioxidant capacity. A number of hepatocyte-related genes involved in fat, cholesterol, bile acid synthesis, and xenobiotic metabolism were also expressed showing that the hAEC had differentiated into HLC. Upon encapsulation, the HLC remained viable for at least 7 days in culture, continued to express genes involved in fat, cholesterol, bile acid, and xenobiotic metabolism and had glutathione antioxidant capacity. CYP3A4 activity and urea synthesis by the encapsulated HLC were higher than that of monolayer HLC cultures. Functional HLC can be derived from hAEC, and HLC can be encapsulated within alginate microcapsules without losing viability or function in vitro.
Collapse
Affiliation(s)
- Vijesh Vaghjiani
- 1 Centre for Genetic Diseases, Monash Institute of Medical Research, Monash University , Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Therapeutic cell encapsulation: Ten steps towards clinical translation. J Control Release 2013; 170:1-14. [DOI: 10.1016/j.jconrel.2013.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/05/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022]
|
31
|
Nemani KV, Moodie KL, Brennick JB, Su A, Gimi B. In vitro and in vivo evaluation of SU-8 biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4453-9. [PMID: 23910365 DOI: 10.1016/j.msec.2013.07.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/17/2013] [Accepted: 07/04/2013] [Indexed: 12/11/2022]
Abstract
SU-8 negative photoresist is a high tensile strength polymer that has been used for a number of biomedical applications that include cell encapsulation and neuronal probes. Chemically, SU-8 comprises, among other components, an epoxy based monomer and antimony salts, the latter being a potential source of cytotoxicity. We report on the in vitro and in vivo evaluation of SU-8 biocompatibility based on leachates from various solvents, at varying temperatures and pH, and upon subcutaneous implantation of SU-8 substrates in mice. MTT cell viability assay did not exhibit any cytotoxic effects from the leachates. The hemolytic activity of SU-8 is comparable to that of FDA approved implant materials such as silicone elastomer, Buna-S and medical steel. In vivo histocompatibility study in mice indicates a muted immune response to subcutaneous SU-8 implants.
Collapse
|
32
|
Bernhardt A, Dittrich R, Lode A, Despang F, Gelinsky M. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1755-1766. [PMID: 23625348 DOI: 10.1007/s10856-013-4933-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
Conventionally sintered hydroxyapatite-based materials for bone repair show poor resorbability due to the loss of nanocrystallinity. The present study describes a method to establish nanocrystalline hydroxyapatite granules. The material was prepared by ionotropic gelation of an alginate sol containing hydroxyapatite (HA) powder. Subsequent thermal elimination of alginate at 650 °C yielded non-sintered, but unexpectedly stable hydroxyapatite granules. By adding stearic acid as an organic filler to the alginate/HA suspension, the granules exhibited macropores after thermal treatment. A third type of material was achieved by additional coating of the granules with silica particles. Microstructure and specific surface area of the different materials were characterized in comparison to the already established granular calcium phosphate material Cerasorb M(®). Cytocompatibility and potential for bone regeneration of the materials was evaluated by in vitro examinations with osteosarcoma cells and osteoclasts. Osteoblast-like SaOS-2 cells proliferated on all examined materials and showed the typical increase of alkaline phosphatase (ALP) activity during cultivation. Expression of bone-related genes coding for ALP, osteonectin, osteopontin, osteocalcin and bone sialoprotein II on the materials was proven by RT-PCR. Human monocytes were seeded onto the different granules and osteoclastogenesis was examined by activity measurement of tartrate-specific acid phosphatase (TRAP). Gene expression analysis after 23 days of cultivation revealed an increased expression of osteoclast-related genes TRAP, vitronectin receptor and cathepsin K, which was on the same level for all examined materials. These results indicate, that the nanocrystalline granular materials are of clinical interest, especially for bone regeneration.
Collapse
Affiliation(s)
- A Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty of Technische Universität Dresden and University Hospital Carl Gustav Carus, Fetscher Str. 74, 01307, Dresden, Germany.
| | | | | | | | | |
Collapse
|
33
|
Gabriel D, Dvir T, Kohane DS. Delivering bioactive molecules as instructive cues to engineered tissues. Expert Opin Drug Deliv 2013; 9:473-92. [PMID: 22432691 DOI: 10.1517/17425247.2012.668521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Growth factors and other bioactive molecules play a crucial role in the creation of functional engineered tissues from dissociated cells. AREAS COVERED This review discusses the delivery of bioactive molecules - particularly growth factors - to affect cellular function in the context of tissue engineering. We discuss the primary biological themes that are addressed by delivering bioactives, the types of molecules that are to be delivered, the major materials used in producing scaffolds and/or drug delivery systems, and the principal drug delivery strategies. EXPERT OPINION Drug delivery systems have allowed the sustained release of bioactive molecules to engineered tissues, with marked effects on tissue function. Sophisticated drug delivery techniques will allow precise recapitulation of developmental milestones by providing temporally distinct patterns of release of multiple bioactives. High-resolution patterning techniques will allow tissue constructs to be designed with precisely defined areas where bioactives can act. New biological discoveries, just as the development of small molecules with potent effects on cell differentiation, will likely have a marked impact on the field.
Collapse
Affiliation(s)
- Doris Gabriel
- Children's Hospital Boston, Harvard Medical School, Division of Critical Care Medicine, Department of Anesthesiology, Laboratory for Biomaterials and Drug Delivery, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
34
|
Sittadjody S, Saul JM, Joo S, Yoo JJ, Atala A, Opara EC. Engineered multilayer ovarian tissue that secretes sex steroids and peptide hormones in response to gonadotropins. Biomaterials 2013; 34:2412-20. [PMID: 23274068 PMCID: PMC3557586 DOI: 10.1016/j.biomaterials.2012.11.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/29/2012] [Indexed: 01/10/2023]
Abstract
Although hormone replacement therapy is an option for the loss of ovarian function, hormone delivery through pharmacological means results in various clinical complications. The present study was designed to deliver sex steroids by a functional construct fabricated using encapsulation techniques. Theca and granulosa cells isolated from ovaries of 21-day old rats were encapsulated in multilayer alginate microcapsules to recapitulate the native follicular structure. Cells encapsulated in two other schemes were used as controls to assess the importance of the multilayer structure. The endocrine functions of the encapsulated cells were assessed in vitro for a period of 30 days. Encapsulated cells showed sustained viability during long-term in vitro culture with those encapsulated in multilayer capsules secreting significantly higher and sustained concentrations of 17 β-estradiol (E(2)) than the two other encapsulation schemes (p < 0.05, n = 6) in response to follicle-stimulating hormone (FSH) and luteinizing hormone (LH). In addition, cells in the multilayer microcapsules also secreted activin and inhibin in vitro. In contrast, when granulosa and theca cells were cultured in 2D culture, progesterone (P(4)) secretion increased while E(2) secretion decreased over a 30-day period. In summary, we have designed a multilayer engineered ovarian tissue that secretes sex steroids and peptide hormones and responds to gonadotropins, thus demonstrating the ability to recapitulate native ovarian structure ex vivo.
Collapse
Affiliation(s)
- Sivanandane Sittadjody
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Justin M. Saul
- Department of Chemical and Paper Engineering, Miami University, Oxford, OH 45056
| | - Sunyoung Joo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Emmanuel C. Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, Tel: 336-713-1297, Fax: 336-713-7290
| |
Collapse
|
35
|
Zhou J, Hao G, Weng H, Tsai YT, Baker DW, Sun X, Tang L. In vivo evaluation of medical device-associated inflammation using a macrophage-specific positron emission tomography (PET) imaging probe. Bioorg Med Chem Lett 2013; 23:2044-7. [PMID: 23481649 DOI: 10.1016/j.bmcl.2013.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/24/2013] [Accepted: 02/01/2013] [Indexed: 12/16/2022]
Abstract
To image implant-surrounding activated macrophages, a macrophage-specific PET probe was prepared by conjugating folic acid (FA) and 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetracetic acid (DOTA) to polyethylene glycol (PEG) and then labeling the conjugate with Ga-68. In vivo PET imaging evaluations demonstrate that the probe is able to detect foreign body reactions, and more importantly, quantify the degree of inflammatory responses to an implanted medical device. These results were further validated by histological analysis.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Acarregui A, Pedraz JL, Blanco FJ, Hernández RM, Orive G. Hydrogel-Based Scaffolds for Enclosing Encapsulated Therapeutic Cells. Biomacromolecules 2013; 14:322-30. [DOI: 10.1021/bm301690a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Argia Acarregui
- NanoBioCel Group,
Laboratory
of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Álava,
01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Álava, 01006, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group,
Laboratory
of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Álava,
01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Álava, 01006, Spain
| | - Francisco Javier Blanco
- CIBER-BBN-Bioscaff Cartílago, INIBIC-Hospital Universitario A Coruña, A Coruña,
15006, Spain
| | - Rosa María Hernández
- NanoBioCel Group,
Laboratory
of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Álava,
01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Álava, 01006, Spain
| | - Gorka Orive
- NanoBioCel Group,
Laboratory
of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Álava,
01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Álava, 01006, Spain
| |
Collapse
|
37
|
Abstract
The synergy of some promising advances in the fields of cell therapy and biomaterials together with improvements in the fabrication of more refined and tailored microcapsules for drug delivery have triggered the progress of cell encapsulation technology. Cell microencapsulation involves immobilizing the transplanted cells within a biocompatible scaffold surrounded by a membrane in attempt to isolate the cells from the host immune attack and enhance or prolong their function in vivo. This technology represents one strategy which aims to overcome the present difficulties related to local and systemic controlled release of drugs and growth factors as well as to organ graft rejection and thus the requirements for use of immunomodulatory protocols or immunosuppressive drugs. This chapter gives an overview of the current situation of cell encapsulation technology as a controlled drug delivery system, and the essential requirements of the technology, some of the therapeutic applications, the challenges, and the future directions under investigation are highlighted.
Collapse
|
38
|
Acarregui A, Murua A, Pedraz JL, Orive G, Hernández RM. A Perspective on Bioactive Cell Microencapsulation. BioDrugs 2012; 26:283-301. [DOI: 10.1007/bf03261887] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Zhang W, Zhao S, Rao W, Snyder J, Choi JK, Wang J, Khan IA, Saleh NB, Mohler PJ, Yu J, Hund TJ, Tang C, He X. A Novel Core-Shell Microcapsule for Encapsulation and 3D Culture of Embryonic Stem Cells. J Mater Chem B 2012; 2013:1002-1009. [PMID: 23505611 DOI: 10.1039/c2tb00058j] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, we report the preparation of a novel microcapsule of ~ 100 μm with a liquid (as compared to solid-like alginate hydrogel) core and an alginate-chitosan-alginate (ACA) shell for encapsulation and culture of embryonic stem (ES) cells in the miniaturized 3D space of the liquid core. Murine R1 ES cells cultured in the microcapsules were found to survive (> 90%) well and proliferate to form either a single aggregate of pluripotent cells or embryoid body (EB) of more differentiated cells in each microcapsule within 7 days, dependent on the culture medium used. This novel microcapsule technology allows massive production of the cell aggregates or EBs of uniform size and controllable pluripotency, which is important for the practical application of stem cell based therapy. Moreover, the semipermeable ACA shell was found to significantly reduce immunoglobulin G (IgG) binding to the encapsulated cells by up to 8.2 times, compared to non-encapsulated cardiac fibroblasts, mesenchymal stem cells, and ES cells. This reduction should minimize inflammatory and immune responses induced damage to the cells implanted in vivo becasue IgG binding is an important first step of the undesired host responses. Therefore, the ACA microcapsule with selective shell permeability should be of importance to advance the emerging cell-based medicine.
Collapse
Affiliation(s)
- Wujie Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA ; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA ; Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
de Vos P, Spasojevic M, de Haan BJ, Faas MM. The association between in vivo physicochemical changes and inflammatory responses against alginate based microcapsules. Biomaterials 2012; 33:5552-9. [DOI: 10.1016/j.biomaterials.2012.04.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/13/2012] [Indexed: 12/20/2022]
|
41
|
Simón-yarza T, Garbayo E, Tamayo E, Prósper F, Blanco-prieto* MJ. Drug Delivery in Tissue Engineering: General Concepts. NANOSTRUCTURED BIOMATERIALS FOR OVERCOMING BIOLOGICAL BARRIERS 2012. [DOI: 10.1039/9781849735292-00501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Abstract
The immobilization of cells into polymeric scaffolds releasing therapeutic factors, such as alginate microcapsules, has been widely employed as a drug-delivery system for numerous diseases for many years. As a result of the potential benefits stem cells offer, during recent decades, this type of cell has gained the attention of the scientific community in the field of cell microencapsulation technology and has opened many perspectives. Stem cells represent an ideal tool for cell immobilization and so does alginate as a biomaterial of choice in the elaboration of these biomimetic scaffolds, offering us the possibility of benefiting from both disciplines in a synergistic way. This review intends to give an overview of the many possibilities and the current situation of immobilized stem cells in alginate bioscaffolds, showing the diverse therapeutic applications they can already be employed in; not only drug-delivery systems, but also tissue engineering platforms.
Collapse
|
43
|
Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery. Polymers (Basel) 2012. [DOI: 10.3390/polym4021084] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Pakulska MM, Ballios BG, Shoichet MS. Injectable hydrogels for central nervous system therapy. Biomed Mater 2012; 7:024101. [PMID: 22456684 DOI: 10.1088/1748-6041/7/2/024101] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diseases and injuries of the central nervous system (CNS) including those in the brain, spinal cord and retina are devastating because the CNS has limited intrinsic regenerative capacity and currently available therapies are unable to provide significant functional recovery. Several promising therapies have been identified with the goal of restoring at least some of this lost function and include neuroprotective agents to stop or slow cellular degeneration, neurotrophic factors to stimulate cellular growth, neutralizing molecules to overcome the inhibitory environment at the site of injury, and stem cell transplant strategies to replace lost tissue. The delivery of these therapies to the CNS is a challenge because the blood-brain barrier limits the diffusion of molecules into the brain by traditional oral or intravenous routes. Injectable hydrogels have the capacity to overcome the challenges associated with drug delivery to the CNS, by providing a minimally invasive, localized, void-filling platform for therapeutic use. Small molecule or protein drugs can be distributed throughout the hydrogel which then acts as a depot for their sustained release at the injury site. For cell delivery, the hydrogel can reduce cell aggregation and provide an adhesive matrix for improved cell survival and integration. Additionally, by choosing a biodegradable or bioresorbable hydrogel material, the system will eventually be eliminated from the body. This review discusses both natural and synthetic injectable hydrogel materials that have been used for drug or cell delivery to the CNS including hyaluronan, methylcellulose, chitosan, poly(N-isopropylacrylamide) and Matrigel.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | | | | |
Collapse
|
45
|
Catalano PN, Bourguignon NS, Alvarez GS, Libertun C, Diaz LE, Desimone MF, Lux-Lantos V. Sol–gel immobilized ovarian follicles: collaboration between two different cell types in hormone production and secretion. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30888f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Mahou R, Tran NM, Dufresne M, Legallais C, Wandrey C. Encapsulation of Huh-7 cells within alginate-poly(ethylene glycol) hybrid microspheres. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:171-179. [PMID: 22160783 DOI: 10.1007/s10856-011-4512-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/30/2011] [Indexed: 05/31/2023]
Abstract
Novel calcium alginate poly(ethylene glycol) hybrid microspheres (Ca-alg-PEG) were developed and evaluated as potentially suitable materials for cell microencapsulation. Grafting 5-13% of the backbone units of sodium alginate (Na-alg) with α-amine-ω-thiol PEG maintained the gelling capacity in presence of calcium ions, while thiol end groups allowed for preparing chemically crosslinked hydrogel via spontaneous disulfide bond formation. The combination of these two gelling mechanisms yielded Ca-alg-PEG. Human hepatocellular carcinoma cells (Huh-7) were encapsulated in Ca-alg-PEG and calcium alginate beads (Ca-alg), and cultured for 2 weeks under agitation conditions. Immediately after completion of the microencapsulation, the cell viability was 60% and similar in Ca-alg-PEG and Ca-alg. The proliferation of Huh-7 encapsulated in Ca-alg-PEG was slightly higher than in Ca-alg. Accelerated proliferation after 2 weeks was observed for the encapsulation in Ca-alg-PEG. The production of albumin confirmed the functionality of the encapsulated Huh-7 cells. The study confirms the suitability of Ca-alg-PEG and the one-step technology for cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Institut d'Ingénierie Biologique et Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL-SV-IBI-LMRP, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Wirth T. A short perspective on gene therapy: Clinical experience on gene therapy of gliomablastoma multiforme. World J Exp Med 2011; 1:10-6. [PMID: 24520527 PMCID: PMC3905579 DOI: 10.5493/wjem.v1.i1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 02/06/2023] Open
Abstract
More than two decades have passed since the first gene therapy clinical trial was conducted. During this time, we have gained much knowledge regarding gene therapy in general, but also learned to understand the fear that persists in society. We have experienced drawbacks and successes. More than 1700 clinical trials have been conducted where gene therapy is used as a means for therapy. In the very first trial, patients with advanced melanoma were treated with tumor infiltrating lymphocytes genetically modified ex-vivo to express tumor necrosis factor. Around the same time the first gene therapy trial was conducted, the ethical aspects of performing gene therapy on humans was intensively discussed. What are the risks involved with gene therapy? Can we control the technology? What is ethically acceptable and what are the indications gene therapy can be used for? Initially, gene therapy was thought to be implemented mainly for the treatment of monogenetic diseases, such as adenosine deaminase deficiency. However, other therapeutic areas have become of interest and currently cancer is the most studied therapeutic area for gene therapy based medicines. In this review I will be giving a short introduction into gene therapy and will direct the discussion to where we should go from here. Furthermore, I will focus on the use of the Herpes simplex virus-thymidine kinase for gene therapy of malignant gliomas and highlight the efficacy of gene therapy for the treatment of malignant gliomas, but other strategies will also be mentioned.
Collapse
Affiliation(s)
- Thomas Wirth
- Thomas Wirth, AI Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Neulaniementie 2, FIN-70211 Kuopio, Finland
| |
Collapse
|
48
|
Zhang W, He X. Microencapsulating and Banking Living Cells for Cell-Based Medicine. JOURNAL OF HEALTHCARE ENGINEERING 2011; 2:427-446. [PMID: 22180835 DOI: 10.1260/2040-2295.2.4.427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation) so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field.
Collapse
Affiliation(s)
- Wujie Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | | |
Collapse
|
49
|
Heiligenstein S, Cucchiarini M, Laschke MW, Bohle RM, Kohn D, Menger MD, Madry H. In VitroandIn VivoCharacterization of Nonbiomedical- and Biomedical-Grade Alginates for Articular Chondrocyte Transplantation. Tissue Eng Part C Methods 2011; 17:829-42. [DOI: 10.1089/ten.tec.2010.0681] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Susanne Heiligenstein
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Rainer M. Bohle
- Institute of Pathology, Saarland University Medical Center, Homburg, Germany
| | - Dieter Kohn
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Henning Madry
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Homburg, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
50
|
Zarate J, Virdis L, Orive G, Igartua M, Hernández R, Pedraz J. Design and characterization of calcium alginate microparticles coated with polycations as protein delivery system. J Microencapsul 2011; 28:614-20. [DOI: 10.3109/02652048.2011.599439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J. Zarate
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country,
Vitoria, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN),
Vitoria, Spain
| | - L. Virdis
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country,
Vitoria, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN),
Vitoria, Spain
| | - G. Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country,
Vitoria, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN),
Vitoria, Spain
| | - M. Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country,
Vitoria, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN),
Vitoria, Spain
| | - R.M. Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country,
Vitoria, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN),
Vitoria, Spain
| | - J.L. Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country,
Vitoria, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN),
Vitoria, Spain
| |
Collapse
|