1
|
Mykicki N, Herrmann AM, Schwab N, Deenen R, Sparwasser T, Limmer A, Wachsmuth L, Klotz L, Köhrer K, Faber C, Wiendl H, Luger TA, Meuth SG, Loser K. Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease. Sci Transl Med 2017; 8:362ra146. [PMID: 27797962 DOI: 10.1126/scitranslmed.aaf8732] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
In inflammation-associated progressive neuroinflammatory disorders, such as multiple sclerosis (MS), inflammatory infiltrates containing T helper 1 (TH1) and TH17 cells cause demyelination and neuronal degeneration. Regulatory T cells (Treg) control the activation and infiltration of autoreactive T cells into the central nervous system (CNS). In MS and experimental autoimmune encephalomyelitis (EAE) in mice, Treg function is impaired. We show that a recently approved drug, Nle4-d-Phe7-α-melanocyte-stimulating hormone (NDP-MSH), induced functional Treg, resulting in amelioration of EAE progression in mice. NDP-MSH also prevented immune cell infiltration into the CNS by restoring the integrity of the blood-brain barrier. NDP-MSH exerted long-lasting neuroprotective effects in mice with EAE and prevented excitotoxic death and reestablished action potential firing in mouse and human neurons in vitro. Neuroprotection by NDP-MSH was mediated via signaling through the melanocortin-1 and orphan nuclear 4 receptors in mouse and human neurons. NDP-MSH may be of benefit in treating neuroinflammatory diseases such as relapsing-remitting MS and related disorders.
Collapse
Affiliation(s)
- Nadine Mykicki
- Department of Dermatology, University of Münster, 48149 Münster, Germany.,Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Alexander M Herrmann
- Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Department of Neurology, University of Münster, 48149 Münster, Germany
| | - Nicholas Schwab
- Department of Neurology, University of Münster, 48149 Münster, Germany
| | - René Deenen
- Biological and Medical Research Center, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Andreas Limmer
- Clinic for Orthopedic and Trauma Surgery, University Clinic of Bonn, 53127 Bonn, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University of Münster, 48149 Münster, Germany
| | - Luisa Klotz
- Department of Neurology, University of Münster, 48149 Münster, Germany
| | - Karl Köhrer
- Biological and Medical Research Center, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Cornelius Faber
- Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Department of Clinical Radiology, University of Münster, 48149 Münster, Germany.,CRC1009 Breaking Barriers and CRC-TR 128 Multiple Sclerosis, University of Münster, 48149 Münster, Germany
| | - Heinz Wiendl
- Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Department of Neurology, University of Münster, 48149 Münster, Germany.,CRC1009 Breaking Barriers and CRC-TR 128 Multiple Sclerosis, University of Münster, 48149 Münster, Germany
| | - Thomas A Luger
- Department of Dermatology, University of Münster, 48149 Münster, Germany.,Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Sven G Meuth
- Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Department of Neurology, University of Münster, 48149 Münster, Germany.,CRC1009 Breaking Barriers and CRC-TR 128 Multiple Sclerosis, University of Münster, 48149 Münster, Germany
| | - Karin Loser
- Department of Dermatology, University of Münster, 48149 Münster, Germany. .,Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany.,CRC1009 Breaking Barriers and CRC-TR 128 Multiple Sclerosis, University of Münster, 48149 Münster, Germany
| |
Collapse
|
2
|
Machado I, Schiöth HB, Lasaga M, Scimonelli T. IL-1β reduces GluA1 phosphorylation and its surface expression during memory reconsolidation and α-melanocyte-stimulating hormone can modulate these effects. Neuropharmacology 2017; 128:314-323. [PMID: 29042315 DOI: 10.1016/j.neuropharm.2017.09.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Pro-inflammatory cytokines can affect cognitive processes such as learning and memory. Particularly, interleukin-1β (IL-1β) influences hippocampus-dependent memories. We previously reported that administration of IL-1β in dorsal hippocampus impaired contextual fear memory reconsolidation. This effect was reversed by the melanocortin alpha-melanocyte-stimulating hormone (α-MSH). Our results also demonstrated that IL-1β produced a significant decrease in glutamate release from dorsal hippocampus synaptosomes after reactivation of the fear memory. Therefore, we investigated whether IL-1β administration can affect GluA1 AMPA subunit phosphorylation, surface expression, and total expression during reconsolidation of a contextual fear memory. Also, we studied the modulatory effect of α-MSH. We found that IL-1β reduced phosphorylation of this subunit at Serine 831 and Serine 845 60 min after contextual fear memory reactivation. The intrahippocampal administration of IL-1β after memory reactivation also induced a decrease in surface expression and total expression of GluA1. α-MSH prevented the effect of IL-1β on GluA1 phosphorylation in Serine 845, but not in Serine 831. Moreover, treatment with α-MSH also prevented the effect of the cytokine on GluA1 surface and total expression after memory reactivation. Our results demonstrated that IL-1β regulates phosphorylation of GluA1 and may thus play an important role in modulation of AMPAR function and synaptic plasticity in the brain. These findings further illustrate the importance of IL-1β in cognition processes dependent on the hippocampus, and also reinforced the fact that α-MSH can reverse IL-1β effects on memory reconsolidation.
Collapse
Affiliation(s)
- Ivana Machado
- IFEC-CONICET, Depto. de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Buenos Aires, Argentina.
| | - Teresa Scimonelli
- IFEC-CONICET, Depto. de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
3
|
Melanocortins, Melanocortin Receptors and Multiple Sclerosis. Brain Sci 2017; 7:brainsci7080104. [PMID: 28805746 PMCID: PMC5575624 DOI: 10.3390/brainsci7080104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
The melanocortins and their receptors have been extensively investigated for their roles in the hypothalamo-pituitary-adrenal axis, but to a lesser extent in immune cells and in the nervous system outside the hypothalamic axis. This review discusses corticosteroid dependent and independent effects of melanocortins on the peripheral immune system, central nervous system (CNS) effects mediated through neuronal regulation of immune system function, and direct effects on endogenous cells in the CNS. We have focused on the expression and function of melanocortin receptors in oligodendroglia (OL), the myelin producing cells of the CNS, with the goal of identifying new therapeutic approaches to decrease CNS damage in multiple sclerosis as well as to promote repair. It is clear that melanocortin signaling through their receptors in the CNS has potential for neuroprotection and repair in diseases like MS. Effects of melanocortins on the immune system by direct effects on the circulating cells (lymphocytes and monocytes) and by signaling through CNS cells in regions lacking a mature blood brain barrier are clear. However, additional studies are needed to develop highly effective MCR targeted therapies that directly affect endogenous cells of the CNS, particularly OL, their progenitors and neurons.
Collapse
|
4
|
Cai M, Marelli UK, Mertz B, Beck JG, Opperer F, Rechenmacher F, Kessler H, Hruby VJ. Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists. Biochemistry 2017; 56:4201-4209. [PMID: 28715181 DOI: 10.1021/acs.biochem.7b00407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His6-d-Nal(2')7-NMe-Arg8-Trp9-Lys]-NH2 (15) and Ac-Nle-c[Asp-His6-d-Nal(2')7-NMe-Arg8-NMe-Trp9-NMe-Lys]-NH2 (17). It is known that the pharmacophore (His6-DNal7-Arg8-Trp9) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal7-Arg8. The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg8 and Trp9 side chains are involved in a majority of the interactions with the receptor. While Arg8 forms polar contacts with D154 and D158 of hMC3R, Trp9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp9-hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.
Collapse
Affiliation(s)
- Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Udaya Kiran Marelli
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Johannes G Beck
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Florian Opperer
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Cai M, Marelli UK, Bao J, Beck JG, Opperer F, Rechenmacher F, McLeod KR, Zingsheim MR, Doedens L, Kessler H, Hruby VJ. Systematic Backbone Conformational Constraints on a Cyclic Melanotropin Ligand Leads to Highly Selective Ligands for Multiple Melanocortin Receptors. J Med Chem 2015. [PMID: 26218460 DOI: 10.1021/acs.jmedchem.5b00102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human melanocortin receptors (hMCRs) have been challenging targets to develop ligands that are explicitly selective for each of their subtypes. To modulate the conformational preferences of the melanocortin ligands and improve the biofunctional agonist/antagonist activities and selectivities, we have applied a backbone N-methylation approach on Ac-Nle-c[Asp-His-D-Nal(2')-Arg-Trp-Lys]-NH2 (Ac-Nle(4)-c[Asp(5),D-Nal(2')(7),Lys(10)]-NH2), a nonselective cyclic peptide antagonist at hMC3R and hMC4R and an agonist at hMC1R and hMC5R. Systematic N-methylated derivatives of Ac-Nle(4)-c[Asp(5),D-Nal(2')(7),Lys(10)]-NH2, with all possible backbone N-methylation combinations, have been synthesized and examined for their binding and functional activities toward melanocortin receptor subtypes 1, 3, 4, and 5 (hMCRs). Several N-methylated analogues are selective and potent agonists or antagonists for hMC1R or hMC5R or have selective antagonist activity for hMC3R. The selective hMC1R ligands show strong binding for human melanoma cells. We have also discovered the first universal antagonist (compound 19) for all subtypes of hMCRs.
Collapse
Affiliation(s)
- Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Udaya Kiran Marelli
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Jennifer Bao
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Johannes G Beck
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Florian Opperer
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Kaitlyn R McLeod
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Morgan R Zingsheim
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Lucas Doedens
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany.,Department of Chemistry, Faculty of Science, King Abdulaziz University , 21589 Jeddah, Saudi Arabia
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Zheng Y, McPherson K, Reid P, Smith PF. The anti-inflammatory selective melanocortin receptor subtype 4 agonist, RO27-3225, fails to prevent acoustic trauma-induced tinnitus in rats. Eur J Pharmacol 2015; 761:206-10. [PMID: 25977231 DOI: 10.1016/j.ejphar.2015.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
In preliminary studies we have observed a massive microglial activation in the cochlear nucleus following acoustic trauma-induced tinnitus in rats, which suggests that inflammatory responses within the central auditory system may be involved in the development and maintenance of tinnitus. Recently, the anti-inflammatory properties of melanocortins (MCs), have gained increasing interest in pharmacology due to their promising therapeutic potential in the treatment of inflammatory-mediated diseases. Among the five subtypes of the MC receptor, MC3 and MC4 receptors are the predominant brain receptors and are thought to play an important role in brain inflammation and neuroprotection. Importantly, MC4 receptors have been found in the mouse and rat central auditory systems. In this study we investigated whether the MC4 receptor agonist, RO27-3225, injected s.c at a dose of 90 or 180µg/kg, 30min before acoustic trauma and then every 12h for 10 days, could prevent the development of acoustic trauma-induced tinnitus in rats, using a conditioned behavioural suppression model. Although evidence of tinnitus developed in the exposed-vehicle group compared to the sham-vehicle group (P≤0.03), in response to a 32kHz tone, there were no significant drug effects from treatment with RO27-3225, indicating that it did not confer any protection against the development of tinnitus in this animal model. This result suggests that the anti-inflammatory effects of MC4 receptor agonists may not be sufficient to prevent tinnitus.
Collapse
Affiliation(s)
- Yiwen Zheng
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| | - Kate McPherson
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Peter Reid
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Paul F Smith
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Machado I, Gonzalez PV, Vilcaes A, Carniglia L, Schiöth HB, Lasaga M, Scimonelli TN. Interleukin-1β-induced memory reconsolidation impairment is mediated by a reduction in glutamate release and zif268 expression and α-melanocyte-stimulating hormone prevented these effects. Brain Behav Immun 2015; 46:137-46. [PMID: 25637483 DOI: 10.1016/j.bbi.2015.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/26/2014] [Accepted: 01/17/2015] [Indexed: 01/31/2023] Open
Abstract
The immune system is an important modulator of learning, memory and neural plasticity. Interleukin 1β (IL-1β), a pro-inflammatory cytokine, significantly affects several cognitive processes. Previous studies by our group have demonstrated that intrahippocampal administration of IL-1β impairs reconsolidation of contextual fear memory. This effect was reversed by the melanocortin alpha-melanocyte-stimulating hormone (α-MSH). The mechanisms underlying the effect of IL-1β on memory reconsolidation have not yet been established. Therefore, we examined the effect of IL-1β on glutamate release, ERK phosphorylation and the activation of the transcription factor zinc finger- 268 (zif268) during reconsolidation. Our results demonstrated that IL-1β induced a significant decrease of glutamate release after reactivation of the fear memory and this effect was related to calcium concentration in hippocampal synaptosomes. IL-1β also reduced ERK phosphorylation and zif268 expression in the hippocampus. Central administration of α-MSH prevented the decrease in glutamate release, ERK phosphorylation and zif268 expression induced by IL-1β. Our results establish possible mechanisms involved in the detrimental effect of IL-1β on memory reconsolidation and also indicate that α-MSH may exert a beneficial modulatory role in preventing IL-1β effects.
Collapse
Affiliation(s)
- Ivana Machado
- IFEC-CONICET, Depto. Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Patricia V Gonzalez
- IFEC-CONICET, Depto. Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Alejandro Vilcaes
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Buenos Aires, Argentina
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Buenos Aires, Argentina
| | - Teresa N Scimonelli
- IFEC-CONICET, Depto. Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
8
|
Benjamins JA, Nedelkoska L, Lisak RP. Adrenocorticotropin hormone 1-39 promotes proliferation and differentiation of oligodendroglial progenitor cells and protects from excitotoxic and inflammation-related damage. J Neurosci Res 2014; 92:1243-51. [PMID: 24916309 DOI: 10.1002/jnr.23416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/20/2023]
Abstract
Oligodendroglia (OL) are highly susceptible to damage and, like neurons, are terminally differentiated. It is important to protect OL precursors (OPC) because they are reservoirs of differentiating cells capable of myelination following perinatal insult and remyelination in white matter diseases, including multiple sclerosis (MS). Patients with relapsing-remitting MS are commonly treated with high-dose corticosteroids (CS) when experiencing an exacerbation. Adrenocorticotropin hormone (ACTH), a primary component of another approved MS exacerbation treatment, is a melanocortin peptide that stimulates production of CS by the adrenals. Melanocortin receptors are also found in the central nervous system (CNS) and on immune cells. ACTH is produced within the CNS and may have CS-independent effects on glia. We found that ACTH 1-39 stimulated proliferation of OPC, and to a lesser extent astroglia (AS) and microglia (MG), in rat glial cultures. ACTH accelerated differentiation of PDGFRα(+) OPC to a later stage marked by galactolipid expression and caused greater expansion of OL myelin-like sheets compared with untreated cells. Protective effects of ACTH on OPC were assessed by treating cultures with selected toxic agents, with or without ACTH. At 200 nM, ACTH protected OPC from death induced by staurosporine, glutamate, NMDA, AMPA, kainate, quinolinic acid, H2 O2 , and slow NO release, but not against kynurenic acid or rapid NO release. These agents and ACTH were not toxic to AS or MG. Our findings indicate that ACTH 1-39 provides benefits by increasing the number of OPC, accelerating their development into mature OL, and reducing OPC death from toxic insults.
Collapse
Affiliation(s)
- Joyce A Benjamins
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan; Department of Immunology and Microbiology, Wayne State University School of Medicine Detroit, Michigan
| | | | | |
Collapse
|
9
|
Olney JJ, Navarro M, Thiele TE. Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders. Front Neurosci 2014; 8:128. [PMID: 24917782 PMCID: PMC4042890 DOI: 10.3389/fnins.2014.00128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/08/2014] [Indexed: 12/30/2022] Open
Abstract
The melanocortin (MC) peptides are produced centrally by propiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus and act through five seven-transmembrane G-protein coupled melanocortin receptor (MCR) subtypes. The MC3R and MC4R subtypes, the most abundant central MCRs, are widely expressed in brain regions known to modulate neurobiological responses to ethanol, including regions of the hypothalamus and extended amygdala. Agouti-related protein (AgRP), also produced in the arcuate nucleus, is secreted in terminals expressing MCRs and functions as an endogenous MCR antagonist. This review highlights recent genetic and pharmacological findings that have implicated roles for the MC and AgRP systems in modulating ethanol consumption. Ethanol consumption is associated with significant alterations in the expression levels of various MC peptides/protein, which suggests that ethanol-induced perturbations of MC/AgRP signaling may modulate excessive ethanol intake. Consistently, MCR agonists decrease, and AgRP increases, ethanol consumption in mice. MCR agonists fail to blunt ethanol intake in mutant mice lacking the MC4R, suggesting that the protective effects of MCR agonists are modulated by the MC4R. Interestingly, recent evidence reveals that MCR agonists are more effective at blunting binge-like ethanol intake in mutant mice lacking the MC3R, suggesting that the MC3R has opposing effects on the MC4R. Finally, mutant mice lacking AgRP exhibit blunted voluntary and binge-like ethanol drinking, consistent with pharmacological studies. Collectively, these preclinical observations provide compelling evidence that compounds that target the MC system may provide therapeutic value for treating alcohol abuse disorders and that the utilization of currently available MC-targeting compounds- such as those being used to treat eating disorders- may be used as effective treatments to this end.
Collapse
Affiliation(s)
- Jeffrey J Olney
- Department of Psychology, University of North Carolina Chapel Hill, NC, USA
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina Chapel Hill, NC, USA
| | - Todd E Thiele
- Department of Psychology, University of North Carolina Chapel Hill, NC, USA ; Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|
10
|
Shpakova EA, Derkach KV, Shpakov AO. Effect of Peptides Corresponding to Extracellular Domains of Serotonin 1B/1D Receptors and Melanocortin 3 and 4 Receptors on Hormonal Regulation of Adenylate Cyclase in Rat Brain. Bull Exp Biol Med 2014; 156:658-62. [DOI: 10.1007/s10517-014-2419-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Indexed: 11/24/2022]
|
11
|
Temp FR, Santos AC, Marafiga JR, Jesse AC, Lenz QF, Oliveira SM, Guerra GP, Scimonelli TN, Mello CF. Alpha melanocyte stimulating hormone (α-MSH) does not modify pentylenetetrazol- and pilocarpine-induced seizures. Life Sci 2013; 93:723-31. [DOI: 10.1016/j.lfs.2013.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/09/2013] [Accepted: 09/04/2013] [Indexed: 12/30/2022]
|
12
|
Spaccapelo L, Galantucci M, Neri L, Contri M, Pizzala R, D'Amico R, Ottani A, Sandrini M, Zaffe D, Giuliani D, Guarini S. Up-regulation of the canonical Wnt-3A and Sonic hedgehog signaling underlies melanocortin-induced neurogenesis after cerebral ischemia. Eur J Pharmacol 2013; 707:78-86. [PMID: 23535605 DOI: 10.1016/j.ejphar.2013.03.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 12/31/2022]
Abstract
In experimental cerebral ischemia, melanocortin MC4 receptor agonists induce neuroprotection and neurogenesis with subsequent long-lasting functional recovery. Here we investigated the molecular mechanisms underlying melanocortin-induced neurogenesis. Gerbils were subjected to transient global cerebral ischemia, then they were treated every 12 h, and until sacrifice, with 5-bromo-2'-deoxyuridine (BrdU; to label proliferating cells), and the melanocortin analog [Nle(4),d-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) or saline. NDP-α-MSH increased hippocampus dentate gyrus (DG) expression of Wnt-3A, β-catenin, Sonic hedgehog (Shh), Zif268, interleukin-10 (IL-10) and doublecortin (DCX), as detected at days 3, 6 and 10 after the ischemic insult. Further, an elevated number of BrdU immunoreactive cells was found at days 3 and 10, and an improved histological picture with reduced neuronal loss at day 10, associated with learning and memory recovery. Pharmacological blockade of the Wnt-3A/β-catenin and Shh pathways, as well as of melanocortin MC4 receptors, prevented all effects of NDP-α-MSH. These data indicate that, in experimental brain ischemia, treatment with melanocortins acting at MC4 receptors induces neural stem/progenitor cell proliferation in the DG by promptly and effectively triggering the canonical Wnt-3A/β-catenin and Shh signaling pathways. Activation of these pathways is associated with up-regulation of the repair factor Zif268 and the neurogenesis facilitating factor IL-10, and it seems to address mainly toward a neuronal fate, as indicated by the increase in DCX positive cells.
Collapse
Affiliation(s)
- Luca Spaccapelo
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Evans JF, Ragolia L. Systemic and local ACTH produced during inflammatory states promotes osteochondrogenic mesenchymal cell differentiation contributing to the pathologic progression of calcified atherosclerosis. Med Hypotheses 2012; 79:823-6. [PMID: 23026706 DOI: 10.1016/j.mehy.2012.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/07/2012] [Indexed: 02/05/2023]
Abstract
There are many well-known roles for the proopiomelanocortin (POMC) derived peptides and their receptors, the melanocortin receptors (MC-R). The focus here is on the evolving role of the melanocortin system in inflammation. Chronic inflammatory states such as those occurring in diabetes and obesity are associated with both a hyperactive hypothalamic-pituitary-adrenal (HPA) axis as well as increased incidence of atherosclerosis. An inflammation-induced hyperactive HPA axis along with increased leukocyte infiltration can lead to significant exposure to melanocortin peptides, particularly ACTH, in an inflamed vasculature. Mesenchymal progenitor cells are present throughout the vasculature, express receptors for the melanocortin peptides, and respond to ACTH with increased osteochondrogenic differentiation. Coupled to the increased exposure to ACTH during HPA hyperactivity is increased glucocorticoid (GC) exposure. GCs also promote chondrogenic differentiation of mesenchymal progenitors and increase their expression of MC-R as well as their expression of POMC and its cleavage products. It is hypothesized that during inflammatory states systemically produced ACTH and glucocorticoid as well as ACTH produced locally by macrophage and other immune cells, can influence and potentiate mesenchymal progenitor cell differentiation along the osteochondrogenic lineages. In turn the increase in osteochondrogenic matrix contributes to the pathophysiological progression of the calcified atherosclerotic plaque. The roles of the melanocortin system in inflammation and its resolution have just begun to be explored. Investigations into the ACTH-induced matrix changes among mesenchymal cell populations are warranted. ACTH signaling through the MC-R represents a new therapeutic target for the prevention and treatment of calcified atherosclerosis.
Collapse
Affiliation(s)
- Jodi F Evans
- Biomedical Research Core, Winthrop University Hospital, Mineola, NY 11501, USA.
| | | |
Collapse
|
14
|
Henagan TM, Forney L, Dietrich MA, Harrell BR, Stewart LK. Melanocortin receptor expression is associated with reduced CRP in response to resistance training. J Appl Physiol (1985) 2012; 113:393-400. [PMID: 22678961 PMCID: PMC4422369 DOI: 10.1152/japplphysiol.00107.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/03/2012] [Indexed: 12/18/2022] Open
Abstract
The existing paradigm of exercise-induced decreases in chronic inflammation focuses on the expression of inflammatory receptors on systemic monocytes in response to exercise training, with the role of anti-inflammatory receptors largely ignored. Our recent preliminary studies indicate that the anti-inflammatory melanocortin receptors (MCRs) may play a role in modulating exercise-induced decreases in chronic inflammation. Here, we present a study designed to determine the effect of intense, resistance exercise training on systemic monocyte MCR expression. Because low-grade chronic inflammation is associated with elevated cardiometabolic risk in healthy populations and exercise decreases chronic inflammation, we investigated the associations between systemic monocyte cell surface expression of MCRs and inflammatory markers as a possible mechanism for the beneficial anti-inflammatory effects of resistance training. To this end, the present study includes 40 adults (aged 19-27 yr) and implements a 12-wk periodized, intensive resistance training intervention. Melanocortin 1 and 3 receptor expression on systemic monocytes and inflammatory markers, including C-reactive protein (CRP), interleukin (IL)-6, IL-1β, and IL-10, were measured before and after the intervention. Resistance training significantly altered MCR systemic monocyte cell surface expression, had no chronic effects on IL-6, IL-1β, or IL-10 expression, but significantly decreased CRP levels from a moderate to a low cardiovascular disease risk category. More specifically, decreased melanocortin 3 receptor expression significantly correlated with decreased CRP, independent of changes in adiposity. These data suggest that the observed responses in MCR expression and decreases in cardiovascular disease risk in response to resistance training represent an important anti-inflammatory mechanism in regulating exercise-induced decreases in chronic inflammation that occur independent of chronic changes in systemic cytokines.
Collapse
Affiliation(s)
- Tara M Henagan
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | | | | | |
Collapse
|
15
|
Evans JF, Fernando A, Ragolia L. Functional melanocortin-2 receptors are expressed by mouse aorta-derived mesenchymal progenitor cells. Mol Cell Endocrinol 2012; 355:60-70. [PMID: 22306084 PMCID: PMC3485690 DOI: 10.1016/j.mce.2012.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/21/2011] [Accepted: 01/19/2012] [Indexed: 01/03/2023]
Abstract
A local melanocortin system is active during tissue injury and inflammation. Thus far this system has been described as autocrine in nature where local production of pro-opiomelanocortin (POMC) peptides by leukocytes feeds back on melanocortin receptor (MC-R) expressing immune cells to quell inflammatory cytokine production. Here we present evidence that POMC peptides may generate extracellular matrix (ECM) changes by inducing matrix production by cells of the mesenchymal lineage through activation of the MC2-R. Using immunoblot, we determined that mouse aorta-derived mesenchymal progenitor cells express both MC2-R and MC3-R. These progenitors respond to treatment with ACTH by increasing collagen matrix synthesis as assessed by picrosirius red stain and (3)H-proline incorporation. ACTH also induces transient increases in intracellular calcium ([Ca(2+)](i)) as assessed using the fluorescent Ca(2+) indicator, fura-2. The ACTH-induced changes in [Ca(2+)](i) are consistent with MC2-R signaling and consist of both an intracellular release and an extracellular influx of Ca(2+). Both mouse aortic mesenchymal progenitors and mouse macrophage cells express POMC and the prohormone convertase 1/3 (PC1/3) indicating they have the potential to contribute to the local production of POMC peptides. These data demonstrate functional MC2-R expression in mouse aorta-derived mesenchymal progenitors and implicate both macrophage and mesenchymal cells as relevant sources of local POMC peptides.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/pharmacology
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Azo Compounds
- Calcium/metabolism
- Cells, Cultured
- Collagen/genetics
- Collagen/metabolism
- Extracellular Matrix/drug effects
- Fura-2
- Gene Expression/drug effects
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/metabolism
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred C57BL
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Proprotein Convertase 1/genetics
- Proprotein Convertase 1/metabolism
- Rats
- Rats, Inbred WKY
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jodi F. Evans
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY 11501
- Stony Brook University School of Medicine, Stony Brook, NY 11794
| | - Anne Fernando
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY 11501
| | - Louis Ragolia
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY 11501
- Stony Brook University School of Medicine, Stony Brook, NY 11794
| |
Collapse
|
16
|
Gatti S, Lonati C, Acerbi F, Sordi A, Leonardi P, Carlin A, Gaini SM, Catania A. Protective action of NDP-MSH in experimental subarachnoid hemorrhage. Exp Neurol 2012; 234:230-8. [DOI: 10.1016/j.expneurol.2011.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/10/2011] [Accepted: 12/22/2011] [Indexed: 12/22/2022]
|